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Cooperative distributed MPC of linear systems with couledstraints
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Abstract

This paper develops a cooperative, distributed form of MBQifear systems subject to persistent, bounded distedgsanThe
distributed control agents make decisions locally and cominate plans with each other. Cooperation is promoted bgideration
of a greater portion of the system-wide objective by eachllagent; specifically, a local agent designs hypothetieaigpfor other
agents, sacrificing local performance for the benefit ofaystvide performance. These hypothetical plans are nevenamicated
and no negotiation takes place. The method guaranteestii@ashility by permitting only one agent to optimize pené step,
while ‘freezing’ the plans of others, and sufficient coralits are given for robust stability. These properties hot@fistructures of
cooperation between agents. Thus, a key feature is thatewupnstraint satisfaction is compatible with inter-agsyoperation.

Keywords: control of constrained systems; predictive control; dé@dization; time-invariant; multi-agent systems

1. Introduction of a ‘tube’ for the subsystem to follow rather than a singke tr

. jectory; that is, a sequence of robust invariant sets cedten a
Model Predictive Control (MPC) has attracted much attenJ— Y q e

. . ) trajectory for the nominalie. disturbance-free) dynamics. The
tion over the last few decades, and theoretical foundatsurch J y . . { S ) yr
i ) method permits a single agent to optimize per time step. Use
as closed-loop stability results, are well establishe®]1Re- o
o : of a local feedback law ensures that future states remalirwit
cently, research has focuseddiatributedor decentralizedorms

of MPC [3], in which decision making is distributed among the tube for all possible disturbance realizations, yehwuit the

: . . need for further communication; exchange of informatiothwi
agents corresponding to different subsystems making up th

whole. The primary challenge is how to coordinate efforts togther aggntg is only requwe_d after an agent optimizes fava n
: . o . tube, which is not necessarily at each time step.
achieve system-wide feasibility and stability, and nurnsrstrate- .
) ) . In this paper, we extend the tube DMPC method [15] to
gies have been proposed; see [4] for a comprehensive survey, romote inter-agent cooperation. Cooperation with respec
Animportant further problemis that of achieving good sm;{ep 9 P ) b

. . . system-wide performance is promoted by including in theloc
wide pe‘rforman,ce. W't.h some degregmn‘operanorbetwe(_en optimizations a consideration of the objectives of othdrsys-
agents, ‘greedy’ behaviour can be avoided and system-veide p

formance may improve [5, 6]. In the presence of coupling Cont_ems in a cooperating set of the updating subsystem. A local

. ) . agent designs not only its own tube, but aigpotheticatubes
straints, however, closed-loop performance is coupleah éve 9 9 y

o . . for these agents. Coupled constraint satisfaction is getias
the objective and dynamics are decoupled, and appliedaentr o o .
. o ! before by permitting only one agent to optimize per time step
can be severely sub-optimal, despite inter-agent itavat[@].

; . = While other agents ‘freeze’ their plans.
Thus, the presence of such constraints has been identified as The contribution of this paper, then, is a cooperative robus

a key opt_en rfe setﬁ_rch prglb 'e”.‘ [7|]' dAppLo?Dc_t:jels t(.) SyslteLnGIW'dBMPC method that pairs robust coupled constraint satisfact
cooperation for this problem Inciude a hybrid fogIc ruies and stability with inter-agent cooperation, yet requiresmter-

approach [8], dual decomposition [9, 10], and bargainingeer agent iterations or bargaining. The approach to cooperatio
peated exchang(_e and refir_1ement of solgtions[S, 11_1.3]'4“’1 1 o?alocal agent designi?lg hygt.)theticalpglans forotherss+|an;p A
agents solve their respe_ctlve P“’t_"ems mdependentlymmﬂs ilar to that of [14], yet here (i) the choice of other agentshwi
taneously; though considerationis given to a neighbolrje® whom to cooperate is unrestricted, and (i) the inclusiothia

tive, coupling constraint satisfaction is not guaranteed. Lo . . )
._optimization of two representations of a neighbour’s plad a
In a recent paper [15], we proposed a robust form of dIS'extra coupling constraints guarantees coupled constsaiiig-
tributed MPC, in which each agent designs a local plan that— Ping g P

.. faction and stability. The approach may be seen as either an
based on théube MPCmethod [16] for robustness—consists extension of the tube DMPC method [15] to promote coopera-

“This paper was not presented at any IFAC meeting. Reseaposad tion while _retamlng robust feaS|_b|I|ty—\{|§a mod|f|cat|m_nthe
by the Engineering and Physical Sciences Research Cowfiland BAE ~ COSt function—or asa ConStra'nt modification to [14]_ in arde
Systems. to guarantee feasibility. The single-update formulationte-
*Corresponding author. Tel. +44-131-650-5055. Fax +44-4301-6553. stricted choice of cooperating sets and absence of neigatiat
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arthur. richards@ris. ac. uk (Arthur Richards) or bargaining leads to more flexible communications thaeioth
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methodse.g.the iterative cooperative schemes of [5, 6, 11-13]Assumption 1 (Robust positively-invariant set)There exists a

which require multiple and repeated information exchanges

stabilizing controller K for each subsyste(#\,, B,) and a cor-

The outline of this paper is as follows. The next section outresponding robust positively-invariant (RP1) 9&, satisfying

lines preliminary details. In Section 3 the cooperative DBAP
algorithm is developed. Results on robust feasibility ated s
bility are established in Section 4. Inter-agent commuiaca
requirements are provided in Section 5, while numericaldam

tions using the new method are presented in Section 6. Finall

conclusions are drawn in Section 7.

Notation: The matrix mapping of a set is defined A8 £
{c: db e B,c = Ab}. The operator~’ denotes the Pontrya-
gin difference [17], a set-shrinking operation defined7s-
B 42 {a:a+be AVbe B). The operatord’ denotes the
Minkowski sum, defined asi® 8 £ {a+b:ae Abe B}
The double subscript notatiok € j|k) indicates a prediction of
a variablej steps ahead from time LetN £ {0,1,2,.. ..

2. Preliminaries

We consider a system &, linear time-invariant, discrete-
time subsystems, the set of which is denofeet {1, ..., Np},
described by the state equations

Xp(K+ 1) = ApXp(K) + Bpup(K) + wp(k), Yp e P, ke N, (1)

wherex, € RN, u, € RV» andw, € R are, respectively,
the state vector, control input vector, and disturbancmgan
subsystenp. Assume that each systeiy,, Bp) is controllable,
and that the complete statg is available to agenp at each
sampling instant. The disturbances are unknawgriori, but

are assumed to lie in known independent, bounded, compag

sets that contain the origin:
Wp(k) € Wy c RN Vpe P keN.

Each subsystenp € # is subject to local constraints on an
outputyp(k) € RNv:

Yp(K) = Cpxp(K) + Dpup(K) € Yp,

where the se¥, is closed. In additionN; coupling constraints
exist across multiple subsystems. Each coupling consicain
C ={1,...,Nc} applies to coupling outputs, € RNz¢, the sum
of which must lie in a closed s&.:

NP
Zep(K) = EcpXp(K) + FepUp(K), and " zep(K) € Ze.

p=1

The following definitions identify structure in the coupdin

(Ap + BpKp)Xp + Wp € Rp, VXp € Rp, Wp € W,
N

b
@(Ecp + Fcpr)Rp c Z.VYcecC.
p=1

Since each(Ap, Bp) is controllable, the existence & is
assured. The latter part of the assumption requires thatithe
turbance set is not too ‘large’; a mild assumption for margcpr
tical constraints and disturbances [17].

3. Cooperativedistributed MPC

Consider the distributed control problem faced by a local
control agent at some time step. With the system at a state
X(K) = {x1(K),...,xn,(K)}, the tube DMPC method [15] has a
sole optimizing agenp devise a plan consisting of initial state
and a sequence of future controls

Up(K) 2 {Kp(kIK), Tp(KIK). ... Tp(K + N — 1K)},

where p,up) are the state and input of the nominal model
Xp(k + 1) = ApXp(K) + Bpup(k). Meanwhile all other agents

r # p simply adopt the tails of their respective previous plans,

ur (k), the collection of which is denoted (k). The new plan

uP(k) is obtained by agenp minimizing alocal cost function
p(Up) subject to local constraints am,(k) and coupling con-

straints on @p(K), uZ ,(K)).

In the cooperative form developed in this paper, a local
agentp additionally designsypotheticalplans for others in
some cooperating sét,. Such a plan for an agewt € N,
is denotedlq. The local optimization problem is to minimize a
weighted sum of local costs

Jp(Up) + D arpgdn(Do),

QeNp

subject to satisfaction of local constraints vp and eachiy,
and satisfaction of coupling constraints by with (i) fixed
urp,, and (i) the set oftiq anduy for all r ¢ {p, Np}. The
additional decision variable{$“1q}qup are internal top’s local
decision making and will not be communicated to other agents

Following the optimizationp communicates information about

) . - t ; -
and are used later to determine the requirements for commur@nly its own plarup”. Moreover, there is no obligation for a co-
cation. DefineP, as the set of subsystems involved in constraintoperating set subsystemqe N, to itself optimize at the next

¢, andC,, as the set of constraints involving subsystem

P & {p €P :[Ecp Fep] # O}, 2
Cp 2 {ceC:[EcpFepl # 0}, ®3)
Then the set of all other subsystems couplegd i®

Qp = (U Pc)\’{p}- (4)

ceCp

step or indeed ever adopt the pién The main point is that the
optimizing subsysterp determines its own plan by considering
what others may be able to achieve.

This approach has similarities with that of [14], in which
a local agent additionally designs plans for other subsyste
However, in that work, the choice of cooperating 84t is re-
stricted to the set of coupled agent,, while here it is unre-
stricted. Moreover, the representation of constraintsissuif-
ficient to provide coupled constraint satisfaction. Thesprece



of two sets of coupling constraints in the optimization is crucial
in the development here. Effectively, two different regnes-
tions of a plan for a cooperating subsystgre N, appear in
the local optimization fop: firstly, a previously published plan,
Ug, originating from the last time thatoptimized, and the plan
that subsystem is currently following; secondly, a hypttdz
plan, (i, designed locally by agemt This leads to a key fea-
ture of the method; that of promoting inter-agent cooperati
yet maintaining robust feasibility of all local decisions.

The cooperative distributed optimization is now formally
described. With the system at a stgtg(k), ..., xn,(K)}, the

optimization problenﬂ]’g”’(k)(xp(k); Zy(k)) for an agenp is

e CE OB q;p(k) pada(Ug(K) (5)
subjecttovj € {0,...,N—-1}:

Xp(K+ j + 1K) = ApXp(K + jIK) + Bpup(k + jIK), (6a)
Xp(K) — Xp(kIK) € Rp, (6b)
Xo(k + NIK) € Xk, (6c)
Yp(k+ jIK) = CpXp(K + jIK) + Dpup(k + jIK), (6d)
Yok + jIK) € Y, (6€)
Ve e Cp: Zep(k+ jIK) = EcpXp(k + jIK) + Fepup(k + jIK),  (6f)
Zok+ )+ D Zglk+ jIK) € Ze, (69)

gePe\{p}

Vg € Np(K) 1 Ra(k+ j + 1K) = Agfg(k + 1K) + Bolig(k + ”kieh)
Ra(KIk) = XKk - 1), (6i)
Og(KIk) = Ty(kk — 1), (6i)
Rq(k+ NIK) € X, (6k)
Ya(k + jIk) = CqXg(k + jIK) + DqUg(k + jIK), (61
Ja(k + jIk) € Y (6m)
Ve € Cq: Zg(K+ jIK) = EcgXq(K + jIK) + Feqlg(k + jIK),  (6n)

andvc € Cn,k = Uien, Ci -

Zop(k+ JI) + > Zglk+ jIK) +
AeNp(K)

> Zuk+ ik e Ze.
rePe\{p.Np(K)}
(60)

In this optimization, the cost function is defined as
N-1
Ip(up(K) 2 Fo(Rp(k+ NI+ > 1p(Rp+ 1K), Tp(k+ jlK)), (7)
i=0

where the stage cobt : RN« x RNur 5 Rg, . The terminal cost
Fp : RN« Ro., is some cost-to-go beyond the end of the
horizon. The setd/,, Z. represent the set¥,, Z. tightened
by margins to allow for uncertainty:

Yp = Yp ~ (Cp + DpKp)Ry,

Np
Ze=2Zc~ @(Ecp + Fcpr)Rp

p=1

These sets are non-empty by Assumption 1. The Bgtare

‘cross-sections’ of the tubes, so that the tubes themseaines

given by{Xp(KIk) & Rp, Xp(k + 1K) & Rp, . . ., Xp(k + N|K) @ Rp}.
The setsXF, are terminal sets, to which the following applies.

Assumption 2 (Admissible control invariantterminal setJhere
exist terminal setXr,, and terminal control laws pi= ¢, (Xp),

Dk, (Xp) € Yp and 557, EcpXp + Fepkr, (Xp) € Ze, VG € C.

The initial constraints (6i) and (6j) provide the startinmjnt
of the hypothetical trajectoryi, for eachq € Ny(K). It is as-
sumed that any cooperating subsystgman not optimize its
own plan until, at the earliest, the next time step 1. Hence,
these predicted trajectories shall only begin to divergenfthe
previously published trajectories at the- 1 prediction step.

Precise details and implications of the coupling constsain
applied will be discussed in Section 5. For n@g(k) denotes
the collection of information about other subsystems’ pldrat
the control agent requires to evaluate the optimization.

This problem is solved in the following Algorithm. It is
assumed that the informatiaj(k) is known and sufficient; in
Section 5 the communication requirements to objtk) are
identified. We also assume that stabilizing controlkégsand
kr,, and setRp, Xr , Yp, Zc are available to each agent. Note
that tools and methods are available for computing invarian
sets—aor approximations to them—and their corresponding co
trol laws, e.g.[18, 19].

Algorithm 1 (Cooperative DMPC for a subsystemh
1. Set k= 0. Wait for feasible solutiom,(0) and informa-
tion Z;(0) from central initialization agent.
2. Sample current state k).
3. Updateplan. If p=1p
(a) Choose cooperating sé¥(k) and weightingsyq
for each ge Np(K).
(b) Obtain new planuy(K) = ul’(k) as solution to prob-
lemPp"® (x,(K); Z5(K))-
(c) Transmit new plam(K) to other agents.
else
(a) Renew current planuy(k) = Gip(K).
4. Apply control y(K) = up(klK) + Kp(Xp(K) — Xp(KIK)). Wait
one time step, increment k, go to step 2.

Though the algorithm is executed by all agents in parallel,
only a sole agenpy optimizes at a time stek All other agents
p # p« renew their current plan, by shifting in time the tail
of the previous, feasible solution and augmenting with p efe
terminal control, the result of which is denotég(k). The order
in which subsystems’ plans are optimized is determined by th
update sequencéps,..., Pk, Pk+1,---}- This is to be chosen
by the designer, and may be a stafie.(pre-determined) or
dynamic sequence, and may include steps of zero update .

The cooperating seW,(k) and the scalar weightings,q
are essentially tuning parameters for the level of coopmrat
The parametewrpq > 0 is the weighting applied to the local
objective Jq for q € Np(k); smaller valuesd,q < 1) place



more emphasis op’s own objective and self interest, whilst because, by definitions (2) and (2), = 0 for all ¢ ¢ C, and,
larger values ¢pq > 1) have the opposite effect. The size of foranyc e C,z, =0 forallr ¢ Pc.

the cooperating set maps to what portion of the system-wide ExaminingPQ”’(xp(ko); Z;(ko)) with any Np(ko) € P\ip},
objective is considered in the local optimization. Nf(k) is  the solutior{u’,(ko), uj, (ko)} is feasible if and only if constraints
empty, the objective reverts simply to the functidiifup(k)) of  (6h)—(60) are satisfied. Consider some Np(ko). Satisfaction
the non-cooperative form. Conversely, Mg(k) — P\{p} the — of (6h)—(6n) bylig(ke) = uj (ko) follows immediately from fea-

local optimization problem more closely resembles theesyst sibility of ug (ko) for Pglq(xq(ko): Z; (ko)) with Ng(ko) = 0. Con-

wide, centralized problem, but with modified constraints. X L Z N =
e e S . o Straint (60), withZsp(-[ko) = Z(-lko) andZq(-lko) = Z(-lko),
Detailed investigation of the choices of update sequeree, Cbecomes identical to (9), and the result is established.

operating sets and weightings is beyond the scope of thisrpap Now consider problerﬂ’N"(x (ko + 1): Z: (ko + 1)) at time
p p ' p

the key point is that the choices are unrestricted and i=dek | .
ko + 1, for anyp € P and with Np(ko + 1) = 0. The candidate

veloped hold for all choices. In [20], a method is proposed fo - i : L
choosing the cooperating sets on-line, based on the steugtu P12 dp(ko + 1) satisfies (6a) by construction. For the initial
' constraint (6b),

the (active) coupling constraints.
The distributed algorithm requires that a feasible iniain Xp(Ko + 1) = Xp(ko + ko + 1) = Xp(ko + 1) — X (ko + 1lko)

be made available to each control agent, and this is a common _ =
assumption of DMPC methods; for example, see [21, 22]. Note = App(ko) = Xy (kolko)) + Wy (ko)
this does not imply a centralized optimization must be siive € Rp, YWp(ko) € W,

often a simple feasible solution is available, such as & su
systems remaining stationary [23]. A further requirement i
that the terminal seXr, for the local optimization be made
available centrally, since coupling constraints must ised ~ Xp(ko + N + ko + 1) = X;(ko + N + 1]ko)

whereAx p £ Ay + ByKp, becausex, (ko) — X (kolko) € Rp, and
R, satisfies Assumption 1. For the terminal constraint (6¢),

therein. However, note that no further centralized proicesis _A T -

required from that point on. Following optimization, thees = AoXp(Ko + Niko) + Bk, (X (ko + Niko))

p« transmits its new plan to some other agents; precisely which € X,

agents is identified in the Section 5. by Assumption 2. Satisfaction of (6d) is by constructionjlesh
(6e) is satisfied byp(ko + 1 + jlko + 1) = Yy(ko + j + ko)

4. Robust feasibility and stability for j € {0,...,N — 2} and satisfaction foj = N — 1 is by

. admissibility of the terminal set:
Under Assumptions 1 and 2, the system controlled by Algo- 4

rithm 1 has the properties of robust constraint satisfactind  Yp(ko + Nlko + 1) = CpXj(ko + NIko) + Dp«r, (X (Ko + Niko))
robust feasibility. €Y,

Proposition 1 (RObESt feas@ility.) Suppo_se the sequence of For the coupling constraints, (6f) is satisfied by constrt
controls (ko) = (ko). Glllol.. itko + N — k) o0 1% CUPING Sonstiants, (60 1o satsred oy oonee
exists and, for each f{z P, is a feasible (but not necessarily ¢ i €{0,...,N — 2}. Satisfaction forj = N — 1 is again by
optimal) solution toP,"(Xp(ko); Z(ko)) at some time stepok  admissibility of the terminal set. Consequently(k, + 1) is a
with Np(ko) = 0. Then, (D{up(ko). Uy, (ko)) whereuy, (ko) = faagipie solution tay (xp(ko+ 1); Zj (ko + 1)) with Alp(ko-+1) =
{ug(ko)lgen, ) 1S @ feasible solution 8" (Xp(ko); Zy(ko)) for 0. Finally, to establish part (ii), the resuit of part (i) isgied
any Np(ko) € P\{p}; and, (ii) for all Xp(ko + 1) € ApXp(ko) +  attime stegko + 1, so thafliy(ko + 1), Uiy, (ko + 1)} is a feasible
Byup(ko) & W'p. Vp € P, where (ko) = Up(Kolko) + Kp(Xp(ko) — solution toP)? (x,(ko + 1); Zj(ko + 1)) with any Np(ko + 1),
Xp(kolko)), the candidate solutioftip(ko + 1), Uy, (ko + 1)} is @ Part (iii) follows by applying recursion to (ii). A colleain
feasible solution t@p " (xp(ko + 1); Zj(ko + 1)), where of feasible solutions to each problef(x,(0); Z;(0)) implies
all subsequent optimizatiorﬁ%’p(xp(k); Z5(K)), k> 0, are feasi-

Up(ko + 1) = {Tf’(ko + 1lko). Up(ko + ko), ble, regardless of update sequence and cooperating set&l

+es Up(ko + N = Tiko), ke, (% (ko + leO))}’ (8) In order to consider closed-loop stability, first define the
and iy, (ko + 1) = {lig(ko + Dlgen,or1)r fOr any Np(ko + 1) global cost as the summation of local costs, including aodl,
b ’ N . .. .
Subsequently, (iii) the resulting closed-loop systemrotiati  Published decision variablag,(k—the plans the subsystems
by Algorithm 1 is robustly feasible for any update sequence. are following—and not hypothetical decision variabligg:

Proof. For (i), feasibility ofu? (ko) forIP’N”(x (ko); Z (ko)) with Np

Np(ko) = 0 implies satisfaction of constraints (63)—(69). Note J(K) = Z Jp(up(K)) (10)
that satisfaction of (6g) implies p=1

Np Then, under the further, following assumptions, Proposi@2
Z Zp(ko + jlko) € Z.Vcec, (9) 9uaranteesasymptotic convergence of the states of theotledt
P system to a neighbourhood of the origin.



Assumption 3 (Terminal cost is local Lyapunov functionjor
all x, € X¢, and pe P,

Fo(ApXp + Bpkr, (Xp)) — Fp(Xp) < —lp(Xp, k7, (Xp))-

This is constructed in the standard way (seg.[1, Sec. 3.3])

by evaluating] in (10) atky andkg + 1, using the definition of

Ji in (7), and applying the inequality in Assumption 3.
However, at this stefip + 1, one agentp = py,1, Opti-

mizes while allr # p adopt their respective candidate plans.

Together with Assumption 2, these assumptions represe@upposing the cooperating set fois AVp(ko + 1), the optimiza-

a specific case of the standard assumptions Al
equivalently A1 and A2 in [16].

—A4in [1] ofigp produces some (not necessarily optimal) solufigytko +

1), Unyy (Ko + 1)}—wWhere-denotes a hypothetical plan—with

Assumption 4 (Bounded local costs)The local cost of an adopted@” OPtimization cost (5) less than or equal to that for takirey

planup(k) for any agent p= pg updating at k satisfies

NP
Ip(Up(K)) < Ip(Tp(K)+ > | eili(% (k-1k-1), T (k—1lk—1)) (11)
i=1
for some chose@ < ¢ < 1, Vi € {1,..., Np}, whereliy(K) is the
candidate plan for time k, defined £8).

Lemma 1. Suppose the solutiout,(ko) to Pg"(xp(ko); Z; (ko))
at some time stepkvith Np(ko) = 0 exists for all pe #. Then
the solution{Tip(ko+1), lin, (Ko+ 1)} to Py (Xp(Ko+1); Zy(ko+1)),
defined in Proposition 1, satisfies Assumption 4 for arey
andNp(ko + 1) € P\{p}.

Proof. By Proposition 1, the solutiofiip(ko+ 1), Tix, (ko +1)} to
ng(xp(ko+ 1);Z(ko+1)) exists for anyp € £ andNp(ko+1) €
P\{p}. For that solutionJ,(up(ko + 1)) — Ip(lip(ko + 1)) = O for
any p, which trivially satisfies (11) for alé € [0, 1). O

Proposition 2 (Robust asymptotic convergence ®p). Sup-
pose the sequence of contral§(ko) = {X;(Kolko), Up(KolKo),
..., Up(ko + N — 1lko)} exists and, for each g #, is a feasible
(but not necessarily optimal) solution }Rﬁ”’(xp(ko); Zy(ko)), at
some time stepokwith NVp(ko) = 0. Then, for all y(ko + 1) €
ApXp(Ko) + Bpup(Ko) & Wp, Vp € P, where (ko) = Up(Kolko) +
Kp(Xp(ko) — X (Kolko)), if Assumption 4 holds the global cost
decreases monotonically:

NP
8" (ko +1) < " (ko) =¥ ) 1i(X (kolko), T (olko)),
i=1

wherey > 0, Furthermore, if h(Xp, Up) > cll(Xp, Up)l| for some
¢ > 0 and I,(0,0) = 0O then, for each p, ¥k} — R, and
Up(K) = KpXp(K) as k— co.

Proof. {u’;,(ko),ujvp(ko)}, whereujvp(ko) = {ua(ko)}qup(ko), is a
feasible solution tdi”g/"(xp(ko); Z; (ko)) for any Np(ko) < P\{p}-

candidate solution for itself and all in its cooperating Sétus,

p adopts thei; (ko + 1) part of this solution as its adopted plan
at timekp + 1, while all non-optimizing: # p adopt their re-
spective candidate plaffig(ko + 1), with global cost

3" (ko + 1) = Jp(ui(ko + 1)) + D Ir({s (ko + 1))

r£p
= (ko + 1) + [Jp(Uj(ko + 1)) — Jp(lip(ko + 1))-

It follows that

3" (ko + 1) < 3" (ko)
Np
‘(Z

i=1

(R (o). 5 (k)| (Ul 20)- 3o 0pk0+2)

Subsequently, if they(ko+1) part of the solution to the problem

Pﬁ/p(xp(ko +1);Z;(ko + 1)) atko + 1, for anyp with any N (ko +
1) ¢ P\{p}, satisfies (11) in Assumption 4 for some chosen
6 €[0,1),Vie{l,...,Np},

Np

Jp(up(ko + 1)) < Jp(Tip(ko + 1)) + Z €li(% (Kolko), U (Kolko))

i=1

theng*(io + 1) < 7" (ko) — ¥ 2% i (X (kolko), T (kolko)), where

v = Zihi"l(l —¢g) > 0, asg < 1,Vi, and the result is established.
For asymptotic convergenchy(-,-) > 0,Fp(-) > 0, hence

dp(K) = Oforallp € . Thend*(k+ 1) - Jp(k) — O as

k — co. It follows that Iiny_,wyzi"iplli(ﬁ(mk),LTi*(k|k)) = 0.
Then, becausg > 0, Zi“i"lli(Z‘(k|k),LTi*(k|k)) — 0. Further-
more, because eadx;, u;) > c|(xi,ui) > 0, for somec > 0,
then each;(x (klk), u(klk)) — 0. This implies that, for any
P, Xp(kK) — 0 andup(klk) — 0; asxp(K) — X5(kK) € Rp
andup(k) = up(KIk) + Kp(xp — X(KIK)), thenxp(k) — R, and
Up(K) = Kpxp(k) ask — co. O

The condition (11) bounds the value of thoeal costJ, in

The global cost associated with each agent adopting thé locéhe optimization. Thus, the bound sets a limit on the amoynt b

part uy(ko) of this solutions isJ* (ko) = ZiN:pl Ji(uj (ko)). By

Proposition 1, the candidaf@,(ko + 1), lin, (ko + 1)}, as defined
by (8), is a feasible solution th/"(xp(ko +1);Z5(ko + 1)) for
any Np(ko + 1) € P\{p} and anyp. The global cost were each
p to implement theip(ko + 1) part of this solution is

NP NP
Jlko+1) 2 > J(@i(ko+1)) < 3" (ko)= D (K (Kolko), T (Kolko)).
i=1 i=1

which the local cos8, of an adopted local plamy, is permitted
to increaseover the local cost of the candidate pianin order
to benefit other agents. Intuitively, an unbounded increaag
lead to instability if repeated by many agents over time.

For an implementation that guarantees stability, (11) neay b
included in the local optimization as a constraint witk @ < 1
chosen by the designer. While the summation in the rightthan
side of (11) involves all agents in the problem, note that 0
is permitted for any. Therefore, no additional communication



to that identified in the next section is required to constfar  if px includesq in its cooperating set, any shared coupling con-

stability, since any agent’s information may be omittedhim t straints are still evaluated witlis previously publisheglan).

constraint by setting; = 0. This is similar to the stability con- Secondly, by constraint (60), the sum of hypothetical cou-

straint approach [24], where performance may be traded witlpling outputszcy(-|k) over allq € N, (K) must be consistent

feasibility by tuning the different;. Note that although the with the coupling outputs ofy, and also with the previously

presence of such a constraint may restrict optimality, aild@a  published outputs of all other subsystems coupled tocry

solution always exists by Lemma 1. Np (K). That is, the collection of; (-k), V¢ € Cy,, (), Where
Where (11) is not included as a constraint in the local op-

timization, note that in many cases the optimization wilide Chioo 2 U Gi,

to satisfy the constraint anyway, since the left-hand sidb® N p, (K)

inequality is related to what is being minimized in the oltijex

In particular, as the cost weightingsg in (5) take on low val-  is required from alr in the union

ues and approach zero, the objective weights most heawly th

local cost forp, which appears in the left-hand side of (11).  QipoNp) = U Q\{px, Np (K)}. (12)
iENp (K)
5. Communication requirements Note that in each case, the structure in the coupling con-

_ i _ straints, identified in (2) and (3), has been exploited. Bor e
It remains to evaluate exactly what information, denote mple, for (6g), only constraints € C, are applied, as by
Z;(k), is required in the local optimization fqu. The follow-  yefinition (3), Zep(k + jIK) = O for all other constraints ¢

ing standing assumption shall apply to the subsequent sisaly Cp, SO these outputs do not affect the update of subsygtem

Assumption 5 (Construction fromug(K)). Each agent pe P Furthermore, the summation in (6g), for ean;ﬁnglu_o!es out-
hasa priori knowledge of static model parameters for all other PUt terms from only those subsystems#te by definition (2),

subsystems, including dynamig,, Bq), controller xg,, and Zr(k + jlK) = O for all other subsystemsg #.. The coupling
. ~ > . termsz;,(k+ jIK), Yq € Pc \ {p} are not affected by the decision
constraint sets ¢ Dq, Y, Ecq, Fcg, Zc, SO that, given the plan . . ;
uq(K), all predicted states and outputs may be constructed variablesu,(k), so they appear as fixed values in (6g), denoted
ans " by*—hence, values far;,(k + j|K), Vc € Cp, are required from
Examining the local optimization, firstly we consider the all other subsystemsin Q. A similar analysis for (60) results
initial constraints (6i) and (6j). To evaluate these caaists, in only the constraint€y,, « being applied.

the local agentpx must have knowledge of;(kk — 1) and We note, therefore, that it is not necessary to obtain the
U (Kk — 1) for eachq € N, (K). Define Rp as the last time, Whole planug(k) from some otheq. Instea(_j, defi_ne a message
before the current stely a subsystenp optimized its plan: vector from subsystermp regarding constraint at timek as
N - = — T
ko(K) £ X ]k’. Mep(k) 2 [Zp(KKT .. Zp(k+ N =17 (k+ NIQT],

"tk <kipw =p

which includes the coupling outputs and terminal state.ikga
the* superscript denotes a feasible solution. At this poing it i
worth noting the difference between a message and a plan. A

Suppose that the plarg(Akq) for a subsysteng € Ny, (K), from
this latest update step, has been made available to the pgent

T R S S C — T A message may be constructed from a plan given the system and
Ug(ka) = (Xq(kalka), Ug(kalka), Ug(kaika). - Uglka+N—Llkg)}. constraint matrices. However, a plan—or the initial staed

Thenp, may construct values as required: inputs—may not, in general, be reconstructed from a message
Often, a message is a smaller representation of a plan, and in
Uy(kk-1) = lT&(klﬁq), a convenient format that aids direct evaluation of the cimgpl

constraints without further matrix operations.
A;B l?(f(q N ilAk(Q Next, to allpw a local agent to form current cqupllng (jata
9"q ’ based on previous information, define a propagation matrix,

k—

: 2
Xkk—1) = A %y (koka) + )

-1
i=0

o1 0 ... 0

forallk < Rq + N — 1. For greater values & states and inputs 0 0 | 0

may be constructed using the terminal control ka(xg).

Now we turn to the coupling constraints, (6g) and (60), inIlcp oo T :
the optimization. The communication requirements for coop 0 0 0 ... (Ecp+FepKr,)
erative DMPC are higher than for non-cooperative DMPC [15] 0 0O (Ap + BpKg,)
since the problem includes two sets of coupling constralffitstly,
by constraint (6g), the coupling outpus, ([K) of the optimiz-  assuming a linear terminal control lai. kg, (Xp) = Kg, Xp, SO
ing subsystenpy satisfy the coupling constraintse Cp, when  thatmep(k) = Tlepmep(k — 1) is the message at tinkefor a non-
taken with the previously published outputg(k) of subsys- updating subsystem # px. Then the message kifor a sub-
tems¥q € Pc\{pk}, which may include some € N, (K). (Even  systemp that last optimized ak, is mcp(K) = T1% mep(ky).

s
- >



Relating this back to the information that is requiredfigyto  performance will not match that of centralized, owing to the

evaluate (69), this information is obtained as hypothetical plans not being communicated and the enforced
(ko . delay in other agents’ updates. However, even in this sa@nar
{Jmcq(k)}cecpk,qEka = {J¢q mcq(kq)}cecpk,qeapkv the approach offers some advantages_, na_Lmer some degr_ee of
robustness to agent failure or communication breakdowcesi
where the matrix operatdr= diag(, I, ..., 0) removes the ter- the other agents in the system are not reliant on an optigizin

minal states. The inclusion of the terminal stagék + N[k) in agent for new plans in order to maintain constraint sattgfac
the message permits the correct propagation for stepkg+N.
The information for (60) is obtained in an identical manner.
Motivated by these requirements for information to eval-
uate initial and coupling constraints, the informationuge-  6.1. Integrators with coupled inputs

mentll:/?r eval.ua*tlon F)f the constraints in the cooperatiebpr The first example considers a set of six identical integsator
lemPy"(xp(k); Z(K)) is now stated. with dynamicsx, = Up, Vp € {1,..., 6}, wherex, € R, up € R.
Requirement 1 (Information forZ;, (K)). At a time step k, the To show more clearly the effects of cooperation, we assume no

control agent for an optimizing subsystegmpust have received Uncertainty or additive disturbances. The control objecis to
regulate the system to the origin from an initial sta€0) =

6. Numerical examples

1. plansug(ky) from all g € Ny (K); 10, ¥ p, while minimizing the quadratic cost

2. messageBgi(Ky), Y € Cp,, from all ge Qp,; .

3. messagesicr(kr), V¢ € Cp,, ), fromallr € Qp n,, )- Z z": 2(K) (13)
The first part of the requirement ensures all that initial-con I 5= P

straints can be evaluated. Satisfaction of the second pahm
P« can evaluate all its coupling constraints, with respecheo t The integrators are coupled via the input constraints; egmit
previously published plans of coupled subsystems. The finds constrained locally alsip(K)| < 1, and a limit is imposed on
part means that the coupling constraints for every cooprat the sum of inputs over all subsystenEi’;'21|up(k)| < 1. State
subsystem may be evaluated, using the hypothetical plans f@onstraints are defined B, = {X, : [X,| < 10}, Vp.
d € Np(K) with published plans for any coupled subsystems not  For the controller, the dynamics are discretized assuming
in the cooperating set. . zero-order hold and a sampling period of 1 s. The prediction

Note that if N, (K) is empty,p does notrequire plang,(k;)  horizon is 8 steps. The terminal set is chosen to be equakto th
from any other agent (part 1), and the union & v,,) (12)  state constraint sete. Xr, = Xp. Within this set, the termi-
of part 3 becomes empty; hence, Requirement 1 reduces to tgg| control lawke, (%) = K, Xp = —0.001x, satisfies Assump-
quiring only coupling data from thosg e Qp,. Conversely, if  tion 2. The local cosfl, defined by (7), is a finite-horizon ap-
Np (K) = P\(Pd, P requires plans fronall others, but each  proximation to (13) withl o(X,, Up) = X3 andF p(Xp) = 1000,
term@i\{px, Np, (K)} of the union in part 3 is empty, and no pre- This satisfies Assumption 3 for at, € Xg, with Uy = K, Xp.
viously published outputs appear in constraint (60). Imeein  The absence of uncertainty means thaklK) = Xp(K), Yk, no
these extremegx requires information from (i) those in the co- feedback controlleK,, is required, and the local cost is zero
operating set, (ii) those to whomy is coupled, and (iii) those only at the origin. The integrators are each initializedhatie
to whom anyg € Ay, (K) is coupled. feasible plaruf(jl0) = Kg,X,(jl0). j € {0.....N - 1}, placing

It is assumed that the communication avallablllty is Sufﬁ-each ona |inear|y decreasing trajectory to the Origin_
cient to meet the information requirement. Thus, the comimun  Figure 1 shows the state evolution of the six integrators
cation step in Algorithm 1 conservatively specifies traresitin - when controlled by distributed and centralized MPC (CMPC).
to all other subsystems following update. While this maynsee \when centralized control is used, an equal share of thesdlail
Significant, it should be noted that to meet the requiremdﬂt i control input is allocated to each integrator, and this sotuat-
sufficient for one agent to transmit its plan to others ontgiaf  tajins the lowest system-wide cost. With distributed cdnthe
that plan has Changede. as a result of Optimization. More- agents Optimize in the Simpie a|ternating Seque{fﬁ;@» 3,...).
over, it is not necessary for an agent to update at every timghys, since each agent has an initial plan using only a small
step, and robust coupled constraint satisfaction andléyedie  fraction of the total control available, the first agent tdioyize
guaranteed for any choices of update sequence and cooperatihas the greatest control authority, in thatrigyelect to use all
sets. Thus, data exchanges need not occur at every time step.the available shared control effort. Subsequent agemts o
and the cooperating set and update sequence may be tatoredimizing would then have zero control available until thestfir
exploit this flexibility, as has been shown for the latter 15].  agent relinquishes control. This greedy behaviour occors f
In comparison, the approaches to cooperation based on intghe non-cooperative DMPG.g. Algorithm 1 with Np = 0.

agent iteration or bargaining [S, 6, 11-13] require muéiphd Figures 1(b)—(d) show trajectories for cooperative DMPC
repeated information exchanges at each time step in order {gith three different schemes for choosing the cooperatéetg s
achieve constraint satisfaction and stability. ‘next’, where Ny = 1+ (p modNp); ‘next two’, whereN, =

Finally, note that if the cooperating set is such that thalloc {1 + (p mod Np), 1+ (p+1 modNp,)}; and allp # px. For each
optimization is similar in size to the centralized probletimg
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control forceji.e. ||dp||_, < 0.01Fmax

Coupling between vehicles arises from collision avoidance
constraints, expressed as a minimum separation distanee
1 m between each pair of vehicldsi —ro|| > L, resultingin a
Figure 1: State evolution of controlled integrators. Tetgey of  square exclusion region around each vehicle. These cantstra
the system when controlled by centralized MPC shown dottedgre implemented as mixed integer linear inequalities usieg

‘big-M’ approach [25, 26].
) The feedback matriX, is the nilpotent controller for the
Table 1: Aggregate close(_j loop costs, as_percentage "mrea§ystem(Ap, B), and the seR, is the corresponding minimal
over centralized cost, for different cooperation schemes. RPI set. Constraints are tightened accordingly, or in theeca
Size ofNp, 0 1 2 3 4 5 of the non-convex avoidance constraints, by enlargemethieof
12 425 112 Q38 013 Q04 excluded regions [23].

The two vehicles are required to traverse a 5 m diameter
circle from opposing ends; a straight line path for both wibul
cooperative optimizationypq = 1 in the objective. The trajecto- lead to a collision. The objective for a vehigds to be steered
ries become progressively ‘fairer’ as the size of the coafieg  close to a target state, a positign= —r,(0) where the velocity
set increases, converging towards the CMPC state trajector is zero. Thenominalstage cost isﬂr_p - tp||2. A polyhedral

The stability constraint (11) was not included in the opti-approximation to this 2-norm function is used [25], rendgri
mizations. Nevertheless, the value of the local cost wasdou the optimization objective (7) linear. The terminal 8&t, for
to satisfy the condition at every time step tor 0—the lowest each vehicle is equal to the target state, and the termirsil co
upper bound—hence guaranteeing convergence. Fp = 0. Under these conditions, asymptotic convergence of

Closed-loop costs are shown in Table 1, with ‘next threethe perturbed vehicles is guaranteed to the RPI set around th
and ‘nextfour’ schemes shown in addition. The aggregatetlo target state; that i$t,T) OT]T + Rp.
loop cost decreases as the number of agents in the coogeratin - The initialization provided is sub-optimal, in that one bét
set increases. The largest decrease is seen moving from namhicles is provided a straight-line plan, whilst for théet a
cooperative DMPC to cooperating with one other agent. Thugjeviated plan is formed to avoid collision. The update sagae
immediate benefits can be obtained without having to solve aubsequently employed is the simple, alternating sequeoce
problem comparable in size to a centralized problem. that vehicle agents optimize plans in sequence. Each eakicl

subjected to a sequence of random disturbances over the dura
6.2. Vehicle guidance tion of the simulation. The horizon length is 25 steps.

We consider a pair of vehicles, each modelled by the point ~ Figure 2 shows the results. For non-cooperative DMPC,
unit mass dynamics, = v, andvp = f, + dp, whererp € the vehicle travelling from North to South follows a desieab

R?,v, € R? represent, respectively, the position and velocityStraight line path, leaving the other vehicle to deviatevoic

of vehiclep € {1,2}, andd, is an additive disturbance to the collision in th.e centre. The former has no incentive at anyipo
control force f, € R2. These dynamics are discretized with t© @dopt a higher cost plan than the one it is following, or to
a time step of B seconds to provide the linear, state-spacemake any allowances for the other vehicle. The cooperative
model (1), with statex, = [rg V;]T e R* The output con- ConFrol scheme delivers a more equa_\l response: both .v_ehlcle
straints take the form of local speed and applied force imit deviate equally and oppositely to avoid collision. Thus, ithi-
”VP”z < Vinax and”fpnz < Fmax respectively, Wher&/may = tial sub-optimality is overcome.

0.225 m/s and~pax = 0.08 N. These 2-norm constraints may

be approximated by polyhedra [25], with only small errors in

troduced. The disturbance is limited to 10% of the maximum

2010 20 30 40 50 60 70
Time stepk

(d) Cooperative, alp # p«

"0 10 20 30 40 50 60 70
Time stepk

(c) Cooperative, ‘next two’

Cost increase (%)
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7. Conclusions [17]

In this paper, a cooperative distributed form of MPC has
been presented. In the new algorithm, for LTI subsystems shd®l
ing coupling constraints, agents optimize plans locallgt @r- |19
change information. A key finding is that coupled constraint
satisfaction, achieved by permitting only one agent torojzie
while ‘freezing’ the plans of others, is compatible with geo
eration, achieved by considering wider objectives in th&-op
mizations. Specifically, a local objective considers thegiveed  [21]
costs of other agents in the problem, and a local agent design
not only its own plan, but also hypothetical plans for other??!
agents. The algorithm has been applied to example systems, i
cluding a vehicle guidance problem where ‘greedy’ behaviou[23]
leads to poor system-wide performance. It has been shown tha
the cooperative method has led to a more coordinated respong;
and better global performance.

[20]

[25]
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