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Abstract

We consider networked control systems in which sensors, actuators, and controller transmit through asynchronous communica-
tion links, each introducing independent and identically distributed intervals between transmissions. We model these scenarios
through impulsive systems with several reset maps triggered by independent renewal processes, i.e., the intervals between
jumps associated with a given reset map are identically distributed and independent of the other jump intervals. For linear
dynamic and reset maps, we establish that mean exponential stability is equivalent to the spectral radius of an integral opera-
tor being less than one. We also prove that the origin of a non-linear impulsive system is (locally) stable with probability one
if its local linearization about the zero equilibrium is mean exponentially stable, which justifies the importance of studying
the linear case. The applicability of the results is illustrated through an example using a linearized model of a batch-reactor.
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1 Introduction

Consider a networked control system in which a remote
controller communicates with a plant through two inde-
pendent communication links; for example, the actua-
tion data may be sent from the controller to the plant
through a shared wired network and the sensor data may
be sent from the plant to the controller through a shared
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wireless network. A reasonable assumption in control
over networks utilizing CSMA-type protocols, such as
the Ethernet or theWireless 802.11, is to take the lengths
of times needed to gain access to the shared network and
to transmit data to be independent and identically dis-
tributed (see, e.g. [4], [20], [23]). In the present paper,
we show that this networked control system, and, more
generally, networked control systems where several sen-
sors, actuators, and controller, are linked through dif-
ferent (wired or/and wireless) networks operating asyn-
chronously, can be modeled by impulsive systems of the
following form

ẋ(t) = a(x(t)), t ≥ 0, t "= t!k, x(0) = x0,

x(t!k) = j!(x(t
!−
k )), k ≥ 1, ! ∈ L := {1, . . . , n!},

(1)

where the duration of the intervals {h!
k := t!k+1 − t!k|k ≥

0} between jumps times tk associated with a given reset
map j!, are independent and identically distributed and
also independent of the jump intervals {hj

k|k ≥ 0, j "=
!, j ∈ L}. In (1), the notation x(t!−k ) indicates the limit
from the left of x at the point t!k and n! denotes the
number of reset maps.

We provide stability results for (1), from which one can
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directly infer stability properties for the networked con-
trol systems just described. Our main result establishes
that when the dynamic map a and the reset maps j! are
linear, mean exponential stability is equivalent to the
spectral radius of an integral operator being less than
one, which can be efficiently tested numerically. To prove
this result, we first derive conditions for mean exponen-
tial stability for (1) with general non-linear dynamic and
reset maps. When specialized to linear dynamic and re-
set maps, these stability conditions can be expressed in
terms of the existence of a solution, with certain proper-
ties, to an integro-differential equation, which, in turn,
is related to the spectral radius of an integral operator.
For the general nonlinear case, we show that the origin
of (1) is (locally) stable with probability one if the lin-
earization of (1) about zero equilibrium is mean expo-
nentially stable, which justifies the importance of study-
ing the linear case.

To illustrate the applicability of our results, we consider
the linearized model of a batch-reactor that appeared
in [2], where we assumed that the sensors transmit in a
round-robin fashion through a single shared link. We can
now test mean exponential stability in the case where the
sensors transmit through two asynchronous links both
introducing independent and identically distributed in-
tervals between transmissions.

Several references to related work on networked con-
trol systems can be found in [13], including sys-
tems with asynchronous data transmissions, e.g., [25],
and systems with independent and identically dis-
tributed intervals between transmission, e.g, [20]. See
also [4], [11], [14], [23]. However, the networked control
problem we consider here, and the associated class of
impulsive systems, seem to have not been studied in the
literature. Stability results for deterministic impulsive
systems can be found in [12], [19]. The proof of our
results builds upon results for piecewise deterministic
systems [10] and the stochastic Lyapunov approach [18].

The remainder of the paper is organized as follows. The
connection between (1) and networked control systems
is given in Section 2. In Section 3 we state and discuss
our main results. Our main result concerning the stabil-
ity of linear impulsive systems, is proved in Section 4;
the results concerning mean exponential stability and
stability with probability one of (1), are proved in the
Appendix. An example is given in Section 5. Final con-
clusions are given in Section 6. A subset of the results in
this paper was presented in the conference paper [3].

Notation: For vectors ai, (a1, . . . , an)denotes the column
vector [aᵀ1 . . . aᵀn]

ᵀ. The notation 1n indicates a vector
of n ones.

Fig. 1. Networked control setup. Actuators Actj , 1 ≤ j ≤ nu,
and sensors Seni, 1 ≤ i ≤ ny are connected to a remote con-
troller though independent communication networks CN!,
1 ≤ " ≤ n! = nu + ny . Other sensors SenD̄ and actuators
ActD̄ may be directed connected to the controller.

2 Modeling Networked Control Systems with
Impulsive Systems

Consider a continuous-time plant and a controller de-
scribed by

Plant: ẋP = fP (xP , û), y = g(xP ) (2)
Controller: ẋC=fC(xC , ŷ), u = h(xC , ŷ). (3)

where the maps fP , fC , g and h are assumed to be differ-
entiable, and fP and fC are assumed to be globally Lip-
schitz. The controller is assumed to yield the closed-loop
stable when the plant and the controller are directly con-
nected, i.e., û(t) = u(t), ŷ(t) = y(t). However, sensors,
actuators, and controller may be spatially distributed
and linked via communication networks, in which case
this ideal assumption is not valid.

Suppose that there are ñy sensors, among which, ny

are linked to the controller via ny communication net-
works, i.e., each sensor transmits through a different
network. Then we can partition y as y = (yD, yD̄) :=
(gD(xP ), gD̄(xP )) = g(xP ) where

yD = (y1, . . . , yny ),

comprises the measurement signals yi ∈ Rsi , 1 ≤ i ≤ ny

of the ny sensors linked to the controller via a network,
and yD̄ comprises the measurement signals of the sensors
whose connection to the controller is ideal. Therefore,
partitioning ŷ as ŷ = (ŷ1, . . . , ŷny , ŷD̄), ŷi ∈ Rsi , we have
yD̄(t) = ŷD̄(t). Likewise, assuming that there are ñu

actuators, among which, nu communicate to the plant
via a communication network, we can partition u as u =
(uD, uD̄) := (hD(xC , ŷ), hD̄(xC , ŷ)) = h(xC , ŷ), where

uD = (u1, . . . , unu),

comprises the actuation signals uj ∈ Rrj , 1 ≤ j ≤ nu of
the nu actuators linked to the controller via a network,
and uD̄ comprises the actuation signals of the actuators
whose connection to the controller is ideal. Also here,
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partitioning û as û = (û1, . . . , ûnu , ûD̄), ûj ∈ Rrj , we
have uD̄(t) = ûD̄(t). The setup in depicted in Figure 1.

Let n! := ny + nu, and for a given ! ∈ {1, . . . , ny}, let
{t!k|k ≥ 0} denote the transmission times of the sensor
y! and for a given ! ∈ {ny + 1, . . . , n!}, let {t!k|k ≥ 0}
denote the transmission times of the actuator u!−ny .
Between transmission times we assume that ŷi and ûj

remain constant

ŷ!(t) = ŷ!(t
!
k), t ∈ [t!k, t

!
k+1), 1 ≤ ! ≤ ny, (4)

and

û!−ny(t) = û!−ny(t
!
k), t ∈ [t!k, t

!
k+1), 1 ≤ !− ny ≤ nu,

(5)
while at transmission times we have the following update
equations

ŷ!(t
!
k) = y!(t

!−
k ), 1 ≤ ! ≤ ny, (6)

and

û!−ny(t
!
k) = u!−ny(t

!−
k ), 1 ≤ !− ny ≤ nu. (7)

We assume that in each of the n! networks that connect
sensors and actuators to the controller, the intervals be-
tween transmissions are independent and identically dis-
tributed, i.e., {h!

k = t!k+1 − t!k|k ≥ 0} are independent
and identically distributed random variables, and also
independent of the transmission intervals in the remain-
ing networks. Defining,

e := (ey, eu) := (ŷD − yD, ûD − uD), (8)

and using the fact that we can write

ŷ =
(
ey + gD(xP ), gD̄(xP )

)
, (9)

we can model the networked control system (2)-(8) as
an impulsive system taking the form (1), where x =
(xP , xC , e) is the state;

a(x)=b(x)

[
fP

(
xP , (eu + hD(xC , ŷ), hD̄(xC , ŷ))

)

fC
(
xC , (ey + gD(xP ), gD̄(xP ))

)

]
,

(10)
where

b(x) =

[
I 0 − ∂gD

∂xP
(xP )ᵀ −

(
∂hD
∂yD̄

(xC , ŷ)
∂gD̄
∂xP

(xP )
)ᵀ

0 I 0 −∂hD
∂xC

(xC , ŷ)ᵀ

]ᵀ

and ŷ is described by (9), models the plant, controller,
and error dynamics; and

j!(x) = (xP , xC , ĵ!(e1), . . . , ĵ!(en!)), (11)

models the transmissions at which the error associated
with the transmitting sensor/actuator is reset to zero,
i.e., ĵ!(ei) = 0, if i = !, and ĵ!(ei) = ei, if i "= !.

3 Main results

We start by providing in Section 3.1 a stability result
for (1) with general non-linear dynamic and reset maps.
Building upon this result, we are able to establish our
main result, presented in Section 3.2, which provides
necessary and sufficient stability conditions when the
dynamic and reset maps in (1) are linear. In Section 3.3
we relate the stability of the non-linear impulsive system
with that of its linearization.

3.1 Non-linear dynamic and reset maps

In this section we consider (1) with general maps a and
j!, not necessarily taking the form (10), (11). The maps
a and j!, ! ∈ L are assumed to be differentiable and glob-
ally Lipschitz and the origin is an equilibrium point, i.e.,
a(0) = 0 and j!(0) = 0, ∀!∈L. Note that in the special
case where a and j! are described by (10), (11), this holds
if fP and fC are differentiable and globally Lipschitz, the
origin is an equilibrium point of both (2) and (3), and
g, h are linear maps. We denote by n the dimension of
the state x ∈ Rn. We assume that the intervals between
jump times {h!

k = t!k+1− t!k|k ≥ 0}, ! ∈ L, are described
by a probability density function f!(t) ≥ 0, with sup-
port in the interval [0, γ!], γ! ∈ R>0 ∪ {∞}. Apart from
the special case of exponential distributions addressed
in Section 3.2, Theorem 7, we assume that the supports
are bounded, i.e., γ! "= ∞, ∀!∈L. This is an important
assumption and in Section 6 we give further comments
on this. We assume that the f! are differentiable 1 on
(0, γ!) and we denote the survivor function by

r!(s) := Prob[h!
k > s] =

∫ γ!

s
f!(r)dr, k ≥ 1, s ∈ [0, γ!],

(12)
and the hazard rates 2 by

λ!(τ!) :=
f!(τ!)

r!(τ!)
, τ! ∈ B!, (13)

where
B! := [0, γ!], ! ∈ L. (14)

The system (1) is started at t = 0, with a deterministic
initial condition x0, where it is subsumed that a time

1 We assume differentiability on most functions of interest
in the paper to avoid complicating the proofs of our main
results.
2 Recall that the hazard rate can be interpreted as λ!(τ )=

limδ→0
Prob[Jump in [t!k+τ,t!k+τ+δ)|No jump occured in [t!k,t

!
k+τ)]

δ
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τ! := −t!0 has elapsed since the last jump associated with
map !. In other words, we consider that, for each reset
map ! ∈ L, the first jump times t!1 satisfy

Prob([t!1 > s]) =
r!(τ! + s)

r!(τ!)
, s ∈ [0, γ! − τ!], (15)

which is the probability that the next jump after t = 0
occurs after time s, given that at t = 0 a time τ! has
elapsed since the map j was triggered.

We need to define the following auxiliary process

v(t) = (v1(t), . . . , vn!(t)), v!(t) := t− t!k!
, v(0) = τ,

(16)
where k! := max{k ≥ 0 : t!k ≤ t}. The process v(t) keeps
track of the time elapsed since the last jump associated
with each of the reset maps, and therefore at time t = 0,
v(0) = τ = (τ1, . . . , τn!) = −(t10, . . . , t

n!
0 ). Note that

v(t) ∈ B, where

B := B1 × · · ·×Bn! . (17)

and B! is described by (14). We also define

x(t) := (x(t), v(t)), (18)

and

x(0) = x =: (x0, τ). (19)

As we shall see, x is a Markov process, although, in gen-
eral, x is not. In fact, (18) can be constructed as a piece-
wise deterministic process (cf. Theorem 14 in the Ap-
pendix), which allows to establish the following key re-
sult in what follows. The proof is given in the Appendix.
Let π0

! be a map in B that sets the component ! of a
vector to zero, i.e.,

π0
! : B *→ B, π0

! (τ) = (τ1, . . . , τ!−1, 0, τ!+1, . . . , τn!).
(20)

Theorem 1 If V : Rn×B *→ R is a differentiable func-
tion, such that

E[
∑

t!k≤n

|V (x(t!k))− V (x(t!−k ))|] < ∞, ∀n∈N, (21)

where ! ∈ L, then for the system (1), (16), (18) with
initial condition (19), we have that

E[V (x(t))]=V (x)+E
∫ t

0
AV (x(s))ds, ∀t≥0, (22)

where

AV (x) :=
∂

∂τ
V (x)+

XxV (x) +
n!∑

!=1

λ!(τ!)[V ((j!(x),π
0
! (τ))) − V (x)],

(23)

for x = (x, τ) ∈ Rn ×B, and XxV (x) :=
∑n

i=1
∂V (x)
∂xi

ai(x).

!

We consider the following definition of stability for (1).

Definition 2 We say that (1) is mean exponentially
stable (MES) if there exists constants c > 0,α > 0 such
that for every initial condition x0, the following holds

E[x(t) xT(t)] ≤ ce−αtxᵀ
0x0, ∀t≥0. (24)

!

The following result establishes general conditions
for (1) to be MES, providing a stochastic analog of
a well known result for deterministic non-linear sys-
tems (cf. [16, Th.4.10]). The proof can be found in the
Appendix.

Theorem 3 The system (1) is MES if and only if there
exists a differentiable positive function V : Rn × B *→
R≥0 which equals zero at zero, and positive constants
c1, c2, r such that for every x = (x, τ) ∈ Rn ×B,

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2, (25)

AV (x) ≤ −r‖x‖2. (26)

!

3.2 Linear dynamic and reset maps

In this subsection, we consider the following linear ver-
sion of (1)

ẋ(t) = Ax(t), t ≥ 0, t "= t!k, x(0) = x0,

x(t!k) = J!x(t
!−
k ), k ≥ 1, ! ∈ L,

(27)

where {h!
k = t!k+1 − t!k|k ≥ 0} and t!0 are as described

for (1) and for which we consider (16) and (18) with
initial condition (19).

Define a variable τ = (τ1, . . . , τn!) ∈ B where τj ∈ Bj .

Furthermore, let B̂j = B1× . . . Bj−1 ×Bj+1× · · ·×Bn!

and define the map π! that removes the component
! from the vector τ , i.e., π! : B *→ B̂!, π!(τ) =
(τ1, . . . , τ!−1, τ!+1, . . . , τn!). Let Pa be the Carte-
sian product space of n! measurable real symmet-
ric matrix functions, each defined in B̂!, i.e., if
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P = (P1(τ̂1), . . . , Pn!(τ̂n!)) ∈ Pa, then P!(τ̂!)ᵀ =
P!(τ̂!), ∀τ̂l ∈ B̂!. Sum and multiplication by scalar in Pa

are defined in a natural way and we consider the usual
inner product 〈Q,R〉 =

∑n!

!=1

∫
B̂!

Q!(τ̂!)ᵀR!(τ̂!)dτ̂! for
Q,R ∈ P . Then we define the space P as the space of
elements P ⊂ Pa such that 〈P, P 〉 < ∞, which can be
shown to be a Hilbert space. Let L : P *→ P be the
following integral operator

(Q1, . . . , Qn!) = L(P1, . . . , Pn!) (28)

where Q!(π!(τ)) := R(π0
! (τ)),

R(τ ) :=
n!∑

!=1

∫ γ

0

(J!e
As)ᵀP!(π!(τ )+s1n!−1)J!e

As r̂!(τ, s)

r̄!(τ )

f!(τ! + s)

r!(τ!)
ds,

(29)

r̂!(τ, s) := Πn!
j=1,j %=!rj(τj + s), r̄!(τ) := Πn!

j=1,j %=!rj(τj),
γ := min{γ!−τ!|! ∈ L} and 1n!−1 is a vector with n!−1
components set to one.

For example for n! = 1, (28), (29) take the form

Q1 =

∫ γ1

0
(J1e

As)ᵀP1J1e
Asf1(s)ds, (30)

where P1 and Q1 are symmetric matrices, and in this
special case P is a finite dimensional space since its ele-
ments are matrices and not matrix-valued functions. For
n! = 2, we have

Q1(τ2) =

∫ γ1

0

(J1e
As)ᵀP1(τ2 + s)J1e

As r2(τ2 + s)
r2(τ2)

f1(s)ds

+

∫ γ1

0

(J2e
As)ᵀP2(s)J2e

Asr1(s)
f2(τ2 + s)
r2(τ2)

ds,

τ2 ∈ [0, γ2],

Q2(τ1) =

∫ γ2

0

(J2e
As)ᵀP2(τ1 + s)J2e

As r1(τ1 + s)
r1(τ1)

f2(s)ds

+

∫ γ2

0

(J1e
As)ᵀP1(s)J1e

Asr2(s)
f1(τ1 + s)
r1(τ1)

ds.

τ1 ∈ [0, γ1],
(31)

where γ1 = min(γ1, γ2 − τ2), and γ2 = min(γ1 − τ1, γ2).

Since L operates in a real space P , to define its spectral
radius we consider the complexification of P (cf. [17,
p. 77]), i.e., the space P̃ := {Q = P + iR : P,R ∈ P}.
ForQ = P +iR ∈ P̃, one defines L(Q) := L(P )+iL(R).
The spectral radius is defined as follows:

rσ(L) := max{|λ| : λ ∈ σ(L)}, (32)

where σ(L) := {λ ∈ C : L−λI is not invertible in P̃} de-
notes the spectrum and I the identity. Note that, defin-
ing P as a real space, and defining the spectral radius
of L acting on P as in (32) is generally different from
considering P to be a complex space, where the matrix
components P! of P = (P1, . . . , Pn!) ∈ P are self-adjoint
matrices, and defining the spectral radius of L as usual.
We shall use the first construction since this will allow
us to readily use the results for positive operators given
in [17] to prove our results in Section 4.

The following is the main result of the paper.

Theorem 4 The system (27) is MES if and only if
rσ(L) < 1.

!

The theorem is proved in Section 4. We discuss next how
one can numerically compute rσ(L), and some special
cases of the impulsive system, for which one can provide
alternative stability conditions to Theorem 4.

Computation of the spectral radius of L

One can show that L is a compact operator (using,
e.g., [8, p. 165, Th. 4.1]) and therefore its spectrum con-
sists either of a finite set of eigenvalues λ : LP = λP
for some P ∈ P̃ or of a countable set of eigenvalues with
no accumulation point other than zero (cf., e.g., [8, p.
117, Th. 2.34]). For simplicity, consider first the case
n! = 2, in which L is described by (31). A numeri-
cal method to compute rσ(L) is the following. Take a
grid of points τ̄1j ∈ [0, γ1], 1 ≤ j ≤ nd1, and τ̄2j ∈
[0, γ2], 1 ≤ j ≤ nd2, and consider the map obtained by
replacing P1(τ2), P2(τ1) in (31) by interpolating piece-
wise polynomials at the points {P1(τ̄2k), P2(τ̄1k)}, and
evaluating the integrals (31) at the grid points to ob-
tain {Q1(τ̄2k), Q2(τ̄1k)}. This yields a finite rank oper-
ator, from the chosen space of piecewise polynomials
in P to itself, and assuming nd1 = nd2 = nd, its ma-
trix representation has dimension 2n2

dn(n + 1)/2, since
Pi, Qi, i ∈ {1, 2} are symmetric. Denote by Lnd the finite
rank operator obtained and by Pnd the space of piece-
wise polynomials described above. The method just de-
scribed is known as the collocationmethod, a special case
of the projection method (cf. [8, p. 177]), and one can
conclude from the results in [8] that rσ(Lnd) → rσ(L)
as nd → ∞, for typical piecewise polynomial approxi-
mations, such as the trapezoidal or the zero order ap-
proximation. 3 For general n!, the space of piecewise

3 In fact, from the spectral characterization of compact op-
erators described above, one can conclude from [8, p.232,
Th. 5.5 and p.250, Example 5.14]), that the eigenvalues of
the compact operators Lnd converge to the eigenvalues of
the compact operator L which allows us to conclude that
rσ(Lnd) → rσ(L).
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polynomials Pnd can be defined in a similar way and
this method involves computing the spectral radius of a
nn!
d n!n(n + 1)/2 matrix, which means that computing

rσ(L) may require significant computational effort when
the number of reset maps is large.

From the results in [8, Sec. 6.1, 6.2], one can conclude
that, for the projection method just described, the dis-
tance between an eigenvalue λnd of Lnd and the cor-
responding eigenvalue λ of L that λnd approximates is
dictated by

αnd := sup{‖(I −Πnd)ψ‖)|ψ ∈ Mλ, ‖ψ‖ = 1},

whereΠnd is the projection from P̃ to Pnd , andMλ ⊆ P̃
is the invariant subspace associated with the eigenvalue
λ, which in the special case in which the algebraic and
geometric multiplicities of λ coincide (see [8, p. 97,108]
for the definitions) is described by

Mλ := {Ψ ∈ P̃ : LΨ = λΨ}. (33)

In fact, the convergence of λnd to λ as nd → ∞ and
αnd → 0 is at least of order αnd (cf. [8, Lem. 6.9, 6.10]),
i.e.,

|λ− λnd | ≤ c1α
p
nd
, p = 1, (34)

for some constant c1 > 0, and often quadratic with αnd

(p = 2 in (34)) under mild assumptions on the projec-
tion Πnd (cf. [8, Th. 6.11]). Due to the spectral char-
acterization of compact operators this implies the same
convergence properties for |rσ(Lnd) − rσ(L)|. The im-
pact that the number of grid points nd has on the ap-
proximation of rσ(L) is therefore encapsulated on the
dependency of αnd on nd. As an example, suppose that
n! = 2, Pnd corresponds to the set of zero-order interpo-
lating piecewise polynomials, and that there exists only
one eigenvalue with the same norm as the spectral ra-
dius λ : |λ| = rσ(L) and with the same geometric and
algebraic multiplicities. Then it is possible to conclude
that a function Ψ ∈ Mλ, i.e., a function of the form
Ψ(τ) = (Ψ1(τ2),Ψ2(τ1)) ∈ P̃ such that LΨ = λΨ, where
L is described by (31), must be differentiable. Since, for
a differentiable function Ψ, the norm of the error of a
piecewise zero order approximation ‖(I − Πnd)(Ψ)‖ is
bounded by a linear function of 1

nd
(cf., e.g., [8, p. 167])

one can conclude that

αnd ≤ c2
nd

,

for some c2 > 0. We refer to [8] for more elaborate tech-
niques to compute the spectral radius of an integral op-
erator, including the iterative refinement method, and
further error bound results.

Special cases

A first special case is when there is only one reset map,
i.e., n! = 1. In this caseP is simply the finite dimensional

space of symmetric matrices and L is the linear map
P1 *→ Q1 between two finite dimensional space defined
in (30). In this case rσ(L) < 1 reduces to testing if the
spectral radius of the following matrix is less than one

M1 :=

∫ γ1

0
(J1e

As)ᵀ ⊗ (J1e
As)ᵀf1(s)ds.

This condition is also obtained in [4], where the case
n! = 1 is analyzed using a different approach, based on
Volterra equations, which does not appear to generalize
to the problem considered in this paper.

A second special case is when the maps A, J! commute,
i.e., AJ! = J!A, and J!Jr = JrJ!, ∀!,r∈L. Although this
is generally not the case for the linear matrices obtained
from (10) and (11) when the dynamics of (2) and (3) are
linear, this special case is still of interest for the general
model (27). In this case, the following result, proved in
the Appendix, provides alternative stability conditions
to Theorem 4.

Theorem 5 When the maps A and J!, ! ∈ L commute,
the system (27) is MES if

2λ̄+
n!∑

!=1

α! < 0, (35)

where λ̄ is the maximum real part of the eigenvalues of
A and the α! are given by

α!=






−∞ , if rσ(J
ᵀ
! ⊗ Jᵀ

! ) = 0

a ∈ R :

∫ γ!

0
e−asf!(s)ds =

1

rσ(J
ᵀ
! ⊗ Jᵀ

! )
, otherwise

(36)
where ⊗ denotes the Kronecker product.

!

It is important to emphasize, that even for the commut-
ing case, the condition (35) is sufficient but not neces-
sary, as shown in the following example.

Example 6 Suppose that A = [0]2×2, n! = 1, J1 =[
a1 0

0 0

]
, and J2 =

[
0 0

0 a2

]
, where a1 > 1, a2 > 1. Then,

λ̄ = 0 and, from (36), we can conclude that α1 > 0 and
α2 > 0. Thus, (35) does not hold. However, since the
state remains constant between jump times t!k, ! ∈ {1, 2},
and component i is reset to zero when the reset map i
is triggered, i ∈ {1, 2}, we conclude that E[x(t)ᵀx(t)] =
0, t > max(γ1, γ2) and therefore (27) is MES.

!
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A third special case is when the probability densities
f! correspond to exponential distributions, i.e., r!(y) =
e−β!y. Since the support of the probability density func-
tions is not bounded we assume the following

2λ̄ <
n!∑

!=1

β!, (37)

where λ̄ is the maximum real part of the eigenvalues
of A. This assumption can be shown to assure that the
expected value of a quadratic function of the state of
the system does not go unbounded between jump times.
This assertion can be obtained using a similar reasoning
to [4, Th. 3]. The next theorem states that, in this case,
we can provide stability conditions in the form of LMIs.
The proof is omitted due to space limitations but can be
found in [1, Ch.4].

Theorem 7 Suppose that r!(y) = e−β!y and that (37)
holds. Then the system (27) is MES if and only if

∃P>0 : AᵀP + PA+
n!∑

!=1

β!(J
ᵀ
! PJ! − P ) < 0. (38)

!

3.3 Stability with probability one

The following definition is adapted from [18].

Definition 8 We say that the origin of the system (1) is
(locally) stable with probability one if for every ρ > 0 and
ε > 0 there is a δ(ρ, ε) > 0 such that, if ‖x0‖ < δ(ρ, ε)
then

Prob{ sup
∞>t≥0

‖x(t)‖ ≥ ε} ≤ ρ. (39)

The following result shows that one can assert stability
with probability one of the origin of (1), by establishing
mean exponential stability for its linearization, which
can be tested by Theorem 4. The proof is provided in
the Appendix.

Theorem 9 If (27) is MES with A = ∂
∂xa(x)|x=0

and

J! = ∂
∂xj!(x)|x=0

, ! ∈ L where a and j! are the non-
linear maps in (1), then the origin of (1) is stable with
probability one.

!

This theorem allows us to conclude a property analogous
to the one proved in [19] stating that a standard peri-
odic sampled-data connection of a non-linear plant and
a non-linear controller is locally stable if the sampled-
data connection of the linearization of the plant and
of the linearization of the controller is stable. In fact,

from Theorem 9, we can conclude that in the setup of
Section 2, the non-linear networked control system de-
scribed by (10), (11) is stable with probability one, if the
networked control system obtained by replacing fP , g,
fC , and h, by their local linearizations about the zero
equilibrium is mean exponentially stable, which can be
tested by Theorem 4.

4 Proof of Theorem 4

We prove Theorem 4 through three steps: (i) we show
that specializing the stability conditions of Theorem 3 to
the system (27), yields mean square stability conditions
for (27) in terms of the existence of a solution, with
certain properties, to an integro-differential equation;
(ii) we establish that these conditions are equivalent to
the existence of a solution, with certain properties, to a
Fredholm equation; (iii) we prove that (ii) is equivalent
to the spectral radius of the integral operator of the
Fredholm equation being less than one.

(i) MES for Linear impulsive systems

The Theorem 3 can be specialized to (27) as follows.

Theorem 10 The system (27) is MES if and only if
for every differentiable symmetric matrix functions Y (τ)
and Z(τ) such that a1 ≤ Y (τ) ≤ a2, ∀τ∈B, and b1 ≤
Z(τ) ≤ b2, ∀τ∈B, there exists a differentiable symmetric
matrix function X(τ), such that c1 ≤ X(τ) ≤ c2, ∀τ∈B,
and for every τ ∈ B,

n!∑

!=1

∂

∂τ!
X(τ) +AᵀX(τ) +X(τ)A+

n!∑

!=1

λ!(τ!)[J
ᵀ
! X(π0

! (τ))J! −X(τ) + Z(τ)] + Y (τ) = 0,

(40)
where π0

! is defined by (20), and ai, bi, ci, i ∈ {1, 2} are
positive constants.

!

Proof To prove sufficiency we use Theorem 3 and con-
sider the function V (x(t)) = xᵀ(t)X(v(t))x(t) where
x = (x, v) and X(τ), τ ∈ B satisfies (40) and the re-
maining conditions of the theorem. Then from (23) we
have that

A(xᵀX(v)x) = xᵀ[
n!∑

!=1

∂

∂τ!
X(v) +AᵀX(v) +X(v)A+

+
n!∑

!=1

λ!(v!)[J
ᵀ
! X(π0

! (v))J! −X(v)]]x

(41)
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Using (40) we obtain

A(xᵀX(v)x)=−x [T(
n!∑

!=1

λ!(v!)Z(v) + Y (v))]x≤−a1‖x‖2,

and since c1I ≤ X(v) ≤ c2I, we have that c1‖x‖2 ≤
V (x) ≤ c2‖x‖2. Using Theorem 3, applied to (27), we
conclude that (27) is MES.

Necessity follows by using the same arguments as in the
proof of Theorem 3 and noticing that the function (75)
takes the form V (x) = xᵀ

0X(τ)x0, for x = (x0, τ) ∈
Rn ×B,

X(τ) = X1(τ) +X2(τ), (42)

where

X1(τ) =

∫ +∞

0
Eτ [Φ(t)

ᵀY (v(t))Φ(t)]dt, (43)

X2(τ) =
∑

k>0,!∈L
Eτ [Φ(t

!
k)

ᵀZ(v(t!k))Φ(t
!
k)],

Φ(t) is the transition matrix of the system (27), i.e.,

Φ(t) = eA(t−t!rr )J!r−1 . . . J!1e
Ah

!1
1 J!0e

Ah
!0
0 , (44)

where {!j ∈ L, j ≥ 0} is the triggered sequence of reset
maps, r = max{k : tk ≤ t} and Eτ emphasizes that
expectation subsumes that the process Φ(t) depends on
the initial conditions τ of the process v(t). Since from
Theorem 3, c1‖x0‖2 ≤ V (x) ≤ c2‖x0‖2 it follows that
c1I ≤ X(τ) ≤ c2I. From [10, p.92, Th.(32.2)]) it follows
that

A(xᵀ
0X1(τ)x0) = −xᵀ

0Y (τ)x0

and from [10, p.90,91] we have that

xᵀ
0X2(τ)x0 = E[

∫ ∞

0
λT (v(t))x(t)

ᵀZ(v(t))x(t)],

where

λT (τ) :=
n!∑

j=1

λj(τj), (45)

from which one can conclude again from [10, p.92,
Th. (32.2)] that

A(xᵀ
0X2(τ)x0) = −λT (τ)xᵀ

0Z(τ)x0.

Thus, for every (x0, τ), we have

A(xᵀ
0X(τ)x0) = −xᵀ

0(Y (τ) + λT (τ)Z(τ))x0 (46)

Computing A(xᵀX(v)x) from (23) we obtain (41) which
must be equal to (46) when x = (x0, τ) is replaced by
x = (x, v), from which we conclude (40).

(ii) Fredholm equation

Let U be the space of elements (U1(τ̂1), . . . , Un!(τ̂n!)) ∈
P for which U!(τ̂!) ≥ 0, ∀!∈L, ∀τ̂!∈B! . The space V ⊂ U is
defined similarly but requiring U!(τ̂!) > 0, ∀!∈L, ∀τ̂!∈B! .

Theorem 11 The system (27) is MES if and only if
for every differentiable symmetric matrix functions Y (τ)
and Z(τ) such that a1 ≤ Y (τ) ≤ a2, ∀τ∈B, and b1 ≤
Z(τ) ≤ b2, ∀τ∈B, there exists a solution P ∈ V to the
Fredholm equation

P = L(P ) + U, (47)

where U=(U1,. . ., Un!),

U!(π!(τ)):=W (π0
! (τ)), (48)

and

W (τ) :=
n!∑

!=1

∫ γ

0
eA

ᵀsZ(τ + s1n!)e
As r̂!(τ, s)

r̄!(τ)

f!(τ! + s)

r!(τ!)
ds+

∫ γ

0
eA

ᵀsY (τ + s1n!)e
AsΠn!

!=1

r!(τ! + s)

r!(τ!)
ds

,

and ai, bi, i ∈ {1, 2} are positive constants.

!

Proof Suppose that (27) is MES and therefore there
exists a solution X to (40) given by (42). Let

P (π!(τ)) := X(π0
! (τ)), π!(τ) ∈ B!. (49)

We prove next that X(τ) satisfies

X(τ)=W (τ)+
n!∑

!=1

∫ γ!

0
(J!e

As)ᵀX(π0
! (τ+s1n!))J!e

As r̂!(τ, s)

r̄!(τ)

f!(τ! + s)

r!(τ!)
ds.

(50)
Then sufficiency follows by directly using (50) in (49),
and noticing that the fact that X(τ), given by (42), sat-
isfies X(τ) ≥ c1I, ∀τ∈B, c1 > 0, implies that P ∈ V .

To this effect, we start by conditioning the integrand
in (43) on the time of the first jump t1 := min{t!1, ! ∈ L},

Eτ [Φ(t)
ᵀY (v(t))Φ(t)] = Eτ [(Φ(t)

ᵀY (v(t))Φ(t))1[t1>t]]

+
n!∑

!=1

Eτ [(Φ(t)
ᵀY (v(t))Φ(t))1C!(t)]

(51)
where C!(t) = [min{tj1, j ∈ L} = t!1 = t1 ≤ t] ∧ [tj1 >
t1, j "= !], is the event that jump ! is the first to trigger,
given that a trigger occurred before time t. Using (15)
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the first term on the right hand side of (51) is given by

eA
ᵀtY (τ+t1n!)e

AtΠn!
!=1

r!(τ!+t)
r!(τ!)

. Note that for a function

G(t1),

Eτ [G(t1)1C!(t)] =

∫ t

0
E[G(s)1[tj1>s,j %=!]|t

!
1 = s]

f!(τ! + s)

r!(τ!)
ds

=

∫ t

0
G(s)

r̂!(τ, s)

r̄!(τ)

f!(τ! + s)

r!(τ!)
ds

and that Φ(t) = Φ̂!(t − t1)(J!eAt1) when the transition
! ∈ L is first triggered, where Φ̂!(t− t1) is the transition
matrix from t1 to t starting the process at π0

! (τ + s1n!)
where π0

! is defined by (20). Thus

Eτ [Φ(t)
ᵀY (v(t))Φ(t)1C!(t)] =

∫ t

0
(J!e

As)ᵀ . . .

Eπ0
! (τ+s1n!

)[Φ̂(t−s)ᵀY (v(t− s))Φ̂(t−s)]J!e
Asα!(τ, s)ds,

(52)

where α!(τ, s) :=
r̂!(τ,s)
r̄!(τ)

f!(τ!+s)
r!(τ!)

. By construction of the
process

Eπ0
! (τ+s1n!

)[(Φ̂!(t−s)ᵀY (v(t− s))Φ̂!(t−s)]=

Eπ0
! (τ+s1n!

)[Φ(t−s)ᵀY (v(t− s))Φ(t−s)].

(53)
Replacing (53) in (52), (52) in (51), and (51) in (43) we
obtain

X1(τ)=
n!∑

!=1

X̂!
1(τ)+

∫ γ̄

0
eA

ᵀtY (τ+t1n!)e
AtΠn!

!=1

r!(τ! + t)

r!(τ!)
dt

(54)
where

X̂!
1(τ)=

∫ ∞

0

∫ t

0
Eπ0

! (τ+s1n!
)[(J!e

As)ᵀ(Φ(t−s) YT (v(t − s)) . . .

Φ(t−s)(J!e
As)α!(τ, s)]dsdt

Changing the order of integration in the latter expression
we have that (54) can be written as

X1(τ) =

∫ γ

0
eA

ᵀtY (τ + s1n!)e
AtΠn!

!=1

r!(τ! + t)

r!(τ!)
dt+

n!∑

!=1

∫ γ

0
(J!e

As)ᵀX1(π
0
! (τ+s1n!))J!e

Asr̂!(τ,s)

r̄!(τ!)

f!(τ!+s)

r!(τ!)
ds

With similar computations one can conclude that

X2(τ)=
n!∑

!=1

∫ γ

0
eA

ᵀsZ(τ + s1n!)e
As r̂!(τ, s)

r̄!(τ)

fl(τ! + s)

r!(τ!)
ds+

n!∑

!=1

∫ γ

0
(J!e

As)ᵀX2(π
0
! (τ+s1n!))J!e

Asr̂!(τ,s)

r̄!(τ)

f!(τ!+s)

r!(τ!)
ds

Since X(τ) = X1(τ) + X2(τ) adding X1(τ) and X2(τ)
we obtain (50).

Conversely, suppose that there exists a solution P ∈ V
to (47). Then one can verify that

X(τ)=W (τ)+
n!∑

!=1

∫ γ!

0
(J!e

As) PT!(π̂!(τ)+s1n!−1)J!e
As r̂!(τ, s)

r̄!(τ)

f!(τ! + s)

r!(τ!)
ds

(55)
satisfies all the assumptions of the functionX(τ) of The-
orem 10, and therefore (27) is MES. In fact, if there exists
a solution P ∈ V to (47) one can obtain an explicit ex-
pression for the solution to (47) (cf. Theorem 12), which
is given by

P =
∞∑

i=0

Li(U), (56)

where Li denotes the composite operator obtained by
applying i times L, e.g., L2(P ) = L(L(P )) and L0(P ) :=
P . From (56) we can conclude that P is bounded and
differentiable with respect to τ , since we assume that
the f! are differentiable. Then, it is clear that X(τ) is
bounded, X(τ) ≥ W (τ) ≥ c1I, ∀τ∈B, for some c1 > 0
and (40) can be obtained by direct computation.

(iii) Positive solution of the Fredholm equation

As a prelude to the next result, we note that U is a cone
in the Hilbert space (and hence Banach space, with the
usual norm inherited by the inner product) P , in the
sense of [17] since (i) it is closed; (ii) if U,W ∈ U then
α1U + α2W ∈ U for α1 ≥ 0 and α2 ≥ 0; and (iii) the
set 4 −U := {−P : P ∈ U} intersects U only at the zero
vector. Moreover, this cone is reproducing in P , i.e., if
Z ∈ P , then there exists U,W ∈ U such that Z = U−W
(take for example, Ui(τ) = Zi(τ) + εI and Wi(τ) = εI
for sufficiently large ε > 0 such that Pi(τ) + εI > 0 for
all i ∈ {1, . . . , n!}, τ ∈ B). The operator L is a positive
operator with respect to U , i.e., L(U) ∈ U if U ∈ U .

Theorem 12 The equation (47) has a solution P ∈ V
if and only if rσ(L) < 1.

!

Note that the main result, Theorem 4, can be concluded
from Theorems 11, 12.

Proof Sufficiency follows from the fact that if rσ(L) < 1
then P =

∑∞
i=0 L

i(U) exists which is the solution to

4 Recall that addition and multiplications by scalar are de-
fined in a natural way in P , e.g. if P = (P1, . . . , Pn! ) ∈ P
then −P := (−P1, . . . ,−Pn!)}
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P = L(P )+U . Since L is a positive operator with respect
to U , P is a summation of U ∈ V plus elements in U .
Thus, taking into account the definitions of U and V , we
conclude that P belongs to V .

To prove necessity, we start by noticing that it is possi-
ble to prove that the dual cone (cf. [6, Sec. 2.6] 5 ) of U
can be identified with itself, i.e., using the nomenclature
of [6, Sec. 2.6], U is self-dual. The proof follows similar
arguments used to prove that the cone of positive semi-
definite matrices is self-dual (cf. [6, p.52]), and is there-
fore omitted. From [17, p.22, Th. 2.5], we conclude that
the adjoint operator L∗ is also a positive operator with
respect to U , and using [17, Th. 9.2] which states that
a completely continuous positive operator with respect
to a reproducing cone has an eigenvalue that equals the
spectral radius and an eigenvector that belongs to the
solid cone, we conclude that there exists W ∈ U (other
than the zero element) such that

L∗(W ) = rσ(L
∗)W. (57)

In fact, L∗ is a compact operator, since L is a compact
operator (cf. [9, p.178]), which can be concluded from [8,
p. 165, Th. 4.1], and a compact operator in a Banach
space is completely continuous (cf. [9, p.177]). Suppose
that rσ(L) ≥ 1 and (47) has a solution P ∈ V . Then
rσ(L∗) = rσ(L) ≥ 1. Taking the inner product on both
sides of (47) with W ∈ U , such that (57) holds, yields

〈W,P 〉 = 〈W,L(P )〉+ 〈W,U〉 ⇔
〈W,P 〉 = 〈L∗(W ), P 〉+ 〈W,U〉 ⇔
〈W,P 〉 (1 − rσ(L

∗)) = 〈W,U〉 (58)

Now 〈W,P 〉 ≥ 0, since W,P ∈ U . Moreover, one can
conclude that 〈W,U〉 > 0, since W is different from the
zero element in U and one can conclude from (48) that
U ∈ V . Thus, from (58) we conclude that rσ(L∗) =
rσ(L) ≥ 1 leads to a contradiction.

5 Batch Reactor

This example considers the control of a linearized model
of an open loop unstable two-input two-output batch
reactor, controlled by a PI controller. It is a widely
used example in networked control (see,e.g., [24], [14]).
The plant and controller take the form (2), and (3),
with fP (xP , û) = APxP + BP û, g(xP ) = CPxP , and
fC(xC , ŷ) = ACxC+BC ŷ, h(xC , ŷ) = CCxC+DC ŷ. The
expressions for (AP , BP , CP ) and (AC , BC , CC , DC) can
be found in [2]. The actuator is directly connected û(t) =

5 The nomenclature used in [17, Ch. 2] is adjoint cone in-
stead of dual cone

u(t). However, the sensors are linked to the plant through
communications networks.

In [2], it is assumed that the outputs are sent in a round-
robin fashion through a single shared communication
network. When the distribution of the intervals between
consecutive transmissions is assumed to be, e.g., uniform
with a support γ, we can use the results in [2] to study
the stability of this system.

Suppose now that, instead of transmitting the two mea-
surements in a round robin fashion through the same
communication network, the two sensors transmit data
through two independent communication links. We as-
sume that both links are shared with other users and
that the intervals between consecutive transmissions can
be modeled by independent processes with support in
the interval [0, γ!] for the link associated with the output
y!, ! ∈ {1, 2}. We can cast this system in the framework
of Section 2, and use the techniques developed in this
paper to study the stability in this latter case.

When two links are used to transmit the measurements
of the two sensors, we can use Theorem 4 to investi-
gate the stability of the system as a function of the dis-
tributions for the intersampling times on each network.
The results obtained are summarized in Figure 2 for the
case of uniform distributions with different supports. If
the distributions of the two links have the same sup-
port then stability is preserved for every γ1, γ2 ∈ [0, γ],
with γ = 0.18. It is interesting to compare this with
the case of a round-robin single-link protocol where it
was shown in [2] that the maximum support of a uni-
form distribution for which stability could be guaran-
teed was γ = 0.11. With a round-robin protocol, this
would lead to a distribution between consecutive sam-
ples for the same sensor that is triangular with support
0.22. However, note that in this case the duration of the
intervals between transmissions of the two outputs are
not independent, and a different approach must be used
to assert stability (see [2]). If the two links have different
supports one can conclude from the Figure 2 that the
mean exponential stability of the closed-loop is lost for
a lower value of the support of the distributions associ-
ated with the output y2 than the value of the support
associated with the output y1.

6 Final Remarks and Future Work

We provided several stability results for impulsive sys-
tems with several reset maps triggering asynchronously
at independent and identically distributed spaced times,
motivated by their applications to networked control
systems. Since our main focus was to capture the asyn-
chronous nature of the resets corresponding to trans-
missions in independent networks, we considered several
assumptions for simplicity. We point out here some di-
rections to drop three of these assumptions. First, we

10



00.02 0.06 0.1 0.14 0.18 0.22 0.26
0

0.02

0.06

0.1

0.14

0.18

0.22

0.26

0.3

a2(ms)

a 1(m
s)

o−MES          .−Not MES

Fig. 2. MES for various values of the support of a uniform
distributions of the transmission intervals of two independent
links.

considered finite supports for the probability distribu-
tions that model the intervals between resets, except in
the special case where these distributions are exponen-
tial. In a previous work [4], we provided necessary and
sufficient stability conditions for the case in which the
dynamic and reset maps are linear, there is only one re-
set map (n! = 1), and the supports may be unbounded,
using an approach based on Volterra equations, which
does not appear to generalize for n! > 1. As in [4], and as
in the case of exponential distributions considered in the
present paper, besides the stability condition provided in
Theorem 4, other conditions are required that take into
account inter-jump behavior (condition (37) in the case
of exponential distributions). However, it is not clear to
the authors how to obtain necessary and sufficient condi-
tions for stability (in a stochastic sense) as in [4] for the
case of unbounded support when n! > 1. Second, we con-
sidered no packet drops in the networked control setup
and we assumed that no two nodes share the same net-
work, in which case a protocol such as round-robin would
be required. Taking into account these features would
entail considering stochastic transitions to model packet
drops and including auxiliary discrete modes to model
the protocol (cf., e.g., [3]). Since piecewise determinis-
tic processes allow to take into account discrete modes
and stochastic rest maps, it is reasonable to believe that
one can take these features into account, generalizing
the results in the present paper to this case. Third, we
considered no disturbances acting on the plant. Piece-
wise deterministic processes do not allow to model for
example stochastic disturbances between resets. To cap-
ture this, [15] considers a so-called model jump diffu-
sions with state-dependent intensities. Combining the
ideas presented here and in [15] can therefore be a direc-
tion for future work to capture stochastic disturbances
in the model. Another possible direction for future work
is to exploit in-network processing schemes [7], [21] to
enhance the stability properties and performance of the
networked control systems considered in the present pa-
per.

7 Appendix

Proof of Theorems 1 and 3

We start by describing a construction for the process
x, described by (18), which mimics the construction of
a piecewise deterministic process, as described in [10,
p. 59]. Let Ω := {u1

k, u
2
k, k ≥ 0} where {u1

k, k ≥ 0} and
{u2

k, k ≥ 0} are mutually independent and identically
distributed random variables uniformly distributed in
the interval [0, 1]. Let also φx(s, x(tk)), φv(s, v(tk)) be
the flows at time s of the systems described by ẋ(t) =
a(x(t)) and v̇(t) = 1 with initial conditions x(tk) and
v(tk), respectively. Note that φv(s, v(tk)) = v(tk)+s1n! .
Set k = 0 and t0 = 0, x(t0) = (x0, τ), and consider
the process x(t) = (x(t), v(t)) obtained by iteratively
repeating:

(I) Obtain hk from

hk = inf{t : e−
∫ t

0
λT (φv(s,v(tk)))ds ≤ u1

k}. (59)

where λT is described by (45). Set tk+1 = tk+hk, and
for t ∈ [tk, tk+1) make

x(t) =
(
φx(t− tk, x(tk)),φv(t− tk, v(tk))

)
. (60)

(II) Make x(tk+1) = ψ(u2
k,x(t

−
k+1)), where

ψ(w, (x, τ) )=(j!(x),π
0
! (τ))χw∈(

∑!−1

j=1

λj(τj )

λT (τ) ,
∑!

j=1

λj(τj )

λT (τ) ]
,

(61)
and χx∈A denotes the characteristic function, i.e.,

χw∈A =

{
1 if w ∈ A
0, if w /∈ A

. (62)

!

Remark 13 Note that (59) simply states that

Prob[hk > s|x(tk)] = Πn!
j=1rj(s+ vj(tk)), ∀k≥0

and (61) simply states that

Prob[x(tk) = (j!(x(t
−
k )),π

0
! (v(t

−
k )))|x(t

−
k )] =

λ!(τj(t
−
k ))

λT (τ(t
−
k ))

.

We choose to use the description (I) and (II) to mimic
the piecewise deterministic process construction in [10,
p. 59], which allows us to use the results from [10].

!

The next Theorem establishes the connection be-
tween (1), (16), and piecewise deterministic processes.

11



Theorem 14 The stochastic process (x(t), v(t)), de-
scribed by (1) and (16), can be realized in the probability
space Ω and constructed as the piecewise deterministic
process defined by steps (I) and (II).

!

Proof For the process (x(t), v(t)), described by (1), (16),
define {tk ≥ 0} with tk < tk+1, ∀k≥0 as a set containing
the union of all the jump times in (1), i.e., {tk ≥ 0} =
∪n!
!=1{t!r! , r! ≥ 0}, let {hk := tk+1− tk, k ≥ 0}, h−1 := 0,

and consider the following discrete-time process

zk := (hk−1, x(tk), v(tk)). (63)

There exist a one to one relation between zk and x(t),
described by (1), and (16). In fact, given a sample path
(x(t), v(t)) one can identify the jump times tk by the
times at which v!(tk) = 0 for some !, and from these
construct hk−1 and hence zk. Conversely, from zk we can
obtain hk and hence tk, and construct (x(t), τ(t)) from
(x(tk), (v(tk)) as

(x(t), v(t)) = (φx(t− tk, x(tk)),φv(t− tk, v(tk))),
tk ≤ t < tk+1.

(64)
Moreover, zk is a discrete-time Markov process. To see
this, it suffices to prove that

Prob(zk+1∈D|zr , 0 ≤ r ≤ k)=Prob(zk+1∈D|zk), ∀k≥0,
(65)

where D is a measurable set. Since at tk, a time τ!(tk)
has elapsed since the last jump associated with the reset
map ! ∈ L, the time tk+1 equals tk+1 = tk + hk, where

hk := min
!∈{1,...,n!}

{w!
k},

and w!
k are random variables such that Prob(w!

k > s) =
r!(v!(tk)+s)
r!(v!(tk))

, where the r! are described by (12). Thus,

Prob(hk+1 > s|zr, 0 ≤ r ≤ k) = Πn!
!=1

r!(v!(tk) + s)

r!(v!(tk))
,

(66)
Let ξk+1 denote which reset map triggers at tk+1, i.e.,

ξk+1 := argmin!∈{1,...,n!}{w
!
k}.

Then,

Prob[ξk+1 = !|hk ∈ [s, s+ ε) ∧ zr, 0 ≤ r ≤ k] =

Prob[hk ∈ [s, s+ ε) ∧ ξk+1 = !|zr, 0 ≤ r ≤ k]∑n!

j=1 Prob[hk ∈ [s, s+ ε) ∧ ξk+1 = j|zr, 0 ≤ r ≤ k]
.

(67)

Now,

Prob[hk ∈ [s, s+ ε) ∧ ξk+1 = !|zr, 0 ≤ r ≤ k]

= Prob[w!
k ∈ [s, s+ ε) ∧ wj

k > w!
k, ∀j %=!|zr, 0 ≤ r ≤ k]

=

∫ s+ε

s
Πn!

j=1,j %=!

rj(vj(tk) + q)

rj(vj(tk))

f!(v!(tk) + q)

r!(v!(tk))
dq

(68)

Replacing (68) in (67), taking the limit as ε → 0, and
dividing the numerator and denominator of the right
hand side of (67) by Πn!

j=1rj(vj(tk + s)), we obtain

Prob[ξk+1 = !|hk = s ∧ zr, 0 ≤ r ≤ k]

=
λ!(v!(tk) + s)

λT (v(tk) + s1n!)
=
λ!(v!(t

−
k+1))

λT (v(t
−
k+1))

.

where λT (v(t
−
k+1)) :=

∑n!

!=1 λ!(v!(t
−
k+1)). Thus, we con-

clude that

Prob[(x(tk),v(tk))=(j!(x(t
−
k )),π

0
! (v(t

−
k )))|hk∧zr, 0≤r≤k]

=
λ!(v!(t

−
k ))

λT (v(t
−
k ))

(69)
From (69), and (66), we conclude that

Prob[hk∈[c, d], x(tk+1)∈Ex, v(tk+1)∈Ev |zr, 0≤r≤k]

=
n!∑

!=1

[

∫ d

c
χj!(φx(s,x(tk)))∈Ex∧φv(s,x(tk))∈Ev

. . .

(Πn!
j=1,j %=!

rj(vj(tk) + s)

rj(vj(tk))
)
f!(v!(tk) + s)

r!(v!(tk))
]ds,

(70)
where χ(... ) denotes the characteristic function (62).
Note that (70) depends only on zk = (hk−1, x(tk), v(tk))
and thus the Markov property (65) holds.

Consider now the piecewise deterministic process de-
fined by steps (I) and (II) and let

yk := (hk−1, x(tk), v(tk))

where h−1 = 0, and hk−1, tk, x(tk), v(tk) are now the
variables defined in steps (I) and (II). Then, by construc-
tion of the process and Remark 13, we immediately ob-
tain that (66), and (69), also hold for this process, and
this implies that (70) also holds for this process. Thus yk
is a Markov process with the same transition probability
function, i.e., an alternative realization to zk. Since there
is a one-to-one relation between zk and the process de-
fined by (1), (16), and there is a one-to-one relation be-
tween yk and the process defined by the piecewise deter-
ministic process construction described by steps (I) and
(II), and both processes are completed in the same way
between jump times (see (60), (64)), we conclude that
the process (1), (16) can be constructed as the piecewise
deterministic process specified by steps (I) and (II).
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Proof (of Theorem 1) Theorem 14 allows us to ap-
ply the results available in [10]. In particular, Theo-
rem 1 follows directly from [10, p.33, (14.17)], [10, p.66,
Th. (26.14)] and [10, p. 70, Rem. (26.16)]), provided that
we can prove that the assumption in [10, p.60, (24.4)]
that the expected value of the number of jumps up to a
given time t is bounded, which when specialized to the
stochastic process (x(t), v(t)), described by (1), is equiv-
alent to saying that E[

∑n!

!=1 N!(t)] < ∞, where

N!(t) := max{k ∈ N : t!k ≤ t}. (71)

This is in fact true, since each N!(t) is a renewal pro-
cess [22] with intervals between renewal times following
a probability density function f! with no atom points,
and therefore E[N!(t)] < ∞ (cf. [22, p. 186]). From this
latter fact, one can also conclude that there is zero prob-
ability of an infinite number of jumps occurring in finite
time (cf. [22, p. 186]), which precludes zeno phenomenon
(cf. [12]).

Proof (of Theorem 3) To prove sufficiency, we use The-
orem 1 applied to the function

W (x(t), t) := er1tV (x(t))

where V is a positive function, which equals zero at zero,
and satisfies (25) and (26), r1 is a positive constant such
that r1 > r

c2
, and it is implicit that the process (x(t), t)

is a piecewise deterministic process if x(t) is a piecewise
deterministic process (cf. [10, p.84]). We need to show
that W satisfies (21). Since we assume that a and j! are
globally Lipschitz, we have ‖a(x)‖ ≤ L1‖x‖, ∀x∈Rn and
for every ! ∈ L, we have ‖j!(x)‖ ≤ L2‖x‖, ∀x∈Rn . Thus,
between jump times,

‖x(t)‖2 ≤ e2L1(t−t!k)‖x(t!k)‖2, t ∈ [t!k, t
!
k+1),

(cf. [16, p.107, Exercise 3.17]) and at jump times,
‖x(t!k)‖2 ≤ (L2)2‖x(t!−k )‖2. Thus,

E[‖x(t)‖2] ≤ E[e2L1tΠn!
!=1(L2)

2N!(t)]‖x0‖2 (72)

where N!(t) is the number of jumps associated with the
reset map ! up to the time t, described by (71). We also
have

E[
∑

t!k≤n

|W (x(t!k)) −W (x(t!−k ))|]

≤ E[
∑

t!k≤n

c2e
r1n‖x(t!k))‖2]

≤ c2e
2L1ner1n‖x0‖2

n!∑

j=1

∞∑

k=0

(L2)
2kE[χt!k≤n] (73)

where we used (25), and (72), and χ(... ) denotes the
characteristic function (62). Note that E[χt!k≤n] =

Prob[N!(n) ≥ k]. The fact that the right-hand side
of (73) is bounded is a direct application of [22, p.186,
Th. 3.3.1], and therefore W satisfies (21).

From Theorem 1

E(W (x(t), t)) = W (x, 0) + E[
∫ t

0
AW (x(s), s)ds]

for an initial condition x = (x0, τ). From [10, p. 84], we
can conclude that

AW (x(s), s) = r1W (x(s), s) + er1sAV (x(s))

and using (26) we obtain

E(W (x(t), t)) ≤ W (x, 0)+

E[
∫ t

0
r1W (x(s), s) − rer1s‖x(s)‖ds]

Using (25) and interchanging expectation with integral
operations, we obtain

E(W (x(t), t)) ≤ W (x, 0)+(r1−
r

c2
)

∫ t

0
E[W (x(s), s)]ds.

which implies, from the integral form of the Gronwall’s
inequality [5, Lemma 1], that

E[V (x(t))er1t] = E[W (x(t), t)]

≤ E[W (x, 0)]e(r1−
r
c2

)t = V (x)e(r1−
r
c2

)t. (74)

Note that we can apply the Gronwall’s inequality since
r1 − r

c2
> 0, and this is the reason to work with W ,

instead of directly using V . From (74), we conclude that

E[V (x(t))] ≤ V (x)e−
r
c2

t

and using (25), we conclude that:

E[‖x(t)‖2]≤ 1

c1
E[V (x(t))] ≤ 1

c1
V (x)e−

r
c2

t

≤ c2
c1
‖x0‖2e−

r
c2

t.

Necessity is obtained by proving that

V (x) := V1(x) + V2(x) (75)
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satisfies (25) and (26) where

V1(x) :=

∫ +∞

0
Ex[x(s)

ᵀY (v(s))x(s)]ds

V2(x) :=
n!∑

!=1

∑

k>0

Ex[x(t
!−
k )ᵀZ(v(t!−k ))x(t!−k )],

Ex emphasizes that expectation subsumes that the pro-
cess starts at an initial condition x = (x0, τ), and a1 ≤
Y (τ) ≤ a2I, ∀τ ∈ B, and b1 ≤ Z(τ) ≤ b2I, ∀τ ∈ B, are
differentiable functions, where ai, bi, i ∈ {1, 2} are posi-
tive constants.

To see that V (x) ≥ c1‖x0‖2 denote by t1 the time of
the first jump, which can be from any of the n! reset
maps, and note that V (x) ≥ a1

∫ t1
0 Ex[x(s)ᵀx(s)]ds +

b1Ex[x(t
−
1 )

ᵀx(t−1 )] for any t1 ≥ 0. Let L1 be a
Lipchitz constant for a, ‖a(x)‖ ≤ L1‖x‖. Then
we have x(t)ᵀx(t) ≥ xᵀ

0x0e−2L1t, ∀t≥0 (cf. [16,
p.107, Exercise 3.17]). Thus V (x) ≥ c1x

ᵀ
0x0 where

c1 = a1
∫ t1
0 e−2L1tdt+ b1e−2L1t1 > 0, ∀t1>0.

To see that V (x) ≤ c2‖x0‖2, note that since (1) is
MES, we have that Ex[x(t)ᵀx(t)] ≤ ce−αtxᵀ

0x0 for
some constant c > 0. Thus V1(x) ≤ a2 c

αx
ᵀ
0x0, and

V2(x) ≤ k2x
ᵀ
0x0 where k2 :=

∑n!

!=1

∑∞
k=1 E[b2ce−αt!k ].

Note that E[e−αt!k ] = η0ηk−1, where η0 = E[e−αh!
0 ],

η = E[e−αh!
k1 ] < 1, for some 1 ≤ k1 < k, and therefore

k2 < ∞. Thus, V (x) ≤ c2‖x0‖2 where c2 = a2
c
α + k2.

It follows from [10, p. 92, Cor. (32.6)]) that V1(x) is dif-
ferentiable since, as required in [10, p. 92, Cor. (32.6)])
λT (τ) is continuous. From [10, p.92, Th. (32.2)]

AV1(x) = −xᵀ
0Y (τ)x0

and from [10, p.90,91] we have that

E[V2(x)] = Ex[

∫ ∞

0
λT (v(t))x(t)

ᵀZ(v(t))x(t)dt],

from which one can conclude again from [10, p.92,
Th. (32.2)] that

AV2(x) = −λT (τ)xᵀ
0Z(τ)x0.

and that V2(x) is differentiable (again by [10, Cor.(32.6)]).
Thus V (x) is differentiable and AV (x) ≤ −rxᵀ

0x0 for
r = a1.

Proof of Theorems 5 and 9

Proof (of Theorem 5) From the explicit solution to (27),
described by (44), and the commuting property, we ob-

tain that

E[x(t)ᵀx(t)] = xᵀ
0e

AᵀtΠn!
!=1E[(J

ᵀ
! )

N!(t)JN!(t)
! ]eAtx0,

(76)
where N!(t) is described by (71). From [4, Th. 4], we
can conclude for some symmetric matrix C and for α!

described by (36), we have that E[(Jᵀ
! )

N!(t)JN!(t)
! ] ≤

Ceα!t, if rσ(J
ᵀ
! ⊗ Jᵀ

! ) "= 0, and therefore (76) can be

bounded by E[x(t)ᵀx(t)] ≤ ce(2λ̄+
∑n!

!=1
α!)txᵀ

0x0 for
some constant c. The result then follows from this latter
observation and by noticing that if rσ(J

ᵀ
! ⊗Jᵀ

! ) = 0, the
state is x reset to zero after a finite number of jumps.

Proof (of Theorem 9)We rewrite the dynamic and reset
maps in (1) as

a(x) = Ax+ fe(x), j!(x) = J!x+ ge!(x), (77)

where fe(x) := a(x)−Ax, and ge!(x) := j!(x)− J!x are
differentiable functions such that

‖fe(x)‖
‖x‖ → 0, and

‖ge!(x)‖
‖x‖ → 0, as ‖x‖ → 0 (78)

(cf. [16, p.138]). Let V (x(t)) = x(t)ᵀX(v(t))x(t), where
x(t) is described by (18) and X(τ), τ ∈ B satisfies (40)
and c1I ≤ X(τ) ≤ c2I, ∀τ ∈ B for positive constants c1
and c2. Then, there exists ν > 0 such that

AV (x) = −r(x) ≤ −d1‖x‖2, ∀x:‖x‖≤ν (79)

for some d1 > 0, where AV (x) is given by (23). This ex-
pression (79) can be obtained by directly replacing (77)
in (23), and using (78) in a similar fashion to the proof of
an analogous result for deterministic non-linear systems
(cf. [16, p.139, Th. 4.7]).

Using similar arguments to [18, Th. 1,Ch. 2], we consider
the stopped process xS(t) := x(t∧ τm), where t∧ τm :=
min(t, τm); τm = inf{t : x(t) /∈ Bm} is the first exit time

from the set Bm := {x : V (x) < m}; and m ≤ ν2

c1
is

such that Bm ⊆ {(x, τ) : ‖x‖ ≤ ν}]. It is easy to see
that x(t ∧ τm) is a piecewise deterministic process and
from (23) and (79),

AV (x(t ∧ τm)) =

{
− r(x) if x ∈ Bm

0 otherwise.
(80)

Considering (22) for the process xS and using (80), we
obtain that Ex[V (x(t ∧ τm))] ≤ V (x), i.e., V (x(t ∧ τm))
is a super-martingale, where Ex denotes expectation
with respect to the Markov process x started at ini-
tial condition x = (x0, τ). From this latter fact, and
using the fact that limt→0 Ex[V (x(t))] = V (x), (cf. [10,
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p.77, Th. (27.6)]), we can apply the super-martingale
theorem [18, p.26, Eq. 7.4], and conclude that

Probx[ sup
∞>t≥0

V (x(t ∧ τm)) ≥ m] ≤ V (x)

m
(81)

where Probx denotes probability with respect to the
Markov process x started at initial condition x = (x0, τ).

Given ε, ρ, choose m = min(ν,ε)2

c1
, and δ =

√
ρm
c2

. Then,

for any ‖x0‖ ≤ δ,

Probx[ sup
∞>t≥0

‖x(t ∧ τm))‖ ≥ ε] ≤

Probx[ sup
∞>t≥0

V (x(t ∧ τm)) ≥ m]≤ V (x)

m
≤ c2‖x0‖2

m
≤ρ

(82)
i.e., the origin of (1) is stable with probability one.
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