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a b s t r a c t

The super-twisting algorithm (STA) has become the prototype of second-order sliding mode algorithm.
It achieves finite time convergence by means of a continuous action, without using information about
derivatives of the sliding constraint. Thus, chattering associated to traditional sliding-mode observers
and controllers is reduced. The stability and finite-time convergence analysis have been jointly addressed
from different points of view, most of them based on the use of scaling symmetries (homogeneity), or
non-smooth Lyapunov functions. Departing from these approaches, in this contribution we decouple
the stability analysis problem from that of finite-time convergence. A nonlinear change of coordinates
and a time-scaling are used. In the new coordinates and time–space, the transformed system is
stabilized using any appropriate standard design method. Conditions under which the combination of
the nonlinear coordinates transformation and the time-scaling is a stability preserving map are given.
Provided convergence in the transformed space is faster than O(1/τ)—where τ is the transformed time—
convergence of the original system takes place in finite-time. The method is illustrated by designing a
generalized super-twisting observer able to cope with a broad class of perturbations.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Sliding mode is a powerful technique used both in controller
and observer design to reject matched disturbances (Utkin, 1977).
The idea is to drive the state trajectory to a prescribed constraint
surface where specifications are met and, from then on, to slide on
it thanks to an intensive switching action. Because of its robust-
ness and other attractive features, sliding mode has been success-
fully implemented in a wide variety of real processes (Chiu, 2012;
Hung, Gao, & Hung, 1993; Šabanovic, 2011). However, its underly-
ing chattering phenomenon may be inadmissible in some control
applications andmay add severe noise in estimation (Young, Utkin,
& Ozgüner, 1999). Additionally, the prescribed constraint must
have unit relative degree. Therefore the control actionmust explic-
itly appear in the first time derivative of the constraint function
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(Sira-Ramírez, 1989). High order sliding mode (HOSM) has been
developed to relax the relative degree limitation and, at the same
time, to alleviate chattering (Bartolini, Ferrara, & Usai, 1998; Lev-
ant, 1993). Among all HOSMalgorithms the super-twisting second-
order one (SOSM) distinguishes because it achieves finite time
convergence by means of a continuous action without using infor-
mation about derivatives of the sliding function (Dávila, Fridman,
& Levant, 2005; Levant, 1998). This algorithmhandles a relative de-
gree equal to one, so it can directly replace standard sliding mode
algorithmswhen the disturbance is smooth andwith bounded gra-
dient. Themain differencewith respect to standard slidingmode is
that discontinuity appears in the secondderivative of the switching
function, whereas a non-Lipschitz term appears in the first deriva-
tive to achieve finite-time convergence.

For many years, dissemination and acceptance of HOSM have
been resisted due to the lack of powerful design tools and read-
able stability proofs. Originally, stability conditions were obtained
geometrically using worst-case trajectory bounds (Levant, 1998).
More recently, homogeneity concepts have been exploited to
prove stability of some HOSM algorithms (Levant, 2005). Homo-
geneous systems have a scaling symmetry which allows for sta-
bility analysis. Despite its advantages, this approach does not
provide the convergence time and is a limitation to design new
algorithms to deal with broader classes of disturbances since the
homogeneity property may be lost during the design process.
Lyapunov-based stability analysis appeared for the first time in
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Moreno and Osorio (2008). Since then, very intensive research is
being followed in this area (Cruz-Zabala,Moreno, & Fridman, 2011;
Polyakov & Poznyak, 2009; Santiesteban, Fridman, & Moreno,
2010; Shtessel, Moreno, Plestan, Fridman, & Poznyak, 2010; Utkin,
2010). Different Lyapunov functions have been proposed for differ-
ent sliding algorithms. For instance, in Moreno and Osorio (2008),
stability of the super-twisting algorithm (STA) is proved by means
of a non-smooth Lyapunov function. Utkin (2010) uses also non-
smooth functions for the twisting and super-twisting algorithms.
A strict Lyapunov function to prove stability of the twisting algo-
rithm is presented in Santiesteban et al. (2010), and a generaliza-
tion of the method of characteristics is presented in Polyakov and
Poznyak (2009). In general, the Lyapunov approach allows to ob-
tain less conservative designs, to compute the convergence time
and, most importantly, to generalize the original algorithm to deal
with more general system dynamics and disturbance structures
(Cruz-Zabala et al., 2011; De Battista, Picó, Garelli, & Vignoni, 2011;
Efimov & Fridman, 2011; Moreno, 2010; Pisano, Orlov, & Usai,
2011). The main drawback of current Lyapunov-based approaches
is their dependence on complex tools – e.g. non-smooth analysis,
solution of partial differential equations, etc.– to cope with the re-
quirement of finite-time convergence together with the stability
analysis. The use of time-scale, already used in other contexts—e.g.
achieving feedforward form Moya, Ortega, Netto, Praly, and Picó
(2002), or observer linearization and design of observers with lin-
earizable error dynamics (Guay, 2002; Respondek, Pogromsky, &
Nijmeijer, 2004)—has not been exploited.

The rest of the paper is organized as follows. In Section 2 a
nonlinear coordinates transformation, and a time-scale one are
used so as to transform the original system into a new one
amenable for constructively finding a smooth control Lyapunov
function. This allows to modify the super-twisting error injection
terms so as to cope with a broader class of perturbations. The
time-scale is chosen so that convergence faster than asymptotic
in the transformed space corresponds to finite-time converge in
the original one. In Section 3 the technique of stability preserving
maps (Michel & Wang, 1995) is used to prove the original system
is also stable. In Section 4 a bound on the finite-time convergence
is obtained, and simulation results are provided in Section 5.

2. Constructive design of a generalized super-twisting algo-
rithm

Consider the system:

ẋ1 = ϕ(t)x2 + u1(x1, t) + ρ1(x, t)
ẋ2 = u2(x1, t) + ρ2(x, t)

(1)

where ϕ(t) is a known, possibly discontinuous, bounded positive
function of time. The functions ρ1(x, t) and ρ2(x, t) are perturba-
tion terms for which we assume the structure:

ρ1(x, t) = ϱ1(t)p1(x1) |x1|
1
2 , ∥p1(x1)∥ ≤ p̄1(x1)

ρ2(x, t) = ϱ2(t)p2(x1, x2), ∥p2(x1, x2)∥ ≤ p̄2(x1)
(2)

where p̄1(x1), p̄2(x1) are known bounded functions for any
bounded x1 (e.g. class K∞ functions), and ϱj(t) bounded noises
with ϱ̄j = ∥ϱj(τ )∥∞ for j = 1, 2. Notice that ρ2(x, t) may be not
vanishing and discontinuous at x1 = 0, while ρ1(x, t) vanishes at
the origin, and is continuous w.r.t. x1. System (1) may represent
a process to be controlled or the error dynamics for some
observer design. In this later case, ρ1(x, t) allows to represent the
approximation error of some dynamics on the first process state to
be estimated, and ρ2(x, t) the unknown derivative of the second
process state (De Battista et al., 2011).

The goal is to design the input signals u1, u2 so as to robustly
stabilize the origin in finite-time. Besides ϕ(t), only the state x1 is
assumed to bemeasured. To this end,we first apply the coordinates
transformation given by the homeomorphism (Moreno, 2010):

(z1, z2) −→


|x1|

1
2 sign(x1), x2


(3)

transforming system (1) into:

ż1 =
1
2

|z1|−1 [ϕ(t)z2 + u1(z1, t) + ρ1(z, t)]

ż2 = u2(z1, t) + ρ2(z, t).
(4)

Now, apply the time-scaling

t =


|z1| dτ . (5)

In the new (z, τ )-coordinates:

z ′

1 =
ϕ(τ)

2
z2 +

1
2
u1(z1, τ ) +

1
2
ϱ1(τ )|z1|p1(z1)

z ′

2 = |z1| u2(z1, τ ) + |z1| ϱ2(τ )p2(z1, z2)
(6)

with z ′ , dz/dτ . The goal now is to asymptotically stabilize system
(6). Let us apply, for instance, the Lyapunov redesignmethodology.
To this end, consider the control signal u1 is decomposed as:

u1(z1, τ ) = u1b(z1, τ ) − η1p̄1(z1)z1 (7)

with η1 ≥ ϱ̄1 so that ∀z1 ∈ R

Ψ1(z1, τ ) , η1p̄1(z1) − ϱ1(τ )p1(z1) ≥ 0. (8)

Now, consider the Lyapunov functionV1 =
1
2 z

2
1 . The control signals

u1b and u2 will be designed later to force z2 = η2z1 for some
constant η2 > 0 and achieve V ′

1 ≤ 0. Taking τ -time derivative:

V ′

1 =
ϕ(τ)

2
η2z21 +

1
2
u1b(z1)z1 −

1
2
z21Ψ1(z1, τ ). (9)

Thus, choosing

u1b(z1, τ ) = −[η2ϕ(τ) + k1(z1, τ )]z1 (10)

the dynamics of the error signal z̄2 = z2 − η2z1 are:

z̄ ′

2 = −
η2ϕ(τ)

2
z̄2 + |z1|u2(z1)

+ z1

ϱ̃2(τ )p2(z1, z2) +

η2

2
[k1(z1, τ ) + Ψ1(z1, τ )]


(11)

where ϱ̃2(τ ) = ϱ2(τ )sign(z1). Consider now the augmented
Lyapunov function:

V2 =
1
2
z21 +

1
2
z̄22 . (12)

Taking τ -time derivative, choosing

u2(z1, τ ) = −
1
2
[ϕ(τ) + η2[k1(z1, τ ) + η1p̄1(z1)]]sign(z1) (13)

and defining z = [z1, z̄2]T , we have:

V ′

2 ≤ −
1
2z

T


k1(z1, τ ) −q12(z, τ )
−q12(z, τ ) η2ϕ(τ)


z , −

1
2z

TQz (14)

with q12(z, τ ) , ϱ̄2p̄2(z1) +
ϱ̄2η2
2 p̄1(z1). At this point, it is

interesting to summarize and observe the structure of the injected
correction terms in the original x-dynamics:

u1(x1, t) = − [η2ϕ(t) + k1(x1, t) + η1p̄1(x1)] |x1|
1
2 sign(x1)

u2(x1, t) = −
1
2
[ϕ(t) + η2[k1(x1, t) + η1p̄1(x1)]] sign(x1).

(15)
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Notice that for Q in Eq. (14) to be positive definite, the
polynomial k1(z1, τ )will have to dominate the square of the terms
in the secondary diagonal. Therefore, for k1(z1, τ ) to be bounded
– recall this polynomial will form part of the injected correction
terms u1, and u2 – we asked p̄j(z1), j = 1, 2 to be bounded for
bounded z1. Recalling ϱ̄1 ≤ η1, and condition (8), a sufficient
condition for positive definiteness of Q in Eq. (14) is k1(z1, τ ) =

k2(z1)/ϕ(τ) > 0, and:

k(z1) >
ϱ̄2

√
η2

p̄2(z1) +

√
η2η1

2
p̄1(z1). (16)

Notice that continuity of u1(z1, τ ) w.r.t. z1 at z1 = 0, requires that
of k1(z1, τ )z1 and p̄1(z1)z1 at that point.

In the simplest case where p1(z1) ≡ 0, p2(z1) ≡ 1, and ϕ(t) ≡

1, choosing η1 = 0 and k1(z1(x1)) = k1, retrieves the original
super-twisting algorithm. The stability region is defined by the
bounds η2 + k1 > 2ϱ̄2, and η2k1 > ϱ̄2

2 .
As a more complex example, to be used in Section 5, assume

ϕ(t) ≡ 1, p2(z1, z2) = 1, and p1(z1) polynomial so that

ρ1(z, τ ) = ϱ1(τ )

p0 + p1z1 + · · · + pβz

β

1


z1 (17)

with β ≥ 0. A bounding function p̄1(z1) is needed to fulfill
condition (8). Assume p1(z1) is unknown, but for its order and
bounds on the coefficients. Define p̄ = max(p0, . . . , pβ), nβ =

β + 1, and:

p̄1(z1) , nβ p̄|z1|γ , γ =


β, |z1| > 1
0, |z1| ≤ 1. (18)

Condition (8) is satisfied, and a sufficient condition for positive
definiteness of Q is:

k(z1) >
ϱ̄2

√
η2

+

√
η2η1

2
nβ p̄|z1|γ (19)

which can be fulfilled choosing k(z1) = ka + kb|z1|γ , with ka >
ϱ̄2√
η2
, and kb >

√
η2η1
2 nβ p̄. Fig. 1 shows the stability region for the

particular case p1(z1) = 1.

3. Stability analysis

The proof will be split into three parts. First we analyze the
homomorphism transforming system (1) in the (x, t)-coordinates
into (4) in the (z, t)-coordinates, given by the change of coordi-
nates (3) and the identity transformation for the time parameter.
Its is proved this homomorphism is a time-invariant homeomor-
phism, and consequently preserves asymptotic stability.

Let Xi be the set of current states of system si. Any set with
subscript i refers to a subset of Xi. The following elementary fact
will be used in the proof:

Lemma 1. Given any one-to-one function f : Xi → Xj, if Ai ⊂ Bi ⊆

Xi, then f (Ai) ⊂ f (Bi).

Theorem 2. Any homomorphism given by a time-invariant home-
omorphic coordinate change and the identity transformation for
the time parameter, i.e. with no time-scaling, preserves asymptotic
stability.
Proof. Consider a homeomorphism f : X1 → X2. By continuity,
around any point x1e ∈ X1, ∀ϵ > 0 there exists a δ > 0 such that
whenever |x2 − x2e| < δ, |x1 − x1e| < ϵ, with x2e = f (x1e) ∈ X2.

Now take ϵ1 = ϵ, and ϵ2 = δ. If the goal system s2 is stable, and
assuming x2e = 0 without loss of generality, then, ∀ϵ2 > 0, ∃δ2 >
0 such that if |x20| < δ2 then ∀t > t0, |x2| < ϵ2. Using Lemma 1,
f −1(δ2) ⊂ ϵ1, and |x1| < ϵ1 whenever |x10| < f −1(δ2). So the first
system s1(X1) is also stable.

The same reasoning is valid for attractivity, but now orbits are
inside an ϵ-ball from a given t = tϵ . Notice tϵ is the same for both
systems since there is no time-scaling. �
Lemma 3. The change of coordinates given by (z1, z2) −→ (|x1|1/2
sign(x1), x2) is a homeomorphism.

Corollary 4. The homomorphism transforming system (1) in the
(x, t)-coordinates into (4) in the (z, t)-coordinates, given by the
change of coordinates (3) and the identity transformation for the
time parameter – i.e. with no time-scaling – is a time-invariant
homeomorphism, and consequently a stability preserving map.

Secondly, we analyze the homomorphism transforming system
(4) in the (z, t)-coordinates into system (6) in the (z, τ )-
coordinates, given by the identity coordinate transformation and
the time-scaling (5). For time invariant systems, stability of
equilibrium points in the sense of Lyapunov is a property of
the orbits independent of their parameterization. Consequently,
under the conditions for equivalence of regular curves explained
below (Kühnel, 2005), any reparameterization (i.e. time-scaling)
will preserve stability.

Definition 5. A regular curve is an equivalence class of regular
parameterized curves, where the equivalence relationship is given
by regular (orientation preserving) parameter transformations ξ :

[α, β] −→ [a, b], with ξ̇ > 0, and ξ bijective and continuously
differentiable.

In our context, we will define the required time scaling to
be a regular parameter transformation ξ , i.e. ξ̇ ≠ 0 must hold
everywhere. Since equilibrium points are singularities, we will
consider the system orbits to be represented by the curves with
time interval I spanning from initial conditions to the equilibrium.
To fulfill the definition above, the time scaling ξ must be one-to-
one, and onto. The fact that ξ must be onto ensures the whole
orbit (a regular curve) is covered by both parameterizations. The
condition ξ̇ > 0, except perhaps in a set of measure zero, ensures
both ‘‘times’’ go forward since it makes ξ strictly increasing.
Finally, for a function ξ to be one-to-one with positive derivative
everywhere, it is sufficient to prove it is strictly increasing. Then
we must prove it is also onto and hence a bijection.

Proposition 6. Under the conditions for equivalence of regular
curves given in Definition 5, any reparameterization (i.e. time-scaling)
will preserve stability.

Proof. The proof is straightforward from the standard definition
of stability in the sense of Lyapunov, and the facts that
reparameterizing the orbit will not change it and time in both
parameterizations moves in the same direction. �

Now it is proved the above conditions are also sufficient for
attractivity and, consequently asymptotic stability. Denote by Tt0
the set {t ∈ T : t ≥ t0} for some initial time instant t0.

Theorem 7. Any homomorphism given by the identity transforma-
tion for the coordinates and a time-scaling defined by a strictly in-
creasing and onto function ξ : t −→ τ preserves attractivity.

Proof. Since the coordinates transform to themselves, the ho-
momorphism only introduces a reparameterization of the orbits
(which are regular curves) by means of the time-scaling ξ . Since
ξ is strictly increasing, there is ξ−1 with positive derivative every-
where. There are two possible cases:

(1) ξ−1 is unbounded, mapping Tτ0 to Tt0 . Then ∀T , ∃τT : ∀τ >

τT , t = ξ−1(τ ) > T . Taking T = ξ−1(τϵ), and given that ξ−1

is strictly increasing, eventually t > T and, if |z(τ )| < ϵ, then
|x(t)| < ϵ too.
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Fig. 1. Stability region in the η2, k1 parameters space for the case p1(z1) = 1 (i.e. ρ1(x, t) = 2ϱ1(t)|x1|
1
2 ), p2(z1, z2) = 1, and ϕ(t) ≡ 1. Two different values of the

perturbation bounds ϱ̄1 and ϱ̄2 are shown.
(2) ξ−1 is bounded. The previous reasoning can be reproduced
willy-nilly, but now we must additionally prove that ξ−1 is
onto. Since ξ−1 is strictly increasing and bounded there is tf
such that t ∈ [t0, tf ] and t → tf when τ → ∞. Therefore,
if z(τ ) → zeq then x(tf ) = zeq = xeq by the identity of
coordinates, proving finite time convergence to the equilib-
rium point of the original system. �

Corollary 8. Any reparameterization as defined in 5 preserves
asymptotic stability.

Proof. From Proposition 6, and Theorem 7 any reparameterization
as defined in 5 preserves both stability and attractivity. Therefore,
it preserves asymptotic stability. �

Proposition 9. Choosing the time-scaling ξ implicitly, by giving its
inverse ξ−1 as defined in Eq. (5) the corresponding homomorphism
fulfills Corollary 8.

Proof. Due to the modulus function, no matter what |z1(τ )|
does, except being identically zero, the integral defines a strictly
increasing function. So it is an injection andhas an inverse, defining
the regular parameter transformation ξ we need. �

Finally, because of transitivity, the composition of stability
preserving maps is also a stability preserving map. The combi-
nation of the nonlinear change of coordinates (3) and the time-
scale transformation (5) is equivalent to the composition of the
homomorphisms defined above. Therefore, this combination is a
stability preservingmap. Consequently, the system (1) in the (x, t)-
coordinates is asymptotically stable if and only if the system (6) in
the (z, τ )-coordinates is.

In particular, the convergence rate can be obtained from:

tf , lim
τ→∞

t(τ ) = lim
τ→∞

 τ

0
|z1(ξ)|dξ . (20)
If the integral is divergent as τ → ∞ (e.g. z1 = O(1/τ)) we
are in the first case in Theorem 7. Otherwise, if it is convergent
(e.g. z1 = O(1/τ 2)), we are in the second case, and finite-time
convergence is achieved in the original (x, t)-coordinates.

4. Bound on finite-time convergence

Let us consider again Eq. (14) rewritten as:

V ′
= −

1
2
z̄TQz̄ ≤ −

1
2
z̄T z̄λQ(τ ) = −λQ(τ )V (τ ) (21)

where λQ(τ ) is the minimum eigenvalue of Q(τ ). Notice, for
every initial condition and every τ there is either a minimum
eigenvalue of Q or a lower bound since by positive definiteness
the eigenvalues are always positive. Application of the comparison
lemma leads to

|z1| ≤ ∥z̄∥ ≤ ∥z̄(τ0)∥e−
1
2


λQ(τ )dτ . (22)

It then follows, using (20) and (22), that

tf ≤ ∥z̄(τ0)∥


∞

0
e−

1
2


λQ(τ )dτdξ ≤

2
λQ,min

∥z̄(τ0)∥ (23)

where λQ,min , minτ λQ(τ ). Since 1
λQ

=
λQ

λQλQ
=

λQ
detQ , then tf in

Eq. (23) can be bounded by

tf < 2∥z̄(τ0)∥
max
τ ,z1

trQ

min
τ ,z1

detQ
. (24)

For instance, if ρ1(z, τ ) ≡ 0, and k1η2 > ϱ̄2
2 one easily gets

tf < 2∥z̄(τ0)∥
k1+η2

k1η2−ϱ̄2
2
.
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Fig. 2. Super-twisting observer response. Zooms around the time instants t = 0 s, t = 1 s, and t = 2 s.
5. Example

A super-twisting observer has been tuned using the proposed
approach. The perturbation term ρ1(x, t) takes the form of (17),
with p1(x1) = 1+1.5|x1|1/2, and ϱ1(t) being a bounded noise. The
order of p1(x1) and an upper bound on its coefficients are assumed
to be known so as to build the bounding function p̄1(x1) according
to (18). The perturbation term ρ2(x, t) has been obtained as the
derivative of an unknown signal u(t)with bounded time derivative
∥ρ2(x, t)∥∞ ≤ 2, but at t = 1 s, and t = 2 s when a step
and impulse respectivelywere injected as disturbances in u(t). The
bounds of the unknown signal derivative and the integrator input
noise have been set to ϱ̄2(x, t) = 2 and ϱ̄1(x, t) = 2 respectively.
Choosing η1 = 2.5, η2 = 5, and p̄ = 1.5 the observer parameters
where obtained using (19).

The simulation results are shown in Fig. 2. Three zooms around
the time instants t = 0 s, t = 1 s, and t = 2 s are shown. At
other time instants in between, the real and estimated signals
are indistinguishable. The top plot depicts the input signal to the
observer y(t) (in blue dashed line), and the estimated signal ŷ(t)
(in red solid line). The real integrator input u(t) – with noise, in
cyan, and without noise in dashed blue – and its estimated value
û(t) (in red solid line) are displayed in the bottom plot. It is seen
that the observer output converges in less than 0.02 s and perfectly
tracks the evolution of u(t) when the appropriate conditions hold.
At t = 1 s and t = 2 s the derivative of u(t) is larger than the
assumedbound ϱ̄2(x, t), and the observer output diverges and then
converges rapidly, putting in evidence the occurrence of an abrupt
fault, as the derivative of u(t) overly differed from the expected
one.

6. Conclusions

In this contribution the problem of designing algorithms with
finite-time convergence has been addressed by decoupling the sta-
bility analysis problem from that of finite-time convergence. This
allows simple design methods and stability proofs to be derived
in a wide set of cases. In order to show the proposed approach, it
has been applied to give an alternative proof of the super-twisting
second-order slidingmode algorithm. This alternative approach al-
lowed a simple design of a generalized SOSM coping with a broad
class of perturbations. An estimate of the convergence time can
be easily obtained in the transformed time–space. The approach
can be extended to systems that can be robustly controlled in the
coordinates-time transformed space for any coordinates depen-
dent time-scaling fulfilling Corollary 8. Finite-time convergence
will be achieved under the conditions of case 2 in Theorem 7.
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