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Cooperative distributed MPC of linear systems with coupledconstraints✩
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Abstract

This paper develops a cooperative, distributed form of MPC for linear systems subject to persistent, bounded disturbances. The
distributed control agents make decisions locally and communicate plans with each other. Cooperation is promoted by consideration
of a greater portion of the system-wide objective by each local agent; specifically, a local agent designs hypothetical plans for other
agents, sacrificing local performance for the benefit of system-wide performance. These hypothetical plans are never communicated
and no negotiation takes place. The method guarantees robust feasibility by permitting only one agent to optimize per time step,
while ‘freezing’ the plans of others, and sufficient conditions are given for robust stability. These properties hold for all structures of
cooperation between agents. Thus, a key feature is that coupled constraint satisfaction is compatible with inter-agent cooperation.

Keywords: control of constrained systems; predictive control; decentralization; time-invariant; multi-agent systems

1. Introduction

Model Predictive Control (MPC) has attracted much atten-
tion over the last few decades, and theoretical foundations, such
as closed-loop stability results, are well established [1,2]. Re-
cently, research has focused ondistributedordecentralizedforms
of MPC [3], in which decision making is distributed among
agents corresponding to different subsystems making up the
whole. The primary challenge is how to coordinate efforts to
achieve system-wide feasibility and stability, and numerous strate-
gies have been proposed; see [4] for a comprehensive survey.

An important further problem is that of achieving good system-
wide performance. With some degree ofcooperationbetween
agents, ‘greedy’ behaviour can be avoided and system-wide per-
formance may improve [5, 6]. In the presence of coupling con-
straints, however, closed-loop performance is coupled even if
the objective and dynamics are decoupled, and applied controls
can be severely sub-optimal, despite inter-agent iterations [7].
Thus, the presence of such constraints has been identified as
a key open research problem [7]. Approaches to system-wide
cooperation for this problem include a hybrid logic rule-based
approach [8], dual decomposition [9, 10], and bargaining orre-
peated exchange and refinement of solutions [5, 11–13]. In [14],
agents solve their respective problems independently and simul-
taneously; though consideration is given to a neighbour’s objec-
tive, coupling constraint satisfaction is not guaranteed.

In a recent paper [15], we proposed a robust form of dis-
tributed MPC, in which each agent designs a local plan that—
based on thetube MPCmethod [16] for robustness—consists
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of a ‘tube’ for the subsystem to follow rather than a single tra-
jectory; that is, a sequence of robust invariant sets centered on a
trajectory for the nominal (i.e.disturbance-free) dynamics. The
method permits a single agent to optimize per time step. Use
of a local feedback law ensures that future states remain within
the tube for all possible disturbance realizations, yet without the
need for further communication; exchange of information with
other agents is only required after an agent optimizes for a new
tube, which is not necessarily at each time step.

In this paper, we extend the tube DMPC method [15] to
promote inter-agent cooperation. Cooperation with respect to
system-wide performance is promoted by including in the local
optimizations a consideration of the objectives of other subsys-
tems in a cooperating set of the updating subsystem. A local
agent designs not only its own tube, but alsohypotheticaltubes
for these agents. Coupled constraint satisfaction is achieved as
before by permitting only one agent to optimize per time step,
while other agents ‘freeze’ their plans.

The contribution of this paper, then, is a cooperative robust
DMPC method that pairs robust coupled constraint satisfaction
and stability with inter-agent cooperation, yet requires no inter-
agent iterations or bargaining. The approach to cooperation—
of a local agent designing hypothetical plans for others—issim-
ilar to that of [14], yet here (i) the choice of other agents with
whom to cooperate is unrestricted, and (ii) the inclusion inthe
optimization of two representations of a neighbour’s plan and
extra coupling constraints guarantees coupled constraintsatis-
faction and stability. The approach may be seen as either an
extension of the tube DMPC method [15] to promote coopera-
tion while retaining robust feasibility—via a modificationto the
cost function—or as a constraint modification to [14] in order
to guarantee feasibility. The single-update formulation,unre-
stricted choice of cooperating sets and absence of negotiation
or bargaining leads to more flexible communications than other
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methods,e.g.the iterative cooperative schemes of [5, 6, 11–13],
which require multiple and repeated information exchanges.

The outline of this paper is as follows. The next section out-
lines preliminary details. In Section 3 the cooperative DMPC
algorithm is developed. Results on robust feasibility and sta-
bility are established in Section 4. Inter-agent communication
requirements are provided in Section 5, while numerical simula-
tions using the new method are presented in Section 6. Finally,
conclusions are drawn in Section 7.

Notation: The matrix mapping of a set is defined asAB ,
{

c : ∃b ∈ B, c = Ab
}

. The operator ‘∼’ denotes the Pontrya-
gin difference [17], a set-shrinking operation defined asA ∼
B ,

{

a : a + b ∈ A,∀b ∈ B
}

. The operator ‘⊕’ denotes the
Minkowski sum, defined asA ⊕ B ,

{

a + b : a ∈ A, b ∈ B
}

.
The double subscript notation (k+ j|k) indicates a prediction of
a variablej steps ahead from timek. Let N ,

{

0, 1, 2, . . .
}

.

2. Preliminaries

We consider a system ofNp linear time-invariant, discrete-
time subsystems, the set of which is denotedP =

{

1, . . . ,Np
}

,
described by the state equations

xp(k+ 1) = Apxp(k) + Bpup(k) + wp(k),∀p ∈ P, k ∈ N, (1)

wherexp ∈ R
Nx,p , up ∈ R

Nu,p andwp ∈ R
Nx,p are, respectively,

the state vector, control input vector, and disturbance acting on
subsystemp. Assume that each system

(

Ap, Bp
)

is controllable,
and that the complete statexp is available to agentp at each
sampling instant. The disturbances are unknowna priori, but
are assumed to lie in known independent, bounded, compact
sets that contain the origin:

wp(k) ∈ Wp ⊂ R
Nx,p ,∀p ∈ P, k ∈ N.

Each subsystemp ∈ P is subject to local constraints on an
outputyp(k) ∈ R

Ny,p:

yp(k) = Cpxp(k) + Dpup(k) ∈ Yp,

where the setYp is closed. In addition,Nc coupling constraints
exist across multiple subsystems. Each coupling constraint c ∈
C =

{

1, . . . ,Nc
}

applies to coupling outputszcp ∈ R
Nz,c, the sum

of which must lie in a closed setZc:

zcp(k) = Ecpxp(k) + Fcpup(k), and
Np
∑

p=1

zcp(k) ∈ Zc.

The following definitions identify structure in the coupling,
and are used later to determine the requirements for communi-
cation. DefinePc as the set of subsystems involved in constraint
c, andCp as the set of constraints involving subsystemp:

Pc ,
{

p ∈ P :
[

Ecp Fcp
]

, 0
}

, (2)

Cp ,
{

c ∈ C :
[

Ecp Fcp
]

, 0
}

. (3)

Then the set of all other subsystems coupled top is

Qp =

(

⋃

c∈Cp

Pc

)

\{p}. (4)

Assumption 1 (Robust positively-invariant set). There exists a
stabilizing controller Kp for each subsystem

(

Ap, Bp
)

and a cor-
responding robust positively-invariant (RPI) setRp, satisfying

(

Ap + BpKp
)

xp + wp ∈ Rp,∀xp ∈ Rp,wp ∈ Wp,
(

Cp + DpKp
)

Rp ⊆ Yp,

Np
⊕

p=1

(

Ecp+ FcpKp
)

Rp ⊆ Zc,∀c ∈ C.

Since each
(

Ap, Bp
)

is controllable, the existence ofKp is
assured. The latter part of the assumption requires that thedis-
turbance set is not too ‘large’; a mild assumption for many prac-
tical constraints and disturbances [17].

3. Cooperative distributed MPC

Consider the distributed control problem faced by a local
control agent at some time step. With the system at a state
x(k) =

{

x1(k), . . . , xNp(k)
}

, the tube DMPC method [15] has a
sole optimizing agentp devise a plan consisting of initial state
and a sequence of future controls

up(k) ,
{

x̄p(k|k), ūp(k|k), . . . , ūp(k+ N − 1|k)
}

,

where (x̄p, ūp) are the state and input of the nominal model
x̄p(k + 1) = Apx̄p(k) + Bpūp(k). Meanwhile all other agents
r , p simply adopt the tails of their respective previous plans,
u∗r (k), the collection of which is denotedu∗−p(k). The new plan
up(k) is obtained by agentp minimizing a local cost function
Jp

(

up
)

subject to local constraints onup(k) and coupling con-
straints on (up(k), u∗−p(k)).

In the cooperative form developed in this paper, a local
agentp additionally designshypotheticalplans for others in
some cooperating setNp. Such a plan for an agentq ∈ Np

is denoted̂uq. The local optimization problem is to minimize a
weighted sum of local costs

Jp
(

up
)

+

∑

q∈Np

αpqJp
(

ûq
)

,

subject to satisfaction of local constraints onup and eacĥuq,
and satisfaction of coupling constraints byup with (i) fixed
u∗−p, and (ii) the set ofûq and u∗r for all r < {p,Np}. The
additional decision variables

{

ûq
}

q∈Np
are internal top’s local

decision making and will not be communicated to other agents.
Following the optimization,p communicates information about
only its own planuopt

p . Moreover, there is no obligation for a co-
operating set subsystemq ∈ Np to itself optimize at the next
step or indeed ever adopt the planûq. The main point is that the
optimizing subsystemp determines its own plan by considering
what others may be able to achieve.

This approach has similarities with that of [14], in which
a local agent additionally designs plans for other subsystems.
However, in that work, the choice of cooperating setNp is re-
stricted to the set of coupled agents,Qp, while here it is unre-
stricted. Moreover, the representation of constraints is not suf-
ficient to provide coupled constraint satisfaction. The presence
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of twosets of coupling constraints in the optimization is crucial
in the development here. Effectively, two different representa-
tions of a plan for a cooperating subsystemq ∈ Np appear in
the local optimization forp: firstly, a previously published plan,
u∗q, originating from the last time thatq optimized, and the plan
that subsystem is currently following; secondly, a hypothetical
plan, ûq, designed locally by agentp. This leads to a key fea-
ture of the method; that of promoting inter-agent cooperation
yet maintaining robust feasibility of all local decisions.

The cooperative distributed optimization is now formally
described. With the system at a state

{

x1(k), . . . , xNp(k)
}

, the

optimization problemP
Np(k)
p

(

xp(k); Z∗p(k)
)

for an agentp is

min
{up(k),ûNp (k)}

Jp
(

up(k)) +
∑

q∈Np(k)

αpqJq
(

ûq(k)
)

(5)

subject to∀ j ∈
{

0, . . . ,N − 1
}

:

x̄p(k+ j + 1|k) = Apx̄p(k+ j|k) + Bpūp(k+ j|k), (6a)

xp(k) − x̄p(k|k) ∈ Rp, (6b)

x̄p(k+ N|k) ∈ XFp , (6c)

ȳp(k+ j|k) = Cpx̄p(k+ j|k) + Dpūp(k+ j|k), (6d)

ȳp(k+ j|k) ∈ Ỹp, (6e)

∀c ∈ Cp : z̄cp(k+ j|k) = Ecpx̄p(k+ j|k) + Fcpūp(k+ j|k), (6f)

z̄cp(k+ j|k) +
∑

q∈Pc\{p}

z̄∗cq(k+ j|k) ∈ Z̃c, (6g)

∀q ∈ Np(k) : x̂q(k+ j + 1|k) = Aqx̂q(k+ j|k) + Bqûq(k+ j|k),
(6h)

x̂q(k|k) = x̄∗q(k|k− 1), (6i)

ûq(k|k) = ū∗q(k|k− 1), (6j)

x̂q(k+ N|k) ∈ XFq , (6k)

ŷq(k+ j|k) = Cqx̂q(k+ j|k) + Dqûq(k+ j|k), (6l)

ŷq(k+ j|k) ∈ Ỹq, (6m)

∀c ∈ Cq : ẑcq(k+ j|k) = Ecqx̂q(k+ j|k) + Fcqûq(k+ j|k), (6n)

and∀c ∈ CNp(k) ,
⋃

i∈Np(k) Ci :

z̄cp(k+ j|k) +
∑

q∈Np(k)

ẑcq(k+ j|k) +
∑

r∈Pc\{p,Np(k)}

z̄∗cr(k+ j|k) ∈ Z̃c.

(6o)

In this optimization, the cost function is defined as

Jp
(

up(k)
)

, Fp
(

x̄p(k+N|k)
)

+

N−1
∑

j=0

lp
(

x̄p(k+ j|k), ūp(k+ j|k)
)

, (7)

where the stage costlp : R
Nx,p ×R

Nu,p 7→ R0+. The terminal cost
Fp : R

Nx,p 7→ R0+, is some cost-to-go beyond the end of the
horizon. The sets̃Yp, Z̃c represent the setsYp,Zc tightened
by margins to allow for uncertainty:

Ỹp = Yp ∼
(

Cp + DpKp
)

Rp,

Z̃c = Zc ∼

Np
⊕

p=1

(

Ecp+ FcpKp
)

Rp.

These sets are non-empty by Assumption 1. The setsRp are
‘cross-sections’ of the tubes, so that the tubes themselvesare
given by

{

x̄p(k|k) ⊕ Rp, x̄p(k+ 1|k) ⊕ Rp, . . . , x̄p(k+ N|k) ⊕ Rp
}

.
The setsXFp are terminal sets, to which the following applies.

Assumption 2 (Admissible control invariant terminal set). There
exist terminal setsXFp , and terminal control laws up = κFp(xp),
∀p ∈ P, so that∀xp ∈ XFp ,Apxp + BpκFp(xp) ∈ XFp , Cpxp +

DpκFp(xp) ∈ Ỹp and
∑Np

p=1 Ecpxp + FcpκFp(xp) ∈ Z̃c,∀c ∈ C.

The initial constraints (6i) and (6j) provide the starting point
of the hypothetical trajectorŷuq for eachq ∈ Np(k). It is as-
sumed that any cooperating subsystemq can not optimize its
own plan until, at the earliest, the next time stepk + 1. Hence,
these predicted trajectories shall only begin to diverge from the
previously published trajectories at thek+ 1 prediction step.

Precise details and implications of the coupling constraints
applied will be discussed in Section 5. For now,Z∗p(k) denotes
the collection of information about other subsystems’ plans that
the control agent requires to evaluate the optimization.

This problem is solved in the following Algorithm. It is
assumed that the informationZ∗p(k) is known and sufficient; in
Section 5 the communication requirements to obtainZ∗p(k) are
identified. We also assume that stabilizing controllersKp and
κFp , and setsRp,XFp ,Yp,Zc are available to each agent. Note
that tools and methods are available for computing invariant
sets—or approximations to them—and their corresponding con-
trol laws,e.g.[18, 19].

Algorithm 1 (Cooperative DMPC for a subsystemp).
1. Set k= 0. Wait for feasible solutionu∗p(0) and informa-

tion Z∗p(0) from central initialization agent.
2. Sample current state xp(k).
3. Update plan. If pk = p

(a) Choose cooperating setNp(k) and weightingsαpq

for each q∈ Np(k).
(b) Obtain new planup(k) = uopt

p (k) as solution to prob-

lemP
Np(k)
p

(

xp(k); Z∗p(k)
)

.
(c) Transmit new planup(k) to other agents.

else
(a) Renew current plan:up(k) = ũp(k).

4. Apply control up(k) = ūp(k|k)+ Kp
(

xp(k) − x̄p(k|k)
)

. Wait
one time step, increment k, go to step 2.

Though the algorithm is executed by all agents in parallel,
only a sole agentpk optimizes at a time stepk. All other agents
p , pk renew their current plan, by shifting in time the tail
of the previous, feasible solution and augmenting with a step of
terminal control, the result of which is denotedũp(k). The order
in which subsystems’ plans are optimized is determined by the
update sequence, {p1, . . . , pk, pk+1, . . .}. This is to be chosen
by the designer, and may be a static (i.e. pre-determined) or
dynamic sequence, and may include steps of zero update .

The cooperating setNp(k) and the scalar weightingsαpq

are essentially tuning parameters for the level of cooperation.
The parameterαpq ≥ 0 is the weighting applied to the local
objective Jq for q ∈ Np(k); smaller values (αpq < 1) place

3



more emphasis onp’s own objective and self interest, whilst
larger values (αpq > 1) have the opposite effect. The size of
the cooperating set maps to what portion of the system-wide
objective is considered in the local optimization. IfNp(k) is
empty, the objective reverts simply to the functionJp

(

up(k)
)

of
the non-cooperative form. Conversely, asNp(k) → P\{p}, the
local optimization problem more closely resembles the system-
wide, centralized problem, but with modified constraints.

Detailed investigation of the choices of update sequence, co-
operating sets and weightings is beyond the scope of this paper;
the key point is that the choices are unrestricted and results de-
veloped hold for all choices. In [20], a method is proposed for
choosing the cooperating sets on-line, based on the structure of
the (active) coupling constraints.

The distributed algorithm requires that a feasible initialplan
be made available to each control agent, and this is a common
assumption of DMPC methods; for example, see [21, 22]. Note
this does not imply a centralized optimization must be solved;
often a simple feasible solution is available, such as all sub-
systems remaining stationary [23]. A further requirement is
that the terminal setXFp for the local optimization be made
available centrally, since coupling constraints must be satisfied
therein. However, note that no further centralized processing is
required from that point on. Following optimization, the agent
pk transmits its new plan to some other agents; precisely which
agents is identified in the Section 5.

4. Robust feasibility and stability

Under Assumptions 1 and 2, the system controlled by Algo-
rithm 1 has the properties of robust constraint satisfaction and
robust feasibility.

Proposition 1 (Robust feasibility). Suppose the sequence of
controls u∗p(k0) =

{

x̄∗p(k0|k0), ū∗p(k0|k0), . . . , ū∗p(k0 + N − 1|k0)
}

exists and, for each p∈ P, is a feasible (but not necessarily
optimal) solution toP

Np
p

(

xp(k0); Z∗p(k0)
)

at some time step k0

with Np(k0) = ∅. Then, (i)
{

u∗p(k0), u∗Np
(k0)

}

, whereu∗
Np

(k0) =
{

u∗q(k0)
}

q∈Np(k0), is a feasible solution toP
Np
p

(

xp(k0); Z∗p(k0)
)

for
anyNp(k0) ⊆ P\{p}; and, (ii) for all xp(k0 + 1) ∈ Apxp(k0) +
Bpup(k0)⊕Wp,∀p ∈ P, where up(k0) = ū∗p(k0|k0)+Kp

(

xp(k0)−
x̄∗p(k0|k0)

)

, the candidate solution
{

ũp(k0 + 1), ũNp(k0 + 1)
}

is a

feasible solution toP
Np
p

(

xp(k0 + 1);Z∗p(k0 + 1)
)

, where

ũp(k0 + 1) =
{

x̄∗p(k0 + 1|k0), ū∗p(k0 + 1|k0),

. . . , ū∗p(k0 + N − 1|k0), κFp

(

x̄∗p(k0 + N|k0)
)

}

, (8)

and ũNp(k0 + 1) =
{

ũq(k0 + 1)
}

q∈Np(k0+1), for anyNp(k0 + 1).
Subsequently, (iii) the resulting closed-loop system controlled
by Algorithm 1 is robustly feasible for any update sequence.

Proof. For (i), feasibility ofu∗p(k0) for P
Np
p

(

xp(k0); Z∗p(k0)
)

with
Np(k0) = ∅ implies satisfaction of constraints (6a)–(6g). Note
that satisfaction of (6g) implies

Np
∑

p=1

z̄∗cp(k0 + j|k0) ∈ Z̃c,∀c ∈ C, (9)

because, by definitions (2) and (3), ¯zcp = 0 for all c < Cp and,
for anyc ∈ C, z̄cr = 0 for all r < Pc.

ExaminingP
Np
p

(

xp(k0); Z∗p(k0)
)

with anyNp(k0) ⊆ P\{p},
the solution

{

u∗p(k0), u∗Np
(k0)

}

is feasible if and only if constraints
(6h)–(6o) are satisfied. Consider someq ∈ Np(k0). Satisfaction
of (6h)–(6n) byûq(k0) = u∗q(k0) follows immediately from fea-

sibility of u∗q(k0) for P
Nq
q

(

xq(k0); Z∗q(k0)
)

with Nq(k0) = ∅. Con-
straint (6o), withz̄cp(·|k0) = z̄∗cp(·|k0) and ẑcq(·|k0) = z̄∗cq(·|k0),
becomes identical to (9), and the result is established.

Now consider problemPNp
p

(

xp(k0 + 1);Z∗p(k0 + 1)
)

at time
k0 + 1, for anyp ∈ P and withNp(k0 + 1) = ∅. The candidate
plan ũp(k0 + 1) satisfies (6a) by construction. For the initial
constraint (6b),

xp(k0 + 1)− x̄p(k0 + 1|k0 + 1) = xp(k0 + 1)− x̄∗p(k0 + 1|k0)

= AK,p
(

xp(k0) − x̄∗p(k0|k0)
)

+ wp(k0)

∈ Rp,∀wp(k0) ∈ Wp,

whereAK,p , Ap + BpKp, becausexp(k0) − x̄∗p(k0|k0) ∈ Rp, and
Rp satisfies Assumption 1. For the terminal constraint (6c),

x̄p(k0 + N + 1|k0 + 1) = x̄∗p(k0 + N + 1|k0)

= Apx̄∗p(k0 + N|k0) + BpκFp

(

x̄∗p(k0 + N|k0)
)

∈ XFp

by Assumption 2. Satisfaction of (6d) is by construction, while
(6e) is satisfied by ¯yp(k0 + 1 + j|k0 + 1) = ȳ∗p(k0 + j + 1|k0)
for j ∈ {0, . . . ,N − 2} and satisfaction forj = N − 1 is by
admissibility of the terminal set:

ȳp(k0 + N|k0 + 1) = Cpx̄∗p(k0 + N|k0) + DpκFp

(

x̄∗p(k0 + N|k0)
)

∈ Ỹp.

For the coupling constraints, (6f) is satisfied by construction,
while z̄cp(k0 + 1 + j|k0 + 1) = z̄∗cp(k0 + j + 1|k0) satisfies (6g)
for j ∈ {0, . . . ,N − 2}. Satisfaction forj = N − 1 is again by
admissibility of the terminal set. Consequently,ũp(k0 + 1) is a

feasible solution toPNp
p

(

xp(k0+1);Z∗p(k0+1)
)

withNp(k0+1) =
∅. Finally, to establish part (ii), the result of part (i) is applied
at time stepk0 + 1, so that

{

ũp(k0 + 1), ũNp(k0 + 1)
}

is a feasible

solution toP
Np
p

(

xp(k0 + 1);Z∗p(k0 + 1)
)

with anyNp(k0 + 1).
Part (iii) follows by applying recursion to (ii). A collection

of feasible solutions to each problemPNp
p

(

xp(0);Z∗p(0)
)

implies

all subsequent optimizationsPNp
p

(

xp(k); Z∗p(k)
)

, k > 0, are feasi-
ble, regardless of update sequence and cooperating sets.

In order to consider closed-loop stability, first define the
global cost as the summation of local costs, including only local,
published decision variablesup(k)—the plans the subsystems
are following—and not hypothetical decision variablesûNp:

J(k) ,

Np
∑

p=1

Jp
(

up(k)
)

(10)

Then, under the further, following assumptions, Proposition 2
guarantees asymptotic convergenceof the states of the controlled
system to a neighbourhood of the origin.
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Assumption 3 (Terminal cost is local Lyapunov function). For
all xp ∈ XFp and p∈ P,

Fp
(

Apxp + BpκFp(xp)
)

− Fp
(

xp
)

≤ −lp
(

xp, κFp(xp)
)

.

Together with Assumption 2, these assumptions represent
a specific case of the standard assumptions A1–A4 in [1] or
equivalently A1 and A2 in [16].

Assumption 4 (Bounded local costs). The local cost of an adopted
plan u∗p(k) for any agent p= pk updating at k satisfies

Jp
(

u∗p(k)
)

≤ Jp
(

ũp(k)
)

+

Np
∑

i=1

ǫi l i
(

x̄∗i (k−1|k−1), ū∗i (k−1|k−1)
)

(11)

for some chosen0 ≤ ǫi < 1, ∀i ∈ {1, . . . ,Np}, whereũp(k) is the
candidate plan for time k, defined by(8).

Lemma 1. Suppose the solutionu∗p(k0) to P
Np
p

(

xp(k0); Z∗p(k0)
)

at some time step k0 withNp(k0) = ∅ exists for all p∈ P. Then

the solution
{

ũp(k0+1), ũNp(k0+1)
}

toP
Np
p

(

xp(k0+1);Z∗p(k0+1)
)

,
defined in Proposition 1, satisfies Assumption 4 for any p∈ P
andNp(k0 + 1) ⊆ P\{p}.

Proof. By Proposition 1, the solution
{

ũp(k0+1), ũNp(k0+1)
}

to

P
Np
p

(

xp(k0+1);Z∗p(k0+1)
)

exists for anyp ∈ P andNp(k0+1) ⊆
P\{p}. For that solution,Jp

(

up(k0+1)
)

− Jp
(

ũp(k0+1)
)

= 0 for
any p, which trivially satisfies (11) for allǫ ∈ [0, 1).

Proposition 2 (Robust asymptotic convergence toRp). Sup-
pose the sequence of controlsu∗p(k0) =

{

x̄∗p(k0|k0), ū∗p(k0|k0),
. . . , ū∗p(k0 + N − 1|k0)

}

exists and, for each p∈ P, is a feasible

(but not necessarily optimal) solution toP
Np
p

(

xp(k0); Z∗p(k0)
)

, at
some time step k0 with Np(k0) = ∅. Then, for all xp(k0 + 1) ∈
Apxp(k0) + Bpup(k0) ⊕Wp,∀p ∈ P, where up(k0) = ū∗p(k0|k0) +
Kp

(

xp(k0) − x̄∗p(k0|k0)
)

, if Assumption 4 holds the global cost
decreases monotonically:

J∗(k0 + 1) ≤ J∗(k0) − γ
Np
∑

i=1

l i
(

x̄∗i (k0|k0), ū∗i (k0|k0)
)

,

whereγ > 0, Furthermore, if lp
(

xp, up
)

≥ c‖(xp, up)‖ for some
c > 0 and lp

(

0, 0
)

= 0 then, for each p, xp(k) → Rp and
up(k)→ Kpxp(k) as k→ ∞.

Proof.
{

u∗p(k0), u∗
Np

(k0)
}

, whereu∗
Np

(k0) =
{

u∗q(k0)
}

q∈Np(k0), is a

feasible solution toP
Np
p

(

xp(k0); Z∗p(k0)
)

for anyNp(k0) ⊆ P\{p}.
The global cost associated with each agent adopting the local
part u∗p(k0) of this solutions isJ∗(k0) ,

∑Np

i=1 Ji
(

u∗i (k0)
)

. By
Proposition 1, the candidate

{

ũp(k0+1), ũNp(k0+1)
}

, as defined

by (8), is a feasible solution toP
Np
p

(

xp(k0 + 1);Z∗p(k0 + 1)
)

for
anyNp(k0 + 1) ⊆ P\{p} and anyp. The global cost were each
p to implement thẽup(k0 + 1) part of this solution is

J̃(k0+1) ,

Np
∑

i=1

Ji
(

ũi(k0+1)
)

≤ J
∗(k0)−

Np
∑

i=1

l i
(

x̄∗i (k0|k0), ū
∗
i (k0|k0)

)

.

This is constructed in the standard way (seee.g.[1, Sec. 3.3])
by evaluatingJ in (10) atk0 andk0 + 1, using the definition of
Ji in (7), and applying the inequality in Assumption 3.

However, at this stepk0 + 1, one agent,p = pk0+1, opti-
mizes while allr , p adopt their respective candidate plans.
Supposing the cooperating set forp isNp(k0+ 1), the optimiza-
tion produces some (not necessarily optimal) solution

{

u∗p(k0 +

1), ûNp(k0+1)(k0+1)
}

—where ˆ· denotes a hypothetical plan—with
an optimization cost (5) less than or equal to that for takingthe
candidate solution for itself and all in its cooperating set. Thus,
p adopts theu∗p(k0 + 1) part of this solution as its adopted plan
at timek0 + 1, while all non-optimizingr , p adopt their re-
spective candidate plansũr (k0 + 1), with global cost

J∗(k0 + 1) = Jp
(

u∗p(k0 + 1)
)

+

∑

r,p

Jr
(

ũr (k0 + 1)
)

= J̃(k0 + 1)+
[

Jp
(

u∗p(k0 + 1)
)

− Jp
(

ũp(k0 + 1)
)

]

.

It follows that

J∗(k0 + 1) ≤ J∗(k0)

−

( Np
∑

i=1

l i
(

x̄∗i (k0|k0), ū∗i (k0|k0)
)

−
[

Jp
(

u∗p(k0+1)
)

−Jp
(

ũp(k0+1)
)

]

)

.

Subsequently, if theu∗p(k0+1) part of the solution to the problem

P
Np
p

(

xp(k0+1);Z∗p(k0+1)
)

atk0+1, for anyp with anyNp(k0+

1) ⊆ P\{p}, satisfies (11) in Assumption 4 for some chosen
ǫi ∈ [0, 1),∀i ∈ {1, . . . ,Np},

Jp
(

u∗p(k0 + 1)
)

≤ Jp
(

ũp(k0 + 1)
)

+

Np
∑

i=1

ǫi l i
(

x̄∗i (k0|k0), ū∗i (k0|k0)
)

thenJ∗(k0 + 1) ≤ J∗(k0) − γ
∑Np

i=1 l i
(

x̄∗i (k0|k0), ū∗i (k0|k0)
)

, where

γ ≥
∑Np

i=1(1− ǫi) > 0, asǫi < 1,∀i, and the result is established.
For asymptotic convergence,lp(·, ·) ≥ 0, Fp(·) ≥ 0, hence

Jp(k) ≥ 0 for all p ∈ P. ThenJ∗(k + 1) − J∗p(k) → 0 as

k → ∞. It follows that limk→∞ γ
∑Np

i=1 l i
(

x̄∗i (k|k), ū∗i (k|k)
)

= 0.

Then, becauseγ > 0,
∑Np

i=1 l i
(

x̄∗i (k|k), ū∗i (k|k)
)

→ 0. Further-
more, because eachl i(xi, ui) ≥ c

∥

∥

∥(xi , ui)
∥

∥

∥ ≥ 0, for somec > 0,
then eachl i

(

x̄∗i (k|k), ū∗i (k|k)
)

→ 0. This implies that, for any
p, x̄∗p(k|k) → 0 and ū∗p(k|k) → 0; as xp(k) − x̄∗p(k|k) ∈ Rp

andup(k) = ūp(k|k) + Kp
(

xp − x̄∗p(k|k)
)

, thenxp(k) → Rp and
up(k)→ Kpxp(k) ask→ ∞.

The condition (11) bounds the value of thelocal costJp in
the optimization. Thus, the bound sets a limit on the amount by
which the local costJp of an adopted local planu∗p is permitted
to increaseover the local cost of the candidate planũp in order
to benefit other agents. Intuitively, an unbounded increasemay
lead to instability if repeated by many agents over time.

For an implementation that guarantees stability, (11) may be
included in the local optimization as a constraint with 0≤ ǫi < 1
chosen by the designer. While the summation in the right-hand
side of (11) involves all agents in the problem, note thatǫi = 0
is permitted for anyi. Therefore, no additional communication
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to that identified in the next section is required to constrain for
stability, since any agent’s information may be omitted in the
constraint by settingǫi = 0. This is similar to the stability con-
straint approach [24], where performance may be traded with
feasibility by tuning the differentǫi . Note that although the
presence of such a constraint may restrict optimality, a feasible
solution always exists by Lemma 1.

Where (11) is not included as a constraint in the local op-
timization, note that in many cases the optimization will tend
to satisfy the constraint anyway, since the left-hand side of the
inequality is related to what is being minimized in the objective.
In particular, as the cost weightingsαpq in (5) take on low val-
ues and approach zero, the objective weights most heavily the
local cost forp, which appears in the left-hand side of (11).

5. Communication requirements

It remains to evaluate exactly what information, denoted
Z∗p(k), is required in the local optimization forp. The follow-
ing standing assumption shall apply to the subsequent analysis.

Assumption 5 (Construction fromuq(k)). Each agent p∈ P
hasa priori knowledge of static model parameters for all other
subsystems, including dynamics

(

Aq, Bq
)

, controller κFq, and
constraint sets Cq,Dq, Ỹ,Ecq, Fcq, Z̃c, so that, given the plan
uq(k), all predicted states and outputs may be constructed.

Examining the local optimization, firstly we consider the
initial constraints (6i) and (6j). To evaluate these constraints,
the local agentpk must have knowledge of ¯x∗q(k|k − 1) and
ū∗q(k|k − 1) for eachq ∈ Npk(k). Define k̂p as the last time,
before the current stepk, a subsystemp optimized its plan:

k̂p(k) , max
k′∈{k′<k|pk′=p}

k′.

Suppose that the planu∗q(k̂q) for a subsystemq ∈ Npk(k), from
this latest update step, has been made available to the agentpk:

u∗q(k̂q) =
{

x̄∗q(k̂q|k̂q), ū∗q(k̂q|k̂q), ū∗q(k̂q+1|k̂q), . . . , ū∗q(k̂q+N−1|k̂q)
}

.

Thenpk may construct values as required:

ū∗q(k|k− 1) = ū∗q(k|k̂q),

x̄∗q(k|k− 1) = A
(k−k̂q)
q x̄∗q(k̂q|k̂q) +

k−k̂q−1
∑

i=0

Ai
qBqū

∗
q(k̂q + i|k̂q),

for all k ≤ k̂q + N − 1. For greater values ofk, states and inputs
may be constructed using the terminal control lawκFq(xq).

Now we turn to the coupling constraints, (6g) and (6o), in
the optimization. The communication requirements for coop-
erative DMPC are higher than for non-cooperative DMPC [15]
since the problem includes two sets of coupling constraints. Firstly,
by constraint (6g), the coupling outputs ¯zcpk(·|k) of the optimiz-
ing subsystempk satisfy the coupling constraintsc ∈ Cpk when
taken with the previously published outputs ¯z∗cq(·|k) of subsys-
tems∀q ∈ Pc\{pk}, which may include someq ∈ Npk(k). (Even

if pk includesq in its cooperating set, any shared coupling con-
straints are still evaluated withq’s previously publishedplan).

Secondly, by constraint (6o), the sum of hypothetical cou-
pling outputs ˆzcq(·|k) over all q ∈ Npk(k) must be consistent
with the coupling outputs ofpk, and also with the previously
published outputs of all other subsystems coupled to anyq ∈
Npk(k). That is, the collection of ¯z∗cr(·|k),∀c ∈ CNpk (k), where

CNpk(k) ,
⋃

i∈Npk (k)

Ci ,

is required from allr in the union

Q{pk,Npk }
,

⋃

i∈Npk (k)

Qi\{pk,Npk(k)}. (12)

Note that in each case, the structure in the coupling con-
straints, identified in (2) and (3), has been exploited. For ex-
ample, for (6g), only constraintsc ∈ Cp are applied, as by
definition (3), z̄cp(k + j|k) = 0 for all other constraintsc <
Cp, so these outputs do not affect the update of subsystemp.
Furthermore, the summation in (6g), for eachc, includes out-
put terms from only those subsystems inPc; by definition (2),
z̄cr(k + j|k) = 0 for all other subsystemsr < Pc. The coupling
termsz̄∗cq(k+ j|k),∀q ∈ Pc \ {p} are not affected by the decision
variablesup(k), so they appear as fixed values in (6g), denoted
by ∗—hence, values for ¯z∗cq(k+ j|k),∀c ∈ Cp, are required from
all other subsystemsq in Qp. A similar analysis for (6o) results
in only the constraintsCNpk (k) being applied.

We note, therefore, that it is not necessary to obtain the
whole planu∗q(k) from some otherq. Instead, define a message
vector from subsystemp regarding constraintc at timek as

mcp(k) ,
[

z̄∗cp(k|k)T
. . . z̄∗cp(k+ N − 1|k)T x̄∗p(k+ N|k)T

]T
,

which includes the coupling outputs and terminal state. Again,
the∗ superscript denotes a feasible solution. At this point, it is
worth noting the difference between a message and a plan. A
message may be constructed from a plan given the system and
constraint matrices. However, a plan—or the initial statesand
inputs—may not, in general, be reconstructed from a message.
Often, a message is a smaller representation of a plan, and in
a convenient format that aids direct evaluation of the coupling
constraints without further matrix operations.

Next, to allow a local agent to form current coupling data
based on previous information, define a propagation matrix,

Πcp ,













































0 I 0 . . . 0
0 0 I . . . 0
.
.
.
.
.
.
.
.
.
. . .

.

.

.

0 0 0 . . .
(

Ecp + FcpKFp

)

0 0 0 . . .
(

Ap + BpKFp

)













































,

assuming a linear terminal control law,i.e. κFp(xp) = KFp xp, so
thatmcp(k) = Πcpmcp(k− 1) is the message at timek for a non-
updating subsystemp , pk. Then the message atk for a sub-

systemp that last optimized at̂kp is mcp(k) = Π(k−k̂p)
cp mcp(k̂p).
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Relating this back to the information that is required bypk to
evaluate (6g), this information is obtained as

{

Imcq(k)
}

c∈Cpk ,q∈Qpk
=

{

IΠ
(k−k̂q)
cq mcq(k̂q)

}

c∈Cpk ,q∈Qpk
,

where the matrix operatorI , diag
(

I , I , . . . , 0
)

removes the ter-
minal states. The inclusion of the terminal state ¯xp(k + N|k) in
the message permits the correct propagation for stepsk > k̂q+N.
The information for (6o) is obtained in an identical manner.

Motivated by these requirements for information to eval-
uate initial and coupling constraints, the information require-
ment for evaluation of the constraints in the cooperative prob-
lem P

Np
p

(

xp(k); Z∗p(k)
)

is now stated.

Requirement 1 (Information forZ∗pk
(k)). At a time step k, the

control agent for an optimizing subsystem pk must have received

1. plansu∗q(k̂q) from all q ∈ Npk(k);

2. messagesmci(k̂q),∀c ∈ Cpk , from all q∈ Qpk ;
3. messagesmcr(k̂r),∀c ∈ CNpk (k), from all r ∈ Q{pk,Npk }

.

The first part of the requirement ensures all that initial con-
straints can be evaluated. Satisfaction of the second part means
pk can evaluate all its coupling constraints, with respect to the
previously published plans of coupled subsystems. The final
part means that the coupling constraints for every cooperating
subsystem may be evaluated, using the hypothetical plans for
q ∈ Np(k) with published plans for any coupled subsystems not
in the cooperating set.

Note that ifNpk(k) is empty,pk does not require plansu∗q(k̂q)
from any other agent (part 1), and the union setQ{pk,Npk }

(12)
of part 3 becomes empty; hence, Requirement 1 reduces to re-
quiring only coupling data from thoseq ∈ Qpk . Conversely, if
Npk(k) = P\{pk}, pk requires plans fromall others, but each
termQi\{pk,Npk(k)} of the union in part 3 is empty, and no pre-
viously published outputs appear in constraint (6o). In between
these extremes,pk requires information from (i) those in the co-
operating set, (ii) those to whompk is coupled, and (iii) those
to whom anyq ∈ Npk(k) is coupled.

It is assumed that the communication availability is suffi-
cient to meet the information requirement. Thus, the communi-
cation step in Algorithm 1 conservatively specifies transmission
to all other subsystems following update. While this may seem
significant, it should be noted that to meet the requirement it is
sufficient for one agent to transmit its plan to others only after
that plan has changed,i.e. as a result of optimization. More-
over, it is not necessary for an agent to update at every time
step, and robust coupled constraint satisfaction and stability are
guaranteed for any choices of update sequence and cooperating
sets. Thus, data exchanges need not occur at every time step,
and the cooperating set and update sequence may be tailored to
exploit this flexibility, as has been shown for the latter in [15].
In comparison, the approaches to cooperation based on inter-
agent iteration or bargaining [5, 6, 11–13] require multiple and
repeated information exchanges at each time step in order to
achieve constraint satisfaction and stability.

Finally, note that if the cooperating set is such that the local
optimization is similar in size to the centralized problem,the

performance will not match that of centralized, owing to the
hypothetical plans not being communicated and the enforced
delay in other agents’ updates. However, even in this scenario
the approach offers some advantages, namely some degree of
robustness to agent failure or communication breakdown, since
the other agents in the system are not reliant on an optimizing
agent for new plans in order to maintain constraint satisfaction.

6. Numerical examples

6.1. Integrators with coupled inputs

The first example considers a set of six identical integrators,
with dynamics ˙xp = up,∀p ∈ {1, . . . , 6}, wherexp ∈ R, up ∈ R.
To show more clearly the effects of cooperation, we assume no
uncertainty or additive disturbances. The control objective is to
regulate the system to the origin from an initial statexp(0) =
10,∀p, while minimizing the quadratic cost

∑

k

Np
∑

p=1

x2
p(k) (13)

The integrators are coupled via the input constraints; eachinput
is constrained locally as

∣

∣

∣up(k)
∣

∣

∣ ≤ 1, and a limit is imposed on

the sum of inputs over all subsystems:
∑Np

p=1

∣

∣

∣up(k)
∣

∣

∣ ≤ 1. State
constraints are defined byXp =

{

xp : |xp| ≤ 10
}

,∀p.
For the controller, the dynamics are discretized assuming

zero-order hold and a sampling period of 1 s. The prediction
horizon is 8 steps. The terminal set is chosen to be equal to the
state constraint set,i.e.XFp = Xp. Within this set, the termi-
nal control lawκFp(xp) = KFp xp = −0.001xp satisfies Assump-
tion 2. The local costJp, defined by (7), is a finite-horizon ap-
proximation to (13) withlp

(

x̄p, ūp
)

= x̄2
p andFp(x̄p) = 1000x̄2

p.
This satisfies Assumption 3 for allxp ∈ XFp with ūp = KFp x̄p.
The absence of uncertainty means that ¯xp(k|k) = xp(k), ∀k, no
feedback controllerKp is required, and the local cost is zero
only at the origin. The integrators are each initialized with the
feasible plan ¯u∗p( j|0) = KFp x̄p( j|0), j ∈ {0, . . . ,N − 1}, placing
each on a linearly decreasing trajectory to the origin.

Figure 1 shows the state evolution of the six integrators
when controlled by distributed and centralized MPC (CMPC).
When centralized control is used, an equal share of the available
control input is allocated to each integrator, and this solution at-
tains the lowest system-wide cost. With distributed control, the
agents optimize in the simple alternating sequence,{1, 2, 3, . . .}.
Thus, since each agent has an initial plan using only a small
fraction of the total control available, the first agent to optimize
has the greatest control authority, in that itmayelect to use all
of the available shared control effort. Subsequent agents op-
timizing would then have zero control available until the first
agent relinquishes control. This greedy behaviour occurs for
the non-cooperative DMPC,i.e.Algorithm 1 withNp = ∅.

Figures 1(b)–(d) show trajectories for cooperative DMPC
with three different schemes for choosing the cooperating set:
‘next’, whereNp = 1 + (p modNp); ‘next two’, whereNp =
{

1+ (p modNp), 1+ (p+ 1 modNp)
}

; and allp , pk. For each
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(d) Cooperative, allp , pk

Figure 1: State evolution of controlled integrators. Trajectory of
the system when controlled by centralized MPC shown dotted.

Table 1: Aggregate closed loop costs, as percentage increase
over centralized cost, for different cooperation schemes.

Size ofNpk 0 1 2 3 4 5

Cost increase (%) 12.02 4.25 1.12 0.38 0.13 0.04

cooperative optimization,αpq = 1 in the objective. The trajecto-
ries become progressively ‘fairer’ as the size of the cooperating
set increases, converging towards the CMPC state trajectory.

The stability constraint (11) was not included in the opti-
mizations. Nevertheless, the value of the local cost was found
to satisfy the condition at every time step forǫ = 0—the lowest
upper bound—hence guaranteeing convergence.

Closed-loop costs are shown in Table 1, with ‘next three’
and ‘next four’ schemes shown in addition. The aggregate closed-
loop cost decreases as the number of agents in the cooperating
set increases. The largest decrease is seen moving from non-
cooperative DMPC to cooperating with one other agent. Thus,
immediate benefits can be obtained without having to solve a
problem comparable in size to a centralized problem.

6.2. Vehicle guidance

We consider a pair of vehicles, each modelled by the point
unit mass dynamics ˙rp = vp and v̇p = fp + dp, whererp ∈

R
2
, vp ∈ R

2 represent, respectively, the position and velocity
of vehicle p ∈ {1, 2}, anddp is an additive disturbance to the
control force fp ∈ R

2. These dynamics are discretized with
a time step of 1.5 seconds to provide the linear, state-space
model (1), with statexp =

[

rT
p vT

p
]T
∈ R

4. The output con-
straints take the form of local speed and applied force limits:
∥

∥

∥vp

∥

∥

∥

2
≤ Vmax and

∥

∥

∥ fp

∥

∥

∥

2
≤ Fmax respectively, whereVmax =

0.225 m/s andFmax = 0.08 N. These 2-norm constraints may
be approximated by polyhedra [25], with only small errors in-
troduced. The disturbance is limited to 10% of the maximum

rp,x

r p
,y

rp,x

r p
,y

−2 −1 0 1 2−2 −1 0 1 2

−2

−1

0

1

2

−2

−1

0

1

2

Figure 2: Position histories for two-vehicle problem; (left) non-
cooperative DMPC, and (right) cooperative DMPC.

control force,i.e.
∥

∥

∥dp

∥

∥

∥

∞
≤ 0.01Fmax.

Coupling between vehicles arises from collision avoidance
constraints, expressed as a minimum separation distanceL =
1 m between each pair of vehicles:

∥

∥

∥r1−r2

∥

∥

∥

∞
≥ L, resulting in a

square exclusion region around each vehicle. These constraints
are implemented as mixed integer linear inequalities usingthe
‘big-M’ approach [25, 26].

The feedback matrixKp is the nilpotent controller for the
system

(

Ap, Bp
)

, and the setRp is the corresponding minimal
RPI set. Constraints are tightened accordingly, or in the case
of the non-convex avoidance constraints, by enlargement ofthe
excluded regions [23].

The two vehicles are required to traverse a 5 m diameter
circle from opposing ends; a straight line path for both would
lead to a collision. The objective for a vehiclep is to be steered
close to a target state, a positiontp = −rp(0) where the velocity
is zero. Thenominalstage cost is

∥

∥

∥r̄p − tp

∥

∥

∥

2
. A polyhedral

approximation to this 2-norm function is used [25], rendering
the optimization objective (7) linear. The terminal setXFp for
each vehicle is equal to the target state, and the terminal cost
Fp , 0. Under these conditions, asymptotic convergence of
the perturbed vehicles is guaranteed to the RPI set around the
target state; that is,

[

tTp 0T]T
+ Rp.

The initialization provided is sub-optimal, in that one of the
vehicles is provided a straight-line plan, whilst for the other a
deviated plan is formed to avoid collision. The update sequence
subsequently employed is the simple, alternating sequence, so
that vehicle agents optimize plans in sequence. Each vehicle is
subjected to a sequence of random disturbances over the dura-
tion of the simulation. The horizon length is 25 steps.

Figure 2 shows the results. For non-cooperative DMPC,
the vehicle travelling from North to South follows a desirable
straight line path, leaving the other vehicle to deviate to avoid
collision in the centre. The former has no incentive at any point
to adopt a higher cost plan than the one it is following, or to
make any allowances for the other vehicle. The cooperative
control scheme delivers a more equal response: both vehicles
deviate equally and oppositely to avoid collision. Thus, the ini-
tial sub-optimality is overcome.
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7. Conclusions

In this paper, a cooperative distributed form of MPC has
been presented. In the new algorithm, for LTI subsystems shar-
ing coupling constraints, agents optimize plans locally and ex-
change information. A key finding is that coupled constraint
satisfaction, achieved by permitting only one agent to optimize
while ‘freezing’ the plans of others, is compatible with coop-
eration, achieved by considering wider objectives in the opti-
mizations. Specifically, a local objective considers the weighted
costs of other agents in the problem, and a local agent designs
not only its own plan, but also hypothetical plans for other
agents. The algorithm has been applied to example systems, in-
cluding a vehicle guidance problem where ‘greedy’ behaviour
leads to poor system-wide performance. It has been shown that
the cooperative method has led to a more coordinated response
and better global performance.
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