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Abstract

This paper introduces an interpolation framework for the weighted-H2 model reduction problem. We obtain a new representa-
tion of the weighted-H2 norm of SISO systems that provides new interpolatory first order necessary conditions for an optimal
reduced-order model. The H2 norm representation also provides an error expression that motivates a new weighted-H2 model
reduction algorithm. Several numerical examples illustrate the effectiveness of the proposed approach.
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1 Introduction

Consider a single input/single output (SISO) linear dy-
namical system with a realization

E ẋ(t) = Ax(t) + bu(t), y(t) = cTx(t) (1)

for E,A ∈ Rn×n and b, c ∈ Rn. x(t) ∈ Rn, u(t) ∈ R,
y(t) ∈ R, are respectively the state, input, and out-
put of the system. The transfer function of this system
is G(s) = cT (sE − A)−1b. Following common usage,
the underlying system will also be denoted by G. For
many examples, the state-space dimension n is quite
large, leading to untenable demands on computational
resources. Model reduction attempts to address this by
finding a reduced-order system of the form,

Er ẋr(t) = Arxr(t) + bru(t), yr(t) = cTr xr(t) (2)

with Gr(s) = cTr (sEr − Ar)
−1br for Er, Ar ∈ Rr×r

and br, cr ∈ Rr with r � n such that yr(t) ≈ y(t)
over a large class of inputs u(t). Gr is a low order, yet
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high fidelity, approximation to G. We construct Gr
via state-space projection: Two matrices (“reduction
bases”) Vr, Wr ∈ Rn×r are chosen. Then, system dy-
namics are approximated by x(t) ≈ Vrxr(t) and forcing
a Petrov-Galerkin conditon (“orthogonal residuals”)
WT

r (EVrẋr(t)−AVrxr(t)−bu(t)) = 0, together with
the output equation yr(t) = cTVrxr(t) to produce

Er = WT
r EVr, br = WT

r b,

Ar = WT
r AVr, and cTr = cTVr.

(3)

See [2,3] for more information.

1.1 Model Reduction by Interpolation

The reduction bases, Vr and Wr, used in (3) will be
chosen to force interpolation:Gr(s) will interpolateG(s)
(possibly together with higher order derivatives) at se-
lected interpolation points. This approach to rational
interpolation has been considered in [20,21,5,8,7,3] and
depends on the following result.

Theorem 1 Given two sets of interpolation points
{σk}rk=1 and {ζk}rk=1, that are each closed under con-
jugation, and a dynamical system G as in (1), consider
matrices Vr and Wr such that

Range(Vr) = span
{

(σiE−A)−1b
}

Range(Wr) = span
{

(ζiE−A)−T c
} for i = 1, . . . , r. (4)
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Then, Vr and Wr can be chosen to be real; Gr(s) =
cTr (sEr −Ar)

−1br defined by (2)-(3) is a real dynami-
cal system that satisfies G(σk) = Gr(σk) and G(ζk) =
Gr(ζk) for k = 1, . . . , r; and, if σj = ζj for some j, then
G′(σj) = G′r(σj), as well where G′ denotes the derivative
of G(s) with respect to s.

Theorem 1 can be generalized to higher-order derivative
interpolation as well, see [20,21,5,8,7,3]. The subspaces
of Theorem 1 are rational Krylov subspaces and so, in-
terpolatory model reduction methods for SISO systems
are sometimes referred to as rational Krylov methods.

1.2 Weighted Model Reduction

The H∞ norm of a stable linear system associ-
ated with a transfer function, G(s), is defined as
‖G‖H∞

= max
ω∈R
|G(ıω)| . The H2 norm of G is defined

as ‖G‖H2
:=

(
1

2π

∫ ∞
−∞
|G(ıω)|2 dω

)1/2

. The vector

spaces of meromorphic functions that are analytic in
the right halfplane, having either bounded H∞ norm or
bounded H2 norm will be denoted simply as H∞ or H2,
respectively. Let W ∈ H∞ be given. The (W -)weighted
H2 norm is defined as ‖G‖H2(W ) = ‖G ·W‖H2 .

We are interested in finding a reduced-order model Gr
that minimizes a W -weighted H2 norm, i.e., that solves

‖G−Gr‖H2(W ) = min
dim(G̃r)=r

‖G− G̃r‖H2(W ) (5)

The introduction ofW (s) allows one to penalize the error
in certain frequency ranges more heavily than in others.

An illustrative example: controller reduction
Consider a linear dynamical system, P (the plant) to-
gether with an associated stabilizing controller, G, that
is connected to P in a feedback loop. Many control
design methodologies, such as LQG and H∞ methods,
lead ultimately to controllers whose order is generically
as high as the order of the plant, see [17,22] and refer-
ences therein. Thus, high-order plants generally lead to
high-order controllers. However, high-order controllers
are usually undesirable in real-time applications due to
complex hardware, degraded accuracy, and degraded
computational speed. Thus, one prefers to use a reduced
controllerGr to replaceG. RequiringGr to be a good ap-
proximation to G is often not enough in terms of closed-
loop performance; plant dynamics need to be taken
into account during the reduction process. This may be
achieved through frequency weighting: Given a stabiliz-
ing controller G, if G has the same number of unstable
poles as Gr and if

∥∥[G−Gr]P [I + PG]−1
∥∥
H∞

< 1,

then Gr will also be a stabilizing controller [1,22]. Hence
the controller reduction problem may be formulated

as finding a reduced-order controller Gr that mini-
mizes or reduces the weighted error ‖(G−Gr)W‖H∞

with W (s) := P (s)(I + P (s)G(s))−1; i.e., controller
reduction becomes an application of weighted model
reduction. This approach has been considered in
[17,1,14,10,6,19,12,18,16] and references therein, leading
to variants of frequency-weighted balanced truncation.
Conversely, the methods in [11] and [15] are tailored in-
stead towards minimizing a weighted-H2 error as in (5).

2 Weighted-H2 model reduction

The methods proposed in [11] and [15] for approaching
(5) require solving a sequence of large-scale Lyapunov
or Riccati equations; they rapidly become computation-
ally intractable as the system order, n, increases. We
will approach (5) within an interpolatory model reduc-
tion framework requiring only the solution of (generally
sparse) linear systems and no need for dense matrix com-
putations or solution of large-scale Lyapunov or Riccati
equations. Interpolatory approaches can be effectively
applied even when n reaches the tens of thousands.

2.1 A representation of the weighted-H2 norm

Given transfer functions G, H ∈ H2, and W ∈ H∞,
define the weighted-H2 inner product as

〈G, H〉H2(W ) =
1

2π

∫ ∞
−∞

G(ıω)W (ıω)W (ıω)H(ıω) dω

=
1

2π

∫ ∞
−∞

G(−ıω)W (−ıω)W (ıω)H(ıω) dω,

so that ‖G‖H2(W ) =
√
〈G, G〉H2(W )

. The following

lemma gives a compact expression for the weighted-H2

inner product based on the poles and residues of G(s),
H(s) and W (s). By res[M(s), π], we denote the residue
of M(s) at π ∈ C.

Lemma 2 Suppose G, H ∈ H2 have poles denoted re-
spectively as {λ1, . . . , λn} and {µ1, . . . , µm}, and suppose
W ∈ H∞ has poles denoted as {γ1, . . . , γp}. Assume that
H(s) and W (s) have no common poles, and the poles of
W (s) are simple. Then

〈G, H〉H2(W )
=

m∑
k=1

res[G(−s)W (−s)W (s)H(s), µk]

+

p∑
i=1

G(−γi)W (−γi)H(γi) · res[W (s), γi].

Define χk = res[G(−s)W (−s)W (s)H(s), µk].

• If µk is a simple pole of H(s), then

χk=G(−µk)W (−µk)W (µk) · res[H(s), µk].
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• If µk is a double pole of H(s), then

χk =G(−µk)W (−µk)W (µk) · res[H(s), µk]

− h−2(µk) · d
ds

[G(s)W (s)W (−s)]|s=−µk
,

where h−2(µk) = lim
s→µk

(s− µk)2H(s).

Proof: T (s) = G(−s)W (−s)W (s)H(s) has poles at

{−λ1, . . . − λn} ∪ {±γ1, . . . ,±γp} ∪ {µ1, . . . , µm}.

For any R > 0, define a semicircular contour in the
left halfplane: ΓR = {z |z = ıω with ω ∈ [−R,R]} ∪{
z
∣∣z = Reıθ with θ ∈ [π2 ,

3π
2 ]
}
. For R large enough,

the region bounded by ΓR contains {γ1, . . . , γp} ∪
{µ1, . . . , µm}, constituting all the poles of W (s)H(s),
and hence all the stable poles ofG(−s)W (−s)W (s)H(s).
Then, the Residue Theorem yields

〈G, H〉H2(W ) =
1

2π

∫ +∞

−∞
G(−ıω)W (−ıω)W (ıω)H(ıω) dω

= lim
R→∞

1

2πı

∫
ΓR

G(−s)W (−s)W (s)H(s) ds

=

m∑
k=1

res[G(−s)W (−s)W (s)H(s), µk]

+

p∑
i=1

res[G(−s)W (−s)W (s)H(s), γi].

This leads to the first assertion. If µk is a simple pole for
H(s), then

res[G(−s)W (−s)W (s)H(s), µk]

= lim
s→µk

[(s− µk)G(−s)W (−s)W (s)H(s)]

= G(−µk)W (−µk)W (µk) lim
s→µk

(s− µk)H(s).

Similarly, if µk is a double pole for H(s), then it is also
a double pole for G(−s)W (−s)W (s)H(s) and

res[G(−s)W (−s)W (s)H(s), µk]

= lim
s→µk

d

ds
[(s− µk)2G(−s)W (−s)W (s)H(s)]

= lim
s→µk

G(−s)W (−s)W (s)
d

ds

[
(s− µk)2H(s)

]
+ lim
s→µk

(s− µk)2H(s)
d

ds
[G(−s)W (−s)W (s)]

= G(−µk)W (−µk)W (µk) · res[H(s), µk]

− h−2(µk) · d
ds

[G(s)W (s)W (−s)]|s=−µk
2

Corollary 3 If G(s) and W (s) in Lemma 2 each have
simple poles, then

‖G‖2H2(W ) =

n∑
k=1

G(−λk)W (−λk)W (λk) · res[G(s), λk]

+

p∑
k=1

G(−γk)W (−γk)G(γk) · res[W (s), γk]. (6)

This new formula (6) for the weighted-H2 norm contains
as a special case (with W (s) = 1), a similar expression
for the (unweighted) H2 norm introduced in [9].

Suppose W ∈ H∞ has simple poles at {γ1, . . . , γp} and
define a linear mapping F : H2 → H2 by

F[G](s) = G(s)W (s)W (−s)+
p∑
k=1

G(−γk)W (−γk)
res[W (s), γk]

s+ γk

(7)
Notice that G(s)W (s)W (−s) has simple poles at
−γ1,−γ2, . . . ,−γp, and

res[G(s)W (s)W (−s),−γk]

= lim
s→−γk

(s+ γk)G(s)W (s)W (−s)

= G(−γk)W (−γk) lim
s→−γk

(s+ γk)W (−s)

= −G(−γk)W (−γk) lim
s→γk

(s− γk)W (s)

= −G(−γk)W (−γk) · res[W (s), γk].

Thus F[G](s) has poles only in the left half plane and
indeed F : H2 → H2.

Corollary 4 Suppose G and W are stable with poles
{λ1, . . . , λn} and {γ1, . . . , γp}, respectively. Choose µ ar-
bitrarily in the left half plane distinct from these points.

Then for F (s) = F[G](s),
〈
G, 1

s−µ

〉
H2(W )

= F (−µ) and〈
G, 1

(s−µ)2

〉
H2(W )

= −F ′(−µ).

Proof: By Lemma 2,〈
G,

1

s− µ

〉
H2(W )

= G(−µ)W (−µ)W (µ)

+

p∑
k=1

G(−γk)W (−γk)
res[W (s), γk]

γk − µ
= F (−µ), and

〈
G,

1

(s− µ)2

〉
H2(W )

= − d

ds
[G(s)W (s)W (−s)]|s=−µ

+

p∑
k=1

G(−γk)W (−γk)
res[W (s), γk]

(γk − µ)2
= −F ′(−µ). 2

2.2 Weighted-H2 optimality conditions

Consider the problem of finding a reduced order system,
Gr, that solves (5). The feasible set for (5) is noncon-
vex, so finding a true (global) minimizer is generally in-
tractable. Nonetheless, we are able to obtain descriptive
necessary conditions for Gr to satisfy (5).

3



Theorem 5 If Gr has simple poles, {λ̂1, . . . , λ̂r}, and
solves (5), then Gr must satisfy: for k = 1, . . . , r,

Fr(−λ̂k) = F (−λ̂k) and F ′r(−λ̂k) = F ′(−λ̂k) (8)

where F = F[G] and Fr = F[Gr] are defined from (7).

Proof: Suppose by way of contradiction that, for some

µ ∈ {λ̂1, . . . , λ̂r},
〈
G−Gr, 1

s−µ

〉
H2(W )

= α0 6= 0. By

hypothesis,Gr can be represented asGr(s) =
∑r
i=1

ϕ̂i

s−λ̂i

and for some index k, µ = λ̂k. Define ϑ0 = arg(α0) and
with ε > 0, define

G̃(ε)
r (s) =

ϕ̂k + ε e−ıϑ0

s− µ
+
∑
i 6=k

ϕ̂i

s− λ̂i
.

Then

‖Gr−G̃(ε)
r ‖H2(W ) =

∥∥∥∥−ε e−ıϑ0

s− µ

∥∥∥∥
H2(W )

≤ ‖W‖H∞
ε√

2|Re(µ)|

so that ‖Gr(s)− G̃(ε)
r (s)‖H2(W ) = O(ε) as ε→ 0. Since

Gr solves (5),

‖G−Gr‖2H2(W ) ≤ ‖G− G̃(ε)
r ‖2H2(W )

≤‖(G−Gr) + (Gr − G̃(ε)
r )‖2H2(W )

≤‖G−Gr‖2H2(W ) + 2Re
〈
G−Gr, Gr − G̃(ε)

r

〉
H2(W )

+ ‖Gr − G̃(ε)
r ‖2H2(W ).

Thus,

0 ≤ 2Re
〈
G−Gr, Gr − G̃(ε)

r

〉
H2(W )

+‖Gr−G̃(ε)
r ‖2H2(W ).

This implies first that 0 ≤ −ε|α0| + O(ε2), which then
leads to a contradiction, α0 = 0.

To show the next assertion, suppose that for some µ ∈
{λ̂1, . . . , λ̂r},

〈
G−Gr, 1

(s−µ)2

〉
H2(W )

= α1 6= 0. Then

for some k, µ = λ̂k and we define ϑ1 = arg(ϕ̂k · α1). For
ε > 0 sufficiently small, define

G̃(ε)
r (s) =

ϕ̂k
s− (µ+ ε e−ıϑ1)

+
∑
i6=k

ϕ̂i

s− λ̂i

As ε→ 0, we have

‖Gr − G̃(ε)
r ‖H2(W ) =

∥∥∥∥ −ε ϕ̂k e−ıϑ1

(s− µ)2 − ε e−ıϑ1

∥∥∥∥
H2(W )

= O(ε)

Following a similar argument as before, we find that
0 ≤ −ε|ϕ̂k · α1|+O(ε2) as ε→ 0, which leads to a con-
tradiction, α1 = 0. 2

The interpolation conditions described in (8) give first
order necessary conditions for Gr to solve the optimal
weighted-H2 model reduction problem (5). Note that for
W (s) = 1, one obtains F (s) = G(s) and Fr(s) = Gr(s);
thus (8) contains the interpolatoryH2 optimality condi-
tions of [9] for the unweighted problem as a special case.
Unfortunately, there does not appear to be a straight-
forward generalization of the corresponding computa-
tional approach that was described in [9] for the optimal
(unweighted) H2 model reduction problem. Instead, we
consider a different systematic approach to this problem
motivated by an expression for the weighted-H2 error.

2.3 A weighted-H2 error expression

The weighted-H2 norm expression in Corollary 3 leads
immediately to an expression for the weighted-H2 error
that forms the basis for our computational approach.

Corollary 6 Suppose that G, Gr and W are stable

with simple poles {λi}ni=1,
{
λ̂j

}r
j=1

, and {γk}pk=1, re-

spectively, and that there are no common poles. Define

residues: φi:= res[G(s), λi]; φ̂j:= res[Gr(s), λ̂j ]; and
ψk:= res[W (s), γk]. The weighted-H2 error is given by

∥∥G−Gr∥∥2

H2(W )
=

n∑
i=1

(G(−λi)−Gr(−λi))W (−λi)W (λi) · φi

+

r∑
j=1

(Gr(−λ̂j)−G(−λ̂j))W (−λ̂j)W (λ̂j) · φ̂j (9)

+

p∑
k=1

(G(−γk)−Gr(−γk))W (−γk)(G(γk)−Gr(γk)) · ψk

One may recover the (unweighted) H2 error expression
of [9] as a special case by taking W (s) = 1. Notice that
the weighted error depends on the mismatch of G and
Gr at the reflected full system poles {−λi}, reflected

reduced poles {−λ̂j}, and reflected weight poles {−γk}.

2.4 An algorithm for the weighted-H2 model reduction
problem: W-IRKA

In order to reduce the weighted error, one may eliminate
some terms in the error expression, by forcing interpola-
tion at selected (mirrored) poles. Since r is required to
be much smaller than n, there is not enough degrees of
freedom to force interpolation at all the terms in the first
and third components of the weighted-H2 error. How-

ever, the second term, i.e. the mismatch at λ̂j , can be

completely eliminated by enforcing G(−λ̂j) = Gr(−λ̂j)
for j = 1, . . . , r. Hence, as in the unweighted H2 prob-
lem, the mirror images of the reduced-order poles play a
crucial role. This motivates an algorithm with iterative
rational Krylov steps to enforce the desired interpola-
tion property as outlined in Algorithm 1 below. How-
ever, a crucial difference from the unweighted H2 prob-
lem is that we will not enforce interpolation of G′(s) at

4



Algorithm 1. Weighted Iterative Rational Krylov
Algorithm (W-IRKA)

Given G(s) = cT (sE−A)−1b and W (s) = cTw(sEw−
Aw)−1bw, reduction order r = ν + $ with ν,$ ≥ 0,
let {λi}νi=1 denote the ν dominant poles of G and
{γk}$k=1 the $ dominant poles of W .

(1) Make an initial interpolation point selection:
ζi = −λi for i = 1, . . . , ν, ζj+ν = −γj for j =
1, . . . , $; σk = ζk for k = 1, . . . , r;

(2) Construct bases, Vr and Wr, that satisfy (4).

(3) Repeat, while (relative change in {σi} > tol)

(a) Ar = WT
r AVr and Er = WT

r EVr
(b) Solve the eigenvalue problem Arxj = λ̂jErxj

and assign σj ←− −λ̂j for j = 1, . . . , r.
(c) Update Vr so that Range(Vr) =

span
{

(σ1E−A)−1b, · · · , (σrE−A)−1b
}

.

(4) Ar = WT
r AVr, Er = WT

r EVr, br = WT
r b, and

cTr = cTVr

these points; instead we use the remaining r degrees of
freedom to reflect the weight information W (s) and also
to eliminate terms from the first component of the error
term. The error expression (9) shows that interpolation
errors are multiplied by the residues φi and ψk. Hence,
we use the remaining r variables to eliminate terms in
the first and third components of the error expression
corresponding to the dominant residues φk and ψk. Note
that in several cases, such as in the controller reduction
problem, the state-space dimension of the weight will be
of the same order as that of G, O(p) ≈ O(n). We mea-
sure dominance in a relative sense; i.e., normalized by
the largest (in amplitude) φk and ψk in every set. More
details on this selection process can be found in Section 3
where several examples are used to illustrate these con-
cepts. Note that one never needs to compute a full eigen-
value decomposition to obtain the residues of G(s) and
W (s). Since only a small subset of poles is needed, one
could use, for example, the dominant pole algorithm pro-
posed by Rommes [13] which computes effectively those
eigenvalues that correspond to the dominant residues
without requiring a full eigenvalue decomposition.

Upon convergence of Algorithm 1, σj = −λ̂j for j =
1, . . . , r; Gr interpolates G at these points, and the sec-
ond sum in (9) is eliminated. Wr is unchanged through-
out, so Gr interpolates G at r (aggregated) dominant
poles of G and W , eliminating ν and $ terms from the
first and third sums in (9), respectively. Examples in
Section 3 illustrate the effectiveness of this approach.

3 Numerical examples

We provide two examples related to controller reduction.
Φ(N) and Ψ(N) denote the set of normalized residues of
G(s) and W (s), respectively.

3.1 A building model

The plant, P , is linearized a model for the Los Angeles
University Hospital, and has order 48; see [4] for details.
An LQG-based controller, G, of the same order, n =
48, is designed to dampen oscillations in the impulse
response. The ten highest normalized residues of G(s)
and of W (s) are:

Φ(N) = [ 1.0000 1.0000 0.0286 0.0286 0.0088,

0.0088 0.0080 0.0080 0.0060 0.0060 ]

Ψ(N) = [ 1.0000 1.0000 0.8416 0.8416 0.3935,

0.3935 0.2646 0.2646 0.0951 0.0951 ]

There is a significant drop in Φ(N) values after the second
entry, so we take the first two residues of G as dominant.
Ψ(N) remains at roughly the same order until the 9th

entry. Thus, we choose ν = 2; and $ = r− ν = r− 2 for
a given reduction order, r. To illustrate the effect of this
dominant pole selection, we apply W-IRKA, varying ν
from 0 to r. Tables 1 below lists the resulting weighted-
H2 errors for three cases: r = 12, r = 14, and r = 16.

r = 12:

ν/$ 12/0 10/2 8/4 6/6 4/8 2/10 0/12

1.4021 1.1433 0.6548 0.6863 0.3576 0.2181 0.2853

r = 14 :

ν/$ 14/0 12/2 10/4 8/6 6/8 4/10 2/12 0/14

1.4734 1.3436 0.6477 0.3019 0.1538 0.1425 0.1351 0.2224

r = 16 :

ν/$ 16/0 14/2 12/4 10/6 8/8

1.4206 1.1934 0.7258 0.2898 0.1917

ν/$ 6/10 4/12 2/14 0/16

0.1221 0.1154 0.1309 0.1388

Table 1
Weighted-H2 error as ν and $ vary

The weighted-H2 error decreases as we take more dom-
inant poles of W (s) over those of G(s); suggesting the
importance of the residues of W (s) in the error expres-
sion (9). Choosing ν=2 is the best choice for most cases.
Tables 1 illustrate that while the weighted error initially
decreases as ν decreases, it starts increasing when ν < 2,
justifying the choice ν = 2. For the case of r = 16, sim-
ilar observations hold Although ν = 2 is not the opti-
mal choice when r = 16, the error for ν = 2 is nearly
smallest, making ν = 2 still a very good candidate for
W-IRKA. These numerical results support the idea of
choosing ν and $ according to the decay of the nor-
malized residues. Even though this choice seems to yield
small weighted errors, there may be variations that are
even better. The residues are multiplied by quantities
such as W (−λi)W (λi), so one might consider incorpo-
rating these multiplied quantities as well.

A satisfactory reduced-order controller should not only
approximate the full-order controller, but also provide

5



the same closed-loop behavior as the original controller.
Let T and Tr denote the full-order and reduced-order
closed-loop systems, respectively: T corresponds to the
feedback connection of P with G; and Tr to the feed-
back connection of P with Gr. Figure 1-(a) depicts the
amplitude Bode plots of G and Gr for r = 14 obtained
with ν = 2. Gr is an accurate match to G. Figure 1-(b)
shows that the reduced-closed loop behavior Tr almost
exactly replicates T .
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Fig. 1. Bode Plots (a) Full and reduced controller (b) Full
and reduced closed-loop system

We now compare W-IRKA with Frequency Weighted
Balanced Truncation (FWBT) and IRKA of [9] for the
(unweighted) H2 problem. Comparison with IRKA is
included to illustrate the importance of including weight-
ing in the H2-based model reduction process. We vary
the reduction order from r = 10 to r = 20 in incre-
ments of 2, and compute weighted H∞ and H2 errors
for each case. We use ν = 2 for all cases even though
it might not the best choice for W-IRKA. Results are
listed in Table 2. Note that for every r value, W-IRKA
outperforms FWBT with respect to the weighted-H2

norm. This might be anticipated since W-IRKA is de-
signed to reduce the H2 error. But W-IRKA outper-
forms FWBT with respect to the weighted-H∞ norm as
well in all except the r = 18 case. This is significant since
balanced truncation approaches generally yield small
H∞ norms. This behavior is similar to the behavior of
IRKA where one often observes that IRKA consis-
tently yields satisfactory H∞ approximants as well [9].
Note that for r = 10, the reduced-order controller due
to FWBT fails to produce a stable closed-loop system.
Table 2 also illustrates that W-IRKA significantly out-
performs IRKA in terms of the weighted error norms.
This is what we have expected since unlike W-IRKA,
IRKA is tailored towards the unweighted H2 model re-
duction problem. This becomes clearer after inspecting
Table 3, which shows that, in terms of the unweighted er-

ror ‖G−Gr‖H∞ , IRKA outperforms W-IRKA. Thus,
while Gr from IRKA is a better approximation to G in
an open-loop sense, once the weight is taken into consid-
eration, W-IRKA does what it is designed for, leading
to a smaller weighted error.

r 10 12 14 16 18 20

FWBT 1.409 0.5286 0.0723 0.0811 0.0498 0.0830

W-IRKA 0.9175 0.1562 0.0723 0.0721 0.0722 0.0516

IRKA 1.4032 0.4837 0.1335 0.0987 0.1194 0.1293

‖G−Gr‖H∞(W )

r 10 12 14 16 18 20

FWBT 2.1080 1.1723 0.1415 0.1386 0.1214 0.1310

W-IRKA 0.6677 0.2180 0.1351 0.1309 0.1028 0.0956

IRKA 1.9540 0.8620 0.2102 0.1286 0.2066 0.2317

‖G−Gr‖H2(W )

Table 2
Comparison of W-IRKA, FWBT, and IRKA

r 10 12 14 16 18 20

W-IRKA 0.8152 0.2750 0.3679 0.4078 0.1274 0.0518

IRKA 0.1062 0.1168 0.0478 0.0513 0.0123 0.0082

‖G−Gr‖H∞
/ ‖G‖H∞

Table 3
Comparison of W-IRKA and IRKA: Unweigthed error

3.2 International Space Station 12A Module

The plant, P , is a model for the International Space
Station 12A Module with dimension 1412. It is lightly
damped and its impulse response exhibits long-lasting
oscillations. A state-feedback, full-order, observer-based
controller of order n = 1412 is designed to dampen these
oscillations. The decay rate of the first 50 normalized
residues Φ(N) and Ψ(N) are shown in Figure 2-(a). While
there is almost a two order-of-magnitude drop in Φ(N)

between the third and fourth components, Ψ(N) contin-
ues to stay significant. Hence, we take ν = 3 and re-
duce order from n = 1412 to r = 60 using W-IRKA.
For comparison, we also apply FWBT. We denote the
resulting reduced-order closed-loop systems due to W-
IRKA and FWBT by Tr and Tfwbt, respectively. Note
that Tfwbt was unstable for r = 60. Indeed, r = 88 is the
smallest order FWBT-derived reduced controller that
lead to a stable closed-system. All FWBT-derived Gr
are stable; however for r < 88 when Gr is connected to
P , the resulting Tfwbt is unstable. Hence, we compare
below the r = 60 case for W-IRKA with the r = 88
case for FWBT. In Figure 2-(b), we plot the absolute
value of the errors in the impulse responses due to both
methods. W-IRKA outperforms FWBT even with a
lower-order controller. We also simulate both T and Tr
for a sinusoidal input of u(t) = cos(2t). Results 2-(c)
illustrate the superior performance of W-IRKA even
more clearly.
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Fig. 2. (a) Decay of the normalized residues (b)-(c) Compar-
ison of W-IRKA and FWBT using closed-loop responses.
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5 Conclusions

We have presented new formulae for the weighted-H2

inner product and norm that explicitly reveal the contri-
bution of poles and residues both of the full-order model
and of the weight. One of the major consequences of
this new representation are new interpolatory optimal-
ity conditions for weighted-H2 approximation. Based on
derived weighted-H2 error expressions, we have intro-
duced an approach for producing high-fidelity weighted-
H2 reduced models. The effectiveness of this approach
has been illustrated with two examples.
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