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Abstract

The control algorithm hierarchy of motion control for over-actuated mechanical systems with a redundant set of effectors and actuators
commonly includes three levels. First, a high-level motion control algorithm commands a vector of virtual control efforts (i.e. forces and
moments) in order to meet the overall motion control objectives. Second, a control allocation algorithm coordinates the different effectors
such that they together produce the desired virtual control efforts, if possible. Third, low-level control algorithms may be used to control
each individual effector via its actuators. Control allocation offers the advantage of a modular design where the high-level motion control
algorithm can be designed without detailed knowledge about the effectors and actuators. Important issues such as input saturation and rate
constraints, actuator and effector fault tolerance, and meeting secondary objectives such as power efficiency and tear-and-wear minimization
are handled within the control allocation algorithm. The objective of the present paper is to survey control allocation algorithms, motivated
by the rapidly growing range of applications that have expanded from the aerospace and maritime industries, where control allocation has
its roots, to automotive, mechatronics, and other industries. The survey classifies the different algorithms according to two main classes
based on the use of linear or nonlinear models, respectively. The presence of physical constraints (e.g input saturation and rate constraints),
operational constraints and secondary objectives makes optimization-based design a powerful approach. The simplest formulations allow
explicit solutions to be computed using numerical linear algebra in combination with some logic and engineering solutions, while the more
challenging formulations with nonlinear models or complex constraints and objectives call for iterative numerical optimization procedures.
Experiences using the different methods in aerospace, maritime, automotive and other application areas are discussed. The paper ends
with some perspectives on new applications and theoretical challenges.
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Constraints; Fault-tolerant control; Re-configurable control.

1 Introduction 1.1 Over-actuated mechanical systems

Motion control systems are used to control the motion of

The objective of this survey is to give an overview of con- mechanical systems such as vehicles and machines. Effec-

trol allocation methods. It is not the objective of this paper
to give a complete bibliography, but rather provide a subjec-
tive survey with an emphasis on recent developments within
a common framework that is independent of the application
domains where control allocation is conventionally used.
The article is intended to encourage cross-disciplinary trans-
fer of ideas and complement existing overview articles such
as (Oppenheimer, Doman & Bolender 2010) that focus on
aerospace applications of control allocation, and (Fossen &
Johansen 2006) that focus on marine applications. In partic-
ular, there has recently been increasing interest in control al-
location in the automotive and other industries where mecha-
tronics prevail, which has led to increased research on non-
linear approaches to control allocation. Optimization-based
allocation methods are emphasized since their computational
complexity are already within the capabilities of today’s
off-the-shelf embedded computer technology, e.g. (Bodson
2002, Harkegard 2002, Johansen, Fossen & Berge 2004, Jo-
hansen, Fossen & Tgndel 2005, Petersen & Bodson 2006).

tors are mechanical devices that can be used in order to gen-
erate time-varying mechanical forces and moments on the
mechanical system, such as rudders, fins, propellers, jets,
thrusters, and tires. Actuators are electromechanical devices
that are used to control the magnitude and/or direction of
forces generated by the individual effectors.

By mechanical design, there may be more effectors than
strictly needed to meet the motion control objectives of a
given application. Hence, in over-actuated mechanical sys-
tems, the controllability of the chosen states and outputs
would also be achieved with less control inputs. An over-
actuated mechanical design may be favorable due to several
reasons:

e Need for effector redundancy in order to meet fault toler-
ance and control reconfiguration requirements.

e It may be desirable to choose a particular set of effectors
rather than a smaller set of effectors for reasons such as
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Fig. 1. Control system structure including control allocation. The vector 7. denotes commanded virtual control effort (generalized forces),

while T are the actual allocated control effort.

cost, standardization, size, accuracy, dynamic response,
flexibility, maintenance and mechanical design (see e.g.
(Huston 2005)).

e Certain effectors can be shared among several control sys-
tems with different objectives, and therefore be redundant
for the given motion control system. For example, a lat-
eral stability control system for a car may use the four
individual wheel brake actuators in order to set up a yaw
moment while these actuators are primarily designed for
the car’s brake system to support the driver’s control of
longitudinal motion, see also (Valdsek 2003).

The design of control algorithms for over-actuated mechan-
ical systems is often divided into several levels. First, a high
level motion control algorithm is designed to compute a vec-
tor of virtual inputs 7, to the mechanical system. The virtual
inputs are usually chosen as a number of forces and mo-
ments that equals the number of degrees of freedom that the
motion control system wants to control, m, and such that the
basic requirement of controllability is met. For a wide range
of mechanical systems, this leads to a dynamic model that
is linear in the virtual input

X=fx1)+glx0)7 (D

y=L(x,1) )
where f,g,¢ are functions, x € R” is the state vector, ¢ is
time, y € R™ is the vector with the outputs that shall be con-
trolled, and 7 € R™ is the virtual input vector that should
equal the output command 7, of the high-level motion con-
trol algorithm, i.e. T = 7.. It is remarked that the model’s
linearity with respect to 7 is not of importance for the con-
trol allocation design, but is convenient for the design of the
high-level motion control algorithm design, although it still
should consider constraints T € A, where A is the attainable
set of virtual controls.

Second, a control allocation algorithm is designed in order
to map the vector of commanded virtual input forces and
moments T, into individual effector forces or moments such
that the total forces and moments generated by all effectors
amounts to the commanded virtual input 7.. This design is
usually based on a static effector model in the form

T = h(u,x,1) 3)

where & is a function, u € U C R? is the control input, and

U represents control constraints due to saturation and other
physical constraints. Since the system is assumed to be over-
actuated, we have p > m, such that the inverse problem
of computing u € U given 7 = 7, is ill-posed because its
solution is generally not unique. Commonly, effector models
are linear in u such that

T=h(u,x,t) = B(x,t)u “)

Third, there may be a separate low-level controller for each
effector that controls its actuators in order to achieve its
desired force and moment.

The modular structure of the control algorithm is illustrated
in the block diagram in Figure 1. This modularity allows the
high-level motion control algorithm to be designed without
detailed knowledge about the effector and actuator system.
In addition to coordinating the effect of the different ef-
fectors in the system, issues such as effector/actuator fault
tolerance, redundancy, and control constraints are typically
handled within the control allocation module. Note that the
effector model (3) is usually chosen to be static, so the low-
level actuator control should handle the dynamic control of
the actuators. Although the choice of a static effector model
is common, it should be mentioned that it is also common
that the control allocation algorithm is designed with actua-
tor rate constraints in mind, and we will in later sections sur-
vey extensions where more sophisticated dynamic actuator
models are integrated with the control allocation algorithm
design.

It should also be mentioned that the design on the control
allocation algorithm and the high-level motion control al-
gorithm cannot always be independent. For example, it has
been illustrated that the zero dynamics of the closed loop
may depend on the control allocation design, such that a
dynamic inversion type of control design approach may de-
pend on the control allocation design to ensure stable zero
dynamics (minimum phase response), see (Buffington &
Enns 1996, Buffington, Enns & Teel 1998). On the other
hand, it is also proven that in the framework of optimal con-
trol (LQ or nonlinear methods) the high-level motion control
and control allocation can be separated (by choosing weight
matrices appropriately) with no loss of control performance
(Harkegard & Glad 2005). Moreover, as mentioned above
and illustrated in (Page & Steinberg 1999), lack of feasibil-



ity of the control allocation should be observed and handled
by the high-level motion control algorithm in order to avoid
unacceptable degradation of performance in such cases.

1.2 Control allocation introduction

The primary objective of a control allocation algorithm is
to compute a control input # € U that ensures that the com-
manded virtual control 7. = h(u,x,t) is produced jointly by
the effectors at all time ¢. This objective could fail to be met
if the command 7, require forces beyond the capabilities of
the effectors due to saturation or other physical limitations.
If a feasible u € U cannot be found, the control allocation
algorithm is usually required to degrade its performance ob-
jectives and search for a control input € U that minimizes
the allocation error T, — T = T, — h(u,x,t), in some sense.
Usually, some kind of priority is involved such that the pri-
mary objective can be represented as an optimization prob-
lem

min _ ||QOs|| subjectto T.—h(u,x,t)=s, uclU (5)
ucRP scR™

where s is some slack variable, || - || is some norm, and Q
is some weight matrix that prioritizes the requirements that
should be honored in case the commanded virtual input 7,
cannot be achieved. With the linear effector model (4) the
problem can be written

min_ ||Qs|| subjectto T.—B(x,H)u=s, ucU (6)
ucRP scR™

Actuator rate constraints can be included in the formulation
by limiting the change in control Au from the control u, from
the last sampling instant to some set Au € C. This leads to
the formulation

min subject to
LtE]RP,lseR’" HQSH u

T —h(u,x,t)=s, u€ U, u=us+Au, AucC @)

In over-actuated mechanical systems, dim(u) > dim(7), such
that the solution to (5) or (7) is not unique. This is not a dis-
advantage, and offers the opportunity to introduce secondary
objectives. Often, these are chosen from an operational per-
spective in order to minimize power or fuel consumption,
minimization of actuator/effector tear and wear, or other cri-
teria. In an optimization framework, this can be formulated
by including a secondary cost function J into (5)

min_ (]|Os||+J(x,u,t)) subject to
ucR™ seR™M

T —h(u,x,t)=s, ueU, u=uy+Au, Aue C (8)
Some generic cost functions that are commonly used are

J(x,u,t):%(ufu,,)TW(ufup) )

J(x,u,t) = |[Wul| (10)

where W € RP*? is a positive definite weighting matrix that
prioritizes the different effectors, u, is the preferred value
of u (like zero deflection of control surfaces, trimmed flight
conditions, last value u,, = uy, or zero thrust), and || - || usu-
ally denotes 1-norm or eo-norm. Both W and u, may be
time-varying, and W should normally be chosen small com-
pared to Q in order to reflect the fact that J represents an
objective that is secondary to the primary objective of min-
imizing the slack variables weighted by Q. In later sections
we will also comment upon additional and more application
specific objectives and constraints, as well as formulations
that accommodate alternative models with discrete variables
or unknown parameters that need adaptation.

Although effector models must represent the actual physical
forces and moments, they can be formulated and parameter-
ized in many ways. Usually, one seeks effector models that
are linear with respect to their inputs, leaving nonlinearities
to be compensated for by nonlinear mappings, or in the low-
level single effector / actuator control through inversion of
monotone characteristics or linearizing feedback loops.

Optimization-based control allocation algorithms should be
carefully chosen based on the properties of the effector
model, objective function, constraints, and computational
complexity. Explicit solutions can be found for linear effec-
tor models in combination with simple objective functions
and constraints, while iterative numerical procedures are re-
quired for the more complicated problems. Particular atten-
tion will be needed for nonlinear and possibly non-convex
optimization problems where issues such as numerical ro-
bustness, convergence to non-global minimums, computa-
tional complexity and reliability of the numerical software
implementation should be addressed. These are key issues
in the remaining sections of this survey.

We would like to emphasize that there exist several control
allocation approaches that does not directly fit into the op-
timization formulation above. They will also be treated in
this survey, and for consistency of the presentation they will
still be presented in the context of optimization problems as
far as possible.

1.3 Perspectives

This survey focuses on motion control for over-actuated me-
chanical systems, which is the conventional application area
of control allocation. However, the principles of control al-
location are general and not limited to motion control sys-
tems. Consequently, one does not need to restrict the vir-
tual control input T to be interpreted as generalized forces
(forces and moments) and they may also represent quanti-
ties like energy and mass, for example. In particular, pro-
cess plants are often characterized by excessive degrees of
freedom for control. One example is allocation of gas lift
rates in offshore oil production where the petroleum pro-
ducing wells are coupled due to common pipelines and con-
straints on the available lift gas resources, (Camponogara &
de Conto 2005, Bieker, Slupphaug & Johansen 2007).



In process control, any excessive degrees of freedom are
commonly exploited via model predictive control (MPC)
and real-time optimization, (Qin & Badgwell 2003, Garcia,
Prett & Morari 1989), which are multi-variable optimization-
based control strategies where the functionality of control
allocation is inherently built into the optimal control formu-
lation that is solved numerically online. Although control
allocation usually has less ambitious objectives than MPC
— recall the static effector model — we shall in later sections
review how MPC can be used to solve the control allocation
problem in motion control systems when actuator dynamics
should be considered at the control allocation level. How-
ever, predictive control allocation has also been proposed in
applications like engine management, (Vermillion, Sun &
Butts 2011).

2 Control allocation for linear effector models

Most control allocation algorithms assume a linear effector
model in the form

T=Bu (11)
where B € R™*P is a matrix, sometimes called the control
effectiveness matrix, that describes the relationship between
the control inputs u and the virtual control inputs 7 (forces
and moments) produced jointly by the effectors. For many
applications, the matrix B will depend on the system state
and time-varying parameters or inputs, cf. (4). For exam-
ple, the aerodynamic lift and drag generated by an aircraft
aileron, rudder, flap, spoiler, or other control surface, de-
pends on vehicle velocity and angle of attack, in addition to
nonlinearities due to the geometric shape of the control sur-
face, e.g. (Da Ronch, Ghoreyshi, Vallepin, Badcock, Meng-
meng, Oppelstrup & Rizzi 2011). Fluid flow conditions of
the effectors may depend on both the system state (e.g. ve-
locity) and the effector state (e.g. slip angle or thrust vec-
tor direction), and lead to interactions between the effectors
or between effectors and the body of the vehicle such as
thruster-thruster interactions and thruster-hull interactions,
(Fossen 2011), or change of flow pattern over a control sur-
face (Oppenheimer et al. 2010). For example, deflection of
an aerodynamic surface that is upstream of another aerody-
namic surface may cause the forces and moments produced
by the downstream effector to differ from those produced
when the upstream effector is not deployed, (Oppenheimer
& Doman 2007). Such issues will be further discussed in
the Section 4 where application specific issues are surveyed.
For now, we observe that since the control allocation prob-
lem is viewed as a static problem, the control allocation
problem can utilize the time-frozen model (11) without any
regard to how B will change with time, states and inputs.
Consequently, the scheduled control effectiveness matrix B
is updated at the next sampling instant and the control al-
location problem is solved for the new scheduled matrix B.
Hence, the formulation (11) does not exclude time-varying,
parameter-varying, and linearized models. Robustness of the
control allocation problem with respect to uncertainty in the
scheduling of the B matrix as a function of some operating
point variables in discussed in (Scottedward Hodel 2000).

The parameterization of the control input, i.e. the choice of
elements of the u vectors in the model, is sometimes of great
importance. In particular, it is usually desirable to choose
the model such that is has the linear form (11) and thus
avoiding more complex nonlinear control allocation meth-
ods. For vector thrust devices that can be commanded to
produce thrust of varying amplitude and direction (in two
or three degrees of freedom), the extended thrust formula-
tion (Lindfors 1993, Sgrdalen 1997) leads to a linear model.
Rather than parameterizing the thrust vector through its am-
plitude and some angle(s), its thrust components are decom-
posed on the body axes and treated as elements of the con-
trol input u. Depending on the actuator system, these com-
ponents must usually be converted back to amplitude and
angle(s) by suitable trigonometric transforms that describe
the nonlinear relationships. Although this avoids a nonlinear
model, the price to pay may be a more complicated formula-
tion of amplitude and angular rate constraints in the control
allocation formulation, e.g. (Johansen, Fuglseth, Tgndel &
Fossen 2008).

2.1 Unconstrained linear control allocation

The main challenge of inverting the model (11) is that B is
not a square matrix. Usually, for an over-actuated system,
B will have full row rank (equal to m < p) and we will in
general assume it has a non-trivial null space. This means
there is an infinite number of vectors u € R? that satisfies
(11) for any given 7 € R™. The common way to deal with
such extra freedom is to use generalized inverses (or pseudo-
inverses), e.g. (Horn & Johnson 1985, Golub & van Loan
1983). Below, we present this approach in the context of
minimizing a least-squares cost function.

Neglecting any saturation and rate constraints on the input
u, and choosing for convenience a quadratic cost function
that measures the cost of control action, leads to the control
allocation cost function formulation

1 T .
;gﬁrzi(u—up) W(u—u,) subjectto 7.=Bu (12)

where W € RP*? is a positive definite weighting matrix, and
u, is the preferred value of u. When B has full rank, this
weighted least-squares problem has the following explicit
solution
u=(I—-CB)u,+Cr (13)
where
c=w BT (BW~!BT)"! (14)
is a generalized inverse that can be derived from optimal-
ity conditions of (12) using Lagrange multipliers, see e.g.
(Bordignon & Durham 1995, Virnig & Bodden 1994, Enns
1998, Snell, Enns & Garrard 1990, Durham 1993, Oppen-
heimer et al. 2010, Fossen & Sagatun 1991). For the special
case W =1 and uj, = 0, the solution u = BT 1, is defined by
the Moore-Penrose pseudo-inverse, (Horn & Johnson 1985,
Golub & van Loan 1983), given by C = B* = BT (BBT)~!.
Rank-deficiency of B means that no force or moment can be



generated in certain direction of the space R where 7, be-
longs. This means that all commands 7, cannot be achieved,
even without considering saturation. Although the mechani-
cal design of the effectors and actuators will normally avoid
a rank-deficient B-matrix, it might appear in special cases
like singularities, effector or actuator failures, so the control
allocation algorithm should be able to handle it in some ap-
plications. Several regularization methods could be applied,
like a damped least-squares inverse

Ce =W 'BT(BW BT +-¢1)7! (15)

where € > 0 is a small regularization parameter that must
be strictly positive when B does not have full rank. Al-
ternatively, a singular value decomposition (SVD) of the
matrix BW 'BT = UXLVT will characterize the directions
where no generalized force can be produced, (Golub & van
Loan 1983). The matrix X = diag(o1, 02, ..., 0,) contains the
singular values. Inverting only the singular values that are
non-zero (with some small margin & > 0), leads to the re-
duced rank approximation

Zfs”v :diag(cl’l,cz’l,...,afl,O,...,0) (16)

where r is the number of singular values larger than the
regularization parameter §, i.e. 0; > 0. This leads to the
approximate inverse

cyt=w'BTveruT (17)

to be used instead of C in (13). The SVD can also be used
when B has full rank, e.g. (Oppenheimer et al. 2010).

2.2 Constrained linear control allocation

The methods based on generalized inverses do not guarantee
that constraints on the input # € U are satisfied. A very sim-
ple solution to ensure satisfaction of saturation constraints
(as well as rate constraints) is to saturate the u resulting
from any of the unconstrained control allocation methods
in Section 2.1. Obviously, this will normally mean that the
allocated generalized force T = BProjy;(u) may be differ-
ent from the required/commanded force .. Furthermore, the
method does not guarantee that the allocated generalized
force equals the required force whenever possible, or that
the error between allocated and required generalized force
is minimized in some sense whenever an exact allocation is
not possible. In (Durham 1993) it is shown that no single
generalized inverse (i.e. weight matrix W) can yield exact al-
location whenever possible using simple saturation. Several
constrained allocation methods are designed to give better
solutions than simple saturation.

2.2.1 Redistributed pseudo-inverse and Daisy chaining

The first step of the redistributed pseudo-inverse method (see
e.g. (Virnig & Bodden 1994, Shi, Zhang, Li & Liu 2010)) is

to solve the unconstrained control allocation problem, such
as (12) (or a simpler version). If the solution satisfies the con-
straints, no further steps are needed. Otherwise, the uncon-
strained optimal vector u is projected onto the admissible set
U (i.e. saturated) to satisfy the constraints: # = Projy(u). In
order to reduce the gap between desired and allocated gener-
alized forces, the unsaturated elements of the control vector
it are re-computed by solving a reduced problem using a re-
duced pseudo-inverse. More specifically, let i = (i, i},)"
be decomposed into the saturated elements #¢ and unsatu-
rated elements iy, and let B = (B¢, By) be the associated
decomposition of the B-matrix. Then T¢ = Bciic is the al-
located generalized force due to the saturated controls, and
the remaining controls uy are redistributed by solving the
redistribution equation

Byuy = 1. —7¢ (18)

using the pseudo-inverse method. Then new elements of the
sub-vector uy may be saturated, and the redistribution pro-
cedure is repeated until either a feasible solution (that gives
exact generalized force allocation) is found, or no further in-
formation improvement can be made. Although the method
is simple, and often effective, it does neither guarantee that
a feasible solution is found whenever possible, nor that the
resulting control allocation minimizes the allocation error in
some sense. There are examples (see e.g. (Bodson 2002))
that demonstrate that clearly sub-optimal control allocation
can result.

The daisy chaining method (Adams, Buffington, Sparks &
Banda 1994, Buffington & Enns 1996, Oppenheimer et al.
2010) offers a very simple alternative, but is often less effec-
tive than the above mentioned methods. This method groups
the effectors into two or more groups that are ranked such
that first the control allocation problem is solved for the
highest prioritized group. If one or more effectors in that
group saturates, the settings of the whole group is frozen.
The gap between allocated and required generalized forces
is then allocated by the second group. This is then repeated
if a feasible solution is still not found, and there are more
than two groups. Depending on the selected groups, this
may lead to solutions where several effectors may not be
fully utilized to minimize the allocation error, and can be
sub-optimal compared to the redistributed pseudo-inverse.

2.2.2 Direct allocation

Some constrained control allocation methods are based on
some scaling of the unconstrained optimal control allocation,
such that the resulting control allocation is projected onto
the boundary of the set of attainable generalized forces. In
aerospace applications this is commonly referred to as the
attainable moment set (AMS) since moments in 3-DOF are
normally allocated. Here, the set of attainable generalized
forces is denoted A and is the set of vectors T € R” when the
constrained optimization problem (e.g. (8)) has a feasible
solution.



The direct allocation method (Durham 1993) starts with
the unconstrained control allocation computed using some
pseudo-inverse, e.g. i = BT 1.. If i € U (i.e. satisfies the
input constraints), no further steps are needed and we use
u = i. Otherwise the method will search for another u that
preserves the direction of 7, but leads to an allocated gen-
eralized force Bu on the boundary of A:

ma;coc, subjectto Bu= a1, OT.€A (19)
a<

where o € [0,1] is a scalar. Notice that when the set U is
polyhedral, then also A is a polyhedral set. Solving the op-
timization problem (19) is not trivial for problems where
the dimension of u is large, since there will be a significant
amount of facets and vertices and it is not straightforward
to identify which facet is intersected by the straight line
from 7. to the origin. Different numerical algorithms have
been suggested, with different computational complexities.
Improvements over the original algorithm (Durham 1993)
are based on various data structures, enumerations and rep-
resentations (Bordignon & Durham 1995, Durham 1994b,
Durham 19944, Durham 1999, Petersen & Bodson 2002)
as well as linear programming (Bodson 2002, Oppenheimer
et al. 2010).

2.2.3  Error minimization using linear programming

A powerful approach is to explicitly minimize the weighted
error between the allocated virtual control input and the de-
sired one. Extending the unconstrained optimization prob-
lem formulation (12) with input constraints leads to formu-
lations such as (8). The constraint set U is usually polyhe-
dral, i.e. for some appropriate matrix A and vector b it can
be represented as

U={ueR’|Au<b} (20)

Rate constraints C can be formulated as a polyhedral set,
too.

With the cost function defined using either 1-norm or oo-
norm, this resulting problem is a linear program (LP) that
can be solved using iterative numerical LP algorithms (e.g.
(Paradiso 1991, Bodson 2002, Lindfors 1993, Bodson &
Frost 2011)) by relatively straightforward reformulations
into any of the standard LP forms via the introduction of
additional variables. As an example, consider the 1-norm
control allocation problem

m P
nulisn <Zq,~|s,~+2wj|uj> 21
S \i=l j=1

subject to

Bu = Te+S8, Unin < U< Upay, 5min Su—up < ‘Smux (22)

With symmetric effectors and actuators, we have u,,;, =

—Umax and Oyiy = — Opay. Introducing auxiliary variables
si, $2>0
R (23)
0, 5<0
_ —si, 5 <0
s = 24)
O, Si > 0
. >0
wr={ " = (25)
O, Si < 0
_ —Uj, Ui S 0
U = (26)
07 Si > 0

+_

[ A

we have s; = s si| =s7+s7,ui=u —u;, and |u;| =
u;” +u; . Stacking these variables into vectors s*, s, utu~
and defining w = (w1,...,w,)" and ¢ = (q1,....,qm)" we get
the following linear program

ut
min (wT wl qT qT) " (27)
utu sts— ’ o st
o~
subject to
ut
.
(37_37_171) =T (28)
st
o~
ut
I, —1,0,0 wo| max (Umin, Oin + Uy)
—I, I, O, 0 S+ o —min(umax,Smax_Fuf)
=

(29)
Other LP standard forms exists, and similar reformulations
can be made, e.g. (Bodson 2002). The use of co-norm will
minimize the maximum effector use and therefore lead to
a balanced use of effectors, (Frost, Bodson & Acosta 2009,
Frost & Bodson 2010, Bodson & Frost 2011), and can also
be reformulated into linear programs using similar augmen-
tations with auxiliary variables.

The use of slack variables in the above formulations en-
sures that a feasible solution always exists. It should be
mentioned that infeasibility handling can also be included
via a two-level approach (e.g. (Oppenheimer et al. 2010,
Bodson 2002)). While this might lead to reduced computa-
tional complexity on average, it may not contribute to re-
duced worst-case computational complexity that is usually
the main concern in real-time implementations.



The most common numerical methods for linear program-
ming are the simplex method, active set methods and in-
terior point methods, (Nocedal & Wright 1999). The sim-
plex method is studied for control allocation problems in
(Bodson 2002), where the main conclusions are that the
computational complexity is clearly within the capabilities
of current embedded computer hardware technology. The
simplex method iterates between vertices of the polyhedral
set describing the set of feasible solutions, where at each
iteration a system of linear equations corresponding to a ba-
sic solution is solved using numerical linear algebra. Since
there is a finite number of basic solutions, the simplex al-
gorithm is a combinatorial approach that finds the optimal
solution in a finite number of iterations. The simplex al-
gorithm usually beats the combinatorial complexity of the
problem by trying to reduce the cost function at each it-
eration. Many numerically robust implementations of the
simplex method exists, including portable C code, (Press,
Flannery, Teukolsky & Vetterling 1992), which makes the
approach fairly straightforward to apply in many embedded
control platforms. However, there are some issues that may
require special attention.

Although the simplex method tends to converge to the op-
timal solution within a number of iterations that is not big-
ger than the number of variables and constraints, (Press
et al. 1992), it is hard to give a guaranteed limit on the num-
ber of iterations. Hence, the control allocation may have to
accept some degree of sub-optimality since only a limited
number of iterations may be allowed in a real-time imple-
mentation.

Degeneracies in the problem are characterized by constraints
that are redundant, (Nocedal & Wright 1999). They may
lead to non-uniqueness and singular linear algebraic inver-
sion problems that in combination with numerical inaccu-
racies may require some additional considerations. Due to
degeneracies, a change in the basic solution during one it-
eration may lead to a new basic solution where the cost re-
mains the same. If particular care is not taken, a phenomena
called cycling may arise, where the solver jumps back and
forth between the same set of basic solutions forever without
making any progress towards the optimum. As observed in
(Bodson 2002), anti-cycling procedures are indeed needed
since symmetric effectors may easily lead to degeneracies
in the control allocation problem.

Fairly efficient general procedures are available to find a
feasible initial point for starting the simplex method. In the
control allocation problems above, the use of slack variables
s makes it trivial to find a feasible initial point since there are
no constraints on s, see also (Bodson 2002). Moreover, in
control allocation problems, the solution from the previous
sample is often a good initial guess for the current solution,
since the problem parameters (including 7.) often does not
change significantly from one sample to the next. Still, one
needs to have in mind that there may be exceptions due to
failures or abrupt command changes. The number of itera-
tions needed in the simplex algorithm may be reduced (at

least in average) by explicitly exploiting such information
for warm start.

Optimal solutions of LPs are found at vertices of the feasible
set. A consequence of this is that the LP-based method tends
to favor the use of a smaller number of effectors, while meth-
ods based on a quadratic cost function and co-norm tends
to use all effectors, but to a smaller degree, (Bodson 2002).
This seems to be the main reason why error minimization
approaches are based on quadratic programming in most
cases.

2.2.4  Error minimization using quadratic programming

With the common choice of 2-norm, the control allocation
problems leads to a quadratic program (QP) that can be
solved using numerical QP methods, e.g. (Hérkegard 2002,
Petersen & Bodson 2006, Petersen & Bodson 2005). As an
example for such a formulation, consider the control alloca-
tion formulation

m P
rBiSn (Z qis? + Y le/t?) (30)
S \i=l =1

subject to
Bu=1.+5, upin <u < Upgy, Omin < u—ttp < Gpax (31)

It can be transformed into a standard QP form without ad-
ditional variables, where

u,s

(B, —I) <"> —1, (33)
s
I, 0 u > max (Upin, g + Spmin) (34)
-1, 0 K —min(Umayx, Ue + Omax)

where H = 2-diag(w1,...,wp,q1,...,qm). When all weights
in the cost function are strictly positive (which they nor-
mally should be in a control allocation problem), the QP
is strictly convex with H positive definite. With the use of
slack variables, a feasible solution always exists and the
problem always admits a unique optimal solution. It should
be noted that several variations of the formulation can be
made, including the use of a 1-norm for the slack variables
which may have the advantage that with appropriate tuning
the slack is zero whenever feasible, a property known as an
exact penalty function, e.g. (Fletcher 1987).

min %(uT,sT)H ( . > 32)

subject to

QPs are usually solved using active set methods or interior-
point methods, (Nocedal & Wright 1999), and both have
been studied in the context of control allocation (Hirkegard



2002, Petersen & Bodson 2005). An iterative fixed-point
method has also been proposed and shown to be efficient,
(Burken, Lu, Wu & Bahm 2001).

Active set methods are iterative methods, where at each it-
eration they improve their guess of the optimal active set,
(Nocedal & Wright 1999). The optimal active set is the
set of indices of the inequality constraints that are active
(i.e. the inequality holds with equality) at the optimum. At
each iteration, a search direction is computed based on the
assumption of the working active set. The algorithm then
searches for better solutions along this search direction, and
either finds the optimum or detects how the working active
set needs to be changed in order to make further progress
towards the optimum. More specifically, consider the QP in
standard form

1
min EZTHZ, st Fz=vy, Gz<vy (35)
z

An active set algorithm for QP, as described in (Hérkegard
2002), can be used to solve the control allocation problem
at each sample.

Basic active set quadratic programming algorithm.

Initialization: Let z° be a feasible starting point for (35)
(possibly based on the solution from the previous sample),
and let the working active set #° contain the indices of
the active inequality constraints at z°. Set the iteration index
k=0.

Repeat:

(1) Given z*, find the optimal direction p* by solving

1
m}{ni(z]‘—i—pk)TH(zk—ﬁ—pk), s.t. Fpt=0, Ga,/kpkzo
P

where G« contains the rows of G indexed by the

working active set #/X.

(2) If X+ p* is feasible, then set 2! = z5 4 pk, and com-
pute the vectors of Lagrange multipliers u* and A* as-
sociated with the equality and inequality constraints,
respectively.

(a) If A¥ >0, then z**! is the optimal solution. Ter-
minate.

(b) Otherwise, remove the constraint associated with
the most negative Lagrange multiplier in the vector
AK from the working active set to define #/*+!.
Increment k and repeat.

(3) Otherwise, apply a line search procedure in order to
determine the maximum step & > 0 such that z5+! =
Z+ ap” is feasible. Add the primary bounding con-
straints to the working active set to define #**!. In-
crement k and repeat.

Interior-point methods, on the other hand, replaces the in-
equality constraints with a barrier function that prevents the
solution for going into the infeasible region, (Nocedal &
Wright 1999). Newton’s method is then applied to search to-
wards the optimum of the unconstrained optimization prob-
lem resulting from this reformulation. For each iteration,
the barrier function is reduced in order to allow the solver
to approach the boundary of the feasible region in case the
optimal solution is located there.

The active set methods tend to perform well in control alloca-
tion problems, (Hérkegard 2002), while interior point meth-
ods have their advantage for larger-scale problems (Petersen
& Bodson 2005). Active set methods have the advantage that
their initialization can take advantage of the solution from
the previous sample (known as warm start), which is often
a good guess for the optimal solution at the current sample.
This may reduce the number of iterations needed to find the
optimal solution in many cases. Interior-point methods are
generally initialized with points near the center of the fea-
sible region and will always need a minimum number of
iterations in order to converge due to the need to reduce the
barrier function penalty in several steps. Warm start proce-
dures are therefore difficult to implement for interior-point
methods.

Like in LP, it is hard to give guarantees on the maximum
number of iterations and computation time needed to find
the optimal solution. Hence, some degree of sub-optimality
may need to be accepted in order to respect limitations on
computational resources in order to meet real-time compu-
tation constraints. Numerical challenges with degeneracies
and cycling must be addressed also in QPs.

Several implementations of active set QP solvers were stud-
ied for control allocation problems in (Hirkegard 2002),
with fairly modest differences in computational complex-
ity being observed. For non-real-time implementations, the
Matlab toolbox QCAT (Hirkegard 2004) is dedicated to
QP-based control allocation and implements the methods
of (Harkegard 2002, Petersen & Bodson 2005). For real-
time implementation on embedded systems, there exists a
few portable C code solvers such as the FORTRAN-to-C-
converted active set solver QLD (Schittkowski 1986), the
interior-point method automatic code generation tool CVX-
GEN (Mattingley & Boyd 2010), the active-set-like solver
QPOASES (Potschka, Kirches, Bock & Schléder 2010), and
the conjugate gradient method, (Press et al. 1992). Recently,
real-time certification and software for automated C-code
generation of first-order (fast gradient) methods have be-
come available, (Richter, Jones & Morari 2012).

2.2.5 Explicit approaches to constrained error minimiza-
tion

Both linear and quadratic program formulations admits an
explicit representation of the solution as a piecewise lin-
ear (PWL) solution function of 7.. This PWL function is



determined using multi-parametric quadratic programming,
(Johansen et al. 2005, Kvasnica, Grieder & Baoti¢ 2004).
Although the resulting PWL solution function may contain
a large number of linear function pieces, each defined over a
polyhedral region in A, the online computations required to
evaluate the PWL function are dramatically reduced by data
structures such as binary search trees, (Johansen et al. 2005),
and lattice representations, (Bayat, Johansen & Jalali 2012).
Still, the online computer memory requirements may limit
the applicability of this approach to problems where the
B-matrix and constraint sets U and C are time invariant,
and the requirements for fault tolerance and reconfigura-
bility are simple, see e.g. (Spjgtvold & Johansen 2009).
A decomposition approach that groups effectors into non-
interacting groups can sometimes reduced the complexity
through master- and slave-problems (Spjgtvold, Tgndel &
Johansen 2006).

2.2.6 Dynamics and fault tolerance

An optimization-based control allocation method that is in-
tegrated with a parameter estimation scheme is described in
(Casavola & Garone 2010). It leads to an adaptive solution
that can accommodate an unknown time-varying B-matrix
due to losses and faults. Control allocation is an effective
approach to implement fault tolerant control. When effec-
tor or actuator faults are identified, they can be modeled as
changes in the B-matrix of the constraints, or other param-
eters in the optimization problem. For example, an actua-
tor that is locked in a faulty position could be systemati-
cally treated by setting the lower and upper constraint lim-
its to the locked value. Alternatively, the preferred control
vector could also be set to locked actuator values as pro-
posed in (Schierman, Ward, Hull, Gandhi, Oppenheimer &
Doman 2004). A systematic method that also changes the
weights in the pseudo-inverse in order to ensure that faults
are well distributed among the fault-free effectors without
reconfiguring the high level controller is proposed in (Alwi
& Edwards 2008).

A dynamic control allocation approach is presented in
(Zaccarian 2009). It is designed to allocate the required
control effort, while allocating the excessive degrees of
freedom through a dynamic system that can be tuned for
optimizing secondary objectives and constraints.

It is relatively straightforward to design a basic control al-
location algorithm to comply with actuator rate constraints
by incorporating this as a constraint or penalty on the
change in control inputs from the previous sample to the
current sample, see (7) and (Harkegard 2004). More so-
phisticated dynamic actuator models may be incorporated
by using the MPC framework to solve the constrained con-
trol allocation problem (Luo, Serrani, Yurkovich, Doman
& Oppenheimer 2004, Luo, Serrani, Yurkovich, Doman &
Oppenheimer 2005, Vermillion, Sun & Butts 2007). MPC is
an optimization-based control approach which can be used
in control allocation, being able to handle actuator dynamics

as well as actuator saturation. MPC is a systematic design
method that utilizes a model of the plant for predicting out-
puts and states. In control allocation this model describes the
actuator dynamics. Using MPC the control allocation prob-
lem is solved on a future horizon, and the optimal solution
is a future trajectory. Because of the predictive nature of the
controller, the calculated control can pre-act to the actuator
system dynamics to improve dynamic performance. On the
negative side, MPC allocation requires significantly more
computations than the static control allocation formulation
since the number of optimization variables and constraints
is a multiple of the prediction horizon, which may be a
factor of 10-20 larger compared to the static problem. Still,
it has been demonstrated in (Hanger, Johansen, Mykland
& Skullestad 2011) that with efficient numerical QP solver
software (Mattingley & Boyd 2010) that the real-time com-
putations of MPC allocation with a linear dynamic actuator
model can also be implemented with current off-the-shelf
computer technology.

A similar strategy, that considers the current and past his-
tory of commanded virtual forces and moments, is given in
(Venkataraman, Oppenheimer & Doman 2004). There, the
control allocation problem is to solve for the control inputs
so that some norm of the error between the achieved and
desired moments is minimized. A computationally simpler
strategy to include actuator constraints in the control allo-
cation is via post-processing of the static control allocation,
as proposed in (Oppenheimer & Doman 2004). The post-
processor will over-drive the actuator in order to compenaste
for the dynamics of a first or second order linear actuator
model.

3 Control allocation for nonlinear effector models

The general control allocation formulations (8) allows for
a nonlinear effector model £, a non-quadratic cost function
J, and constraint sets that are not polyhedral. Such nonlin-
ear formulations may be necessary in order to achieve the
desired performance, for example when time-varying lin-
earization does not provide sufficiently accurate approxi-
mations, convex polyhedral sets do not accurately describe
the effector limitations, or more complex cost functions are
needed. Typical examples of nonlinearities are physically
motivated cost functions, such as power consumption of
a marine propeller that is a cubic function of its angular
speed and a non-integer power function of its pitch angle,
(Fossen 2011). Other examples are rudders-propeller pairs
of ships, where the rudder is effective only when the pro-
peller produces thrust forward, leading to non-convex con-
straint sets, (Johansen et al. 2008). Tires have highly non-
linear characteristics with saturations at high longitudinal
and lateral slips, which may lead to nonlinear effector mod-
els, e.g. (Tjgnnas & Johansen 2010). Nonlinearities are dis-
cussed further in Section 4 when describing application do-
mains.



3.1 Nonlinear programming methods

The use of nonlinear programming for control allocation
was proposed in (Poonamallee, Yurkovich, Serrani, Doman
& Oppenheimer 2004, Johansen et al. 2004). In (Johansen
et al. 2004) it was shown how formulations similar to (8)
could be addressed by locally approximating the cost func-
tion by a quadratic cost function, and linearizing the con-
straints. This leads to a numerical method similar to se-
quential quadratic programming (SQP), except that the lin-
ear/quadratic approximation was made only once per sam-
ple. More specifically, consider the following nonlinear pro-
gram resulting from a control allocation formulation

mCinJ(C)7 st. F(§)=0,G({)>0 (36)

Algorithm: Sequential linearization and QP.

Initialize: Let £° be a feasible starting point for (36), pos-
sibly based on the solution from the previous sample.

Main computations:

(1) Compute a 2nd order truncated Taylor expansion of J
around ¢° using analytical or numerical differentiation.

(2) Compute first order truncated Taylor expansions of F
and G around ¢ using analytical or numerical differ-
entiation.

(3) Setz= ¢ — &Y, and define the matrices of a QP approx-
imation in the form (35) of the nonlinear program.

(4) Solve the QP using an active set algorithm, and define
an improved solution £ = {04z,

a

In (Johansen et al. 2004), this strategy was studied in an ex-
ample and shown to produce adequate results, with only mi-
nor increase in computational complexity (due to lineariza-
tion and quadratic approximation) compared to a quadratic
programming approach to linear control allocation. How-
ever, this conclusion can not be expected to generalize to
arbitrary nonlinear control allocation problems. In particu-
lar, applications that require very large changes in allocated
forces from one sample to the next may require several lin-
ear/quadratic approximations to be computed sequentially in
order to achieve the necessary accuracy, see (Poonamallee
et al. 2004). In a full SQP implementation, e.g. (Nocedal &
Wright 1999), the linearization and QP steps in the above
algorithm are repeated iteratively during one sampling in-
stant until the optimality conditions are satisfied. With N it-
erations, the computation times would be roughly speaking
N times the computation time of the sequential linearization
and quadratic programming algorithm above.

Applications with strong nonlinearities may lead to non-
convex cost or constraint functions such that the optimiza-
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tion may get stuck in local minimums that may severely de-
generate performance, or require additional computational
mechanisms in order to find close to global optimal solu-
tions. Unlike the linear control allocation case, there is little
hope to find a general-purpose nonlinear programming al-
gorithm and numerical software implementation for general
nonlinear allocation problems.

While a general nonlinear optimization framework can ac-
commodate any cost function, any model and any type of
constraints, it is of great interest to study control allocation
for specific classes of nonlinearities and constraints. By ex-
ploiting structural properties one may pursue the analysis of
theoretical properties such as guaranteed convergence to op-
timal solutions without excessive amount of computations.

3.2 Mixed-integer programming methods

One particular model class leading to control allocation
problem formulations that can be solved using mixed-integer
linear programming (MILP) are piecewise linear functions
(Bolender & Doman 2004a). Generally, a control alloca-
tion problem based on a piecewise linear effector model,
piecewise linear cost function, and a constraint set that can
be described as the non-convex union of polyhedral sets
can be formulation as an MILP, see (Bemporad & Morari
1998, Heemels, Schutter & Bemporad 2001) for equiva-
lence classes and how to formulate MILPs. While numerical
MILP solvers are highly complex numerical software sys-
tems that may be difficult to verify and validate for use in
a safety-critical real-time application, it can be noted that it
has been demonstrated that simple enumeration methods in
combination with numerical quadratic programming can be
effective for solving practical non-convex control allocation
problems where non-convex constraint sets are represented
as the union of a small number of polyhedral sets, (Johansen
et al. 2008, Ruth & Sgrensen 2009).

3.3 Dynamic optimum-seeking methods

In (Johansen 2004) it was proposed to re-formulate the static
nonlinear optimization formulations of control allocation,
i.e. (5), (7), or (8), as a control Lyapunov-function and use
constructive Lyapunov-design methods. In particular, it was
assumed that the cost function J'(x,u,t) = J(x,u,t) + p(u)
was augmented with a barrier or penalty-function p(-) in
order to enforce that input constraints u € U are satisfied.
Then the corresponding Lagrange function is formulated,
with A € R™ being the vector of Lagrange multipliers

Lx,u,t,A) =J (x,u,t) + AT (t. — H(u,x,1)) 37
Assuming that a Lyapunov function Vy(x,¢) for the high level
motion control algorithm exists, the following control Lya-
punov function is defined for the control allocation design

1
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for some o > 0. Requiring a negative time-derivative of V
along trajectories of the system, one can derive a control
allocation update algorithm on the form

n=-Ta+¢&, A=—-KB+¢ (39)
where I" and K are symmetric positive definite gain matrices,
and a,&,B and ¢ are signals defined in (Johansen 2004).
The control allocation update law (39) will asymptotically
track the optimal control allocation (assuming feasibility),
while guaranteeing not to destabilize the closed-loop sys-
tem. Notice that the latter is not an obvious feature due to
the fact that this dynamic control allocation is only asymp-
totically optimal, and may deviate at every time-instant from
the instantaneous optimal allocation of the corresponding
static control allocation problem. This is leading to some
loss of performance as shown in a case study in (Tavasoli &
Naraghi 2011). The main advantage of the method is that no
direct numerical optimization is needed (optimality tracking
is built into the dynamic update law (39)) leading to modest
computational complexity. Disadvantages of the method in-
clude possible convergence problems in case of non-convex
cost function and constraints, similar to the nonlinear pro-
gramming approach.

Actuator rate constraints can in some case be enforced and
implemented by choosing the gain I" sufficiently small, al-
though there is no guarantee that they can be met if & is
not small when the high level motion control algorithm re-
quires fast changes in the virtual control that cannot be im-
plemented with the given actuator system. An extension that
leads to convergence to optimal control allocation in finite-
time was proposed in (Liao, Lum, Wang & Benosman 2007),
and the effects of internal dynamics and minimum phase
properties when using dynamic inversion high level motion
controllers were studied in (Liao et al. 2007, Benosman,
Liao, Lum & Wang 2009).

The concept relies on a control Lyapunov-function, which
allows for certain extensions to be made within the same
framework. An adaptive approach where uncertain parame-
ters O in the effector model A(u,x,t,0) are stably adapted
using an adaptation law that is designed by augmenting the
control Lyapunov-function in a standard way was proposed
in (Tjgnnas & Johansen 2005, Tjgnnas & Johansen 2008).
This framework was further extended to dynamically ac-
count for actuator dynamics within the control allocation in
(Tjgnnas & Johansen 2007h, Tjgnnas & Johansen 2007a),
and internal dynamics in the context of model reference
adaptive control (Liao, Lum, Wang & Benosman 20095,
Liao, Lum, Wang & Benosman 2009a).

3.4 Direct nonlinear allocation

An extension of the method of attainable moment set com-
putations and direct allocation for nonlinear effector models
can be found in (Bolender & Doman 2004b). The methods
rely of nonlinear programming and the ideas in this paper
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can be traced back to (Doman & Sparks 2002, Venkatara-
man & Doman 2001).

4 Applications
4.1 Aerospace

In this section we consider aircraft and spacecraft control
allocation problems separately.

4.1.1 Aircraft

In flight control applications the virtual control input 7 is
usually the moments about the roll, pitch and yaw axes.
Conventional fixed-wing aircraft design and flight control
systems are based on a relatively small number of control
surfaces (effectors) that are dedicated to control each axis
of the aircraft, like

e ailerons for roll control,
e an elevator for pitch control, and
e a rudder for yaw control.

The grouping of two or more control surfaces into a single
effector by constraining them to move together is common in
flight control, and is often called ganging, e.g. (Oppenheimer
et al. 2010). Typically, left and right ailerons are constrained
to deflect differentially, while right and left elevators are con-
strained to deflect equally. Assuming the actuators and ef-
fectors are fault-free and the above ganging scheme is used,
even with five control surfaces there are only three effec-
tive effectors available to control the three axes and control
allocation is not needed. However, many current aircraft de-
signs have a larger number of control surfaces that can be
used during normal or special conditions, such as vertical
take-off-and-landing, or after failure of an actuator or effec-
tor. Depending on the type of aircraft, one may have many
more effectors including

e V-tails that give coupled lateral and longitudinal forces,
e control surfaces like flaps, spoilers, and slats,
e tiltable propellers, and thrust vector jets

Control allocation is widely used with such designs in order
to ensure optimal use of the effectors, including fault toler-
ant and robust control over a wide flight envelope, (Burken
et al. 2001, Davidson, Lallman & Bundick 2001, Bolling &
Durham 1997, Durham 1993, Huang, Liu & Zhu 2009). It
is concluded in (Burken et al. 2001) that although simula-
tions demonstrate success of the conventional flight control
approach in many cases, the control allocation approach ap-
pears to provide uniformly better performance in all cases.

Effector models for aerospace applications are usually as-
sumed in the linear form (11). As discussed in Section 2, the
control effectiveness matrix B may depend on slowly vary-
ing variables such as altitude and velocity, and is therefore



scheduled as a function of these variables. It is also worth-
while to remark that nonlinear effector models tend to be bet-
ter approximated using an affine model 7 = Bu + by instead
of the linear model (11), see (Doman & Oppenheimer 2002).
The extensions are straightforward, so most control allo-
cation designs proceed without loss of generality with the
model (11).

All the (constrained) linear control allocation methods de-
scribed in Section 2 are commonly found in the flight control
literature, e.g. (Oppenheimer et al. 2010). The models and
constraints are generally given by the physical characteris-
tics of the effectors and actuators, while the choice of u,, and
weighting matrices may reflect different objectives such as

minimum wing loading,

minimum control surface deflection,
minimum radar signature,

minimum drag,

maximum lift, and

rapid reconfigurability for fault tolerance,

and others, e.g. (Yang, Zhong & Shen 2009). Using the
pseudo-inverse solution as a preferencevector u,, allows one
to analytically represent the control allocator in a robustness
analysis of the system that is valid as long as no single axis
is saturated and the commanded accelerations are feasible,
(Schierman et al. 2004). This facilitates the verification and
validation process that must be completed prior to flight test-
ing when using optimization based control allocation meth-
ods.

A comprehensive comparison of performance of several
state-of-the-art linear control allocation methods are pro-
vided by (Bodson 2002). One main conclusion is that the
optimization-based methods tend to outperform the alter-
native methods proposed in the literature both in terms of
avoiding unnecessary infeasibility and minimizing the use
of control effort. The 2-norm (quadratic) formulation seems
to be favorable over the 1-norm (linear) formulation since
the solution tends to combine the use of all control surfaces
(rather than just a few), (Petersen & Bodson 2006). The use
of co-norm will minimize the maximum effector use and
therefore lead to a balanced use of effectors, which also has
advantages for robustness to failure and nonlinearities, (Frost
et al. 2009, Frost & Bodson 2010, Bodson & Frost 2011).

The underlying motivation for the direct control allocation
method, (Durham 1993), is that in many applications (in par-
ticular aircraft) it is considered important to keep the direc-
tion of the allocated forces and moments equal to the com-
mand, in order to get graceful degradation of performance
and handling qualities. Hence, it is practically motivated by
a different objective than merely minimizing the error in al-
located generalized forces, which may be important in some
flight control applications.

Although the control allocation problem is in most cases
decoupled from the high level motion control design, there
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may be cases when the interactions between control and
control allocation should be studied or accounted for. This
includes cases when actuator dynamics is significant, e.g.
(Oppenheimer et al. 2010), or the control allocation influ-
ences the zero-dynamics due to inversion-based control, e.g.
(Buffington & Enns 1996, Buffington et al. 1998). An in-
tegrated approach to flight control and control allocation
design is investigated in (Jung, Lowenberg & Jones 2006),
while (Boskovi¢ & Mehra 2002) describes two control allo-
cation methods that adapt the weight matrices of a pseudo-
inverse like control allocation law in order to avoid satu-
ration and rate constraints. Control allocation methods that
explicitly take into account linear actuator dynamics have
been proposed, using linear constrained MPC, (Luo et al.
2004, Luo et al. 2005, Luo, Serrani, Yurkovich, Oppen-
heimer & Doman 2007), or optimization in the framework
of linear matrix inequalities (LMIs), (Kishore, Sen, Ray &
Ghoshal 2008). In order to reduce effective time delay due
to actuator rate limitations in case of quickly changing com-
manded moments, and thereby reduce the risk of pilot in-
duced oscillations, (Yildiz & Kolmanovsky 2011) proposed
and studied a control allocation method that also penal-
izes the difference between the time-derivatives of the com-
manded and allocated moments.

A linear programming approach to control allocation that ac-
counts for interaction between control effectors due to aero-
dynamic couplings are studied in (Oppenheimer & Doman
2007). Constrained control allocation using nonlinear effec-
tor models have been studied using numerical nonlinear pro-
gramming methods, (Ma, Li, Zheng & Hu 2008, Davidson
et al. 2001).

Reconfiguration of the control allocation, via weight modi-
fications (Zhou, Zhang, Rabbath & Theilliol 2010) or adap-
tation of effector model (Zhang, Suresh, Jiang & Theilliol
2007), was considered in in order to manage faults. Meth-
ods for stable adaptation of parameter uncertainty in the ef-
fector models due to failures, and associated control allo-
cation strategies that will group effectors into a smaller set
equivalent effectors, similar to ganging or daisy chaining, is
studied in (Liu & Crespo 2010). Model predictive control
is shown to be a powerful tool to model failures and a suit-
able basis for fault tolerant control allocation in (Joosten,
van den Boom & Lombaerts 2008).

4.1.2 Spacecraft

Spacecraft have other actuators and effectors, either instead
of, or in addition to control surfaces. These include reaction
control jets, and reaction wheels. In addition, the energy
consumption for control is generally a high priority objective
of the control system design of spacecraft and will often need
to be strongly considered in the control allocation strategy
as well.

Flight tests with the Boeing X-40A reusable launch vehi-
cle using reconfigurable control allocation based linear pro-
gramming is reported in (Schierman et al. 2004). In case of



faulty locked actuators, it is in (Schierman et al. 2004) pro-
posed to set the associated elements of the preferred control
vector u, to the locked actuator positions.

Fault tolerant control allocation for a planetary entry ve-
hicle was investigated in (Marwaha & Valasek 2008), us-
ing mixed-integer linear programming of handle the quan-
tized/discrete nature of pulsed reaction control jets. (Doman,
Gamble & Ngo 2009) propose a control allocation approach
to optimally combine the use of (discrete) pulsed reaction
control jets with (continuous) control surfaces in spacecraft
transitions from exo-atmospheric to endo-atmospheric flight,
using mixed-integer linear programming.

Satellite systems often have redundant thrusters, where it
is desirable to minimize energy consumption during a ma-
neuver or attitude control. A linear programming control
allocation approach is investigated in (Jin, Park, Park &
Tahk 2006), where it is shown that it can reduce energy
consumption compared to a simpler grouping strategy. A
multi-saturation based model for a highly non-linear allo-
cation function of micro-thrusters in a satellite is presented
in (Boada, Prieur, Tarbouriech, Pittet & Charbonnel 2010).
Quadratic programming is used for constrained thrust allo-
cation of redundant satellites in (Fu, Cheng, Jiang & Yang
2011), with particular emphasis on fault tolerant reconfig-
urable control.

4.2 Ships, underwater vehicles and offshore vessels

In this section we first consider surface vessels in low-speed
regimes where control surfaces are not effective unless ac-
tively excited by some generated flow. Next, we consider
surface vessel maneuvering at high speed where control sur-
face lift becomes significant, before we survey control allo-
cation in multi vessel operations and underwater vehicles.

4.2.1 Station-keeping and low-speed maneuvering

Several types of ships and specialized vessels, such as semi-
submersible platforms used in the petroleum industry, de-
pend on thrust allocation control systems during certain
modes of operation. This is in particular the case during
dynamic positioning operations that include station keeping
and low-speed maneuvering using joystick control or auto-
matic tracking functionality, (Fossen 2011, Sgrensen 2011).
Such control systems often control the vessel in three de-
grees of freedom (surge, sway and yaw) and command the
required surge and sway forces as well as yaw moment to
the thrust allocation system. Dynamic positioning operations
include drilling, offloading of cargo or petroleum at oilfield
installations, pipe-laying, cable laying, seismic data acquisi-
tion, dredging, fire fighting and rescue, construction, diving
support, and others. Thrust allocation for low-speed maneu-
vering is used for vessels ranging from cruise vessels, ferries,
and tankers to smaller yachts, research and fishing vessels.

The thruster system can be implemented using various thrust
producing devices that are effective in the low-speed regime:

e Main propellers gives positive or negative force in the
longitudinal direction only, and possibly a small yaw mo-
ment if mounted off the longitudinal axis. The propeller
thrust is usually controlled through its angular speed, a
variable pitch angle, or both.

e Main propellers with rudders gives positive or negative
force in the longitudinal direction. In addition, the rud-
der angle can be controlled to produce lateral forces and
yaw moment when the propeller thrusts forward since the
propeller slipstream is directed to flow at high speed past
the rudder surface and can therefore produce a significant
lateral force. When the propeller thrusts backwards, the
rudder is not effective.

e Tunnel thrusters are propellers mounted in the lateral di-
rection in tunnels through the ship hull. They produce
lateral forces and yaw moments.

e Azimuth thrusters are propellers that can be turned to
produce thrust in any direction in the horizontal plane. The
propeller thrust is usually controlled through its angular
speed, a variable pitch angle, or both. Since they are vector
thrust devices, an azimuth thruster has two-degrees-of-
freedom for the control allocation.

e Water jets and other propulsion devices and control sur-
faces are less commonly used.

Thrusters are commonly powered by electricity distributed
from a power plant that may comprise one or more diesel-
engine or gas turbine electric generators. Main propellers
are sometimes directly driven by the engine. Safety and op-
erational requirements require a high degree of redundancy
to achieve the necessary fault tolerance. Typical require-
ments is that operations can continue uninterrupted for some
time to allow them to be aborted safely after major fail-
ures such as loss of a single thruster, single generator set, a
single electric switchboard, or a single engine room due to
fire or flooding in a single compartment. Often, the worst
case single point failure is loss of half of thrust capacity
due to a switchboard short circuit failure, or fire or flood-
ing in a machine room. Advanced vessel design with high
redundancy tend to have four to eight thrust producing de-
vices, where some are azimuth thrusters with two indepen-
dent degrees-of-freedom for control. The thrust allocation
algorithm therefore has many degrees of freedom in order
to be capable to handle critical failures. The thruster system
capacity is usually designed based on vessel capability re-
quirements to withstand environmental forces such as wind,
waves and currents, (Ruth & Sgrensen 2009). Usually, wind
loads are dominating.

Thurst allocation objectives and constraints that are com-
monly accounted for, (Fossen 2011, Johansen et al. 2008,
Lindfors 1993, Webster & Sousa 1999, Sgrdalen 1997,
Sgrensen & Adnanes 1997, Berge & Fossen 1997, Ruth,
Serensen & Perez 2007), include the following:

e Surge, sway and yaw control, usually with a priority on
the yaw axis since loss of heading will usually imply
loss of position under heavy wind conditions since ships
are designed for minimum wind loads when heading up



against the wind.

e Thrusters have individual capacity constraints due to their
power rating, but may also have coupled constraints if
limited by the electric power available on a shared power
bus.

e Rate constraints are generally important for the turning of
azimuth thrusters and rudders’ steering machine.

e Minimization of fuel consumption.

e Minimization of tear-and-wear on thrusters and genera-
tor sets due to time-varying control commands that must
respond to the motion of the vessel caused by wind and
waves.

e Avoiding too high variations in electric power consump-
tion that may cause blackout due to over- or under-
frequency protection of the weak electric power grid on
an isolated ship or vessel.

e Sector constraints are sometimes imposed on azimuth
thrusters in order to protect equipment (like subsea equip-
ment lowered through a moon pool, or hydro-acoustic
transceivers used for positioning), divers in the water, or
to avoid thrust losses in nearby thrusters due to interac-
tions caused when directing the slipstream of one thruster
into the propeller disc of another thruster.

e Thrusters may be disabled and enabled dynamically in or-
der to guarantee fault tolerance and operational flexibility.

Industrial solutions are described in (Jenssen 1980, Sgrdalen
1997, Sgrensen & Adnanes 1997, Jenssen & Realfsen 2006).
A static QP-based strategy is described in (Jenssen 1980),
while the method in (Sgrdalen 1997) utilizes pseudo-
inverses, in combination with the extended thrust concept
(Lindfors 1993). The control vector u consists of the hori-
zontal plane thrust vector decomposed in the vessel xy-axes
(horizontal plane) in order to allow linear models also with
azimuth thrusters. In (Sgrdalen 1997), constraints are han-
dled by saturation strategies in combination with filtering of
azimuth angle commands that also serves the secondary ob-
jective of reducing thruster tear and wear, and the singular
value decomposition is used to handle cases when tempo-
rary controllability is weak due to all thruster being aligned
and can produce thrust all in the same direction. The inter-
actions between the thrust allocation and low level thruster
control strategies are studied in (Sgrensen & Adnanes 1997),
which is particularly important in extreme seas where thrust
losses can be large when the propeller ventilates and in-
and-out-of-water effects may lead to propeller spin if prop-
erly addressed, (Smogeli & Sgrensen 2009, Ruth, Smogeli,
Perez & Sgrensen 2009). Even at fairly low speeds, tunnel
thrusters will significantly reduce their effect, which should
be accounted for in scheduling of the control effectiveness
matrix B, (Godhavn, Fossen & Berge 1998).

A practical strategy that explicitly optimize the thrust allo-
cation in order to account for power generation constraints,
variations in loads, and operational desires such as balanc-
ing the load on different electric bus segments and switch-
boards is described in (Jenssen & Realfsen 2006). An inte-
grated approach to dynamic control of power plant as part of
the thrust allocation strategy is studied in (Veksler, Johansen
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& Skjetne 2012a, Veksler, Johansen & Skjetne 2012b), in-
spired by (Radan, Sgrensen, Adnanes & Johansen 2008) who
studied the stabilizing effect on the electrical power plant.
An similar industrial thrust allocation approach implemen-
tation with dynamic load control and prediction is described
in (Mathiesen, Realfsen & Breivik 2012).

The allocation of control to rudders is particularly challeng-
ing due to their highly asymmetric characteristic (no effect
when the propellers thrust backwards). Optimization-based
approaches that consider the finite (usually small) number
of combinations of propeller thrust directions have been
proposed and successfully tested, (Lindegaard & Fossen
2003, Johansen et al. 2008, Johansen, Fuglseth, Tgndel &
Fossen 2003). Similar strategies can be used for general non-
convex thruster constraints, (Ruth & Sgrensen 2009), e.g.
due to forbidden sectors being less than 180 degrees.

In special situations, e.g. when there are primarily azimuth
thrusters in use, an additional objective of thruster configura-
tion singularity avoidance might be useful in order to avoid
temporary loss of controllability when all thrusters point in
more or less the same direction (Sgrdalen 1997, Johansen
et al. 2004, Scibilia & Skjetne 2012).

Station keeping of ships and semi-submersible platform
for long periods of time are sometimes implemented using
mooring lines with thruster assisted position and heading
control. This is commonly used for drilling units and float-
ing production, storage and offloading units (FPSOs) op-
erating in water depths of less than 500 meters. The thrust
allocation must take into account the mooring line forces
and provide assistance when needed to make corrections,
for example in strong winds or after a mooring line break,
e.g. (Nguyen & Sgrensen 2009).

Control allocation for small-waterplane marine construc-
tions such as semi-submersibles can obtain additional roll
and pitch damping using a conventional thruster system.
This is possible for constructions with large draft and beam
relative the length since controllability depends on moment
arms in roll and pitch (Sgrensen & Strand 2000). In this case
the thrust allocation scheme should not only allocate forces
and moment in the horizontal plane (surge, sway and yaw),
but also allocate moments in roll and pitch.

4.2.2 High-speed maneuvering and ship autopilots

Ship autopilots conventionally use rudders to meet heading
control objectives, while they may also use additional con-
trol surfaces such as fins and azimuth propellers (azipods)
which calls for control allocation solutions. It is also pos-
sible to use rudders for roll damping alone or in combina-
tions with controllable fins (see (Perez 2005) and references
therein). The penalties for the use of rudders and fins must
be included in the control objective together with penalties
and criteria for accurate steering and roll damping. This is
an over-actuated control allocation problem except for ships



equipped with one single rudder for simultaneously heading
and roll damping, that is a under-actuated rudder-roll damp-
ing system that depend on frequency separation of these
functions with rudder-roll damping at high frequencies (see
(Fossen 2011) and references therein).

Severe instances of parametric rolling of ships can be
avoided by specifying the control objectives of the speed
and heading autopilots such that the frequency of exci-
tation is changed via the Doppler-shift of the encounter
frequency (Holden, Breu & Fossen 2012). The optimal
frequency is found by using MPC or extremum seeking
control, and nonlinear control allocation is used to compute
the desired speed and heading angle based on a penalty
function designed such that the encounter frequency never
is equal to two times the natural frequency in roll, (Breu,
Feng & Fossen 2012). This is the condition for parametric
resonance.

4.2.3  Multi vessel operations

Control allocation strategies have also been proposed for
multi-vessel operations, where several tug-boats coopera-
tively generate forces and moments in order to tow a floating
structure. This is formulated in a straightforward manner in
the control allocation framework by incorporating the con-
straints on the tug-boats capacity and direction, (Esposito,
Feemster & Smith 2008, Feemster & Esposito 2011). Its
implementation requires a supervisory strategy that coordi-
nates the tub-boats that operate as effectors/actuators in this
framework.

4.2.4 Maneuvering of underwater vehicles

Highly maneuverable underwater vehicles, either ROVs (Re-
motely Operated Vehicles) or AUVs (Autonomous Under-
water Vehicles), are often controlled using compact electri-
cally driven thrusters and fins. The thrust allocation prob-
lem is similar to a dynamically positioned surface vessel,
including cases when also vertical forces are controlled us-
ing thrusters in addition to buoyancy control. Commonly
used methods include pseudo-inverses, redistributed pseudo-
inverses or simple optimization formulations, (Fossen &
Sagatun 1991, Indiveri & Parlangeli 2006). Aspects of fault-
tolerant control by saturation mechanisms and appropriate
weighting of the pseudo-inverse is studied in (Sarkar, Pod-
der & Antonelli 2002).

4.3 Automotive and ground vehicles
This section starts with an overview of yaw stability con-
trol allocation, before considering electric vehicles, rollover

prevention systems, and mobile robots.

4.3.1 Yaw stability control

Active safety systems like the electronic stability control
(ESC) are now common in production cars, and shown to
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have tremendous life-saving effect when skids may occur
due to evasive maneuvers, slippery surface, or too high
speed in curves, e.g. (Lie, Tingvall, Krafft & Kullgren 2005,
Ferguson 2007). The ESC detects deviation between the ac-
tual lateral motion of the vehicle and the drivers intention,
usually by comparing the vehicle’s lateral acceleration and
yaw rate with information computed from the steering wheel
angle commanded by the driver. In case of a significant dif-
ference, the ESC will automatically take action to counter-
act skidding by actuating a yaw moment to correct the skid-
ding motion of the case, (van Zanten 2000, Mokhiamar &
Abe 2002). In most vehicles, the four brakes are actuated
independently in order to set up such a moment, possibly
in combination with engine torque reduction. Increasing the
longitudinal wheel slip by setting up a longitudinal braking
force will effectively reduce the lateral friction forces, and
both these phenomena contribute to generate a change in the
yaw moment.

This leads to a control allocation problem, where the con-
strained forces and moments generated by the four brakes
must be coordinated to generate the desired yaw moment
while at the same time minimize other forces generated by
the tires in order to avoid unintended side effects or discom-
forting the driver. For small control actions, the main chal-
lenge is that brake forces are uni-directional. However, for
large control actions, the problem is much more challeng-
ing since the tire nonlinearities due to the saturating char-
acteristics of tire friction forces must be taken into account.
This saturation level depends strongly on the ground surface
and tires, both being uncertain time-varying properties to the
control system. Moreover, anti-lock braking systems (ABS)
may be activated and act as a limitation to the achievable
performance, since the ABS may limit the longitudinal slip
in order to maintain high lateral friction, which may be a
conflicting objective in some cases when lateral stability is
lost. Furthermore, the load distribution on the tires may be
far from even due to large accelerations, and this must also
be considered when allocating forces to each wheel. In order
to maximize the region of stability, these nonlinear effects
are important to consider.

Some electronic stability control systems also use active
steering to manipulate the yaw moment, where an electric
motor on the steering column may add actuation in addi-
tion to the driver’s command, (Ackermann & Biinte 1996,
Ackermann 1996). There has also been proposed systems
that have additional redundancy by combining active steer-
ing and active braking, (Yu & Moskwa 1994, Guvenc, Acar-
man & Guvenc 2003, Wang & Longoria 2006), which also
achieves additional control authority and an opportunity to
enhance the region of stability.

Due to the strong nonlinearities and dynamic constraints,
the use of nonlinear constrained control allocation tech-
niques will generally be desired for lateral vehicle control.
However, in order to avoid the online computational burden
of nonlinear programming, several simplified approaches
have been proposed. The effector mapping from longitudi-



nal tire slips and slip angles are linearized in (Wang, Solis &
Longoria 2007) and an accelerated fixed-point iteration al-
gorithm is studies as a computationally efficient alternative
to quadratic programming, (Plumlee, Bevly & Hodel 2004).
A commonly used control allocation objective is to mini-
mize friction forces, for example the adhesion potential char-
acterized using friction ellipse models for each individual
tyre, (Knobel, Pruckner & Biinte 2006). Using linearization
of the model T = G@(u,x,0), where 0 are time-varying pa-
rameters, the constrained least-squares problem of alloca-
tion error minimization can be solved using numerical online
quadratic programming (Andreasson & Biinte 2006, Tages-
son, Sundstrom, Laine & Dela 2009). The effect of vehicle
handling performance of weighting matrix coefficients on
the control allocation performance is studied in (Mokhiamar
& Abe 2004, Mokhiamar & Abe 2006), when using a con-
trol allocation method that assumes unconstrained optimiza-
tion. Nonlinearities and uncertainty is with these approaches
handled within low-level actuator/effector controllers that
can also provide time-varying constraint limits (such as esti-
mated maximum tire/road friction coefficient) to the control
allocation.

A nonlinear programming approach to nonlinear constrained
control allocation for yaw stabilization is taken in (Tgndel &
Johansen 2005), where computational efficiency is achieved
through an approximative multi-parametric nonlinear pro-
gramming algorithm that pre-computes a piecewise linear
function that can be evaluated online using binary search
tree data structures in order to approximate the optimal solu-
tion. The nonlinear optimizing control allocation method of
(Hattori, Koibuchi & Yokoyama 2002, Ono, Hattori, Murag-
ishi & Koibuchi 2006) minimizes work load of each tire,
assuming all wheels can be actuated independently with re-
spect to steering and brake/traction. Theoretical convexity
properties of the optimization problem are studied.

Fault tolerant control with respect to brake failures is studied
in (Hac, Doman & Oppenheimer 2006), where the main
objective of the linear programming based control algorithm
during the failure mode is to redistribute the control tasks
to the functioning actuators, so that the vehicle performance
remains as close as possible to the desired performance in
spite of a failure.

The dynamic adaptive nonlinear control allocation method is
studied for yaw stabilization in (Tjgnnas & Johansen 2010)
(see section 3.3), where a combination of braking and front-
wheel steering is used for actuation. Estimation of maximum
tire-road friction coefficient is an integral part of the adaptive
control allocation strategy. In (Tavasoli & Naraghi 2011), the
performance of the method is further compared to a (static)
nonlinear programming approach. A simpler gradient-based
dynamic control allocation approach is shown to be effec-
tive in (Gerard & Verhaegen 2009). It should also be men-
tioned that model predictive control designs, incorporating
dynamics vehicles models and actuators models, are effec-
tive methods for solving the combined motion control and
control allocation problem for vehicle dynamics control, e.g.
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(Borrelli, Falcone, Keviczky, Asgari & Hrovat 2005), al-
though the computational complexity is much more of a
challenge than with a control allocation design.

4.3.2  Electrical propulsion

Electrically powered ground vehicles may have in-wheel
electric motors that combine drive and regenerative brake
functions, possibly in combination with friction brakes,
and the trend is towards highly over-actuated vehicles,
(Valasek 2003), with extended stability, (Jonasson, Andreas-
son, Solyom, Jacobson & Trigell 2011). Control allocation
can be used to coordinate the electric motors in individ-
ual combinations of drive/brake mode while optimizing
energy efficiency. The method proposed in (Fredriksson,
Andreasson & Laine 2004, Chen & Wang 2011) utilizes lin-
ear/quadratic approximations to formulate an approximate
control allocation problem that can be solved numerically
online with computational efficiency.

4.3.3 Rollover prevention

Although yaw-stabilizing ESC does not explicitly consider
the risk of roll-over, it is widely acknowledged that an ESC
function will reduce the risk of rollover since it tends to re-
duce lateral accelerations that is a main cause of rollover
accidents. Further enhancements can be achieved if rollover
prevention functionality can be considered as as an integral
part of the vehicle dynamics control system. Using brake
and steering actuators, the control allocation approach is
extended by incorporating roll moment allocation together
with yaw moment allocation in the control allocation, (Lu,
Messih, Salib & Harmison 2007, Gerdes & Carlson 2003).
Using polyhedral approximation of the friction ellipsoids, a
quadratic programming approach is taken to allocation error
minimization in (Schofield, Higglund & Rantzer 2006). In
(Alberding, Tjgnnas & Johansen 2009), the dynamic non-
linear control allocation approach of (Tjgnnas & Johansen
2010) is extended to include rollover prevention objectives.

Active suspension actuators have also been proposed for
the control of ground vehicle yaw dynamics (Wang, Crolla,
Wilson & Xu 2005), although they are not currently common
in production vehicles.

4.3.4 Mobile robots

Traction control for mobile robots that operate off-road is
considered in (Waldron & Hubert 1999, Waldron & Abdallah
2007). Based on the geometry of the problem, several sim-
ple (unconstrained) closed-form computationally efficient
control allocation strategies for wheeled and legged mo-
bile robots with active suspension are derived and com-
pared in (Waldron & Abdallah 2007), while pseudo-inverse
type control allocation strategies are studied in (Waldron &
Hubert 1999, An & Kwon 2010). A linear programming
solution to control allocation for wheeled mobile robots is



presented in (Feng, Xu, Li & Sun 2010). Nonlinearities, un-
certainty and additional complexity in these approaches is
to a large extent handled in the low-level controllers at each
actuator/effector.

4.4 Other application areas

Legged walking robots require coordination of the dynamic
or periodic motion of each leg. The force distributing con-
trol allocation algorithm should take into account energy-
efficiency and contact friction between the leg and ground
which is non-zero only for a fraction of a cycle, e.g. (Klein
& Chung 1987, Sreenivasan, Waldron & Mukherjee 1996).
A nonlinear programming approach, simplified by a pseudo-
inverse calculations of initial solution guess, is presented in
(Jung & Baek 2000). The control effectiveness matrix B is
time-varying due to the cyclic contact patter of the walk.

Control allocation has been used in the development flapping
wing micro air vehicle control methods. In (Oppenheimer,
Doman & Sighthorsson 2011) they describe a method to
control 5 degrees of freedom using two physical actuators
that drive flapping wings. The six variables parameterize the
periodic motion of two independently flapping wings that in
turn control five degrees of freedom.

Multi-agent swarms (like formations of mobile robots) are
considered in a fairly general context in (Pedrami, Wijend-
dra, Baxter & Gordon 2009). Control allocation strategies
based on pseudo-inverses and nonlinear programming are
investigated.

The control allocation problem when using a large-scale
distributed array of air-jet actuators in studied in (Jackson,
Fromherz, Biegelsen, Reich & Goldberg 2001, Fromherz
& Jackson 2003). In order to achieve computational effi-
ciency to allow real-time implementation at high update
frequencies in case of thousands of independent actuators,
they empirically compare optimal solutions with approxi-
mate solution that depend on hierarchical decomposition into
actuator groups. A similar approach was taken in (Singla
& Junkins 2007), where a hierarchical decomposition and
re-parameterization using basis-function leads to computa-
tional complexity reduction of the control allocation com-
putations. These methods also allows parallelization so the
algorithm can be distributed on multiple processors.

Over-actuated mechanical design are increasing in popular-
ity in automotive, aerospace and maritime industries, and
not only humanoid walking robots, but emerging concepts
like robotic snakes (e.g. (Liljebédck, Stavdahl, Pettersen &
Gravdahl 2011)), and robotic fish (e.g. (Liang, Wang &
Wen 2011)) with highly redundant and over-actuated bio-
inspired locomotion mechanisms will for sure benefit from
further research on control allocation.
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5 Conclusions

Control allocation is fairly well understood and established
for linear models. Numerical optimization seems to offer
many advantages, while their main challenge is the numeri-
cal implementation, in particular computational complexity,
verification and validation.

For nonlinear models, the numerical optimization approach
is also highly promising, and less alternatives exist. It is,
however, much more challenging than with linear models
due to the possibility of local minimums in addition to
the even stronger challenges of computational complexity,
numerical sensitivity, verification and validation. Alterna-
tive formulations, including asymptotically optimal methods
based on Lyapunov-design have been proposed, and the area
of nonlinear control allocation is currently an active area of
research.

The main driving force of nonlinear control allocation
research seems to be applications in the automotive and
aerospace industries, and other emerging areas where
mechatronics is used.
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