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Abstract

This paper introduces an interpolation framework for the weighted-H2 model reduction problem. We obtain a new representa-
tion of the weighted-H2 norm of SISO systems that provides new interpolatory first order necessary conditions for an optimal
reduced-order model. The H2 norm representation also provides an error expression that motivates a new weighted-#2 model
reduction algorithm. Several numerical examples illustrate the effectiveness of the proposed approach.
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1 Introduction high fidelity, approximation to G. We construct G,

Consider a single input/single output (SISO) linear dy-
namical system with a realization

Ex(t) = Ax(t) + bu(t), yt)=c'x(t) (1)

for E,A € R™™" and b,c € R™. x(t) € R", u(t) € R,
y(t) € R, are respectively the state, input, and out-
put of the system. The transfer function of this system
is G(s) = cT(sE — A)~!b. Following common usage,
the underlying system will also be denoted by G. For
many examples, the state-space dimension n is quite
large, leading to untenable demands on computational
resources. Model reduction attempts to address this by
finding a reduced-order system of the form,

E, % (t) = Ayx(t) + brut), y(t) =cix:()  (2)

with G,.(s) = cI'(sE, — A,)"'b, for E,, A, € R™*"
and b,, ¢, € R” with » < n such that y,(¢) = y(¢)
over a large class of inputs u(t). G, is a low order, yet
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via state-space projection: Two matrices (“reduction
bases”) V,., W, € R"*" are chosen. Then, system dy-
namics are approximated by x(t) = V,x,(t) and forcing
a Petrov-Galerkin conditon (“orthogonal residuals”)
WX (EV,x,(t) — AV,x,(t) —bu(t)) = 0, together with
the output equation y,(t) = ¢ V,.x,.(t) to produce

E,=W!IEV,, b,=Wlb,
A, = W?AV,,, and ¢l =cTV,.

r =

(3)

See [2,3] for more information.
1.1 Model Reduction by Interpolation

The reduction bases, V,. and W,., used in (3) will be
chosen to force interpolation: G, (s) will interpolate G(s)
(possibly together with higher order derivatives) at se-
lected interpolation points. This approach to rational
interpolation has been considered in [20,21,5,8,7,3] and
depends on the following result.

Theorem 1 Given two sets of interpolation points
{ok}iey and {Ck}hy, that are each closed under con-

Jugation, and a dynamical system G as in (1), consider
matrices V, and W,. such that

Range(V,) = span {(0:E — A)"'b}

fori=1,...,r. (4)
Range(W,.) = span {(GE — A)""c}
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Then, V, and W, can be chosen to be real; G.(s) =
cI(sE, — A,)"'b,. defined by (2)-(3) is a real dynami-
cal system that satisfies G(oy) = Gr(oy) and G(() =
G, (Ck) fork=1,...,r; and, if 0; = ; for some j, then
G'(0j) = G.(0;), as well where G’ denotes the derivative
of G(s) with respect to s.

Theorem 1 can be generalized to higher-order derivative
interpolation as well, see [20,21,5,8,7,3]. The subspaces
of Theorem 1 are rational Krylov subspaces and so, in-
terpolatory model reduction methods for SISO systems
are sometimes referred to as rational Krylov methods.

1.2 Weighted Model Reduction

The Ho, norm of a stable linear system associ-

ated with a transfer function, G(s), is defined as

Gl = maﬂ>§<|G(zw)\. The Hs norm of G is defined
o e

(3 [ o)

spaces of meromorphic functions that are analytic in
the right halfplane, having either bounded H,, norm or
bounded Hs norm will be denoted simply as Hoo or Ho,
respectively. Let W € H be given. The (W-)weighted
Mo norm is defined as ||G|ly, ) = |G - W|3,-

1/2

as ||G||f,1-¢z . The vector

We are interested in finding a reduced-order model G,
that minimizes a W-weighted Hs norm, i.e., that solves

IG = Grllageowy = min |G = Grlaaery  (5)

dim(G,)=r

The introduction of W (s) allows one to penalize the error
in certain frequency ranges more heavily than in others.

An illustrative example: controller reduction
Consider a linear dynamical system, P (the plant) to-
gether with an associated stabilizing controller, GG, that
is connected to P in a feedback loop. Many control
design methodologies, such as LQG and H ., methods,
lead ultimately to controllers whose order is generically
as high as the order of the plant, see [17,22] and refer-
ences therein. Thus, high-order plants generally lead to
high-order controllers. However, high-order controllers
are usually undesirable in real-time applications due to
complex hardware, degraded accuracy, and degraded
computational speed. Thus, one prefers to use a reduced
controller G, to replace G. Requiring G- to be a good ap-
proximation to G is often not enough in terms of closed-
loop performance; plant dynamics need to be taken
into account during the reduction process. This may be
achieved through frequency weighting: Given a stabiliz-
ing controller G, if G has the same number of unstable
poles as G, and if ||[[G — G, |P[I + PG]_lHHOO < 1,
then G, will also be a stabilizing controller [1,22]. Hence
the controller reduction problem may be formulated

as finding a reduced-order controller G, that mini-
mizes or reduces the weighted error [(G — G, )W/||;,_
with W(s) = P(s)(I + P(s)G(s))"!; i.e., controller
reduction becomes an application of weighted model
reduction. This approach has been considered in
[17,1,14,10,6,19,12,18,16] and references therein, leading
to variants of frequency-weighted balanced truncation.
Conversely, the methods in [11] and [15] are tailored in-
stead towards minimizing a weighted-Hs error as in (5).

2 Weighted-H; model reduction

The methods proposed in [11] and [15] for approaching
(5) require solving a sequence of large-scale Lyapunov
or Riccati equations; they rapidly become computation-
ally intractable as the system order, n, increases. We
will approach (5) within an interpolatory model reduc-
tion framework requiring only the solution of (generally
sparse) linear systems and no need for dense matrix com-
putations or solution of large-scale Lyapunov or Riccati
equations. Interpolatory approaches can be effectively
applied even when n reaches the tens of thousands.

2.1 A representation of the weighted-Ha norm

Given transfer functions G, H € Ho, and W € H.,
define the weighted-#2 inner product as

(G H)gpyowy = % /_o:o G (1) W (w)W () H (1) dew
1 (e @)
-~ [m Gl —10)W (=)W (1) H (1) dis,

so that [|Gllw,wy = /(G G)yywy- The following

lemma gives a compact expression for the weighted-Hs
inner product based on the poles and residues of G(s),
H(s) and W(s). By res[M(s), 7], we denote the residue
of M(s) at m € C.

Lemma 2 Suppose G, H € Hs have poles denoted re-
spectively as {\1,..., \n} and{p1, ..., pm}, and suppose
W € Hoo has poles denoted as {1, ...,7vp}. Assume that

H(s) and W (s) have no common poles, and the poles of
W (s) are simple. Then

(G, H>’H2(W) = Z res[G(—s)W(—s)W(s)H(s),,uk]
k=1
+ D G W (=) H (i) - res[W(s), 7).
i=1

Define xr = res|G(—s)W (—s)W (s)H(s), fi]-
o If uy is a simple pole of H(s), then

X =G (=i )W (=i )W (i) - res[H (s), pe].



o If uy is a double pole of H(s), then

Xi =G (=)W (=)W () - res[H (s), jux]
—heal) - [GEOW W ()]

s=—Hk’

where h_o(py) = lim (s — pug)2H(s).
Sk
Proof: T(s) = G(—s)W(—s)W (s)H (s) has poles at
{=M, oo =N FU{Ey, U, e

For any R > 0, define a semicircular contour in the
left halfplane: T = {z]z =w withw € [-R,R]} U
{z|z = Re? with 0 € | T 3” } For R large enough,
the region bounded by I‘R contains {v1,...,7p} U
{1, ..., m}, constituting all the poles of W (s)H(s),
and hence all the stable poles of G(—s)W (—s)W (s)H (s).
Then, the Residue Theorem yields

+oo

(G, H) gy oy = % 3 G(—w)W (—w)W (w) H (w) dw
1

:R@;Tm/m (—s)W (—8)W (s)H(s) ds

+ > res[G(—s)W (—s)W (s)H(s), .

i=1

This leads to the first assertion. If uj is a simple pole for
H(s), then

s)W (=)W (s)H(s)]
(

res[G(—s)W(—s)W((s)H(s) e
OW () Jim (s — ) H(s)

= Glm)W (-

Similarly, if u is a double pole for H(s), then it is also
a double pole for G(—s)W (—s)W(s)H(s) and

res[G(— )W (—s)W (5) H(5), ju]
= lim L[5 — )G (=)W (=)W () H(5)]

= lim G=9)W (=)W (s) - (s — ) H(5)
+ Jim (s = )2 H(s) - [G(=) W (=5) IV (5)]

= G(= )W (=)W (pr) - res[H(s), ]
~hau) - ()W ()W (=)

S="HEk

Corollary 3 If G(s) and W (s) in Lemma 2 each have

simple poles, then

+ZG(—%)W
k=1

This new formula (6) for the weighted-Hz norm contains
as a special case (with W(s) = 1), a similar expression
for the (unweighted) Hs norm introduced in [9].

= i G(—)\k)W(—)\k)W()\k) . res[G(s)7 >\k]
k=1

—Y,)G (k) - reslW (s),vk].  (6)

Suppose W € H, has simple poles at {71, ...
define a linear mapping § : Ho — Ho by
P

FIG](s) = G(s)W (s)W —5)-1—2 G(_%)W(_%)%SW);M

(7)
Notice that G(s)W(s)W(—s) has simple poles at

=71, =72, —Vp, and

res|G(s)W (s)W (—s), —Vk]
= Im s+ W)GW ()W ()
- G(ffyk)W(ffyk) hm (S+’Yk)W( 5)
— G(W () Jim (5~ )W)
= =G (=)W (=) - res[W(s), .

Thus §[G](s) has poles only in the left half plane and
indeed § : Ho — Ho.

) 710} and

Corollary 4 Suppose G and W are stable with poles
{M, - A} and {, ..., v}, respectively. Choose i ar-
bitrarily in the left half plane distinct from these points.

Then for F(s) = §[G](s), <G L >H2(W) = F(—pu) and

Y s—p
G, > — _F'(—p).
< = m‘z Ha (W) (=n)

Proof: By Lemma 2,

1
G, = G(—p)W (—p)W
< 3N>H2(w> (=)W (=)W (1)

P res(W(s), v _ .., an
+ZG(7%)W(*W)W -

1 — iy wWis)W(=s
(a W>H2(W)— L EEWEW L,

+Y G () S ]

(’Yk — ‘u)g -F (7“’) o

2.2 Weighted-Ho optimality conditions

Consider the problem of finding a reduced order system,
G, that solves (5). The feasible set for (5) is noncon-
vex, so finding a true (global) minimizer is generally in-
tractable. Nonetheless, we are able to obtain descriptive
necessary conditions for G, to satisfy (5).



Theorem 5 If G, has simple poles, {5\1, o 3\,,}, and
solves (5), then G, must satisfy: fork =1, ..., r
Fo(=M\p) = F(=Ay) and FL(=\) =F'(=\) (8)

where F = §[G] and F, = §[G,] are defined from (7).

Proof: Suppose by way of contradiction that, for some

€, AL (GG ) =ag £0.B
1€ {M } = oy = 0 # 0. By
hypothesis, G, can be represented as G, (s) = >_._; s@i\
and for some index k, u = \i. Define 9y = arg(ap) and
with € > 0, define

=~ +ee o
Ggs)(s) QOk' Z 901
s —
i#£k
Then
—19¢
~ —ce
16:-G sy = [ < W
: S H Alyyw) 2|Re(p)]

so that [|G,(s) — G
G, solves (5),

()|l wy = O(e) as € — 0. Since

IG=Gl3, 0wy < I1G = GO 3, )
<G = Gr) + (Gr — G5, w)

<G = Grl3,w) + 2Re <G =Gy Gr = éis)%mvv)

+ ||Gr - Gga)”g-tz(w)'

Thus,
0<2Re{G—G,, G, — G Gr—GO3,. -
< 2Re ( ooy 16— C B

This implies first that 0 < —e|ap| + O(2), which then
leads to a contradiction, ag = 0.

To show the next assertion, suppose that for some p €
x,...,;T,<G G, #> - 0. Th
{M } T o) oy # en

for some k, p = A and we define ¥, = arg(pg - aq). For
€ > 0 sufficiently small, define

é,@ s %
() = s—(u—i—se ) ;éks

As e — 0, we have

—e Ppe

(= up —ze

1 = GO sy = \

=0(e)
Ha (W)

Following a similar argument as before, we find that
0 < —¢|@g - a1| + O(e?) as e — 0, which leads to a con-
tradiction, a; = 0. O

The interpolation conditions described in (8) give first
order necessary conditions for G, to solve the optimal
weighted-H2 model reduction problem (5). Note that for
W (s) = 1, one obtains F(s) = G(s) and F,.(s) = G,(s);
thus (8) contains the interpolatory Hs optimality condi-
tions of [9] for the unweighted problem as a special case.
Unfortunately, there does not appear to be a straight-
forward generalization of the corresponding computa-
tional approach that was described in [9] for the optimal
(unweighted) Ho model reduction problem. Instead, we
consider a different systematic approach to this problem
motivated by an expression for the weighted-#s error.

2.3 A weighted-Ho error expression

The weighted-Ho norm expression in Corollary 3 leads
immediately to an expression for the weighted-Hs error
that forms the basis for our computational approach.

Corollary 6 Suppose that G, G, and W are stable

with simple poles {\;};_,, {;\j} g and {ye}h_,, re-
j=

spectively, and that there are no common polesA. Define

residues: ¢;:= res|G(s), Ni]; ¢j:= res|G,(s), \j]; and

Y= res|W (s),vk]. The weighted-Ho error is given by

16 = G5y = DU(GA) = Go=AW (=AW (A - 6

D (Gr(=A) = G (=AW () - 6, (9)
+ 3G () = Gl )W (—3) (G ) — G () - i

One may recover the (unweighted) Ho error expression
of [9] as a special case by taking W (s) = 1. Notice that
the weighted error depends on the mismatch of G and
G, at the reflected full system poles {—X\;}, reflected

reduced poles {—\,}, and reflected weight poles {—; }.

2.4 An algorithm for the weighted-Ho model reduction
problem: W-IRKA

In order to reduce the weighted error, one may eliminate
some terms in the error expression, by forcing interpola-
tion at selected (mirrored) poles. Since r is required to
be much smaller than n, there is not enough degrees of
freedom to force interpolation at all the terms in the first
and third components of the weighted-H, error. How-

ever, the second term, i.e. the mismatch at )\ , can be

completely eliminated by enforcing G(—\;) = GT(—S\j)
for j = 1,...,r. Hence, as in the unweighted Ho prob-
lem, the mirror images of the reduced-order poles play a
crucial role. This motivates an algorithm with iterative
rational Krylov steps to enforce the desired interpola-
tion property as outlined in Algorithm 1 below. How-
ever, a crucial difference from the unweighted Ho prob-
lem is that we will not enforce interpolation of G'(s) at



Algorithm 1. Weighted Iterative Rational Krylov
Algorithm (W-IRKA)
Given G(s) = cT(sE— A)"'b and W(s) = cL(sEw —
A,) 'by, reduction order r = v 4+ w with v, > 0,
let {A\;}i—; denote the v dominant poles of G and
{vx}7=, the w dominant poles of W.

(1) Make an initial interpolation point selection:
G =—X fori=1,...,v, (o = —v; forj =
1,...,; or=C fork=1,...,r;

(2) Construct bases, V,. and W, that satisfy (4).
(3) Repeat, while (relative change in {o;} > tol)
(a) A, = WAV, and E, = W EV,
(b) Solve the eigenvalue problem A,x; = A;E.x;

and assign o <— —A; for j=1,... 7.
(c) Update V, so that Range(V;) =
span {(nE—A)"'b, -+, (0;E— A) 'b}.
(4) A, = WTAV,, E, = W/EV,, b, = W/b, and
c? =V,

these points; instead we use the remaining r degrees of
freedom to reflect the weight information W (s) and also
to eliminate terms from the first component of the error
term. The error expression (9) shows that interpolation
errors are multiplied by the residues ¢; and 1. Hence,
we use the remaining r variables to eliminate terms in
the first and third components of the error expression
corresponding to the dominant residues ¢ and ;.. Note
that in several cases, such as in the controller reduction
problem, the state-space dimension of the weight will be
of the same order as that of G, O(p) = O(n). We mea-
sure dominance in a relative sense; i.e., normalized by
the largest (in amplitude) ¢ and 1y in every set. More
details on this selection process can be found in Section 3
where several examples are used to illustrate these con-
cepts. Note that one never needs to compute a full eigen-
value decomposition to obtain the residues of G(s) and
W (s). Since only a small subset of poles is needed, one
could use, for example, the dominant pole algorithm pro-
posed by Rommes [13] which computes effectively those
eigenvalues that correspond to the dominant residues
without requiring a full eigenvalue decomposition.

Upon convergence of Algorithm 1, o; = —;\j for j =
1,...,r; G, interpolates G at these points, and the sec-
ond sum in (9) is eliminated. W,. is unchanged through-
out, so G, interpolates G at r (aggregated) dominant
poles of G and W, eliminating v and w terms from the
first and third sums in (9), respectively. Examples in
Section 3 illustrate the effectiveness of this approach.

3 Numerical examples

We provide two examples related to controller reduction.
W) and ) denote the set of normalized residues of
G(s) and W (s), respectively.

3.1 A building model

The plant, P, is linearized a model for the Los Angeles
University Hospital, and has order 48; see [4] for details.
An LQG-based controller, GG, of the same order, n =
48, is designed to dampen oscillations in the impulse
response. The ten highest normalized residues of G(s)
and of W(s) are:

dW) =[1.0000 1.0000 0.0286 0.0286 0.0088,
0.0088 0.0080 0.0080 0.0060 0.0060 ]

TN = [1.0000 1.0000 0.8416 0.8416 0.3935,
0.3935 0.2646 0.2646 0.0951 0.0951 ]

There is a significant drop in ®V) values after the second

entry, so we take the first two residues of G as dominant.
U(V) remains at roughly the same order until the 9*®
entry. Thus, we choose v = 2;and w =r—v =r — 2 for
a given reduction order, r. To illustrate the effect of this
dominant pole selection, we apply W-IRKA | varying v
from 0 to r. Tables 1 below lists the resulting weighted-
Ho errors for three cases: r = 12, r = 14, and r = 16.

r=12:
’V/w 12/0 | 10/2 | 8/4 | 6/6 | 4/8 | 2/10 | 0/12
1.4021|1.1433|0.6548|0.6863[0.3576|0.2181|0.2853

r=14:
’l//w 14/0 | 12/2 | 10/4 | 8/6 | 6/8 | 4/10 | 2/12 | 0/14
1.4734|1.3436|0.6477|0.3019(0.15380.1425|0.1351 |0.2224

lv/e| 16/0 [ 1472 | 12/4 | 1076 | 88
1.42061.1934]0.7258 | 0.2898|0.1917
v/ 6/10 [ 4/12 | 2714 | 0/16
0.12210.1154]0.1309] 0.1388

Table 1
Weighted-H2 error as v and w vary

The weighted-Ho error decreases as we take more dom-
inant poles of W(s) over those of G(s); suggesting the
importance of the residues of W(s) in the error expres-
sion (9). Choosing v=2 is the best choice for most cases.
Tables 1 illustrate that while the weighted error initially
decreases as v decreases, it starts increasing when v < 2,
justifying the choice v = 2. For the case of r = 16, sim-
ilar observations hold Although v = 2 is not the opti-
mal choice when r = 16, the error for v = 2 is nearly
smallest, making v = 2 still a very good candidate for
W-TIRKA. These numerical results support the idea of
choosing v and w according to the decay of the nor-
malized residues. Even though this choice seems to yield
small weighted errors, there may be variations that are
even better. The residues are multiplied by quantities
such as W(=X;)W(}\;), so one might consider incorpo-
rating these multiplied quantities as well.

A satisfactory reduced-order controller should not only
approximate the full-order controller, but also provide




the same closed-loop behavior as the original controller.
Let T and T, denote the full-order and reduced-order
closed-loop systems, respectively: T corresponds to the
feedback connection of P with G; and T, to the feed-
back connection of P with G,.. Figure 1-(a) depicts the
amplitude Bode plots of G and G, for r = 14 obtained
with v = 2. G, is an accurate match to G. Figure 1-(b)
shows that the reduced-closed loop behavior T, almost
exactly replicates T
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Fig. 1. Bode Plots (a) Full and reduced controller (b) Full
and reduced closed-loop system

We now compare W-IRKA with Frequency Weighted
Balanced Truncation (FWBT) and IRKA of [9] for the
(unweighted) Ho problem. Comparison with IRKA is
included to illustrate the importance of including weight-
ing in the Hs-based model reduction process. We vary
the reduction order from r = 10 to 7 = 20 in incre-
ments of 2, and compute weighted H., and Hs errors
for each case. We use v = 2 for all cases even though
it might not the best choice for W-IRKA. Results are
listed in Table 2. Note that for every r value, W-IRKA
outperforms FWBT with respect to the weighted-Hs
norm. This might be anticipated since W-IRKA is de-
signed to reduce the Hy error. But W-IRKA outper-
forms FWBT with respect to the weighted-H o, norm as
well in all except the » = 18 case. This is significant since
balanced truncation approaches generally yield small
Hoo norms. This behavior is similar to the behavior of
IRKA where one often observes that IRKA consis-
tently yields satisfactory Ho, approximants as well [9].
Note that for » = 10, the reduced-order controller due
to FWBT fails to produce a stable closed-loop system.
Table 2 also illustrates that W-TRK A significantly out-
performs IRKA in terms of the weighted error norms.
This is what we have expected since unlike W-IRKA,
IRKA is tailored towards the unweighted Ho model re-
duction problem. This becomes clearer after inspecting
Table 3, which shows that, in terms of the unweighted er-

ror |G — G, ||%.., IRKA outperforms W-IRKA. Thus,
while G, from IRKA is a better approximation to G in
an open-loop sense, once the weight is taken into consid-
eration, W-IRKA does what it is designed for, leading
to a smaller weighted error.

r 10 12 14 16 18 20
FWBT | 1.409 |0.5286|0.0723]0.0811|0.0498|0.0830
W-IRKA [0.9175]0.1562|0.0723]0.0721|0.0722|0.0516
IRKA |1.4032]0.4837|0.1335|0.0987|0.1194|0.1293

1G = Gl vy

r 10 12 14 16 18 20
FWBT [2.1080(1.1723|0.1415]0.1386{0.1214|0.1310
W-IRKA |0.6677|0.2180(0.1351{0.1309|0.1028 | 0.0956
IRKA |1.9540(0.8620|0.2102|0.1286(0.2066|0.2317

1G = Grllaga o)
Table 2
Comparison of W-IRKA, FWBT, and IRKA

T 10 12 14 16 18 20
W-TIRKA [0.8152(0.2750(0.3679{0.4078|0.1274|0.0518
IRKA |0.1062]0.1168|0.0478|0.0513|0.0123|0.0082

1G = Grlla, /NGl

Table 3
Comparison of W-IRKA and IRKA: Unweigthed error

3.2 International Space Station 12A Module

The plant, P, is a model for the International Space
Station 12A Module with dimension 1412. It is lightly
damped and its impulse response exhibits long-lasting
oscillations. A state-feedback, full-order, observer-based
controller of order n = 1412 is designed to dampen these
oscillations. The decay rate of the first 50 normalized
residues @) and ¥Y) are shown in Figure 2-(a). While
there is almost a two order-of-magnitude drop in ®(¥)
between the third and fourth components, UV contin-
ues to stay significant. Hence, we take v = 3 and re-
duce order from n = 1412 to r = 60 using W-IRKA.
For comparison, we also apply FWBT. We denote the
resulting reduced-order closed-loop systems due to W-
IRKA and FWBT by T, and Tkybt, respectively. Note
that Tyt was unstable for » = 60. Indeed, r = 88 is the
smallest order FWBT-derived reduced controller that
lead to a stable closed-system. All FWBT-derived G,
are stable; however for r < 88 when G, is connected to
P, the resulting Tty1t is unstable. Hence, we compare
below the r = 60 case for W-IRKA with the r = 88
case for FWBT. In Figure 2-(b), we plot the absolute
value of the errors in the impulse responses due to both
methods. W-IRKA outperforms FWBT even with a
lower-order controller. We also simulate both T" and T’
for a sinusoidal input of u(t) = cos(2t). Results 2-(c)
illustrate the superior performance of W-IRKA even
more clearly.
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Fig. 2. (a) Decay of the normalized residues (b)-(c) Compar-
ison of W-IRKA and FWBT using closed-loop responses.
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5 Conclusions

We have presented new formulae for the weighted-#o
inner product and norm that explicitly reveal the contri-
bution of poles and residues both of the full-order model
and of the weight. One of the major consequences of
this new representation are new interpolatory optimal-
ity conditions for weighted-#H2 approximation. Based on
derived weighted-Ho error expressions, we have intro-
duced an approach for producing high-fidelity weighted-
Ho reduced models. The effectiveness of this approach
has been illustrated with two examples.
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