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Abstract

In this paper we present a decentralized algorithm to estimate the eigenvalues of the Laplacian matrix that encodes the network
topology of a multi-agent system. We consider network topologies modeled by undirected graphs. The basic idea is to provide
a local interaction rule among agents so that their state trajectory is a linear combination of sinusoids oscillating only at frequen-
cies function of the eigenvalues of the Laplacian matrix. In this way, the problem of decentralized estimation of the eigenvalues
is mapped into a standard signal processing problem in which the unknowns are the finite number of frequencies at which the
signal oscillates.
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1 Introduction

Nowadays the research community is investing more and
more effort in designing coordination and estimation al-
gorithms for networked multi-agent systems [1,4,8,16].
The network topology of a multi-agent system can be
effectively described by means of a graph, where nodes
represent agents and edges represent couplings between
them [14]. The emergent behavior of such a system de-
pends both on the interactions between agents and on
the network topology.

Algebraic graph theory [7] provides powerful tools to an-
alyze a graph. As an example, the knowledge of the spec-
trum of the Laplacian matrix associated to a graph can
be used to estimate topological properties of an undi-
rected graph, e.g., algebraic connectivity, average de-
gree, diameter, spectral gap, connectivity measures [13].

⋆ The research leading to these results has received funding
from the European Union Seventh Framework Programme
[FP7/2007-2013] under grant agreement n 257462 HYCON2
Network of excellence.
⋆⋆The research leading to these results has received fund-
ing from the Italian grant FIRB Futuro in Ricerca, project
NECTAR, code RBFR08QWUV.

Email addresses: mauro.franceschelli@diee.unica.it

(Mauro Franceschelli), gasparri@dia.uniroma3.it
(Andrea Gasparri), giua@diee.unica.it (Alessandro
Giua), seatzu@diee.unica.it (Carla Seatzu).

In the context of multi-agent systems, this knowledge
may also provide powerful insights into the dynamics of
a networked control system. As an example, as stated
in [16], the algebraic connectivity, i.e., the second small-
est eigenvalue, is a fundamental parameter to estimate
the worst case convergence rate of consensus algorithms
and, more in general, of multi-agent systems with local
interactions described by the Laplacian matrix such as
leader-follower networks [17].

Unfortunately, the spectrum of the Laplacian matrix is
not readily computable in a distributed setting where
the network topology is unknown. In order to overcome
this limitation, we have designed a local interaction rule
so that the resulting dynamical system oscillates only
at frequencies corresponding to the eigenvalues of the
Laplacian matrix that encodes the network topology. In
this way, the problem of estimating the eigenvalues is
mapped into a signal processing problem solvable inde-
pendently by each agent in a decentralized fashion, us-
ing tools from signal processing or system identification
theory.

Compared to the state of the art, discussed in detail in
next section, our approach allows to estimate the full
spectrum of the symmetric Laplacian matrix without
the need to estimate all the corresponding eigenvectors.
Moreover our approach provides an approximate esti-
mation of the eigenvalues in finite time.
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The contributions of this paper are the following:

• We propose a novel local interaction rule to make the
network state oscillate at frequencies corresponding to
the eigenvalues of the Laplacian matrix, thus mapping
the decentralized eigenvalue estimation problem into
a standard signal processing problem.

• We extend [5] by characterizing analytically the am-
plitude and phase of the oscillations as function of the
eigenvectors of the Laplacian and the initial condi-
tions.

• We propose an improvement with respect to [5] so that
no component at null frequency exists in the evolu-
tion of the agents’ state. The removal of the DC com-
ponent allows the straightforward application of fre-
quency estimation algorithms such as the one in [3].

Related works

In [21] Zavlanos et al. investigated the problem of how
to coordinate a network of mobile robots with position-
dependent topology so that the corresponding adjacency
matrix has a given set of eigenvalues. This approach is
based on artificial potentials, function of the inter-agent
distances, that allow a gradient descent algorithm to
make the network converge to a topology whose eigen-
values are the desired ones. In this preliminary paper
the authors consider the spectral moments related to the
spectrum of the adjacency matrix to be known.

In [6] Franceschelli et al. presented a necessary and suffi-
cient condition to verify observability and controllability
with of a leader-follower network with unknown topol-
ogy of mobile vehicles is proposed based on the algorithm
in [5] and its extension in this paper.

In [20] Yang et al. proposed a technique for the esti-
mation of the second smallest eigenvalue of a weighted
Laplacian matrix based on the power iteration algo-
rithm by the estimation of the corresponding eigenvec-
tor. In addition, the authors discuss a decentralized con-
trol algorithm to maximize the algebraic connectivity.
The idea is to let agents move so that links are added or
weights changed as two agents come closer.

In [18] Sahai et al. presented an approach building on the
idea of [5] for the application of clustering. The authors
propose a local interaction rule formally equivalent to
the wave equation discretized in time and space and show
that the “wave equation method”, can be used to cluster
a graph by estimating the sign of the coefficients of the
discrete Fourier transform corresponding to the second
smallest eigenvalue. Furthermore, their approach is su-
perior with respect to the convergence speed to the state
of the art of eigenvector based clustering algorithms.

Finally, in [9] Kempe et al. are interested in computing in
a decentralized way an approximation of the first k eigen-
vectors of a symmetric matrix that encodes the network

topology. Their algorithm takes inspiration from the or-
thogonal iteration algorithm and assumes that the net-
work topology is unknown to the nodes. This algorithm
can be adapted to our objective, i.e., the distributed es-
timation of the eigenvalues of the Laplacian matrix, by
introducing a distributed technique for the computation
of the Rayleigh quotient.

2 Online Spectrum Estimation

Let us consider the interactions of a network of agents
described by an undirected graph G = {V, E}, where
V = {1, . . . , n} is the set of agents and E ⊆ V ×V is the
set of edges: an edge ei,j exists between agents i and j if
agent i interacts with agent j.

Let Ni define the neighborhood of agent i, namely the
set of indices of the agents connected by an edge with
agent i. In particular, |Ni| = ∆i where ∆i is called de-
gree of agent i. Let L be the Laplacian matrix of graph
G, it is a n×n matrix the elements of which are lij = ∆i

if i = j, lij = −1 if j ∈ Ni and 0 otherwise. The Lapla-
cian matrix L of an undirected graph is symmetric by
construction and thus all its eigenvalues are real. Fur-
thermore, for a connected graph, it has one null struc-
tural eigenvalue with corresponding eigenvector equal to
the vector of ones 1n of appropriate dimensions, thus
L1n = 0n. In addition, according to the Gershgorin disc
theorem, a symmetric Laplacian has all its eigenvalues
located within [0, 2∆max], where ∆max is the maximum
degree between the agents in the graph.

We now present a decentralized algorithm to estimate
the eigenvalues of the Laplacian matrix. The algorithm
requires each agent i to store two variables xi, zi ∈ R

and apply a local update rule upon receiving the values
of the equivalent variables from its neighbors.

Algorithm 1 (Online Spectrum Estimation)

(1) Each agent sets t = 0 and chooses an initial condi-
tion uniformly at random xi(0), zi(0) ∈ {−1, 1}.

(2) Each agent simulates the following local interaction
rule with its neighbors Ni(t)

{

ẋi(t) = zi(t) +
∑

j∈Ni
(zi(t)− zj(t)) ,

żi(t) = −xi(t)−
∑

j∈Ni
(xi(t)− xj(t)) .

(1)

(3) In a time window of length T , agent i estimates the
frequencies of the sinusoids of which signal xi(t) is
composed.

(4) The values of the frequencies estimated correspond
to the eigenvalues of the Laplacian matrix L shifted
by 1 and are given as output. �

Note that Step 3 can be solved by several methods of
signal processing or system identification. In particular,
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the required value of T depends on the chosen algorithm.
In this paper, as discussed in Section 3, we exploit the
method presented in [3] to implement Algorithm 1.

The behavior of the network when all the agents update
their state according to eq. (1) can be described as fol-
lows

[

ẋ(t)

ż(t)

]

= A ·

[

x(t)

z(t)

]

, A =

[

0n×n I + L

−I − L 0n×n

]

. (2)

where I is the n × n identity matrix and 0n×n is the
null n × n matrix. Note that for any network topology
A is skew symmetric, i.e., AT = −A. In the following
theorem, we prove that the eigenvalues of A can be an-
alytically derived from the eigenvalues of the Laplacian
matrix L and they are all structurally purely imaginary.

Lemma 1 Let G be an undirected graph with Laplacian
L. Let matrixA be defined as in eq. (2). To any eigenvalue
λL of L it corresponds a couple of complex and conjugate
eigenvalues λA, λ̄A of A, that is:

λA = j(1 + λL), λ̄A = −j(1 + λL),

while the corresponding eigenvectors vλA
are function of

the eigenvectors vλL
of L

vλA
=
[

vTλL
jvTλL

]T
, v̄λ̄A

=
[

vTλL
− jvTλL

]T
.

Proof: See Appendix A. �

By Lemma 1 it follows that the state of each agent has an
oscillatory trajectory. Furthermore, as detailed by Theo-
rem 2, this trajectory is a linear combination of sinusoids
oscillating only at frequencies function of the eigenval-
ues of the matrix Laplacian. In the following we assume
the Laplacian to have m distinct eigenvalues labeled as
follows: 0 = λ1 < λ2 < · · · < λm.

Theorem 2 Let us consider a system described by eq. (2)
relative to a network whose graph G is connected. Let
x(0) = x0 and z(0) = z0 be the state initial conditions.
Let δ(·) be the Dirac’s delta function. Let λj be an eigen-
value of the Laplacian matrix L of graph G with alge-
braic multiplicity νj and let m be the number of distinct
eigenvalues. Let v1 be the unitary norm eigenvector cor-

responding to λ1 = 0, and v
(k)
j , k = 1, . . . , νj, be the νj

unitary norm eigenvectors associated to λj > 0. The
module of the Fourier transform of the i-th state compo-
nents xi(t) and zi(t), i = 1, . . . , n, can be written as

|F [xi(t)]| = |Xi(f)| =
m
∑

j=1

aj,i

2
δ

(

f ±
1 + λj

2π

)

,

|F [zi(t)]| = |Zi(f)| =
m
∑

j=1

bj,i

2
δ

(

f ±
1 + λj

2π

)

,

where f is the frequency domain variable. In addition,
the coefficients aj,i and bj,i are given by

– For λ1 = 0

a1,i = v1(i) v
T
1 x(0) =

1
T
n x(0)

n
,

b1,i = v1(i) v
T
1 z(0) =

1
T
n z(0)

n
.

(3)

– For λj > 0

aj,i = bj,i =

√

√

√

√

√

√

√

√

[

∑νj
k=1

(

v
(k)
j (i)v

(k)
j

T

x(0)
)

]2

+

[

∑νj
k=1

(

v
(k)
j (i)v

(k)
j

T

z(0)
)

]2 . (4)

Proof: See Appendix B. �

The above theorem states the key result of this paper. In
fact, it implies that each agent can independently solve
the problem estimating the eigenvalues by estimating
the frequencies at which its own state variable xi(t) os-
cillates.

Remark 1 Few important remarks are now in order:

- The value of xi(t) can be seen as the output of the i-th
agent. If the system is not observable from the output
xi(t) then some coefficients aj are null and thus the
corresponding mode cannot be detected by agent i.

- For each agent, the amplitude of the sinusoid oscillat-
ing at ω = λ1 = 1 corresponds to the instantaneous
average of the state variables. �

The observability and controllability of a system, the
dynamics of which are described by the Laplacian ma-
trix, have been studied in [11,12] from a graph theoret-
ical point of view. In the following theorem we link the
ability to estimate all the eigenvalues of the Laplacian
to its observability property.

Theorem 3 Let A be the matrix describing the group
dynamics as in (2). Let C be a k×n output matrix, with
k ∈ N. Let

A =

[

0n×n I + L

−I − L 0n×n

]

and Ĉ =

[

C 0k×n

0k×n C

]

.

Let OA = O(A, Ĉ) and OL = O(L, C) be the observabil-
ity matrices built with the corresponding matrices. Then:

Rank (OA) = 2Rank (OL) .
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Proof: See Appendix C. �

We now state the main result of this paper that proves
the correctness of Algorithm 1.

Theorem 4 Consider a connected network G of n agents
that executes Algorithm 1. Let the initial conditions of
system (2) be not orthogonal to any eigenvector of matrix
L. Let C = [0 . . . , 1, . . . , 0] be zero everywhere except for
the i-th unitary element, with i ∈ V . If O (L, C) is full
rank, then agent i can estimate all the eigenvalues of the
Laplacian matrix.

Proof: Due to Lemma 1 all the eigenvalues of system (2)
are purely imaginary and correspond to the eigenvalues
of the Laplacian matrix shifted by one. Furthermore, if
the initial conditions are not orthogonal to all the eigen-
vectors ofL andO (L, C) is full rank as discussed in The-
orem 3, then all the sinusoids corresponding to the sys-
tem modes have coefficients strictly greater than zero.
Thus by applying a frequency estimation algorithm to
the signal xi(t), for instance the one in [3], agent i can
estimate the full spectrum of the Laplacian matrix by
only observing its own state evolution. �

It is relevant to point out that even if the system is not
observable from a single agent perspective, it will always
be observable if matrixC is the identity matrix, i.e., if we
consider all the information that agents locally retrieve.

3 Numerical implementation of the approach

The system in eq. (2) is a marginally stable linear sys-
tem since all its eigenvalues lie on the imaginary axis.
The stability of a system with eigenvalues exactly on the
imaginary axis is not considered to be robust because
even the slightest parameter uncertainties may render
the system unstable. In our case there is no parameter
uncertainty because system (2) is based on the Lapla-
cian matrix the elements of which depend only on the
existence of links between the agents. Thus, for any net-
work topology system (2) can not be stable or unstable
but only marginally stable. Furthermore we point out
that since no sensing/measurement is involved, no noise
is generated from the application of the local interaction
rule.

In this paper, we implemented the approach in [3] to
estimate the frequencies at which the signal oscillates.
Furthermore we performed a spectral analysis by means
of the Discrete Fourier Transform (DFT).

3.1 Approximate Frequencies Estimation Method

The problem of estimating the frequencies of a signal
such as

y(t) =

n
∑

i=1

Aisin(ωit+ φi) (5)

i i i

Fig. 1. Topology variation with respect to time for a network
composed of 5 agents.
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Fig. 2. Spectrogram of the time varying topology shown in
Fig. 1 computed by the ith agent with respect to the output
associated to its state variable xi(t).
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Fig. 3. Spectrum of the time varying topology shown in Fig. 1
computed by the ith agent at time t = 4, t = 12, t = 20.

t = 5 t = 15 t = 25

λL λ̂L λL λ̂L λL λ̂L

λ1 0 0 0 0 0 0

λ2 1.5857 1.5857 0.5188 0.5188 0.3819 0.3819

λ3 3.0000 2.9998 2.3111 2.3110 1.3819 1.3819

λ4 4.4142 4.4138 3.0000 2.9998 2.6180 2.6179

λ5 5.0000 4.9987 4.1700 5.1696 3.6180 3.6177

Table 1
Comparison between the actual spectrum of the Laplacian,

denoted by λL, and the estimated spectrum, denoted by λ̂L

of the time varying topology shown in Fig. 1.
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Fig. 4. Eigenvalues estimated every T = 1 units of time
by the approximate frequency estimation method in Sub-
section 3.1. Note that the frequencies are shifted by 1 with
respect to the eigenvalues of L in Table 1.

has been extensively studied in control theory via off-
line methods based on Fourier analysis tools and on-
line methods [10,15]. In this paper, the approximate
frequency estimation algorithm in [3] has been imple-
mented. It allows to estimate the frequencies of a sig-
nal of the form in eq.(5) by assuming an upper bound
nMax to the number of existing frequencies to be avail-
able. The input of the algorithm is the sampling time
Ts, an upper bound nMax of the number of expected fre-
quencies, and a measure of the approximation error Se.
Furthermore, the length of the time window considered
must be greater than the largest period of the sinusoid
with the smallest frequency.

The output of the algorithm is the number n of esti-
mated frequencies and their values {1+λL} and a flag f

the value of which is true if the percentage error when
reconstructing the signal with the estimated coefficients
fits the threshold Se, false otherwise. Note that, a great
advantage of this algorithm is that the estimation can be
worked out in finite time. If an observer with asymptotic
convergence is required, the output of the algorithm de-
scribed above could be used as input for the algorithm
proposed in [2].

3.2 Simulations with switching topology

In order to corroborate the mathematical results, simu-
lations have been carried out by exploiting the 4th Order
Runge-Kutta Method (RK4) to simulate the system (2).
Regarding the signal processing, let us recall that this
can be always carried out locally by each agent in spite
of the particular technique adopted.

In the simulation, a network of agents the topology of
which changes over time is considered. In detail, Fig. 1-
a) depicts the network topology at the time interval t ∈
[0, 6.4), Fig. 1-b) describes the network topology at the
time interval t ∈ [6.4, 12.9) and Fig. 1-c) describes the
network topology at the time interval t ∈ [12.9, 20]. Each
agent is running the interaction rule described in eq. (1).

Fig. 2 shows the spectrogram of the time varying topol-
ogy computed by the agent i with respect to its state

variable xi(t). The spectrogram was computed by this

agent with fs =
100

2π
. The x and y axes of the spectro-

gram represent respectively the time step and angular
frequency, while the color of the spectral line describes
the amplitude of the frequency peaks, i.e., white means
zero amplitude while black means an amplitude greater
than 0.1.

Fig. 3 shows a section of the spectrogram at different
time steps, namely t = {4, 12, 20}, representing the
spectrum of the three network topologies taken into ac-
count.

To this example, we also applied the method in Sec-
tion 3.1 to estimate the frequency of the sinusoids and
thus the eigenvalues of the Laplacian. The comparison
between the eigenvalues of the Laplacian matrix of the
time-varying network topology in Fig. 1 and the esti-
mated eigenvalues in Fig. 4 using the approximate fre-
quency estimation method in Subsection 3.1 is shown in
Table 1. This method was implemented choosing as sam-

pling frequency fs =
100

2π
that is twenty times the max-

imum expected frequency in the signal. This frequency
corresponds to the largest eigenvalue of the Laplacian
matrix plus one. The length of the time window used
to computed each estimation is T = 1 sec, which is the
period of the slowest sinusoid.

3.3 Computational Cost

To study the computational cost of Algorithm 1 we adopt
the metrics proposed in [9], i.e., we count the number
of communication rounds required to obtain an estima-
tion with a certain accuracy. In this view, two important
aspects must be considered: (i) the proposed algorithm
consists in a local interaction rule that is supposed to be
applied continuously; (ii) the required signal processing
is carried out locally by an agent and several techniques
can be adopted. Therefore, the computational cost anal-
ysis consists in the study of the cost of simulating the lo-
cal interaction rule and the cost of the signal processing.
Since the study of the computational cost for the sig-
nal processing required to estimate a discrete number of
frequencies contained in a signal is not the scope of this
paper we focus our attention to the number of communi-
cation rounds required for the discrete time simulation
of system (2) by the agents to collect enough data for the
consecutive signal processing. In particular, the simula-
tion time needed to collect a sufficient amount of data
must be greater than the largest period of the sinusoid
with the smallest frequency, Tmin. By considering an ac-
curate numerical simulation method such as the fourth
order Runge-Kutta method, 4 messages have to be ex-
changed between each agent and any of its neighbors to
compute a sample of the state trajectory. It follows that
for each agent the rounds of communication required to
collect a sufficient amount of data can be bounded by
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4 ·∆max ·Tmin ·fs, with ∆max the maximum degree in the
network and fs the chosen sampling frequency that has
do be at least greater than twice the largest eigenvalue of
the Laplacian, thus greater than 2∆max, to avoid alias-
ing issues.

4 Conclusions

In this paper a decentralized algorithm to estimate the
Laplacian spectrum of an undirected graph has been pro-
posed. Each agent interacts with its neighbors so that
its state oscillates at the frequencies corresponding to
the eigenvalues of the Laplacian matrix that encodes the
network topology. Therefore, the problem of estimating
the eigenvalues has been reduced to a simple and widely
studied problem of signal processing which involves the
estimation of the discrete number of frequencies at which
the generated signal is oscillating. A theoretical analysis
of the proposed technique along with numerical simula-
tions has been provided.
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A Proof of Lemma 1

By definition, the eigenvalues of A are the solutions of

det(A− λI) = det

([

−λI I + L

−I − L −λI

])

= 0.

Since A is a block matrix whose blocks commute [19],
then

det(A− λI) = det
(

λ2I − (I + L)2
)

. (A.1)

Now, denote λL the generic eigenvalue of the matrix
Laplacian, it is det(L − λLI) = 0. By adding and sub-
tracting the identity matrix and exploiting the fact that
the eigenvalues of the square of a matrix are squared, we
obtain

det((I + L)2 − (1 + λL)
2
I) = 0.

Thus, by (A.1), it is

λ2 = − (1 + λL)
2
, ⇒ λ = ±j (1 + λL) .
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Therefore, to each eigenvalue of the Laplacian matrix L
it corresponds two imaginary and conjugate eigenvalues
of matrix A denoted by λA and λ̄A, so that

λA = j (1 + λL) , and λ̄A = −j (1 + λL) ,

thus proving the first statement. Now, by definition, the
eigenvectors of A relative to λA are solutions of

[

0n×n I + L

−I − L 0n×n

]

·

[

v′

v′′

]

= λA

[

v′

v′′

]

for which a possible solution is vA = [vTλL
jvTλL

]T .
The same argument holds for the conjugate eigenvalue
λ̄A = −j (1 + λL) for which a possible solution is
v̄A = [vTλL

− jvTλL
]T .

B Proof of Theorem 2

When referring to the eigenvalues and eigenvectors of L,
λL,j and vλL,j

for j = 1, . . . , n, we drop the subscripts L
and λL, respectively, and refer to them as λj and vj for
j = 1, . . . , n. By Lemma 1 to each Laplacian eigenvalue
λj it corresponds a couple of pure imaginary eigenvalues
of A equal to

λA, λ̄A = ±j (1 + λj) .

Therefore, the state trajectory xi(t) of each agent is a
linear combination of sinusoids whose amplitudes and
phase shifts are function of the initial conditions and of
the graph topology.

Now, we compute the coefficients of the module of the
Fourier transform of xi(t). Since A is skew symmetric,
and any skew symmetric matrix is a normal matrix,
i.e. A∗A = AA∗, thanks to the Spectral Theorem it is
always diagonalizable through a unitary matrix 1 and
all the eigenvalues have geometric multiplicity equal to
their algebraic multiplicity (or equivalently, unitary in-
dex). Thus A can be decomposed as A = V DV ∗, where
D is a diagonal matrix whose elements are arranged as
D = diag{jλ1, . . . , jλn, −jλ1, . . . , −jλn}, and V
is a complex matrix whose columns are the eigenvectors
of A. Furthermore, applying Lemma 1, matrix V is re-
arranged to match the disposition of the eigenvalues of
D as follows

V =

[

v1 v2 . . . vn v1 v2 . . . vn

jv1 jv2 . . . jvn −jv1 −jv2 . . . −jvn

]

.

In the following it is assumed that vj , j = 1, . . . , n, are
normalized eigenvectors such that ‖vj‖ = 1 and V V ∗ =

1 A unitary matrix U is a complex matrix such that U∗
U =

UU
∗ = I , where U

∗ is the complex conjugate of U .

I. Thus
∥

∥

∥

∥

α
[

vTj jvTj

]T
∥

∥

∥

∥

= 1, α ∈ R.

By simple manipulations we find α = 1√
2
. The state tra-

jectories of the system are captured by the matrix expo-
nential which in our case takes the form eAt = V eDtV ∗.
It follows that the state trajectory of xi(t) and zi(t) have
the following form

xi(t) =
n
∑

j=1

[

vj(i)
(

cos((1 + λj) t)v
T
j x(0)

+ sin((1 + λj) t)v
T
j z(0)

)]

,

zi(t) =
n
∑

j=1

[

vj(i)
(

− sin((1 + λj) t)v
T
j x(0)

+ cos((1 + λj) t)v
T
j z(0)

)]

.

Thus, according to the notation of Theorem 2, by sim-
ple manipulations we can obtain the expression for the
coefficients aj,i and bj,i associated to the eigenvalue λj

for the i-th agent stated in eq. (3) and eq. (4), proving
the theorem.

C Proof of Theorem 3

Let OA = O(A, Ĉ), OI+L = O(I + L, C) and OL =
O(L, C) be the observability matrices of the correspond-
ing matrices. It can be shown by row permutation that:

Rank (OA) =

Rank





























OI+L 0n×n

OI+L(I + L)n 0n×n

0n×n OI+L

0n×n OI+L(I + L)n





























hence it also holds that

Rank (OA) = Rank

([

OI+L 0n×n

0n×n OI+L

])

from which it follows that Rank (OA) = 2Rank (OI+L).

Finally, by noticing that the eigenvalues of the matrices
OI+L and OL are related as λI+L = 1 + λL and share
the same eigenvectors, from the PBH observability test
it follows that

Rank (OL) = Rank (OI+L) ,

thus
Rank (OA) = 2Rank (OL) .
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