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a b s t r a c t

This paper proposes a cooperative distributed linear model predictive control (MPC) strategy for tracking
changing setpoints, applicable to any finite number of subsystems. The proposed controller is able to drive
the whole system to any admissible setpoint in an admissible way, ensuring feasibility under any change
of setpoint. It also provides a larger domain of attraction than standard distributed MPC for regulation,
due to the particular terminal constraint. Moreover, the controller ensures convergence to the centralized
optimum, even in the case of coupled constraints. This is possible thanks to thewarm start used to initialize
the optimization Algorithm, and to the design of the cost function, which integrates a Steady-State Target
Optimizer (SSTO). The controller is applied to a real four-tank plant.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Model predictive control (MPC) is one of the most successful
techniques of advanced control in the process industries (Cama-
cho & Bordons, 2004), capable of providing controllers ensuring
stability, robustness, constraint satisfaction and tractable compu-
tation for linear and for nonlinear systems (Mayne, Rawlings, Rao,
& Scokaert, 2000; Rawlings & Mayne, 2009).

Most of the results on MPC consider the regulation problem:
that is, steering the system to the origin or to a fixed setpoint.When
this setpoint changes, the stability of the controllermay be lost, and
the controller may fail to track the reference (Ferramosca, 2011).
This happens because the stabilizing design of the controller and
the feasibility of the optimization problem depend on the steady
state. Therefore, this may require an on-line redesign of the con-
troller for each setpoint or a choice for a larger prediction horizon
N , which can be computationally expensive. In Ferramosca, Limon,
Alvarado, Alamo, andCamacho (2009) and Limon, Alvarado, Alamo,
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and Camacho (2008), an MPC for tracking for constrained linear
systems is proposed, which ensures convergence of the closed-
loop system under any change of the setpoint, maintaining feasi-
bility.

In the process industries, plants are usually considered as large-
scale systems, consisting of linked units of operations. Therefore,
they can be divided into a number of subsystems, connected by
networks of different nature, such as material, energy or infor-
mation streams (Stewart, Venkat, Rawlings, Wright, & Pannocchia,
2010). The overall control of these plants bymeans of a centralized
controller is not easy to realize, due to the difficult coordination
and maintenance of a centralized control scheme.

A common way to control a large-scale plant is given by decen-
tralized controllers (Magni & Scattolini, 2006). In this formulation,
each subsystem is controlled independently, without interchange
of information between different subsystems. The information that
flows in the network is usually considered as a disturbance by
each subsystem. The drawback of this control formulation is the
big loss of information when the interactions between subsystems
are strong (Cui & Jacobsen, 2002). A possible solution is coordina-
tion, which uses a coordinating controller in order to improve the
performance, taking into account the closed-loop response of the
network (Liu, Muñoz de la Peña, & Christofides, 2009).

Distributed control is a control strategy based on different
agents – instead of a centralized controller – controlling each sub-
system, which may or may not share information. There are differ-
ent distributed control strategies proposed in the literature; they
differs in the way the open-loop information is used, allowing one
to define basically two kinds of distributed control formulation:
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noncooperative controllers and cooperative controllers. In non-
cooperative controllers, each agent makes decisions on a single
subsystem, considering other subsystems information only locally
(Camponogara, Jia, Krogh, & Talukdar, 2002; Dunbar, 2007). This
strategy is usually referred to as a noncooperative dynamic game,
and the performance of the plant converges to a Nash equilibrium
(Başar & Olsder, 1999). Cooperative distributed controllers, on the
other hand, consider the effect of all the control actions on all sub-
systems in the network. Each controller optimizes an overall plant
object function, such as the centralized object. Cooperative control
makes the system converge to the Pareto optimum, which is the
centralized performance. Cooperative control is a form of subopti-
mal control for the overall plant, and therefore stability is proved
resorting to suboptimal control theory (Pannocchia, Rawlings, &
Wright, 2011; Scokaert, Mayne, & Rawlings, 1999; Stewart et al.,
2010).

Another interesting approach to distributed control is dual de-
composition (Rantzer, 2009; Wakasa, Arakawa, Tanaka, & Akashi,
2008), which uses Lagrange multipliers in order to relax the cou-
pling between different agents. These multipliers can be seen as
prices in a market mechanism, by means of which an agreement
between the solutions of the different subproblems is achieved.
In Negenborn, Schutter, and Hellendoorn (2008), a comparison of
parallel versus serial schemes is presented.

This paper deals with the formulation of a stabilizing cooper-
ative distributed MPC when the setpoint of the controlled plant
changes. In particular, the controller presented in Ferramosca et al.
(2009) and Limon et al. (2008) is extended to the case of distributed
systems, considering a cooperative game.

The paper is organized as follows. In Section 2, the constrained
tracking problem is stated. In Section 3, the proposed cooperative
distributed MPC for tracking is presented. Section 4 presents the
steady-state optimization property of the proposed controller. In
Section 5, the application of the proposed controller to a real four-
tank plant is presented. Finally, the conclusions of this work are
given in Section 6. The proofs of the Lemmas and Theorem can be
found in the Appendix.
Notation: For a given symmetric matrix P > 0, ∥x∥P denotes the
weighted Euclidean norm of x, i.e. ∥x∥P =

√
x′Px. Consider a ∈ Rna

and b ∈ Rnb ; for a set Γ ⊂ Rna+nb , the projection of Γ onto a is
defined as Proja(Γ ) = {a ∈ Rna : ∃b ∈ Rnb , (a, b) ∈ Γ }. A vectoru
in bold denotes a finite sequence of vectors, that is, a vector defined
as (u(0), u(1), . . . , u(N)), where N is deduced from the context.
A matrix 0n,m ∈ Rn×m denotes a matrix of zeros, and In ∈ Rn×n

denotes the identitymatrix. For a givenλ,λU , (λIn)U. Given two
integers, l ≤ r , the set Il:r is defined as Il:r = {l, l+1, . . . , r −1, r}.

2. Problem statement

Consider a system described by a linear invariant discrete time
model

x+
= Ax + Bu (1)

y = Cx + Du,

where x ∈ Rn is the system state, u ∈ Rm is the current control
vector, y ∈ Rp is the controlled output and x+ is the successor
state. The solution of this system for a given sequence of control
inputs u and initial state x is denoted as x(j) = ϕ(j; x,u), where
x = ϕ(0; x,u). The state of the system and the control input ap-
plied at sampling time k are denoted as x(k) and u(k), respectively.
The system is subject to hard constraints on the state and control:

x(k) ∈ X, u(k) ∈ U (2)

for all k ≥ 0. X ⊂ Rn and U ⊂ Rm are compact convex polyhe-
dra containing the origin in their interior. It is assumed that the
following hypothesis holds.
Fig. 1. Interaction between subsystems in a cooperative distributed control scheme
(two-player game).

Assumption 1. The pair (A, B) is stabilizable, and the state is
measured at each sampling time.

The objective of the paper is to design a controller such that the
output of the system is driven to the target provided by an upper-
layer real-time optimizer (RTO), that is, y(k) → yt as k → ∞, in
an admissible way.

2.1. Characterization of the equilibrium points of the plant

The steady state, input and output of the plant (xs, us, ys) are
such that (1) is fulfilled, i.e. xs = Axs + Bus, and ys = Cxs + Dus.

The steady conditions of the system can be determined by a
suitable parameterization.

Under Assumption 1 and Lemma 1.14 in Rawlings and Mayne
(2009, p. 83), the steady state and input (xs, us) of system (1) can be
parameterized by their associated steady output ys; that is, every
solution of the following equation,
A − In B 0p,1

C D −Ip

 xs
us
ys


=


0n,1
0p,1


(3)

is given by (xs, us) = Myys, where My is a suitable matrix.
If Lemma 1.14 in Rawlings and Mayne (2009, p. 83) does not

hold, then another parameterization has to be used. In Limon et al.
(2008), the authors state that the steady state and input (xs, us)

are univocally defined by a vector θ ∈ Rm, in such a way that
(xs, us) = Mθθ , where Mθ is a suitable matrix.

We define the sets of admissible equilibrium states, inputs and
outputs as

Zs = {(x, u) ∈ X × U | x = Ax + Bu} (4)
Xs = {x ∈ X | ∃u ∈ U such that (x, u) ∈ Zs} (5)
Ys = {y = Cx + Du | (x, u) ∈ λZs}, (6)

whereλ ∈ (0, 1) is a parameter chosen arbitrarily close to 1. Notice
that Xs is the projection of Zs onto X .

2.2. Distributed model of the plant

The plant given by (1) can be considered as a collection of
coupled subsystems, connected by networks of different nature.
(See Fig. 1.)

Givenmodel (1), without loss of generality, it is considered that
u = (u1, . . . , uM), where M ≤ m. Then, by virtue of Stewart et al.
(2010, Section 3.1.1) and Rawlings and Mayne (2009, Chapter 6,
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pp. 421–422), model (1) is partitioned intoM subsystems, coupled
by the control inputs, and modeled as follows:

x+

i = Aixi +
M
j=1

Bijuj (7)

yi = Cixi +
M
j=1

Dijuj

where xi ∈ Rni , uj ∈ Rmj , yi ∈ Rpi , Ai ∈ Rni×ni , Bij ∈ Rni×mj , Ci ∈

Rpi×ni and Dij ∈ Rpi×mj .
The solution of this system, given the sequences of control

inputs (u1, . . . ,uM) and initial state x = (x1, . . . , xM), is denoted
as x(j) = φ(j; x,u1, . . . ,uM), where x = φ(0; x,u1, . . . ,uM).

As proved in Stewart et al. (2010), any plant can be partitioned
as proposed for a certain definition of xi. If the couple (Ci, Ai) is
observable, the inner state of the partition can be calculated or
estimated from the measured output of the subsystem yi.

Remark 1. The use of linear models in the design of controllers for
tracking is very common. The existing mature theory on estima-
tion, identification and controller design for linear systems can be
exploited, and the controllers obtained have demonstrated them-
selves to be successful thanks to the capability of linear models to
capture the dynamics of the plant and to the feedback structure,
which reduces the effect of model mismatches. Model mismatches
and offset cancellation can be dealt with by offset-free techniques
(Pannocchia & Kerrigan, 2005).

3. Cooperative MPC for tracking

The distributed control schemeproposed in this section extends
the MPC for tracking presented in Ferramosca et al. (2009)
and Limon et al. (2008) to a cooperative distributed framework
(Rawlings & Mayne, 2009; Stewart et al., 2010, Chapter 6, p. 433)
where players share a common (and hence coupled) objective,
which can be considered as the overall plant objective.

As in Limon et al. (2008), an artificial equilibrium point of the
plant (x̂s, ûs, ŷs), characterized by ŷs, is added as decision variable,
and the following modified cost function is considered:

VN(x, yt;u, ŷs) =

N−1
j=0

∥x(j) − x̂s∥2
Q + ∥u(j) − ûs∥

2
R

+ ∥x(N) − x̂s∥2
P + VO(ŷs, yt),

where x = (x1, . . . , xM),u = (u1, . . . ,uM) and (x̂s, ûs, ŷs) is the
artificial equilibrium point of the plant given by ŷs. The function
VO(ŷs, yt) is the so-called offset cost function, and it is defined as
follows.

Definition 2. Let VO(ŷs, yt) be a convex and positive definite
function in (ŷs − yt) such that it has a unique minimizer given by

ys = arg min
ŷs∈Ys

VO(ŷs, yt).

The following assumptions are considered to prove the stability of
the controller.

Assumption 2. (1) Let R ∈ Rm×m be a positive definite matrix and
Q ∈ Rn×n a positive semi-definite matrix such that the pair
(Q 1/2, A) is observable.

(2) Let K ∈ Rm×n be a stabilizing control gain for the centralized
system, such that (A + BK) has all the eigenvalues in the unit
circle.
(3) Let P ∈ Rn×n be a positive definite matrix for the centralized
system such that

(A + BK)′P(A + BK) − P = −(Q + K ′RK). (8)

(4) Let Ωλ ⊆ Rn+p be an admissible polyhedral invariant set for
tracking for system (1) subject to (2), for a given gain K (Limon
et al., 2008).

That is, given the extended statew = (x, ŷs), for allw ∈ Ωλ,
then w+

= Aww ∈ Ωλ, where Aw is the closed-loop matrix
given by

Aw =


A + BK BL
0 Ip


and L = [−K , Ip]My. Furthermore, Ωλ must be contained in
the polyhedral setWλ given by

Wλ = {(x, ŷs) ∈ X × Ys : Kx + Lŷs ∈ U}.

Remark 3. As in Limon et al. (2008), the invariant set for tracking
Ωλ is calculated following the algorithm presented in Gilbert
and Tan (1991). The computational cost of the calculation of this
set increases with the dimension of the system. However, this
computation ismade off-line, so it has no effect on theMPC control
problem.

Moreover, in case of high-dimension systems, the computation
of Ωλ can be avoided by using a terminal equality constraint: it is
sufficient to impose the last predicted state to be an arbitrary equi-
librium point, that is, (x(N), ŷs) ∈ (Xs × Ys), which is invariant.

In cooperative distributed MPC (Stewart et al., 2010), each agent
i calculates its corresponding input ui by solving an iterative de-
centralized optimization problem, given an initial feasible solution
u[0]
i . The solution of agent i at iteration p will be denoted as u[p]

i .
Based on this, the solution of each agent at the next iteration p+ 1
is calculated from the solution of the following optimization prob-
lem for the ith agent Pi(x, yt;u[p], ŷ[p]

s,i ), which depends on the state
x, the target yt and the solution of the pth iteration (u[p], ŷ[p]

s ). This
optimization problem is given by

(u∗

i , ŷ
∗

s,i) = argmin
ui,ŷs

VN(x, yt;u, ŷs) (9a)

s.t. (9b)

xq(j + 1) = Aqxq(j) +

M
ℓ=1

Bqℓuℓ(j), q ∈ I1:M (9c)

xq(0) = xq, q ∈ I1:M (9d)

(u[p]
1 , . . . ,u[p]

M ) = u[p], (9e)

uℓ(j) = u[p]
ℓ (j) ℓ ∈ I1:M \ i, (9f)

(x1(j), . . . , xM(j)) ∈ X, j ∈ I0:N−1 (9g)

(u1(j), . . . , uM(j)) ∈ U, j ∈ I0:N−1 (9h)

(x(N), ŷs) ∈ Ωλ. (9i)

Based on the solution of this optimization problem for each agent,
namely u∗

i , the solution of the p + 1th iteration is given by

u[p+1]
i = wiu∗

i (u
[p]
ℓ , ŷ[p]

s ) + (1 − wi)u
[p]
i ,

i ∈ I1:M , ℓ ∈ I1:M \ i (10a)

ŷ[p+1]
s =

M
i=1

wiŷ∗

s,i(u
[p]
ℓ , ŷ[p]

s ) ℓ ∈ I1:M \ i (10b)

M
i=1

wi = 1, wi > 0, i ∈ I1:M .



A. Ferramosca et al. / Automatica 49 (2013) 906–914 909
At time k, the iterative method finishes at the iteration p̄, once the
computation time is expired or a given accuracy of the solution
is achieved. Then the best available solution u(k) = (u[p̄]

1 (0; k),
. . . , u[p̄]

M (0; k)) is applied to the plant.
This distributed optimization scheme is of Gauss–Jacobi type

(Bertsekas & Tsitsiklis, 1997, pp. 219–223). Therefore, the overall
predictive controller can be considered as a suboptimal MPC, since
the distributed solution is a suboptimal solution of the centralized
MPC problem.

To proceedwith the analysis of the proposed controller, wewill
denote

v = (u1, . . . ,uM , ŷs).

v is said to be feasible at (x, yt) if each optimization problem
Pi(x, yt;u, ŷs) is feasible for all i ∈ I1:M . The set of states for which
there exists a feasible v, denoted as XN , is given by

XN = {x ∈ X | ∃v = (u1, . . . ,uM , ŷs), (u1(j), . . . , uM(j)) ∈ U,

j ∈ I0:N−1, ŷs ∈ Ys, s.t. (x, v) ∈ ZN},

where

ZN = {(x, v) | v = (u1, . . . ,uM , ŷs), (u1(j), . . . , uM(j)) ∈ U,

ŷs(j) ∈ Ys, φ(j; x,u) ∈ X for all j ∈ I0:N−1,

φ(N; x,u) ∈ Ωλ}.

Notice that this set is equal to the feasible set of the centralized
MPC for tracking (Limon et al., 2008), i.e. the set of states that can be
admissibly steered to projx(Ωλ) in N steps. Besides, we will denote
VN(x, yt; v) = VN(x, yt;u, ŷs).

In order to precisely define the proposed cooperative control
scheme, the initial solution v[0] of the iterative procedure (10)must
be defined. Since the proposed distributed MPC can be considered
as a suboptimal formulation of the centralized MPC, this initializa-
tion plays the role of the warm start of the suboptimal MPC and
determines recursive feasibility and convergence of the control
algorithm. The following algorithm calculates a warm start that
ensures convergence to the optimal centralized target and control-
lability of the solution.

Algorithm 1. Given the solution v(k), the objective is to calculate
the warm start at sampling time k + 1, denoted as

v(k + 1)[0] = (u1(k + 1)[0], . . . ,uM(k + 1)[0], ŷs(k + 1)[0]).

• Define the first candidate initial solution:

ũi(k + 1) = {ui(1; k), . . . , ui(N − 1; k), uc,i(N)},

where

uc(N) = (uc,1(N), . . . , uc,M(N)) = Kx(N) + Lŷs(k)

is the centralized solution given by the centralized terminal
control law, and x(N) = φ(N; x(k),u1(k), . . . ,uM(k)).

• Define the second candidate initial solution:

ûi(k + 1) = {ûc,i(0), . . . , ûc,i(N − 1)},

where (ûc,1(j), . . . , ûc,M(j)) = ûc(j) and

x̂(0) = x(k + 1)
x̂(j + 1) = (A + BK)x̂(j) + BLŷs(k), j ∈ I1:N−2

ûc(j) = Kx̂(j) + Lŷs(k).

• if (x(k + 1), ŷs(k)) ∈ Ωλ

and
VN(x(k + 1), yt; û, ŷs(k)) ≤ VN(x(k + 1), yt; ũ, ŷs(k))
then

v(k + 1)[0] = (û1(k + 1), . . . , ûM(k + 1), ŷs(k))
else
v(k + 1)[0] = (ũ1(k + 1), . . . , ũM(k + 1), ŷs(k))
end if

As usual in the suboptimal MPC optimization algorithm, the pro-
posed warm start for the first optimization iteration p = 0 is
given by the previous optimal sequence, shifted by one position,
with the last control move given by the centralized terminal con-
trol law applied to the predicted terminal state of the overall plant
and the same artificial steady output; that is, (ũ1(k + 1), . . . ,
ũM(k + 1), ŷs(k)). But, according to the algorithm, when the state
of the system reaches the invariant set for tracking, that is, (x(k +

1), ŷs(k)) ∈ Ωλ, it is desirable that the distributed MPC achieves a
better cost than the one provided by using the centralized terminal
controller. If this is not possible, that is, VN(x(k+1), yt; û, ŷs(k)) ≤

VN(x(x+1), yt; ũ, ŷs(k)), then the centralized terminal control law
is chosen as warm start.

Remark 4. In this work, we are considering suboptimality in the
sense that the proposed distributed solution is a suboptimal so-
lution of a centralized optimization problem. On the other hand,
we assume that the optimal solution of the optimization prob-
lem of each agent at each iteration Pi(x, yt;u[p], ŷ[p]

s ) is achieved.
In the case of suboptimality of this solution, the method proposed
in Zeilinger (2011) can be used.

3.1. Stability analysis

At each sampling time k, the initial warm start v[0](k) is calcu-
lated using Algorithm 1, which depends on x(k − 1) and v(k − 1).
Then, v[p](k) is obtained from the iterative procedure given by (9)
and (10). At a certain number of iterations p̄, the final solution, de-
noted as

v(k) = v[p̄](k) = (u[p̄]
1 (k), . . . ,u[p̄]

M (k), ŷ[p̄]
s (k)),

is achieved. This solution is a function of (i) the current state x(k),
(ii) the initial feasible solution v[0](k) and (iii) the number of itera-
tions p̄. Since x(k) and v[0](k) are functions of x(k−1) and v(k−1),
the overall control law can be written as

v(k) = g(x(k − 1), v(k − 1), p̄).

This difference equation, together with the equations of system
dynamics (1), forms the overall closed-loop system, which can be
posed as follows:

x(k + 1) = Ax(k) + BHv(k)
v(k + 1) = g(x(k), v(k), p̄),

where H is a suitable matrix such that u(k) = Hv(k). As p̄ can take
any value depending on the computation time of the optimization
problem and the communication network delay, this can be con-
sidered as p̄ ∈ N, and then the closed-loop dynamics can be mod-
eled as a set-valued map

z(k + 1) ∈ F(z(k)), (11)

where z(k) = (x(k), v(k)).
The stabilizing properties of this controller are stated in the

following theorem.

Theorem 1 (Asymptotic Stability). Consider that Assumptions 1 and
2 hold. Then, for all (x(0), v(0)) ∈ ZN , and for all yt , the closed-loop
system is asymptotically stable and converges to an equilibrium point
(xs, us) = Myys such that

ys = arg min
ŷs∈Ys

VO(ŷs, yt).

Moreover, if yt ∈ Ys, then ys = yt .

Proof. Considering Lemmas5, 6 and8, and combining Lemma9 for
convergencewith Lemma10 for stability, Theorem1 is proved. �
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3.2. Properties

The proposed controller provides the following properties to
the closed-loop system.

• Enlargement of the domain of attraction:
The domain of attraction of the proposed distributed MPC

is the set of states that can be admissible steered to Ωλ in N
steps. Since this set is not defined for the target, but for any
equilibrium point, the domain of attraction of the proposed
controller is (potentially) larger than the one of the (distributed)
MPC for regulation (Limon et al., 2008).

• Changing operation points:
Considering that the optimization problem is feasible for any

yt , the proposed controller is able to track changing operation
points maintaining the recursive feasibility and constraint
satisfaction.

• Local optimality:
The addition of an artificial reference as a decision variable

means that the local optimality property of the controller may
be lost even in the case of optimality of the centralized solution.
But, if the offset cost function is such that

∥VO(ŷs, yt) − VO(yt , yt)∥ ≥ α∥ŷs − yt∥,

then there exists a constant αmin such that for all α > αmin
the local optimality property also holds for this controller (Fer-
ramosca et al., 2009).

4. Integration of the steady-state target optimizer

Process industries are characterized by a hierarchical control
structure (Engell, 2007): at the top, an economic scheduler and
planner determines the whole plant production (level, quality,
etc.). The outputs of this layer are sent to a real-time optimizer
(RTO) – based on a complex nonlinear stationarymodel of the plant
– which is devoted to computing the stationary targets, yt , accord-
ing to economic criteria. The targets computed by the RTO are sent
to theMPC control levelwhich calculates the control actions neces-
sary for the plant to reach the targets, taking into account a simpli-
fied dynamic model of the plant and constraints. One well-known
drawback of this hierarchical control structure is that the commu-
nication between the economic/stationary and the dynamic layers
may be inconsistent, producing in this way problems that go from
unreachability of the targets to poor economic performance.

A way to avoid this problem is the so-called two-layer struc-
ture (Rao & Rawlings, 1999): an upper optimization level is added
in between the RTO and the MPC. This level, referred to as the
steady-state target optimizer (SSTO), calculates the steady state
(xs, us, ys) to which the system has to be stabilized, solving a lin-
ear or quadratic programming problemand taking into account the
target yt calculated by the RTO. The plant model used in this inter-
mediate level is the same as the MPC one, thus reducing inconsis-
tencies (Engell, 2007).

The steady-state optimizer is usually of the form

(xs, us) = argmin
x,u

ℓss(y − yt) (12)

s.t
x ∈ X, u ∈ U
x = Ax + Bu, y = Cx + Du,

where ℓss is a local convex approximation of the RTO economic
function, typically a norm (or a square norm) of the distance
(y − yt).

In distributed MPC, the target problem, that is, the SSTO
problem, is typically solved in a distributed way: there is a steady-
state optimizer for each agent (Rawlings & Mayne, 2009, Section
6.3.4). If the constraints of each subsystem are decoupled, then the
distributed target problem ensures that the distributed controller
steers the system to the calculated setpoint. But if the constraints of
the problem are coupled, then the optimality of the target problem
might be lost, and the controller might fail to steer the plant to
the desired setpoint, driving the plant to a suboptimal one. In this
case, it is recommended to use the centralized approach to solve
the target problem (Rawlings & Mayne, 2009, Section 6.3.4). The
proposed controller integrates the SSTO into the control law in a
natural way. In effect, from Theorem 1, it can be immediately seen
that, taking

VO(ŷs, yt) = ℓss(ŷs − yt),

then the distributed controller steers the plant to the equilibrium
point (xs, us) = Myys such that

ys = arg min
ŷs∈Ys

ℓss(ŷs, yt),

which is equivalent to the SSTO problem (12).
Then the controller integrates the two-layer structure given by

the steady-state optimizer and theMPC controller in just one layer.
Notice also that, since every agent solves an optimization prob-
lemwith a centralized offset cost function, the proposed controller
ensures convergence to the optimal equilibrium point of the cen-
tralized SSTO, even in the case of coupled constraints or a small
number of iterations p̄.

5. Application to the four-tank system

In this section, the experimental results of the application of the
proposed controller to a real four-tank plant are presented.

The four-tank plant (Johansson, 2000) is a multivariable labo-
ratory plant of interconnected tanks with nonlinear dynamics, and
is subject to state and input constraints. A scheme of this plant is
presented in Fig. 2(a). The inputs are the voltages of the two pumps
and the outputs are the water levels in the lower two tanks.

A real experimental plant developed at the University of Seville
is presented in Fig. 2(b). This real plant has been implemented
using industrial instrumentation and a PLC (Programmable Logic
Controller) for the low-level control. Supervision and control of the
plant are carried out in a PC by means of OPC (Ole for Process Con-
trol), which allows one to connect the plant with a wide range of
control programs such as LabView, Matlab or an industrial SCADA.

A state–space continuous-time nonlinear model of the quad-
ruple-tank process system is given in Johansson (2000). The
linearizedmodel, at the operating point given by h0

= (0.67, 0.66,
0.55, 0.58), is given by

dx
dt

=



−1
τ1

0
A3

A1τ3
0

0
−1
τ2

0
A4

A2τ4

0 0
−1
τ3

0

0 0 0
−1
τ4


x

+



γa

A1
0

0
γb

A2

0
(1 − γb)

A3
(1 − γa)

A4
0


u

y =


1 0 0 0
0 1 0 0


x,
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(a) Scheme of the four-tank process. (b) The real plant.

Fig. 2. The four-tank process.
Fig. 3. The four-tank process: two distributed subsystems.

where xi = hi − ho
i , uj = qj − qoj , j = a, b and i = 1, . . . , 4.

τi =
Ai
ai


2h0i
g ≥ 0, i = 1, . . . , 4, are the time constants of each tank.

This model has been discretized using the zero-order hold method
with a sampling time of 15 s.

The plant parameters, estimated on the real plant, are given in
Alvarado et al. (2011, Table 1).

5.1. Experimental results

The proposed controller has been applied to the four-tank plant,
following the guidelines of the HD-MPC project Benchmark (Al-
varado et al., 2011). To this aim, the original plant has been divided
into two subsystems (Fig. 3), coupled through the control action,
that is, the flows from the pumps.

The experiment has been run considering four changes of ref-
erence: yt,1 = (0.65, 0.65), yt,2 = (0.35, 0.35), yt,3 = (0.50,
0.70) and yt,4 = (0.90, 0.70). The initial state is x0 = (0.47, 0.49,
0.44, 0.46). Notice also that the constraints on the model are cou-
pled due to the dynamic. The setup parameters for the distributed
predictive controller are Q = I4, R = 0.01I2, w1,2 = 0.5. The pre-
diction horizon has been taken as N = 5.

The number of iterations of the suboptimal optimization algo-
rithm has been chosen as p̄ = 1. The gain K is chosen as the one
of the LQR (Linear Quadratic Regulator), and the matrix P is the
Fig. 4. State–space evolution of the outputs h1 and h2 .

solution of the Riccati equation. The invariant set for tracking has
been calculated for the gain matrix K . The chosen offset cost func-
tion is VO(ys, yt) = ∥ys − yt∥2

T , where T = 100I . The optimization
has been run in Matlab. The calculated control inputs have been
injected into the plant by means of OPC.

The result of the experiment are presented in Figs. 4–6.
In particular, in Fig. 4, the set of admissible equilibrium outputs

Ys and the state–space evolution of the output are depicted. The
dots represent the desired setpoints. Notice how the controller
always steers the system to the desired target.

In Fig. 5, the time evolution of the output is presented. The
desired setpoint yt , the artificial references ŷs and the real output
y are depicted respectively in blue dashed–dotted, red dashed and
black solid lines. Notice how the controller steers the system to
the desired setpoint, always fulfilling the constraints. Notice also
the role played by the artificial reference in maintaining feasibility
when the setpoint changes. See in particular in Fig. 5, the fourth
change of reference of the output h1.

Notice that the offset between references and output is due to
the mismatches between the nonlinear plant and the linearized
model used for predictions. This offset can be corrected using an
offset-free technique (Pannocchia & Kerrigan, 2005; Rawlings &
Mayne, 2009). However, this was not the objective of this exper-
iment.

In Fig. 6, the time evolution of h3 and h4 and the control input
qa and qb are presented.
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Fig. 5. Time evolution of the outputs h1 and h2 .

Fig. 6. Time evolution of h3 and h4 and of the control inputs qa and qb .

6. Conclusion

In this paper, a cooperative distributed linear model predictive
control strategy for tracking changing nonzero setpoints has been
proposed, applicable to any finite number of subsystems. The pro-
posed controller is able to steer the system to any admissible set-
point in an admissible way. Feasibility under any changing of the
target steady state and convergence to the centralized optimum
are ensured, thanks to the controller design and the warm start
used to initialize the iterative optimization algorithm. The pro-
posed controller also provides a larger domain of attraction than
standard cooperativeMPC for regulation, due to the centralized in-
variant set for tracking used as the terminal constraint of the MPC
problem. The controller has been applied to a real four-tank plant.
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Appendix. Technical lemmas

Lemma 5 (Recursive Feasibility). For any z(0) ∈ ZN , z(0) = (x(0),
v(0)), the evolution of system (11) is such that z(k) ∈ ZN for all
k ≥ 0.

Proof. Recursive feasibility of the time instant k is proved by
showing that, if z(k) ∈ ZN , then (x(k + 1), v[0](k + 1)) ∈ ZN ,
where v[0](k + 1) is calculated by Algorithm 1.

If (x(k + 1), ŷ∗
s (k)) ∈ Ωλ, and VN(x(k + 1), yt , û) ≤ VN(x(k +

1), yt , ũ), then v[0](k+ 1) is feasible since the centralized terminal
control law provides a feasible solution. Otherwise, the standard
shifted solution is used, which is feasible thanks to the feasibility
of the terminal controller.

Recursive feasibility of the iteration p is proved by showing that,
if (x, v[0]) ∈ ZN , then (x, v[p]) ∈ ZN for all p ∈ N.

Since X,U and Ωλ are convex sets, if

(u∗

1(x, yt , v
[p]), . . . ,u[p]

M , ŷ[p]
s,1(x, yt , v

[p]))

...

(u[p]
1 , . . . ,u∗

M(x, yt , v[p]), ŷ[p]
s,M(x, yt , v[p]))

are feasible, then v[p+1]
= (u[p+1]

1 , . . . ,u[p+1]
M , ŷ[p+1]

s )which results
from a convex combination of these solutions is also feasible.
Hence, by induction, this is proved for any p ∈ N. �

Lemma 6 (Convergence of the Algorithm). For any k ≥ 0 and ∀p ∈

N, the obtained cost function is such that

VN(x(k), yt; v[p+1](k)) ≤ VN(x(k), yt; v[p](k)).

Proof. In this proof, the time dependence has been removed for
the sake of simplicity. Given the solution v[p], the following solu-
tions are computed:

va = (u∗

1(x, yt ,u
[p]), . . . ,u[p]

M , ŷ[p]
s )

...

vm = (u[p]
1 , . . . ,u∗

M(x, yt ,u[p]), ŷ[p]
s ).

From the definition of Pi(x, yt;u[p], ŷ[p]), these solutions are feasi-
ble for this optimization problem, and they provide a lower cost
than v[p].

Then, from convexity of the optimal cost function and the fact
that v[p+1] is the optimal solution of Pi(x, yt;u[p], ŷ[p]), we have that

VN(x, yt; v[p+1]) ≤ w1VN(x, yt; va) + · · · + wMVN(x, yt; vm)

≤ w1VN(x, yt; v[p]) + · · · + wMVN(x, yt; v[p])

= VN(x, yt; v[p]). �

Corollary 7. For all k ≥ 0 and p̄ ∈ N, the cost function is such that

VN(x(k), yt; v[p̄](k)) ≤ VN(x(k), yt; v[0](k)).

Lemma 8 (Local Bounding). Let k be an instant such that (x(k), ŷ[0]
s

(k)) ∈ Ωλ. Then, ∀p ∈ N,

VN(x(k), yt; v[p](k)) ≤ ∥x(k) − x̂[0]
s (k)∥2

P + VO(ŷ[0]
s (k), yt).

Proof. Since (x(k), ŷ[0]
s (k)) ∈ Ωλ, Algorithm 1 ensures that

VN(x(k), yt; v[0](k))

=

N−1
j=0

∥x(j)−x̂[0]s (k)∥2
(Q+K ′RK)  

∥x(j) − x̂[0]
s (k)∥2

Q + ∥u(j) − û[0]
s (k)∥2

R

+ ∥x(N) − x̂[0]
s (k)∥2

P + VO(ŷ[0]
s (k), yt)

≤ ∥x(k) − x̂[0]
s (k)∥2

P + VO(ŷ[0]
s (k), yt).

This fact and Lemma 6 prove the lemma. �

Let (xs, us) = Mys be the equilibrium point corresponding to ys
defined in Theorem 1, and define us,i = (us,i, . . . , us,i), i ∈ I1:M ,
where us = (us,1, . . . , us,M). Denote vs = (us,1, . . . ,us,M , ys) and
zs = (xs, vs). Then in the following lemma it is proved that zs is the
equilibrium point of the closed-loop system where this converges
to.
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Lemma 9 (Convergence). Let Assumption 2 hold. For any initial fea-
sible solution z(0) = (x(0), v(0)) ∈ ZN , system (11) converges to
the equilibrium point zs.

Proof. Using standard MPC procedures (Pannocchia et al., 2011),
Lemma 5 and Lemma 6, it is easy to demonstrate that, if z(k) ∈ ZN ,
then (x(k+1), v[0](k+1)) ∈ ZN , and that z(k+1) = (x(k+1), v(k+
1)) is such that

VN(x(k + 1), yt; v(k + 1)) ≤ VN(x(k), yt; v(k))
− ∥x(k) − x̂s(k)∥2

Q − ∥u(k) − ûs(k)∥2
R.

By virtue of the positive definite nature of the cost function, it is
derived that

lim
k→∞

∥x(k) − x̂∗

s (x(k), yt)∥ = 0, lim
k→∞

∥u(k) − û∗

s (x(k), yt)∥ = 0.

Then, by continuity of themodel function, the system converges to
an equilibrium point

(xs, us) = (x̂∗

s (xs, yt), û
∗

s (xs, yt)).

Notice that, in this case, the warm start is given by the equilibrium
point; that is, v[0](∞) = (us,1, . . . ,us,M , ys). Furthermore, the
solution of the optimization problem for the ith agent is (us,i, ys),
and then v[p](∞) = v[0](∞) for all p ∈ N. Therefore system (11)
converges to zs.

Besides, it can be shown that

VN(xs, yt; v(∞)) = VO(ys, yt);

that is, the cost function is equal to the optimal solution of the
centralized optimization control problem.

Now, it will be proved that (xs, us) is the steady state given by
Theorem 1.

This result is obtained by contradiction. First of all, suppose that
(xs, us, ys) is not the optimal steady state. Hence, there exists an
equilibrium point (x̃s, ũs, ỹs) such that VO(ỹs, yt) < VO(ys, yt).

Since VO(ŷs, yt) is convex in (ŷs−yt), it can be proved that there
exists a β̂ ∈ [0, 1) such that, for every β ∈ [β̂, 1), the equilibrium
point parameterized by

ỹ+

s = βys + (1 − β)ỹs

is such that the control law u = Kx + Lỹ+
s , where L = [−K , Ip]My,

steers the system from xs to x̃+
s fulfilling the constraints.

Defining as ũ the sequence of control actions derived from the
control law u = Kx + Lỹ+

s , it is inferred that (ũ, ỹ+
s ) is a feasible

solution for PN(xs, yt) (Limon et al., 2008).
Since VO(ys, yt) is the centralized optimal cost at xs, from As-

sumption 2, we have that

VO(ys, yt) ≤ VN(xs, yt; ũ, ỹ+

s )

=

N−1
j=0

∥x(j)−x̃+s ∥
2
(Q+K ′RK)  

∥x(j) − x̃+

s ∥
2
Q + ∥K(x(j) − x̃+

s )∥2
R

+ ∥x(N) − x̃+

s ∥
2
P + VO(ỹ+

s , yt)

= ∥xs − x̃+

s ∥
2
P + VO(ỹ+

s , yt)

= (1 − β)2∥xs − x̃s∥2
P + VO(ỹ+

s , yt).

Define now W (xs, yt , β) = (1 − β)2∥xs − x̃s∥2
P + VO(ỹ+

s , yt), and
notice thatW (xs, yt , 1) = V ∗

N (xs, yt) = VO(ys, yt).
The partial ofW (xs, yt , β) about β is

∂W (xs, yt , β)

∂β
= −2(1 − β)∥xs − x̃s∥2

P + g ′(ys − ỹs),
where g ′
∈ ∂VO(ỹ+

s , yt), defining ∂VO(ỹ+
s , yt) as the subdifferential

of VO(ỹ+
s , yt). Evaluating this partial for β = 1, we obtain that

∂W (xs, yt , β)

∂β


β=1

= ḡ ′(ys − ỹs),

where ḡ ′
∈ ∂VO(ys, yt), defining ∂VO(ys, yt) as the subdifferential

of VO(ys, yt). Taking into account that VO is a convex function, and
hence subdifferentiable, we can state that

ḡ ′(ys − ỹs) ≥ VO(ys, yt) − VO(ỹs, yt).

Considering that VO(ys, yt) − VO(ỹs, yt) > 0, it can be derived that

∂W (xs, yt , β)

∂β


β=1

≥ VO(ys, yt) − VO(ỹs, yt) > 0.

This means that there exists a β ∈ [β̂, 1) such that the value of
W (xs, yt , β) is smaller than the value of W (xs, yt , 1) = V ∗

N (xs, yt)
= VO(ys, yt). But previously we stated that W (xs, yt , β) ≥ VO
(ys, yt) = V ∗

N (xs, yt).
This contradicts the optimality of the solution, and hence it is

proved that ys = argminŷs∈Ys VO(ŷs, yt). �

Lemma 10 (Lyapunov Stability). Let Assumption 2 hold. Then sys-
tem (11) is Lyapunov stable at the equilibrium point zs.

Proof. Define z = (x, v), Φ(z) = VN(x, yt; v) − VO(ys, yt), and
define also Zc = {z|Φ(z) ≤ c}, c > 0, containing zs in its interior
and such that Zc ⊆ ZN . Such a set exists because (xs, us) is in the
interior of Zs.

Notice that Φ(z) is defined on Zc , it is positive definite with
respect to zs because Φ(zs) = 0, it is positive away from z = zs
due to the nonnegativity of the stage cost, terminal cost functions
and offset cost function, and it is continuous by Assumption 2. Due
to these facts, there exists a couple of K-functions α and β such
that

α(∥z − zs∥) ≤ Φ(z) ≤ β(∥z − zs∥) z ∈ Zc .

Following the same arguments as Rawlings and Mayne (2009,
p. 608), choose ϵ > 0 and define δ = β−1(α(ϵ)) > 0. Since VN(x
(k+ 1), yt; v(k+ 1))− VN(x(k), yt; v(k)) ≤ 0 for all z(k) ∈ Zc , we
have that, for all z(0) ∈ Zc such that ∥z(0) − zs∥ ≤ δ, then

α(∥z(k) − zs∥) ≤ Φ(z(k)) ≤ Φ(z(0)) ≤ β(∥z(0) − zs∥).

Thenα(∥z(k)−zs∥) ≤ β(δ) = α(ϵ), and hence ∥z(k)−zs∥ ≤ ϵ, for
all k > 0. This fact establishes the stability of zs for a constrained
system. �
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