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Abstract

This paper addresses the solution of large zero-sum matrix games using randomized methods. We formalize a procedure,
termed as the sampled security policy (SSP) algorithm, by which a player can compute policies that, with a high
confidence, are security policies against an adversary using randomized methods to explore the possible outcomes of the
game. The SSP algorithm essentially consists of solving a stochastically sampled subgame that is much smaller than the
original game. We also propose a randomized algorithm, termed as the sampled security value (SSV) algorithm, which
computes a high-confidence security-level (i.e., worst-case outcome) for a given policy, which may or may not have been
obtained using the SSP algorithm. For both the SSP and the SSV algorithms we provide results to determine how many
samples are needed to guarantee a desired level of confidence. We start by providing results when the two players sample
policies with the same distribution and subsequently extend these results to the case of mismatched distributions. We
demonstrate the usefulness of these results in a hide-and-seek game that exhibits exponential complexity.
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1. Introduction

This paper addresses zero-sum games in which one or
both players are faced with a large number of choices, pos-
sibly infinitely many. For such games, the computation of
security levels (i.e., worst-case outcomes) and the corre-
sponding security policies requires the exploration of very
large decision trees.

Games where players are faced with deciding among a
very large number of options arise in combinatorial prob-
lems, where the number of possible options grows expo-
nentially with the size of the problem. This situation is
common to many domains: In path planning, the number
of possible decisions typically increases exponentially with
the number of points to visit [cf., e.g., Bellman (1962)].
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In network security, system administrators need to con-
sider multi-stage, multi-host attacks that may consist of
long sequences of actions by an attacker in their attempt
to circumvent the system defenses [cf., e.g., Lye and Wing
(2005)]. In practice, this leads to policy spaces that grow
exponentially with the number of stages involved in an
attack. More generally, in partial-information feedback
games players must choose feedback policies that assign
an action to each possible observation and therefore the
number of feedback policies grows exponentially with the
size of the players’ observation spaces [cf., e.g., Hespanha
and Prandini (2001); Bopardikar and Hespanha (2011)].

The exploration of large policy spaces is generally a
hard task that can become computationally intractable
when addressing partial information games [NP-complete
in the size of the game tree, see Frank and Basin (1999)]. A
method to face this issue is Monte Carlo sampling. The key
idea is to confine the search to a decision tree of reduced
size by guessing or sampling the other player’s moves, and
then use conventional minimax search to determine the
strategy to play with. Techniques based on this idea has
been successfully applied to several partial information
games such as, e.g., Scrabble [cf. Frank (1989)], Bridge
[cf. Ginsberg (1996)], and Kriegspiel chess [cf. Parker et al.
(2005)]. The survey paper Browne et al. (2012) shows how
Monte Carlo sampling has becoming increasing popular
and has been extensively adopted, not only in the game
context, but also in other domains such as e.g. path plan-
ning. Indeed, when the underlying system is stochastic
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but it is difficult to derive an analytic description of the
probabilistic distribution characterizing its evolution, so-
lutions based on simulation are typically adopted, which
entails the use of Monte Carlo sampling.

The recent successes in using randomized methods to
explore large decision trees [e.g., in LaValle and Kuffner
(2001); Hinton et al. (2006); Browne et al. (2012)] moti-
vates the question that is behind the results in this paper:
Suppose that my opponent is using a randomized algorithm
to explore the game decision tree, can I produce a security
value and an associated security policy that are correct with
high probability? The answer to this question is affirma-
tive and we show that such security values/policies can be
constructed using randomized algorithms. What is some-
what surprising about the results reported is that one can
obtain high-confidence security policies by restricting ones
attention to a subset of policies that can be much smaller
than the total set of policies available to the players. More-
over, this restricted set of policies may be quite different
from the set of policies that the opponent considered in
her randomized exploration of the game decision tree.

We call sampled security policy (SSP) the randomized
algorithm proposed to obtain high-confidence security val-
ues/policies. The SSP algorithm can be described as fol-
lows: Suppose that player P2 selected a policy based on a
random exploration of the policies available to both play-
ers. The precise algorithm used by P2 to select her policy
based on this extraction is typically unknown. Player P1

should then proceed as follows: randomly select a subset of
the total set of available policies to both players; construct
the zero-sum matrix game corresponding to the selected
subset of policies, ignoring all other policies available to
the two players; and compute the security value/policies
associated with the matrix. Player P1 can select either a
mixed or a pure value/policy. In both cases, since a large
number of policies have been ignored, the security poli-
cies obtained by this process will generally not be security
policies for the whole game and therefore player P1 may
obtain an outcome that is strictly worse than the value
computed based on her submatrix. However, we show that
this happens with low probability as long as the size of the
submatrix is sufficiently large. Moreover, this result holds
regardless of the algorithm used by P2 to compute her
policy based on the random tree exploration. In fact, P2

could also be using the SSP algorithm to compute her own
policy.

Related Work

Two-player zero-sum matrix games have been stud-
ied extensively over the past decades [cf. the textbook
by Basar and Olsder (1999)]. The classical Mini-Max the-
orem [cf. Von Neumann (1928)] guarantees the existence
of an optimal pair of strategies for the two players, each
of which is a security policy for the corresponding player.
However, when the matrix is of large size, the computa-
tion of the optimal strategies involves solving optimization
problems with a large number of variables and constraints.

A probabilistic approach has proven to be computa-
tionally efficient in evaluating games with large sizes. Us-
ing probabilistic analysis, the existence of simple, near-
optimal strategies over a subset with logarithmically smaller
size of the original matrix game was established in Lipton
and Young (1994). A popular method to solve win-lose
type of multi-stage or dynamic games is to evaluate the
root of a game tree, in which every node is alternately an
AND and an OR operation, while the leaves have a value
of either 0 or 1. Motwani and Raghavan (1995) present
randomized algorithms to evaluate such game trees more
efficiently than using deterministic algorithms.

Randomized methods have been successful in provid-
ing efficient solutions to complex control design problems
with probabilistic guarantees. Khargonekar and Tikku
(1996) adopt a probabilistic approach to show the exis-
tence of randomized algorithms with polynomial complex-
ity to solve complex robust stability analysis problems.
Tempo et al. (1997) propose a randomized method for a
probabilistic analysis of the worst-case controller perfor-
mance, and determine sample size bounds. More recently,
Tempo et al. (2004) discuss the application of random-
ized methods to several control design problems in the
presence of uncertainty. Randomized methods have also
been used to provide a probabilistic approximation to the
minimax value of a cost function in robust control design
problems [cf. Fujisaki and Kozawa (2003)]. Their sam-
ple complexity requirement is, in general, much higher
than for the notion of security that we propose in this pa-
per, since they are concerned with the sampled minimax
value being close to the global minimax value with high
confidence. A randomized approach is used in the linear
programming reformulation of approximate dynamic pro-
gramming in de Farias and Roy (2004). Vidyasagar (1998);
Vidyasagar and Blondel (2001) demonstrate the use of
randomized algorithms to solve control design problems
and a number of well known complex problems in matrix
theory through a statistical learning approach. Statisti-
cal learning theory [cf. Vapnik (1998)] provides a frame-
work for probabilistic robust control synthesis. Using these
tools, Alamo et al. (2009) consider semi-infinite optimiza-
tion problems under uncertainty with a possibly non-convex
objective function.

In Calafiore and Campi (2006); Campi and Garatti
(2008); Campi and Calafiore (2009), the authors intro-
duce the so-called scenario approach to solve convex opti-
mization problems with an infinite number of constraints.
Possible applications of this approach to systems and con-
trol are discussed in Calafiore and Campi (2006) and in
Campi et al. (2009). Calafiore (2009) and Calafiore (2010)
study the sample complexity of randomized approaches
to system analysis and design, and provide, in particular,
an explicit expression of the sample-size for the scenario
approach to convex optimization based on an approxima-
tion of the implicit expression given in Campi and Garatti
(2008). These bounds were further refined in Alamo et al.
(2010). The results in these papers are instrumental to
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establish several of the results in the present paper.

Contributions

Throughout the paper, we explain the results from the
perspective of the player P1 — the minimizer, — who finds
herself playing against an opponent P2 — the maximizer,
— who computes her policy based on a random exploration
of the game decision tree.

The contributions of this paper are four-fold. First, we
show that the SSP algorithm provides a security policy
for P1 with probability 1− δ, provided that the size of the
subgame solved by P1 is sufficiently large. We provide two
bounds on the size of the subgame, one that is valid when
P1 uses general mixed policies and the other when P1 is
restricted to consider only pure policies. The latter may
require much smaller submatrix sizes when the entries of
the matrix A take values in a finite set. The bounds are
game independent and can be computable a-priori for any
desired confidence level 1− δ, δ > 0. While the size of the
subgame grows with the desired confidence level 1 − δ, it
is completely independent of the size of the original matrix
game, which could, in fact, be even infinite and not even
have a value. Moreover, this bound is also independent of
the precise algorithm that P2 uses to construct her policy
based on the portion of the tree that she explored.

The results outlined above assume that, while P1 does
not know the precise subtree that P2 explored to compute
her policy, P1 does know the distribution that P2 used to
construct her random subtree. When this is not the case,
there will be a mismatch between the distribution that P1

uses in the SSP algorithm and the distribution that P2

uses for her random exploration. The second contribution
of the paper addresses this issue via two approaches. The
first approach adopts sample complexity bounds obtained
in Erdoǧan and Iyengar (2006), which deals with the so-
called ambiguous chance constrained problems. More pre-
cisely, we determine bounds on the sizes of the submatrices
in the SSP algorithm when the mismatch between the dis-
tributions used by the two players remains below a speci-
fied distance ρ < 1, measured in the Prohorov metric. This
approach requires no knowledge of the matrix game, but
the bounds hold only when the confidence parameter sat-
isfies the condition ρ < δ, for a desired confidence level of
1−δ. The second approach is based on a novel characteri-
zation of the distance between the sampling distributions,
which we call the mismatch factor, and is applicable to any
confidence level 1−δ and any mismatch factor between the
distributions. However, as one would expect, for a given
confidence lever, a large mismatch factor requires a large
number of samples. These results take advantage of the
game structure and, in fact, when the mismatch is asso-
ciated with policy domination, we show that the bounds
with mismatch are exactly the same as the ones without
mismatch. Essentially, this result states that if P1 knows
that a particular subset Sworse-for-P2 of P2’s policies is dom-
inated by another subset of P2’s policies Sbetter-for-P2

(in

the sense that Sworse-for-P2
is worse than Sbetter-for-P2

from
P2’s perspective), then P1 need not sample policies from
Sworse-for-P2

. The usefulness of the second approach goes
beyond investigating the confidence of the SSP algorithm,
as it extends the bounds of the scenario approach derived
in Campi and Calafiore (2009) and Alamo et al. (2010) to
mismatched distributions.

Third, we propose a randomized algorithm, which we
call sampled security-value (SSV) that P1 can use to ob-
tain a high-probability security level for a given policy.
The bound on the size of the subgame that P1 extracts
to determine her high-probability security level holds for
any policy available to P1, regardless of whether or not
this policy was obtained from the SSP algorithm. As for
the SSP algorithm, the computation required by the SSV
algorithm is independent of the size of the original matrix
game and also of the precise algorithm that P2 uses to
construct her policy. When applied to a policy obtained
using the SSP algorithm for a confidence level δSSP, the
SSV algorithm can be used to study the security of the
policy for different (perhaps tighter) confidence levels δ.

Fourth and finally, we apply the SSP and SSV algo-
rithms to solve a hide-and-seek game, in which one player
hides a treasure in one of N points and the other player
searches for the treasure by visiting each of the points.
This is formalized as a zero-sum game in which the player
that hides the treasure wants to maximize the distance
that the other player needs to travel until the treasure is
found. To determine the optimal strategy for this game,
one would need to solve a matrix game whose size is N ×
N !. Thus, exact solutions to this problem require compu-
tation that scales exponentially with the number of points
N . Our approach is independent of the size of the game
and therefore the size of the matrix plays no role in the
amount of computation required.

As compared to the preliminary conference version [cf.
Bopardikar et al. (2010)], this paper presents new results
that include the version of the SSP algorithm for pure
policies and its analysis, the mismatch in the distribu-
tions used by the players to construct the subgames, and
improves upon the explicit sample size bounds using the
results in Alamo et al. (2010). The more recent paper
[cf. Bopardikar and Hespanha (2011)] formalizes the sam-
pling procedure to dynamic or multi-stage, partial infor-
mation games.

Organization

This paper is organized as follows. The problem for-
mulation and the SSP algorithm are presented in Sec-
tion 2. Bounds on the size of the subgame to provide high-
confidence SSP solutions are established in Section 3 for
the case when the two players use identical distributions
to sample the matrix. These bounds are extended in Sec-
tion 4 to allow mismatch between the distributions. Sec-
tion 5 presents the SSV algorithm and the related bounds
on the size of the subgame. Finally, we demonstrate the
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procedure applied to the hide-and-seek problem in Sec-
tion 6.

2. Problem Formulation

Consider a zero-sum matrix game defined by an arbi-
trary M × N real-valued matrix A, in which player P1 is
the minimizer and selects rows and player P2 is the maxi-
mizer and selects columns. We are interested in problems
where the number N of (pure) policies available to P2 is
very large, typically due to combinatorial explosion, forc-
ing P2 to explore a random subset of her own (pure) policy
space with only n2 � N policies, and perhaps also only a
random subset of the possibles responses by P1. Based on
this, P2 selects a policy z∗ that she will use to play against
P1.

Denoting by Bk×` the set of k× ` left-stochastic (0, 1)-
valued matrices (i.e., matrices whose entries belong to the
set {0, 1} with exactly one 1 per column), we can express
the process by which P2 samples her own policy space by
selecting a random matrix Π2 from the set BN×n2 . The
matrix Π2 ∈ BN×n2 has one row for each of the possible
policies of P2 in the original game defined by A and one
column for each policy that was actually explored by P2.
A one in row i, column j of Π2 signifies that the jth policy
explored by P2 corresponds to the column i of A. P2’s
random exploration results in a mixed policy z∗ that can
be written as

z∗ = Π2z
∗
2 ∈ SN , z∗2 ∈ Sn2

, (1)

where, for a given integer k, Sk denotes the probability
simplex of size k. P1 may know the distribution used to
extract Π2, but will not know the matrix Π2 that was actu-
ally extracted nor which algorithm was used to determine
z∗2 and therefore will not know the policy z∗ obtained by
P2.

For P1 to compute a high-confidence response against
P2’s policy z∗ in (1), we introduce the sampled security
policy (SSP) Algorithm 1.

For the SSP algorithm to be useful, it needs to provide
appropriate guarantees of correctness, which are formal-
ized by the following definitions. We say that the SSP
algorithm is ε-secure for player P1 with confidence 1− δ if

PΓ1,Π1,Π2

(
y∗′Az∗ ≤ V̄ (A1) + ε

)
≥ 1− δ. (3)

Here and in the sequel, we use a subscript in the probabil-
ity measure P to remind the reader which random variables
define the event that is being measured. In essence, con-
dition (3) states that the probability that the outcome of
the game will violate P1’s sampled security value V̄ (A1)
by more than ε is smaller than δ. As stated, this defini-
tion requires the bound to hold regardless of the algorithm
used by P2 to select her policy z∗. In fact, we even allow z∗

to be obtained using an algorithm that randomly explores

Algorithm 1 [SSP Algorithm]

1: P1 randomly selects m1 rows and n1 columns of A,
which she uses to construct an m1 × n1 submatrix A1

of A. This can expressed by the selection of two ran-
dom matrices Γ1 ∈ BM×m1 and Π1 ∈ BN×n1 and then
computing the product A1 = Γ′1AΠ1.

2: P1 computes the mixed security value V̄ (A1) and the
corresponding security policy y∗1 for A1:

V̄ (A1) = max
z∈Sn1

y∗1
′A1z = min

y∈Sm1

max
z∈Sn1

y′A1z (2)

We call V̄ (A1) P1’s sampled security value. When mul-
tiple security policies y∗1 exist, P1 selects for y∗1 the one
with the minimum Euclidean norm (since the set of se-
curity policies is convex, it contains a unique element
with minimum norm).

3: P1 computes her mixed policy for the original game:

y∗ := Γ1y
∗
1 ,

resulting in the outcome y∗′Az∗ = y∗1
′Γ′1AΠ2z

∗
2 . We

call y∗ P1’s sampled security policy.

P1’s policy space1. While our results do not depend on it,
P2 could have obtained z∗ also using the SSP algorithm.

The previous definition guarantees that P1 will be sur-
prised with (low) probability δ when playing with policies
obtained from a one-shot solution to the SSP algorithm.
However, no specific guarantee is given regarding the in-
herent safety of the specific policy y∗ obtained using the
SSP algorithm. So, e.g., suppose that player P1 computes
y∗ once using the SSP algorithm and then plays this pol-
icy multiple times against a sequence of policies z∗ for P2,
each obtained by a distinct random explorations of her pol-
icy space. Then P1 could conceivably be surprised many
more times than one would expect for a low value of δ.
This would happen if she was “unlucky” and got a (low
probability) y∗ that is particularly bad or a value V̄ (A1)
that is particularly optimistic. To avoid this scenario, we
introduce an additional notion of security that refers to the
security of a specific policy/value: we say that a policy y∗

with value V̄ (A1) is ε-secure for player P1 with confidence
1− δ if

PΠ2

(
y∗′Az∗ ≤ V̄ (A1) + ε | y∗, V̄ (A1)

)
≥ 1− δ. (4)

Note that the subscript in the probability measure now
only includes the matrix corresponding to randomized ex-
ploration of the policy space by P2 since the probability
guarantees are given for a specific security policy and value
of P1.

So far, we have not specified the joint distribution of
the row/column extraction matrices Γ1 and Π1 for P1 in

1In this case, the probability measure in (3) depends on additional
random variables that we do not explicitly include in the subscript.
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the SSP Algorithm 1, but these distributions, jointly with
that of matrix Π2 for P2, clearly affect the outcome of the
algorithm. In the context of noncooperative games, one
should presume the extractions of the two players to be in-
dependent of each other. For simplicity, we further assume
that players extract rows and columns independently, as
stated in the following assumption:

Assumption 2.1 (Independence) The random matri-
ces Γ1 and Π1 in the SSP Algorithm 1 and the matrix Π2

corresponding to player P2’s randomized exploration are
statistically independent and each of them has independent
and identically distributed columns. �

Under Assumption 2.1, we shall determine in Section
3 bounds on the size of the random matrices extracted by
P1 in the SSP Algorithm 1 that guarantee high-confidence
ε-security results with ε = 0. These results are valid when
P1 knows precisely the distribution used by P2 to explore
her game decision tree, i.e., to extract columns of the game
matrix A. If we allow for mismatched distributions, we can
then prove ε-security results with a value for ε > 0 that
depends on the distance between the distributions used by
P1 and P2 to extract columns of A (see Section 4).

Remark 2.1 (General games) The results in this pa-
per do not depend on the fact that the original game is
a finite matrix game. They extend trivially to any cost-
function J(u, d), u ∈ U , d ∈ D where U and D denote the
sets of policies for the minimizer and maximizer, respec-
tively. In fact, it is not even necessary that the original
game has saddle-point policies since all that the results
use is the fact that, when we take finite samples of the
sets of policies, we obtain finite matrix games. In fact,
these results also apply to dynamic games, as is discussed
in Bopardikar and Hespanha (2011). �

3. Bounds for Probabilistic Guarantees

In this section, we present theoretical bounds on the
number of policies that player P1 needs to consider for the
SSP Algorithm to guarantee desired confidence levels. The
results in this section refer to the case where the players
sample policies for P2 (i.e., columns of A) using identical
distributions. This assumption is subsequently relaxed in
Section 4.

3.1. Mixed Sampled Security Policies

The main result of this section provides a bound on
the size of the submatrix A1 in the SSP Algorithm that
guarantees ε-security with ε = 0 for the mixed policy y∗.
We recall that P2 is assumed to use a policy z∗ of the
form (1), where Π2 is a column-selection matrix and z∗2
some vector in Sn2

that is obtained using a deterministic
or stochastic algorithm. The case of P2 using a sample of
P1’s policies to determine her policy z∗ also gets included
as none of the results in this paper require P2 to use the

same distribution as that used by P1 for extracting rows
of A.

Theorem 3.1 (SSP Algorithm) Suppose that Assump-
tion 2.1 holds and that Π1 ∈ BN×n1 and Π2 ∈ BN×n2

have identically distributed columns. The SSP Algorithm
is (ε = 0)-secure for P1 with confidence 1− δ, δ ∈ (0, 1) as
long as2

n1 =
⌈m1 + 1

δ
− 1
⌉
n̄2, (5)

with n̄2 ≥ n2. Additionally, suppose that we increase n1

to satisfy

n1 =
⌈1

δ

(
m1 +

√
2m1 ln

1

β
+ ln

1

β

)⌉
n̄2, (6)

for some β ∈ (0, 1). Then, with probability larger than
1 − β, the SSP Algorithm generates a sampled security
policy y∗ with value V̄ (A1) that is (ε = 0)-secure for P1

with confidence 1− δ. �

In words, this result states that it is always possible to
guarantee (ε = 0)-security for P1, if she constructs her sub-
matrix A1 utilizing a sufficiently large number of columns
n1. In particular, she always needs to choose a number of
columns n1 larger than the number of columns n2 that P2

is considering for her mixed policies [cf. (5) and (6)]. The
additional number of columns that P1 needs to consider
is a function of the number m1 of rows that P1 wants to
consider for her mixed policy and the desired confidence
level.

The probability 1 − β associated with y∗’s security
probabilistic guarantee accounts for the possibility that
the confidence bound (4) fails altogether due to an “unfor-
tunate” sample used by P1 to compute y∗. However, note
that only the logarithm of the confidence level β appears
(6) and therefore a relatively small value for the number
of columns n1 suffices to make β extremely small (and,
hence, 1− β ' 1).

Remark 3.2 (P1’s knowledge of n2) According to The-
orem 3.1, for player P1 to enjoy guaranteed (ε = 0)-security
with confidence 1− δ, she must know an upper bound n̄2

on the number of columns that P2 used to construct the
policy z∗ in (1). However, if P1 does not know n̄2 precisely
and, e.g., underestimates n̄2 by a certain percentage, then
(5) and (6) are still useful in the sense that they predict
that the performance degradation in the actual confidence
level δ grows proportionately with n̄2. This is because the
bounds in (5) and (6) essentially scale with n̄2

δ . �

2Given a scalar x ∈ R, we denote by dxe the smallest integer that
is larger than or equal to x.
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Proof of Theorem 3.1: By definition of the security value
V̄ (A1), we have that

V̄ (A1) = min
y∈Sm1

max
z∈Sn1

y′Γ′1AΠ1z

= min
y∈Sm1

max
j∈{1,...,n1}

y′Γ′1AΠ1ej(n1)

= min
θ∈Θ

{
v : y′Γ′1AΠ1ej(n1) ≤ v, ∀j ∈ {1, . . . , n1}

}
, (7)

where θ := (y1, v), Θ := Sm1
× R, and we use ej(n) to

denote the jth element of the canonical basis of Rn.

Since n1 is an integer multiple of n̄2, i.e., n1 = Kn̄2

with K =
⌈
m1+1
δ − 1

⌉
, we can use the Kn̄2 columns of

Π1 ∈ BN×Kn̄2 to construct K independent and identically
distributed (i.i.d.) matrices ∆1,∆2, . . . ,∆K ∈ BN×n̄2 . For
an arbitrary realization of the matrix Γ1 ∈ BM×m1 , which
is independent of the ∆i by Assumption 2.1, let us define
the function fΓ1

: Θ× BN×n̄2 → R by

fΓ1
(θ,∆) = max

j∈{1,...,n̄2}
y′1Γ′1A∆ej(n̄2)− v. (8)

We can then rewrite (7) as

V̄ (A1) = min
θ∈Θ

{
v : fΓ1

(θ,∆i) ≤ 0, ∀i ∈ {1, . . . ,K}
}

(9)

and conclude from (Campi and Calafiore, 2009, Propo-
sition 3) that the (conditional) probability that another
matrix ∆ sampled independently from the same distribu-
tion as the ∆i satisfies the constraint fΓ1(θ∗,∆) ≤ 0 can
be lower-bounded as follows:

PΠ1,∆

(
fΓ1

(θ∗,∆) ≤ 0 | Γ1

)
≥ K −m1

K + 1
≥ 1− δ, (10)

where θ∗ denotes the value in Θ that achieves the mini-
mum in (9) and the second inequality is a consequence of
(5). Since the minimum in (9) is achieved for the sam-
pled security policy/value θ∗ = (y∗1 , V̄ (A1)), we can use
the definition (8) of fΓ1 to re-write (10) as

PΠ1,∆

(
y∗1
′Γ′1A∆ej(n̄2) ≤ V̄ (A1),

∀j ∈ {1, . . . , n̄2} | Γ1

)
≥ 1− δ.

Since n2 ≤ n̄2, we further conclude that

PΠ1,∆

(
y∗1
′Γ′1A∆ej(n2) ≤ V̄ (A1),

∀j ∈ {1, . . . , n2} | Γ1

)
≥ 1− δ.

Under Assumption 2.1, when the columns of Π1 and Π2

are identically distributed, the matrix consisting of the
first n2 columns of ∆ can be viewed as the matrix Π2 and
the inequality above implies that

PΠ1,Π2

(
y∗1
′Γ′1AΠ2ej(n2) ≤ V̄ (A1),

∀j ∈ {1, . . . , n2} | Γ1

)
≥ 1− δ.

Since

y∗1
′Γ′1AΠ2ej(n2) ≤ V̄ (A1), ∀j ∈ {1, . . . , n2} ⇒

⇒ y∗1
′Γ′1AΠ2z ≤ V̄ (A1), ∀z ∈ Sn2 ,

we conclude that

PΠ1,Π2

(
y∗1
′Γ′1AΠ2z

∗
2 ≤ V̄ (A1) | Γ1

)
≥ 1− δ.

We have shown that this bound holds for an arbitrary
realization of Γ1, therefore it also holds for the uncondi-
tional probability, which shows that the SSP Algorithm is
(ε = 0)-secure for P1 with confidence 1 − δ according to
(3).

If instead of using (Campi and Calafiore, 2009, Propo-
sition 3) and (5) to obtain (10), we use (Alamo et al., 2010,
Theorem 4) and (6), we obtain instead that

P∆

(
fΓ1

(θ∗,∆) ≤ 0 | Γ1, θ
∗) ≥ 1− δ, (11)

with probability larger than 1 − β, where the confidence
level 1 − β refers to the extraction of Π1 = [∆1, . . . ,∆K ]
that defines θ∗ (given Γ1). The proof can now proceed ex-
actly as before, but with (10) replaced by (11), which now
involves a probability conditioned to θ∗ = (y∗, V̄ (A1)).
This shows that if n1 satisfies (6), then with probability
larger than 1−β, the policy y∗ with value V̄ (A1) is (ε = 0)-
secure for P1 with confidence 1− δ.

3.2. Pure Sampled Security Policy

Suppose that P1 restricts herself to use pure policies in
Step 2 of the SSP Algorithm 1. If we let ei(m1) denote
the ith element of the canonical basis of Rm1 , then Step 2
becomes:

2: P1 computes the pure security value V̄pure(A1):

V̄pure(A1) = max
z∈Sn1

e′i∗(m1)A1z

= min
i∈{1,...,m1}

max
z∈Sn1

e′i(m1)A1z,

and the corresponding pure security policy y∗1 for A1:

y∗1 = ei∗(m1).

We call V̄pure(A1) P1’s pure sampled security value.
When multiple pure security policies y∗1 exist, P1 can
pick any of them.

A bound similar to (6) can be established for the resulting
pure SSP Algorithm, but the number of columns n1 that
P1 needs to sample can often be much smaller. Note that
the bound still holds for any policy z∗ for player P2 of the
form (1), pure or mixed.

Theorem 3.3 (Pure SSP Algorithm) Suppose that As-
sumption 2.1 holds and that Π1 ∈ BN×n1 and Π2 ∈ BN×n2
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have identically distributed columns. Suppose that we se-
lect

n1 =

⌈
1

δ

(
ln
(
m1 ·#(Γ′1A)

)
+ ln

1

β

)⌉
n̄2, (12)

for β, δ ∈ (0, 1) and n̄2 ≥ n2, where #(Γ′1A) denotes the
total number of distinct values that the entries of Γ′1A can
take. Then, with probability 1 − β, the pure SSP Algo-
rithm generates a pure sampled security policy y∗ with
value V̄pure(A1) that is (ε = 0)-secure for P1 with confi-
dence 1− δ. �

In several matrix games the number of distinct values
that entries of A can take is small and therefore #(Γ′1A)
is small. This occurs, e.g., in win-lose-tie games. For
such games, (12) provides significant computational gains
with respect to (6) because the bound in (12) grows with
the logarithm of m1, whereas the one in (6) grows lin-
early with m1. Even if the matrix A can have many dis-
tinct values, significant computational savings are possible
since #(Γ′1A) ≤ m1N and hence, at worse, (12) still only
grows with the logarithm of m2

1N . The price to pay for
these computational savings is that the pure security level
V̄pure(A1) could be higher than the value V̄ (A1) obtained
with mixed policies.

The proof of Theorem 3.3 is conceptually similar to the
second part of the proof of Theorem 3.1, with the main dif-
ference being that the policy selection involves optimizing
over a finite set of cardinality #(Γ′1A), and, hence, we can
use the bounds in (Alamo et al., 2010, Theorem 3) instead
of those in (Alamo et al., 2010, Theorem 4).

Proof of Theorem 3.3: Let ek(n) denote the kth element
of the canonical basis of Rn. By the definition of the pure
security value V̄pure(A1), we have that

V̄pure(A1) = min
i∈{1,...,m1}

max
z∈Sn1

e′i(m1)Γ′1AΠ1z

= min
i∈{1,...,m1}

max
j∈{1,...,n1}

e′i(m1)Γ′1AΠ1ej(n1)

= min
θ∈Θ

{
v : e′i(m1)Γ′1AΠ1ej(n1) ≤ v, ∀j ∈ {1, . . . , n1}

}
,

(13)

where θ := (ei(m1), v),

Θ := {e1(m1), e2(m1), . . . , em1(m1)} × {Γ′1A},

and {Γ′1A} denotes the set of all distinct values that the
entries of Γ′1A can take. The set Θ thus have m1 ·#(Γ′1A)
distinct elements.

Since n1 is an integer multiple of n̄2, i.e., n1 = Kn̄2

with K =
⌈

1
δ ln

m1·#(Γ′1A)
β

⌉
, we can use the Kn̄2 columns

of Π1 ∈ BN×Kn̄2 to constructK i.i.d. matrices ∆1,∆2, . . . ,
∆K ∈ BN×n̄2 . For an arbitrary realization of the matrix
Γ1 ∈ BM×m1 , which is independent of the ∆i by Assump-
tion 2.1, let us define the function gΓ1 : Θ × BN×n̄2 → R

by

gΓ1
(θ,∆) =

0, max
j∈{1,...,n̄2}

e′i(m1)Γ′1A∆ej(n̄2)− v ≤ 0,

1, otherwise,

We can then rewrite (13) as

V̄pure(A1) = min
θ∈Θ

{
v :

K∑
k=1

gΓ1
(θ,∆i) ≤ 0

}
, (14)

and conclude from (Alamo et al., 2010, Theorem 3) that
the (conditional) probability that another matrix ∆ sam-
pled independently from the same distribution as the ∆i

satisfies the constraint gΓ1(θ∗,∆) = 0, where θ∗ denotes
the value in Θ that achieves the minimum in (14), can be
lower-bounded by

P∆

(
gΓ1

(θ∗,∆) = 0 | Γ1, θ
∗) ≥ 1− δ, (15)

with probability larger than 1 − β, where the confidence
level 1 − β refers to the extraction of Π1 = [∆1, . . . ,∆K ]
that defines θ∗ (given Γ1). Since the minimum in (14)
is achieved for the sampled security policy/value θ∗ =
(y∗1 , V̄pure(A1)), we can use the definition of gΓ1

to re-write
(15) as

P∆

(
y∗1
′Γ′1A∆ej(n̄2) ≤ V̄pure(A1), ∀j ∈ {1, . . . , n̄2}

| Γ1, y
∗
1 , V̄pure(A1)

)
≥ 1− δ.

Since n2 ≤ n̄2, we further conclude that

P∆

(
y∗1
′Γ′1A∆ej(n2) ≤ V̄pure(A1), ∀j ∈ {1, . . . , n2}

| Γ1, y
∗
1 , V̄pure(A1)

)
≥ 1− δ.

Under Assumption 2.1, when the columns of Π1 and Π2

are identically distributed, the matrix consisting of the
first n2 columns of ∆ can be viewed as the matrix Π2 and
the inequality above implies that

PΠ2

(
y∗1
′Γ′1AΠ2ej(n2) ≤ V̄pure(A1), ∀j ∈ {1, . . . , n2}

| Γ1, y
∗
1 , V̄pure(A1)

)
≥ 1− δ.

Since

y∗1
′Γ′1AΠ2ej(n2) ≤ V̄pure(A1), ∀j ∈ {1, . . . , n2} ⇒

⇒ y∗1
′Γ′1AΠ2z ≤ V̄pure(A1), ∀z ∈ Sn2 ,

we conclude that

PΠ2

(
y∗1
′Γ′1AΠ2z

∗
2 ≤ V̄pure(A1) | Γ1, y

∗
1 , V̄pure(A1)) ≥ 1− δ.

This shows that, with probability larger than 1 − β, the
sampled pure policy y∗ := Γ1y

∗
1 with with value V̄pure(A1)

is (ε = 0)-secure for P1 with confidence 1− δ.
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Remark 3.4 The bound for the pure SSP Algorithm cor-
responding to (5) in Theorem 3.1 would be

n1 =

⌈
m1 ·#(Γ′1A)

δ
− 1

⌉
n̄2,

which can be obtained by first deriving the single level of
probability version of the bounds in (Alamo et al., 2010,
Theorem 3), following similar steps as in (Campi and Calafiore,
2009, Proposition 3). Given that this bound is worse than
(5), there is no computational advantage for player P1

in considering pure rather than mixed policies. Conse-
quently, this result is not included in Theorem 3.3. �

4. Mismatch in the Sampling Distributions

We now investigate the effect of a mismatch between
the distribution that P1 uses to select the columns of the
policy-selection matrix Π1 used in the SSP Algorithm of
Section 3 and the distribution that P2 uses to select the
columns of the policy-selection matrix Π2 that she uses to
determine the policy z∗ in (1).

We pursue two approaches: The first one is based on
a characterization of the mismatch between distributions
using the Prohorov metric and provides bounds that are
independent of the game matrix A. The second approach
provides a novel characterization of the mismatch between
the two distributions that can take the matrix A into con-
sideration. The proofs for the results in this section are
deferred to the Appendix to facilitate the presentation.

4.1. Prohorov Metric-Based Approach

For a given integer k, the distributions used to se-
lect the columns of Π1 and Π2 can be used to construct
two measures mk and m̃k, respectively, for the column-
selection matrices taking values in BN×k with i.i.d. columns.
Using the discrete metric

d(x1, x2) =

{
1, x1 6= x2,

0, x1 = x2,
∀x1, x2 ∈ BN×k, (16)

we can regard BN×k as a metric space, for which the Pro-
horov metric between mk and m̃k is simply given by the
total variation metric

π(mk, m̃k) = sup
B∈F
|mk(B)− m̃k(B)|, (17)

where F denotes the Borel sigma-algebra on BN×k. The
following theorem is based on the results for the ambigu-
ous chance constrained problems in Erdoǧan and Iyengar
(2006) and should be viewed as a generalization of the
bound in (6) Theorem 3.1 for the case of mismatched dis-
tributions.

Theorem 4.1 (Matrix-independent mismatch) Suppose
that Assumption 2.1 holds, that

π
(
mn̄2 , m̃n̄2

)
≤ ρ < 1

for some n̄2 ≥ n2, and that we select

n1 =
⌈
2(m1 + 1) +

2

δ − ρ
ln

1

β
+

2(m1 + 1)

δ − ρ
ln

2

δ − ρ

⌉
n̄2

(18)

for β ∈ (0, 1), δ ∈ (ρ, 1). Then, with probability larger
than 1−β, the SSP Algorithm generates a sampled security
policy y∗ with value V̄ (A1) that is (ε = 0)-secure for P1

with confidence 1− δ. �

In the spirit of Theorem 3.1, the bound (18) is com-
pletely independent of the matrix game A. However, this
result has the limitation that it is applicable only for confi-
dence levels δ > ρ and therefore does not permit confidence
levels larger than 1− ρ.

4.2. Mismatch Factor-Based Approach

Our second approach to characterize the impact of a
mismatch between the sampling distributions relies on gen-
eralizations of the bounds of the scenario approach to
convex optimization in Campi and Calafiore (2009) and
Alamo et al. (2010) that were instrumental to the proof
of Theorem 3.1. We start by presenting these generaliza-
tions, which are useful beyond the context of the problem
considered here.

4.2.1. Scenario Optimization

Consider a sequence of K i.i.d. random variables ∆1,
∆2, . . . , ∆K taking values in a set D. These random
variables are used to specify a set of K constraints in the
following convex optimization problem:3

θ∗ = arg min
θ∈Θ

{
c′θ : f(θ,∆i) ≤ 0, ∀i ∈ {1, . . . ,K}

}
, (19)

where c ∈ Rnθ and the constraint-defining function f :
Θ ×D → R is convex with respect to the first argument,
for each fixed value of D, and Θ is a convex subset of Rnθ .

The results that follow provide bounds on the proba-
bility that an additional independent random variable ∆̄,
also taking values in D but with a different distribution,
satisfies the following (somewhat relaxed) version of the
constraint that appears in (19) for the optimal θ∗:

f(θ∗, ∆̄) ≤ ε,

for some ε ≥ 0. (Campi and Calafiore, 2009, Proposition 3)
and (Alamo et al., 2010, Theorem 4) provide such bounds
when ∆i and ∆̄ have the same distribution and ε = 0.
Denoting by m and m̃ the measures associated with the
distributions of the ∆i and ∆̄, respectively, we define the
mismatch factor between m and m̃ by

µf (ε) := inf
µ∈R

{
µ : m̃

(
f(θ, ∆̄) > ε

)
≤ µm

(
f(θ,∆) > 0

)
,

∀θ ∈ Θ
}

(20)

3In case of several possible multiple minima, the one with the
smallest Euclidean norm should be selected.

8



When m = m̃, we have µf (ε) ≤ 1, with equality when
ε = 0. However, when the distributions do not match,
µf (ε) can be arbitrarily large. As the name indicates, the
mismatch factor µf (ε) can be viewed as a measure of how
much the distributions of ∆ and ∆̄ differ. Aside from
not being a metric, it differs more fundamentally from the
Prohorov metric (17) in that (i) (20) only regards the dis-
crepancy between values of the measures for “violation”
events of the type f(θ, ∆̄) > ε; (ii) it considers a kind of
multiplicative uncertainty in the probabilities (instead of
differences); and (iii) it allows for the “relaxation” param-
eter ε > 0 that can bring µf (ε) down if we are willing to
allow f(θ, ∆̄) to grow as large as ε > 0. As we shall see
shortly, smaller values of µf (ε) lead to smaller probabilities
of violation.

The following two results generalize (Campi and Calafiore,
2009, Proposition 3) and (Alamo et al., 2010, Theorem 4),
respectively, for mismatched distributions and ε > 0.

Lemma 4.2 For every ε ≥ 0,

P∆̄,∆1,...,∆K

(
f
(
θ∗, ∆̄

)
≤ ε
)
≥ 1− µf (ε)nθ

K + 1
. (21)

�

Lemma 4.3 Given ε > 0, δ ∈ (0, 1), β ∈ (0, 1), and

K ≥
⌈µf (ε)

δ

(
(nθ − 1) +

√
2(nθ − 1) ln

1

β
+ ln

1

β

)⌉
,

we have that

P∆̄

(
f(θ∗, ∆̄) ≤ ε | θ∗

)
≥ 1− δ, (22)

with probability4 larger than 1− β. �

4.2.2. Probabilistic Guarantees

Lemmas 4.2 and 4.3 allow us to generalize Theorem 3.1
for the case of mismatched distributions. This generaliza-
tion involves a family of functions fΓ : Θ × BN×n̄2 → R,
with Θ := (Sm1

,R) and n̄2 an integer larger than n2, pa-
rameterized by the matrix Γ ∈ BM×m1 and defined by

fΓ(θ,∆) = max
j∈{1,...,n̄2}

y′1Γ′A∆ej(n̄2)− v. (23)

We shall use these functions to compute the mismatch fac-
tor between the measures mk and m̃k for column-selection
matrices taking values in BN×k with i.i.d. columns, con-
structed using the distributions used to select the columns
of Π1 and Π2, respectively.

Theorem 4.4 (Matrix-dependent mismatch) Suppose
that Assumption 2.1 holds, and that

m̃n̄2
(
f(θ, ∆̄) > ε

)
≤µmn̄2

(
f(θ,∆) > 0

)
,

∀θ ∈ Θ,∀Γ ∈ BM×m1 , (24)

4The confidence level 1− β refers to the extraction of ∆1, . . .∆K

that defines θ∗.

for some µ ∈ (0,∞), n̄2 ≥ n2 and ε ≥ 0. The SSP Algo-
rithm is ε-secure for P1 with confidence 1− δ, δ ∈ (0, 1) as
long as

n1 =
⌈µ
δ

(m1 + 1)− 1
⌉
n̄2. (25)

Additionally, suppose that we increase n1 to satisfy

n1 =
⌈µ
δ

(
m1 +

√
2m1 ln

1

β
+ ln

1

β

)⌉
n̄2 (26)

for some β ∈ (0, 1). Then, with probability larger than
1 − β, the SSP Algorithm generates a sampled security
policy y∗ with value V̄ (A1) that is ε-secure for P1 with
confidence 1− δ. �

Theorem 4.4 shows that, even when there is a mis-
match in the distributions, it is still possible to achieve
high-confidence security policies. However, the number of
samples required by the SSP algorithm essentially needs to
be multiplied by µ. Alternatively, if one uses the number
of samples dictated by Theorem 3.1 and there is mismatch
in the distributions, then one obtains security with confi-
dence 1− δ/µ (instead of 1− δ) since one can go from the
formulas in Theorem 3.1 to the ones in Theorem 4.4 by
simply replacing 1/δ by µ/δ.

Remark 4.5 (µ < 1) For values of ε > 0 and matched (or
closely matched distributions), the mismatch factors may
actually be smaller than 1. Theorem 4.4 is still applicable
and essentially states that if one is willing to accept some
ε > 0, one may get 1− δ confidence with a smaller number
of samples than what was required by Theorem 3.1. �

Remark 4.6 (Matrix-independent results) If we choose
µ to satisfy

m̃n̄2(B) ≤ µmn̄2(B), ∀B ∈ F ,

where F denotes the Borel sigma-algebra on BN×n̄2 , then
(24) holds with ε = 0 for every matrix game and we ob-
tain a game independent result. The price is, of course,
that such µ does not explore the structure of the particu-
lar game and may therefore be much larger than what is
needed. In fact, we shall see in the next section that the
structure of the matrix A may dictate that some mismatch
should not lead to a degradation in the confidence levels.
This is the case when A exhibits some form of policy dom-
ination. �

4.2.3. Matrix games with dominated policies

Consider a situation when P1 knows of some particu-
larly good policies that P2 may apply to play the game.
For example, suppose that the entries in some column
cbetter-for-P2 of A are all element-wise larger than those
in some other column cworse-for-P2 . In this case, it turns
out that P1 can increase the probability of sampling the
column cbetter-for-P2

at the expense of decreasing the prob-
ability of selecting cworse-for-P2

and this mismatch does not

9



require a larger bound on the number of columns to sam-
ple. This observation is formalized in the remaining of this
section.

We begin with the following notion of dominance.

Definition 1 (ε-Dominance) Given an M × N matrix
A, the vector d∗ ∈ BN×1 is said to be ε-dominated by the
vector d ∈ BN×1 for some ε ≥ 0 if

ei(M)′Ad∗ ≤ ei(M)′Ad+ ε, ∀i ∈ {1, . . . ,M},

where ei(M) denotes the ith element of the canonical basis
of RM .

With ε = 0, the above definition becomes identical to
that of domination between pure policies in matrix games
[cf. Basar and Olsder (1999)]. Next, we introduce the no-
tion of two sampling distributions being perturbed.

Definition 2 (Perturbed sampling) Given two distinct
vectors d, d∗ ∈ BN×1 and two probability measures m, m̃
on BN×1, we say that m is a perturbation of m̃ with re-
spect to the pair (d, d∗) if

1. m differs from m̃ only over {d, d∗} ⊆ BN×1, i.e.,

m̃(ej(N)) = m(ej(N)),

for all j such that ej(N) 6∈ {d∗, d}, where ej(N) de-
notes the jth element of the canonical basis of RN ;

2. the probability of extracting d∗ according to m is
smaller than according to m̃, i.e.,

m(d∗) ≤ m̃(d∗).

We now present the main result of this subsection.

Theorem 4.7 (Domination) Given the game matrix A,
suppose that for some ε ≥ 0, there exist vectors d∗, d ∈
BN×1 such that d∗ is ε-dominated by d. Suppose that As-
sumption 2.1 holds and that the columns of the matrices
Π1 and Π2 are sampled according to distributions m and
m̃, respectively. If m is a perturbation of m̃ with respect
to (d, d∗), then Theorem 4.4 holds with µ = 1.

This result shows that even when P1 extracts with low
probability (possibly equal to zero) the column d∗, the
bounds of Section 3 hold.

5. A-posteriori assessment of a given policy

Suppose now that P1 obtained a policy y∗ using either
a randomized or a deterministic algorithm. In this section,
we are interested in computing a high-confidence security
level value V̄ (y∗) for this policy, when y∗ is played against
P2’s policy z∗ in (1). The sampled security-value (SSV)
Algorithm 2 addresses this question.

Algorithm 2 [SSV Algorithm]

1: P1 randomly selects k1 columns of A, which corre-
sponds to the selection of a random matrix Π̄1 ∈
BN×k1 .

2: P1 computes

V̄ (y∗) = max
j∈{1,...,k1}

y∗′AΠ̄1ej(k1), (27)

where ej(k1) denotes the jth element of the canonical
basis of Rk1 . We call V̄ (y∗) P1’s a-posteriori sampled
security value.

We use the qualifier “a-posteriori” for the sampled se-
curity value V̄ (y∗) to emphasize that this value is com-
puted after a particular security policy y∗ has been ob-
tained. We say that the SSV algorithm is ε-secure for
player P1’s policy y∗ with confidence 1− δ if

PΠ̄1,Π2

(
y∗′Az∗ ≤ V̄ (y∗) + ε | y∗

)
≥ 1− δ. (28)

This condition states that the probability that the out-
come of the game will violate P1’s a-posteriori sampled
security value V̄ (y∗) by more than ε is smaller than δ.
As stated, this definition requires the bound to hold re-
gardless of the algorithms used to generate y∗ and z∗. In
particular, we leave open the possibility that both policies
could have been computed using the SSP algorithm, per-
haps with confidence levels different than δ. In fact, one
could imagine P1 computing y∗ using the SSP algorithm
for a confidence level δSSP and then studying the security
of such policy for tighter confidence levels δ using the SSV
algorithm. Thus, the SSV algorithm combined with the
SSP algorithm can be viewed as a heuristics for designing
high-confidence security policies.

Also for the SSV, we can define a stronger notion of
security that guarantees the inherent security of the a-
posteriori sampled security value V̄ (y∗), when P1 plays y∗

repeatedly against a sequence of policies z∗ for P2, each
obtained by a distinct random exploration of her policy
space. We say that the a-posteriori sampled security value
V̄ (y∗) is ε-secure for player P1’s policy y∗ with confidence
1− δ if

PΠ2

(
y∗′Az∗ ≤ V̄ (y∗) + ε | y∗, V̄ (y∗)

)
. (29)

As for the SSP Algorithm 1, we assume that the dis-
tributions of the column extraction matrices Π̄1 used by
player P1 in the SSV Algorithm 2 and Π2 used by player
P2 in her randomized policy exploration are independent.

Assumption 5.1 (Independence) The random matrix
Π̄1 in the SSV Algorithm 2 and matrix Π2 involved in
player P2 randomized exploration are statistically indepen-
dent and each of them has independent and identically dis-
tributed columns. �

We now provide a bound on the number of samples k1

used in the SSV Algorithm to guarantee ε-security. Akin
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to Section 3, we restrict our attention to the case when
player P1 uses the same distribution as player P2 to extract
columns of A. Results along the same lines as those shown
in Section 4 for the SSP Algorithm could be obtain for the
SSV Algorithm in the case of mismatched distributions,
but we omit them because they are fundamentally similar.

Theorem 5.1 (SSV Algorithm) Suppose that Assump-
tion 5.1 holds and that Π̄1 ∈ BN×k1 and Π2 ∈ BN×n2

have identically distributed columns. The SSV algorithm
is (ε = 0)-secure for player P1’s policy y∗ with confidence
1− δ, δ ∈ (0, 1) as long as

k1 =
⌈1

δ
− 1
⌉
n̄2, (30)

with n̄2 ≥ n2. Additionally, suppose that we increase k1 to
satisfy

k1 =

⌈
1

δ
ln

1

β

⌉
n̄2, (31)

for some β ∈ (0, 1). Then, with probability 1− β, the SSV
Algorithm generates an a-posteriori sampled security value
V̄ (y∗) that is (ε = 0)-secure for player P1’s policy y∗ with
confidence 1− δ. �

Proof of Theorem 5.1: Defining K :=
⌈

1
δ − 1

⌉
and the

function f̄ : SM × BN×n̄2 → R by

f̄(y,∆) = max
j∈{1,...,n̄2}

y′A∆ej(n̄2), (32)

we can re-write (27) as

V̄ (y∗) = max
i∈{1,...,K}

f̄(y∗,∆i), (33)

where the matrices ∆1,∆2, . . . ,∆K ∈ BN×n̄2 are obtained
by partitioning the Kn̄2 columns of Π̄1 ∈ BN×Kn̄2 into K
i.i.d. matrices.

For any given y∗ (which is independent of the ∆i), we
conclude from (Campi and Calafiore, 2009, Proposition 4)
that the (conditional) probability that another matrix ∆,
sampled independently from the same distribution as the
∆i, satisfies the constraint

f̄(y∗,∆) ≤ V̄ (y∗) := max
i∈{1,...,K}

f̄(y∗,∆i)

can be lower-bounded as follows:

PΠ̄1,∆

(
f̄(y∗,∆) ≤ V̄ (y∗) | y∗

)
≥ K

K + 1
≥ 1− δ, (34)

where the second inequality is a consequence of (30). From
the definition of f̄ , we conclude from (34) that

PΠ̄1,∆(y∗′A∆ej(n̄2) ≤ V̄ (y∗),∀j ∈ {1, . . . , n̄2} | y∗) ≥ 1− δ,

and, since n2 ≤ n̄2, we also have that

PΠ̄1,∆(y∗′A∆ej(n2) ≤ V̄ (y∗),∀j ∈ {1, . . . , n2} | y∗) ≥ 1− δ.

Under Assumption 5.1, when the columns of Π̄1 and Π2

are identically distributed, the matrix consisting of the
first n2 columns of ∆ can be viewed as the matrix Π2 and
the inequality above implies that

PΠ̄1,Π2
(y∗′AΠ2ej(n2) ≤ V̄ (y∗),∀j ∈ {1, . . . , n2}

| y∗) ≥ 1− δ.

Since

y∗′AΠ2ej(n2) ≤ V̄ (y∗), ∀j ∈ {1, . . . , n2} ⇒
⇒ y∗′AΠ2z ≤ V̄ (y∗), ∀z ∈ Sn2 ,

we conclude that

PΠ2,Π̄1

(
y∗′AΠ2z

∗
2 ≤ V̄ (y∗) | y∗

)
≥ 1− δ,

which shows that SSV Algorithm is (ε = 0)-secure with
confidence 1− δ.

If, instead of using (Campi and Calafiore, 2009, Propo-
sition 4) and (30) to obtain (34), we use (Campi and
Garatti, 2008, Theorem 1) and (31), we obtain

P∆

(
f̄(y∗,∆) ≤ V̄ (y∗) | y∗, V̄ (y∗)

)
≥ 1− δ, (35)

with probability larger than 1 − β, where the confidence
level 1 − β refers to the extraction of Π̄1 = [∆1, . . . ,∆K ]
that defines V̄ (y∗). The proof can now proceed exactly
as before, but with (34) replaced by (35), which now in-
volves a probability conditioned to y∗, and V̄ (y∗). This
shows that if k1 satisfies (31), then with probability larger
than 1−β, the security value V̄ (y∗) is (ε = 0)-secure with
confidence 1− δ.

6. Example: Hide-and-seek matrix game

In this section, we apply the SSP and SSV Algorithms
to a classic search problem: Consider a zero-sum game
where P1 hides a non-moving object (treasure) in one of
N points {p1, . . . , pN} ⊂ R2 on the plane and P2 wants
to find the treasure with minimum cost, by traveling from
point to point until she finds it.

The game is played over the set of mixed policies:

• P1 chooses a probability distribution z ∈ SN for the
treasure over the N points, and

• P2 chooses a probability distribution y ∈ SM over
the set R := {rj : j = 1, . . . ,M} of M := N ! routes
that start at P1’s initial position p0 ∈ R2 and go
through all possible permutations of the points.

When P1 chooses to hide the treasure at point pi and
P2 selects route rj , the outcome of the game is equal to
the length of route rj from P1’s initial position p0 to the
point pi where the treasure lies. Namely,

Aij = −
k∗ij∑
k=1

‖rj(k)− rj(k − 1)‖, (36)
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where rj(k) ∈ R2, k ∈ {1, . . . , N} denotes the kth point
in the route rj with rj(0) = p0, and the summation ends
at the index k∗ij for which rj(k

∗
ij) = pi is the point where

the treasure is hidden. The minus sign in (36) is needed
to maintain consistency with the formulation in the first
part of the paper, where P1 is the minimizer. Indeed, P1

hides the treasure to maximize the distance and therefore
to minimize the entries of A.

For a large N , the exact computation of the optimal
mixed strategies is intractable because the size of the ma-
trix A is N×N !. However, the results in this paper lead to
a computational complexity that is independent of the size
of the game, which means that we can provide probabilis-
tic guarantees for games with an arbitrarily large number
of points.

In this particular game, only the player P2 that chooses
paths has a large number of options (M = N !) so we can
assume that both players consider all possible N locations
where P1 can hide the treasure (all rows of A), but ran-
domly select only a small number of paths (columns of
A) to construct their submatrices. However, the player P1

that hides the treasure should respect the bounds provided
by Theorems 3.1 and 5.1 to avoid unpleasant surprises.

In our numerical experiments, we considered N = 10
points distributed uniformly randomly in a square region.
To illustrate the use of the SSP and the SSV Algorithms,
we fixed m1 = N , β = 10−5, and n̄2 = 10 (Figure 1) or
n̄2 = 1000 (Figure 2). To achieve a confidence level of
δ = .01 two approaches are possible:

SSP only: Execute the SSP Algorithm 1 with n1 satis-
fying (6) to obtain a sampled security value and a
sampled security policy with confidence 1−δ = 99%.

SSP+SSV: Execute the SSP Algorithm 1 with a value
for n1 smaller than the one indicated by (6) to ob-
tain a sampled security policy, and then run the SSV
Algorithm 2 with a value of k1 satisfying (31) to ob-
tain an a-posteriori sampled security value with con-
fidence 1− δ = 99%.

While the SSP+SSV option requires solving a smaller sub-
game in the SSP algorithm, and is therefore computation-
ally more attractive, it typically results in a worst sam-
pled security policy and therefore the corresponding se-
curity value is typically worst. However, one can see that
the curves corresponding to the SSP+SSV option are rela-
tively flat, which indicates that significant computational
savings are possible without a significant degradation in
the sampled security level. Note that the security levels
computed using either of the approaches above are ran-
dom variables since they depend on the randomly selected
columns of the matrix A. The plots in Figures 1 and 2
show Monte Carlo estimates of the mean and standard
deviation of these random variables.
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Figure 1: Numerically determined values for the 99% confidence
sampled security value (δ = .1). The solid line (mean) and dashed
lines (plus/minus one standard deviation) were obtained using the
SSP+SSV approach, using different values of n1 in the SSP Algo-
rithm (with n1 in the x-axis) and a value for k1 in the SSV Algo-
rithm satisfying (31). The star ’*’ was obtained using the SSP-only
approach, using the value for n1 satisfying (6). The remaining pa-
rameters used are as follows: the number of points is N = 10, the
side length of the square region is 1 unit, m1 = n̄2 = 10, β = 10−5,
and the columns were drawn uniformly randomly. Each mean and
standard deviation was estimated using 300 Monte Carlo samples.
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Figure 2: Plot similar to that in Figure 1, with the exception that we
took n̄2 = 1000. Each mean and standard deviation was estimated
using 300 Monte Carlo samples.

7. Conclusions and Future Directions

We addressed the solution of large zero-sum matrix
games using randomized techniques. We provided a proce-
dure based on randomized sampling by which a player can
construct policies that are security with high-probability
against an adversary engaged in a randomized exploration
of the games characterized by large decision trees. We
proposed a new probabilistic notion of security policy and
level and derive bounds on the sample sizes that guaran-
tees the discovery of a security policy with high probabil-
ity. The bounds provided consider both the case where the
two players sample policies using the same and different
distributions. The applicability of the results is illustrated
with a combinatorial hide-and-seek game.
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This work suggests a number of future directions of re-
search. One promising direction is to explore incremental
opmization techniques to reduce the bound on the size of
the submatrices and/or the number of entries of the sub-
matrices that are needed to compute the sampled security
policies. Another direction for future research regards the
choice of the distributions used to sample policies to mini-
mize the sample-size bounds and maximize the probability
of finding adequate policies. In the context of the example
in Section 6, we are currently exploring closed-loop ver-
sions of the hide-and-seek game that involve the searcher
taking measurements regarding the location of the treasure
as she moves from point to point [cf. Borri et al. (2011)].
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Appendix

In this Appendix, we provide the proofs of the results
in Section 4.

Proof of Theorem 4.1: Following the same steps as in the
proof of Theorem 3.1, we can conclude that the sampled
security value V̄ (A1) can be expressed as:

V̄ (A1) = min
θ∈Θ

{
v : fΓ1

(θ,∆i) ≤ 0 ∀i ∈ {1, . . . ,K}
}
, (37)
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where θ = (y, v) ∈ Sm1 × R, fΓ1 is defined in (8), and

K :=
⌈
2(m1 + 1) +

2

δ − ρ
ln

1

β
+

2(m1 + 1)

δ − ρ
ln

2

δ − ρ

⌉
,

(38)

and ∆1,∆2, . . . ,∆K are i.i.d. matrices obtained from the
columns of Π1 ∈ BN×Kn̄2 with probability distribution
mn̄2 . Since ρ ∈ [0, 1),

∆ = ∆i ⇔ d(∆,∆i) ≤ ρ, ∀∆,∆i ∈ BN×n̄2

where d denotes the discrete metric (16). Therefore (37)
is equivalent to

V̄ (A1) = min
θ∈Θ

{
v : fΓ1

(θ,∆) ≤ 0, ∀∆ such that

d(∆,∆i) ≤ ρ for some i ∈ {1, . . . ,K}
}
. (39)

For an arbitrary realization of the matrix Γ1 (which is in-
dependent of the ∆i), we can conclude from (Erdoǧan and
Iyengar, 2006, Theorem 6) that, for any random variable
∆ with measure m̃n̄2 , we have that

m̃n̄2
(
fΓ1

(θ∗,∆) ≤ 0 | Γ1, θ
∗) ≥ 1− δ, (40)

with probability at least

1−
( eK

m1 + 1

)m1+1

e−(δ−ρ)(K−(m1+1)), (41)

where θ∗ denotes the value in Θ that achieves the minimum
in (39). Here, the confidence refers to the extraction of ma-
trix Π1 = [∆1, . . . ,∆K ] that defines θ∗ (given Γ1). Since
the minimum in (39) is achieved for θ∗ = (y∗1 , V̄ (A1)), we
can use the definition (8) of fΓ1

to re-write (40) as

m̃n̄2
(
y∗1
′Γ′1A∆ej(n̄2) ≤ V̄ (A1), ∀j ∈ {1, . . . , n̄2}

| Γ1, y
∗
1 , V̄ (A1)

)
≥ 1− δ.

Under Assumption 2.1, the matrix consisting of the first
n2 columns of ∆ can be viewed as the matrix Π2 and the
inequality above implies that

PΠ2

(
y∗1
′Γ′1AΠ2ej(n2) ≤ V̄ (A1), ∀j ∈ {1, . . . , n2}

| Γ1, y
∗
1 , V̄ (A1)

)
≥ 1− δ.

Since

y∗1
′Γ′1AΠ2ej(n2) ≤ V̄ (A1), ∀j ∈ {1, . . . , n2} ⇒

⇒ y∗1
′Γ′1AΠ2z ≤ V̄ (A1), ∀z ∈ Sn2 ,

we conclude that

PΓ2,Π2

(
y∗1
′Γ′1AΠ2z

∗
2 ≤ V̄ (A1) | Γ1, y

∗
1 , V̄ (A1)

)
≥ 1− δ.

Since we have shown that this bound holds for an arbitrary
realization of Γ1, it also holds for the unconditional proba-
bility. This shows that, with probability at least (41), the
policy y∗ with value V̄ (A1) is (ε = 0)-secure for P1 with

confidence 1 − δ. To conclude the proof, we only need to
show that (38) implies that the probability (41) is larger
than 1 − β. Defining, m := m1 + 1 and δ̄ := δ − ρ, we
conclude from (38) that

K

2
≥ m− 1

δ̄
lnβ +

m

δ̄
ln

2

δ̄
,

which implies that

K ≥ m− 1

δ̄
lnβ +

m

δ̄
ln

2

δ̄
+
K

2

= m− 1

δ̄
lnβ +

m

δ̄

(
ln

2

δ̄
+
δ̄K

2m

)
≥ m− 1

δ̄
lnβ +

m

δ̄

(
ln

2

δ̄
+ 1− ln

2m

δ̄K

)
= m− 1

δ̄
lnβ +

m

δ̄
ln
eK

m
,

where the second inequality is a consequence of the fact
that 1

x ≥ 1− lnx, ∀x > 0. Therefore

lnβ ≥ −δ̄(K −m) +m ln
eK

m
⇔ β ≥

(eK

m

)m
e−δ̄(K−m),

which confirms that (41) is larger than 1− β.

Proof of Lemma 4.2: Given that

P∆̄,∆1,...,∆K

(
f(θ∗, ∆̄) > ε

)
= E∆1,...,∆K

[
P∆̄

(
f(θ∗, ∆̄) > ε

∣∣θ∗)],
we can use (20) to conclude that

P∆̄,∆1,...,∆K

(
f(θ∗, ∆̄) > ε

)
≤ µE∆1,...,∆K

[
P∆

(
f(θ∗,∆) > 0

∣∣θ∗)]
≤ µnθ
K + 1

,

where the second inequality follows from
(Campi and Calafiore, 2009, Proposition 3).

Proof of Lemma 4.3: By (Alamo et al., 2010, Theorem 4),
if we fix an arbitrary δ̄ ∈ (0, 1) and K satisfies

K ≥
⌈1

δ̄

(
ln

1

β
+ (nθ − 1) +

√
2(nθ − 1) ln

1

β

)⌉
,

then, with probability 5 larger than 1− β,

P∆

(
f(θ∗,∆) > 0 | θ∗

)
≤ δ̄.

From definition of µf (ε) in (20) it follows that

P∆̄

(
f(θ∗, ∆̄) > ε | θ∗

)
≤ µf (ε) P∆

(
f(θ∗,∆) > 0 | θ∗

)
.

5The confidence level 1− β refers to the extraction of ∆1, . . .∆K

that defines θ∗.
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By combining the last two inequalities, we obtain

P∆̄

(
f(θ∗, ∆̄) ≤ ε | θ∗

)
= 1− P∆̄

(
f(θ∗, ∆̄) > ε | θ∗

)
≥ 1− µf (ε)δ̄,

so that setting δ̄ := δ/µf (ε), the claim is proved.

Proof of Theorem 4.4: Since matrix Π1 has n1 = Kn̄2

columns with K =
⌈
µm1+1

δ − 1
⌉
, following the same steps

as in the proof of Theorem 3.1, we can partition Π1 into
K i.i.d. matrices ∆1,∆2, . . . ,∆K , each in the set BN×n̄2 ,
and express the security value V̄ (A1) as:

V̄ (A1) = min
θ∈Θ

{
v : fΓ1(θ,∆i) ≤ 0 ∀i ∈ {1, . . . ,K}

}
, (42)

with θ = (y, v) ∈ Θ = Sm1 × R, and fΓ defined in (23).

Let the minimum in (42) be achieved for some θ∗ =
(y∗1 , V̄ (A1)). Matrices ∆i are random variables distributed
according to P∆ = mn̄2 over BN×n̄2 . For any given real-
ization of the matrix Γ1 (which is independent of the ∆i

by Assumption 2.1) we conclude from Lemma 4.2 and the
definition of µ in (24), that the (conditional) probability
that another matrix ∆̄, sampled independently of the ∆i

according to probability P∆̄ = m̃n̄2 over BN×n̄2 , satisfies

PΠ1,∆̄

(
fΓ1

(θ∗, ∆̄) ≤ ε | Γ1

)
≥ K −m1

K + 1
≥ 1− δ, (43)

where the second inequality is a consequence of (25). Us-
ing the definition of fΓ1

from (8) and θ∗, we can re-write
(43) as

PΠ1,∆̄

(
y∗1
′Γ′1A∆̄ej(n̄2) ≤ V̄ (A1) + ε,

∀j ∈ {1, . . . , n̄2} | Γ1

)
≥ 1− δ.

Since n2 ≤ n̄2, we further conclude that

PΠ1,∆̄

(
y∗1
′Γ′1A∆̄ej(n2) ≤ V̄ (A1) + ε,

∀j ∈ {1, . . . , n2} | Γ1

)
≥ 1− δ.

Under Assumption 2.1, the matrix consisting of the first
n2 columns of ∆̄ can be viewed as the matrix Π2 and we
conclude from the inequality above that

PΠ1,Π2

(
y∗1
′Γ′1AΠ2ej(n2) ≤ V̄ (y∗),

∀j ∈ {1, . . . , n2} | Γ1

)
≥ 1− δ.

Since

y∗1
′Γ′1AΠ2ej(n2) ≤ V̄ (y∗), ∀j ∈ {1, . . . , n2} ⇒

⇒ y∗1
′Γ′1AΠ2z ≤ V̄ (y∗), ∀z ∈ Sn2 ,

we conclude that

PΠ1,Γ2,Π2

(
y∗1
′Γ′1AΠ2z

∗
2 ≤ V̄ (y∗) | Γ1

)
≥ 1− δ.

Since we have shown that this bound holds for an arbitrary
realization of Γ1, it also holds for the unconditional prob-
ability, which shows that the SSP algorithm is ε-secure for
P1 with confidence 1− δ.

If instead of applying Lemma 4.2, we apply Lemma 4.3,
then using (26), we conclude that

P∆̄

(
fΓ1(θ∗, ∆̄) ≤ ε | Γ1, θ

∗) ≥ 1− δ

with probability larger than 1 − β, where the confidence
level 1 − β refers to the extraction of Π1 = [∆1, . . . ,∆K ]
that defines θ∗ (given Γ1). The proof can now proceed
exactly as before, but with (43) replaced by the inequality
above, which now involves a probability conditioned to y∗

and V̄ (A1). This shows that, with probability larger than
1 − β, the policy y∗ with value V̄ (A1) is ε-secure for P1

with confidence 1− δ.

Proof of Theorem 4.7: To prove Theorem 4.7, we just need
to show that

P∆̄

(
fΓ(θ, ∆̄) > ε

)
≤ P∆

(
fΓ(θ,∆) > 0

)
, (44)

for any θ ∈ Θ, Γ ∈ BM×m1 , since from this condition we
have that µ = 1 satisfies (24).

Fix θ = (y1, v) ∈ Θ and Γ ∈ BM×m1 . Let us distinguish
between the following two cases:
Case 1) d∗ satisfies

y′1Γ′Ad∗ − v > ε (45)

Case 2) d∗ satisfies

y′1Γ′Ad∗ − v ≤ ε (46)

Starting with Case 1, observe that

P∆

(
fΓ(θ,∆) > 0

)
= 1− P∆

(
fΓ(θ,∆) ≤ 0

)
. (47)

Now, given that the columns of ∆ are extracted indepen-
dently according to m, we have

P∆

(
fΓ(θ,∆) ≤ 0

)
=

∑
{∆=[c1,..., cn̄2

]:fΓ(θ,∆)≤0}

n̄2∏
j=1

m(cj),

where cj ∈ BN×1 denotes the jth column of ∆. Since from
Definition 1 of ε-dominance and equation (45) we obtain

y′1Γ′Ad− v > y′1Γ′Ad∗ − v − ε > 0,

we can conclude that the columns cj , j = 1, . . . , n̄2, of ∆
such that fΓ(θ,∆) = maxj∈{1,...,n̄2} y

′
1Γ′A∆ej(n̄2) − v =

maxj∈{1,...,n̄2} y
′
1Γ′Acj−v ≤ 0 must be different from both

d and d∗. By Definition 2, we then have that m(cj) =
m̃(cj), j = 1, . . . , n̄2, and, hence,

P∆

(
fΓ(θ,∆) ≤ 0

)
=

∑
{∆=[c1,..., cn̄2

]:fΓ(θ,∆)≤0}

n̄2∏
i=1

m̃(ci)

= P∆̄

(
fΓ(θ, ∆̄) ≤ 0

)
.

Now, if we use this in equation (47), we get that

P∆

(
fΓ(θ,∆) > 0

)
= P∆̄

(
fΓ(θ, ∆̄) > 0

)
≥ P∆̄

(
fΓ(θ, ∆̄) > ε

)
,
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i.e., equation (44) holds in Case 1.

Regarding Case 2, we start considering the case when
d satisfies

y′1Γ′Ad− v > ε.

Note that P∆̄

(
fΓ(θ, ∆̄) ≤ ε

)
can be expressed as follows

P∆̄

(
fΓ(θ, ∆̄) ≤ ε

)
=

∑
{∆̄=[c̄1,..., c̄n̄2

]:fΓ(θ,∆̄)≤ε}

n̄2∏
j=1

m̄(c̄j)

Since the columns c̄j , j = 1, . . . , n̄2, of any ∆̄ = [c̄1, . . . , c̄n̄2
]

such that fΓ(θ, ∆̄) = maxj∈{1,...,n̄2} y
′
1Γ′Ac̄j − v ≤ ε must

be different from d and the probability of extracting any
such column according to m̄ is larger than according to m
(see Definition 2), we get

P∆̄

(
fΓ(θ, ∆̄) ≤ ε

)
≥

∑
{∆̄=[c̄1,..., c̄n̄2

]:fΓ(θ,∆̄)≤ε}

n̄2∏
j=1

m(c̄j)

= P∆

(
fΓ(θ,∆) ≤ ε

)
From this it follows that

P∆̄

(
fΓ(θ, ∆̄) > ε

)
= 1− P∆̄

(
fΓ(θ, ∆̄) ≤ ε

)
≤ 1− P∆

(
fΓ(θ,∆) ≤ ε

)
= P∆

(
fΓ(θ,∆) > ε

)
≤ P∆

(
fΓ(θ,∆) > 0

)
,

i.e. equation (44) holds.
We shall consider now the last subcase when d satisfies

y′1Γ′Ad− v ≤ ε. (48)

We start noting that P∆̄

(
fΓ(θ, ∆̄) > ε

)
is the probability

that at least one of the columns, say c̄, of ∆̄ satisfies

y′1Γ′Ac̄− v > ε.

Let

C = {c ∈ BN×1 : y′1Γ′Ac− v > ε}.

Set pC =
∑
c∈C m(c) and p̃C =

∑
c∈C m̃(c). Then,

P∆̄

(
fΓ(θ, ∆̄) > ε

)
= 1− (1− p̃C)n̄2 ,

where (1− p̃C)n̄2 is the probability of all n̄2 independently
extracted columns of ∆̄ not belonging to set C. Similarly,

P∆

(
fΓ(θ,∆) > ε

)
= 1− (1− pC)n̄2 .

Now, since C ∩ {d, d∗} = ∅ (see equations (46) and (48)
and the definition of set C), from Definition 2 it follows
that pC = p̃C , and therefore

P∆̄

(
fΓ(θ, ∆̄) > ε

)
= P∆

(
fΓ(θ,∆) > ε

)
≤ P∆

(
fΓ(θ,∆) > 0

)
.

Given that we have shown that equation (44) holds for
arbitrary values of θ and Γ, the proof is completed.
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