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Abstract

The goal of multi-parametric quadratic programming (mpQP) is to compute analytic solutions to parameter-dependent
constrained optimization problems, e.g., in the context of explicit linear MPC. We propose an improved combinatorial mpQP
algorithm that is based on implicit enumeration of all possible optimal active sets and a simple saturation matrix pruning
criterion which uses geometric properties of the constraint polyhedron for excluding infeasible candidate active sets. In addition,
techniques are presented that allow to reduce the complexity of the discussed algorithm in the presence of symmetric problem
constraints. Performance improvements are discussed for two example problems from the area of explicit linear MPC.
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1 Introduction

Multi-parametric programming (mpP) techniques can
be used to compute explicit solutions to parameter-
dependent constrained optimization problems, e.g., as
they occur in the area of linear model predictive control
(MPC). In this work, we will focus on strictly con-
vex multi-parametric quadratic programming (mpQP)
problems, which are related to linear MPC problems
with a quadratic cost function, i.e., the constrained
finite-horizon LQR problem. In general, the solution
has the form of a piecewise affine function over a poly-
hedral partition of the parameter space into so-called
critical regions, where each region corresponds to a set
of optimal active constraints.

Most of the mpQP algorithms reported in the literature
are based on geometric methods and apply recursive
exploration strategies in order to identify all critical
regions of the explicit solution. In their famous paper,
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[2] proposed a simple algorithm that subdivides the
parameter space into polyhedral regions by reversing
recursively the facet-defining hyperplanes of all previ-
ously identified regions. Unfortunately, this approach
introduces artificial cuts in the parameter space, which
can result in unnecessary and redundant partitioning.
More efficient exploration strategies were presented by
[1], [13], and [14], based on the assumption that for each
facet of a critical region there exists only one neighbor-
ing critical region that is adjacent to this facet. The
parameter space is then explored iteratively by stepping
over all the facets of already identified regions and solv-
ing the mpQP problem for new parameter vectors, or by
examining the type of the facet-defining hyperplanes,
respectively. In [10], the authors proposed an algorithm
that combines the approaches from [2] and [13] in or-
der to handle situations in which this facet-to-facet
property does not hold. Moreover, additional geomet-
ric approaches were proposed by [9] and [8]: in [9], the
authors consider all possible configurations of the con-
straint polyhedron in order to induce a partition of the
input space, while a parametrized polyhedra approach
in the combined (input+parameter) space is used in [8].

Recently, [6] have presented a new combinatorial mpQP
approach that is based on an implicit enumeration of all
possible constraint combinations in form of candidate
active sets. While this combinatorial approach does
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not rely on an explicit geometric exploration strategy
and may have some structural advantages over existing
geometric algorithms, one disadvantage is the combina-
torial complexity with respect to the number of possible
candidate active sets.

In this paper, we propose an improved combinatorial
mpQP algorithm that uses some of the underlying ge-
ometric properties of the involved problem constraints
in order to increase the efficiency of the combinatorial
active set enumeration. The algorithm is based on a
new pruning mechanism that allows to detect infeasi-
ble combinations of active constraints by a simple row
sum check on the so-called saturation matrix of the
non-parametrized constraint polyhedron. Furthermore,
we present additional complexity reduction techniques
which are based on exploiting symmetries in the mpQP
problem formulation. Two example problems from the
area of explicit linear MPC are used to demonstrate the
achieved performance improvements.

2 Multi-parametric quadratic programming
In the following, we will focus on standard mpQP prob-

lems of the form

z

s.t. Gz <W + Sz, (1b)

1
V) (x2) = min §zTHz (1a)

where z € R™ and € R™ denote the vectors of op-
timization variables and parameters, and H € R™*"™
G e R*™ W € R4, S € R?*™ are real matrices. We as-
sume that all constraints on x are included in (1b) and
that the problem is strictly convex, i.e., that H > 0.
Without loss of generality, we further assume that (1b)
does not contain any redundant constraints [13].

2.1 Analytic solutions to mpQP problems

As shown by [2] and [13], we can solve (1) by applying
the Karush-Kuhn-Tucker (KKT) conditions, which for
this problem are given by

Hz+G'Ax=0, \eRY, (2a)
)\i (GiZ—Wi—Six):Oy i:17~~'aq7 (2b)
A>0, Gz< W+ Sz (2¢)

Here, the superscript index i denotes the i*" row of a
matrix or vector and A refers to the vector of Lagrangian
multipliers. Note that here the KKT conditions are not
only necessary but also sufficient conditions for optimal-
ity since we assume H > 0.

Definition 1 (Optimal active set) Let z*(x) be the
optimal solution to (1) for a given parameter vector x
and let Q := {1,...,q} refer to the index set of all con-
straints in (1b). Then, the optimal active set A*(x) is

defined as the index set of active constraints at the opti-

mum: A*(z) == {i € Q | G'2*(z) — W' — Sz = 0}.

Assuming that we know the optimal active set A*(x)
for a given x, we can form submatrices GA™(#) WA (x)
SA*(I% that contain the constraints associated to the
indices in A*(z). In the following, we drop the explicit
parametrization of A*(x) for the ease of notation.

Definition 2 (LICQ) For an index set A C Q, the lin-
ear independence constraint qualification (LICQ) holds
if the gradients of the corresponding constraints are lin-
early independent, i.e., if G has full row rank.

When assuming that LICQ holds for a given optimal ac-
tive set A4, we can use the first two equations of the KKT
conditions to derive the parameter-dependent optimizer

za(z) = HHGMTH L (WA + S4z) (3)

for a fixed parameter vector z, where H 5}, =
(GAH-Y(G*)T)~! always exists since H = 0 and LICQ
holds [2,13]. Moreover, the two remaining KKT inequal-
ity conditions characterize the so-called critical region
in which the solution (3) remains optimal when varying
the parameter x:

—H; L, (WA +5%2) > 0. (4a)
GH N (GMTHS L (WA + S42) <W + Sz, (4b)

This polyhedral region in the state space is the largest
set of parameters for which the combination of active
constraints at the optimizer remains unchanged, i.e., for
which A remains the optimal active set. Thus, by iden-
tifying all optimal active sets A;, the parameter space is
implicitly partitioned into several critical regions CR 4,,
and the optimizer can be represented as a continuous
piecewise affine function of the parameter vector z [2,13].
Note that if the LICQ assumption fails to hold, i.e., if the
rows of G4 are linearly dependent, the inverse H C_;,ll does
not exist and further methods have to be applied in or-
der to obtain a representation of z4 and CR 4, e.g., pro-
ceeding with full-rank subsets of the active constraints
or using projections in the (A, z)-space to obtain the full-
dimensional critical region [2,14].

2.2 Combinatorial mpQP

While most of the existing geometric mpQP algorithms
construct the solution by identifying all critical regions
in a recursive parameter space exploration, the combi-
natorial mpQP algorithm presented by [6] operates di-
rectly on the level of possible optimal active sets. The
main idea of the approach is the implicit enumeration
of all possible combinations of active constraints, which
we will shortly summarize in the following.

Consider again the set Q = {1,..., ¢} referring to the



constraint indices in (1b). Then, the active set A(z,x)
can be described as A(z,z) := {i € Q|G'z—W"'— Sz =
0} while the corresponding set of inactive constraints
J(z,z) is given by the set difference of Q and A, i.e.,
J(z,2) .= Q\ A(z,z). As pointed out by [6], all possi-
ble optimal active sets are included in the set P'(Q) :=
{.Al = { },AQ = {1},...,Aq+1 = {q},...Aq+2 -
.2} Ay, ={g—m+ 1,...,q}} which is a sub-
set of the power set P(Q) = {A1 = { },..., Az =
{1,...,¢}} and consists of n/, = Zio (9) < 27 index

K3
sets. Here, ¢ and m are defined as ¢ = max{m, ¢} and
m = min{m, g}, respectively. In order to identify all op-
timal active sets, [6] suggest to choose candidate active
sets A; € P'(Q) in the order of increasing cardinality

and use the LP

e, ! (5)
s.t. tegp < )\Ai, teg < 57 (5b)
t>0, M >0, s >0 (5¢)
Hz+ (GA)TX A =0 (5d)
GAiz — SAig —wh =0 (5e)
GTiz = 8%ix — Wi 45T =0 (51)

to check whether there exists a feasible point in the pa-
rameter space for which A; is the optimal active set.
Here, in addition to the already introduced variables
and matrices, t is a scalar optimization variable and
e1=1[1,...,1]7, ea = [1, ..., 1]T are vectors of appro-
priate sizes corresponding to the vector of Lagrangian
multipliers A\ and the vector of slack variables 57+, re-
spectively. Clearly, if the LP (5) has a feasible solution,
then there exist feasible z4,, z.4,, A, s7¢ satisfying the
KKT conditions, and A; is an optimal active set. On the
other hand, infeasibility of the LP (5) implies that A;
is not an optimal active set, and z_4,, CR 4, need not be
computed. Moreover, if the LP (5) is also infeasible when
only feasibility constraints are considered, i.e., when all
constraints related to A4 are discarded, then A; repre-
sents an infeasible combination of active constraints.
Since checking the LP (5) for every candidate set by enu-
merating P’(Q) explicitly may be impractical even for
relatively small values of m and ¢, [6] propose in addi-
tion the following pruning criterion, which reduces the
number of candidate sets and makes the enumeration of
P’(Q) implicit.

Criterion 3 (Pruning of candidate active sets)
If a candidate active set A; € P'(Q)

(i) leads to violation of the LICQ condition, or
(ii) represents an infeasible constraint combination,

then A; and all its supersets can be excluded from further
consideration in the enumeration of P'(Q).

The first of these pruning conditions becomes appar-
ent when considering the structure of the combinato-
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{1,3,q} can be pruned! /
Fig. 1. Combinatorial enumeration strategy with pruning
of infeasible candidate active sets in form of an active set
tree. Note that pruning infeasible constraint combinations
globally in the whole tree is crucial for achieving optimal
efficiency in the enumeration.

rial enumeration process. Since the algorithm proceeds
through the elements of P’(Q) in order of increasing
cardinality, all full-rank subsets of a candidate set with
LICQ failure will be covered automatically. Thus, the
method of computing the control law and the critical
regions in cases of LICQ failure by considering all full-
rank subsets is, in a sense, inherently included in the
combinatorial approach. Therefore, every candidate ac-
tive set A; for which G* does not have full row rank
can be discarded, and, since LICQ will of course also
be violated for all A; D A;, the same holds for all its
supersets. In such a case, however, there will be weakly
active constraints (\; = 0) and overlapping critical re-
gions may occur. See [3] for more details. The second
pruning condition follows directly from the fact that
an infeasible system of equations and inequalities, i.e.,
here the LP (5), will still be infeasible when some of the
inequalities are treated as equations [6].

Using these results, the combinatorial mpQP algorithm
of [6] can be summarized as follows. See also Figure 1
for a graphical illustration of the combinatorial enumer-
ation strategy and the involved pruning process.

Algorithm 1 (Combinatorial mpQP,[6])

1. choose A; € P'(Q) in order of increasing cardinality;
2. if A; not pruned and G has full row rank, solve (5)
L if feasible, use (3) and (4) to construct z 4, and CR 4,
L if infeasible, solve (5) without optimality constraints
L if infeasible, add all A; O A; to the pruned sets;

3. return to 1. until the whole set P'(Q) is explored.

3 An improved combinatorial mpQP algorithm

In the previous section we have reviewed the combina-
torial mpQP approach proposed by [6]. While it has
some structural advantages over existing geometric ap-
proaches, the main disadvantage of the approach is
given by its combinatorial complexity. In the following,
we will present an improved combinatorial mpQP al-
gorithm that is also based on the implicit enumeration
approach but uses a simple matrix check to exclude



infeasible constraint combinations; see also [4]. Further-
more, we present additional complexity reduction tech-
niques which are based on exploiting symmetries in the
mpQP problem formulation. The basic idea underlying
both approaches is to use some of the geometric prop-
erties of the mpQP problem constraints for increasing
the efficiency of the combinatorial enumeration.

3.1  An infeasibility check based on the constraint poly-
hedron geometry: saturation matrix pruning

Consider the mpQP problem (1). In the following, we
want to exploit the fact that the constraints (1b) can
also be represented as a non-parametrized polyhedron
in the augmented (variable+parameter) space [8]:

[e] L’j < W}. (6)

We will show in this section how this augmented con-
straint polyhedron can be used to derive a necessary
and sufficient condition for the identification of infeasi-
ble constraint combinations in the context of the combi-
natorial active set enumeration. Our approach is based
on the the following theorem.

[ {[Z,x] ¢ R

Theorem 4 (Infeasibility of candidate active sets)
Let A; € P'(Q) be a candidate active set related to the
constraint matrices G, W, and S of problem (1). Then
A; represents an infeasible combination of active con-
straints if and only if the constraints associated to A; are
not active together at any verter v, € R™T™ of P, i.e.,

Hoy s.t. [G“‘“ —S“‘“} vy—WA =0fork=1,...,n,.

PROOF. If the constraint combination corresponding
to A; is not active at any vertex of P, it is also not active
at any facet of P. Hence, the constraint hyperplanes
related to A; do not intersect in the feasible part of the
augmented space R™ ", which means that A; does not
represent a feasible combination of active constraints.
The reverse direction follows trivially. O

In order to exploit Theorem 4 in the combinatorial enu-
meration process, we make use of the saturation matrix
S of the constraint polyhedron:

Definition 5 (Saturation matrix S of P [15])

As saturation matriz of the constraint polyhedron P we
denote the binary matriz S € {0,1}™*? defined as

1 if [Gﬂ' _sﬂ} vy —WI =0
0 i [G7 7] v =7 £0
where k =1,...,n,, j =1,...,q. Hence, the entry Sy;

indicates whether constraint j is active at vertex vy of P.

Combining Theorem 4 and Definition 5, we can conclude
that a candidate set A; can only represent a feasible
combination of active constraints if and only if there
exists at least one row in the saturation matrix S that
contains only nonzero elements in the columns related to
the indices in A;. Hence, we can formulate the following
corollary which allows to identify infeasible candidate
active sets by performing a simple row sum check on S.

Corollary 6 (Infeasibility condition for .A;)

Let A; € P'(Q) be a candidate active set and let S de-
note the saturation matriz of the constraint polyhedron
P. Then, a necessary and sufficient condition for the in-
feasibility of A; is given by

> Sk <Al VEe{1,...,n}, (8)

JEA;

where |A;| denotes the cardinality of A;, i.e., the number
of constraint indices in the candidate active set.

Note, however, that Theorem 4 and Corollary 6 only
provide a condition for infeasibility of (5) and that op-
timality is not taken into account.

Based on this saturation matrix pruning condition, we
propose the following combinatorial mpQP algorithm:

Algorithm 2 (Improved combinatorial mpQP)

1. compute the saturation matriz S of the problem;
2. choose A; € P'(Q) in order of increasing cardinality;
3. if G has full row rank, check condition (8)
L if A; is identified as infeasible, go to 4.;
L else, try to solve the LP (5)
L if feasible, use (3) and (4) to construct z,, CR A, ;
L if infeasible, go to 4.;
4. return to 2. until the whole set P'(Q) is explored.

As in Algorithm 1, the enumeration proceeds through
P’(Q) in the order of increasing cardinality and exploits
Criterion 3 in order to reduce the number of candidate
active sets. However, by making use of Corollary 6, all
candidate sets that are related to infeasible combina-
tions of active constraints can be excluded by simply
checking the row sums of the saturation matrix. Fur-
thermore, since infeasibility of the LP (5) will now in
all cases arise from suboptimality, it is generally not
worthwhile to solve the modified second LP and per-
form an additional pruning of infeasible candidate sets.
This results in a further reduction in the number of LPs
and eliminates the need for an explicit pruning mecha-
nism. Moreover, in contrast to the algorithm proposed
in [6], each candidate set A; can now be checked inde-
pendently from all other sets A; € P’(Q), which would
allow easy parallelization of the enumeration procedure
in Algorithm 2. However, one disadvantage of the ap-
proach is that constructing and handling the saturation
matrix § may become computationally demanding with



increasing complexity of the constraint polyhedron P.
While the dimension of P grows linearly with m and n,
there is to the authors knowledge no analytic expression
to estimate the resulting number of vertices n,. How-
ever, the upper bound on n, will usually grow exponen-
tially with the dimension and the number of constraints
¢, which definitely restricts the class of tractable prob-
lems. One way to construct the saturation matrix S is to
compute all vertices of P by using external vertex enu-
meration algorithms, e.g., as they are included in the
CDD package [5]. On the other hand, some double de-
scription based packages like Polylib [15] compute the
vertices, and in some cases even S itself, automatically
when constructing the constraint polyhedron P. We do
not discuss the construction of S and the underlying
vertex enumeration problem here in detail and refer the
reader to the relevant literature, e.g., [15].

3.2 Symmetry-based complexity reduction techniques

Since problem (1) is symmetric in the cost function, sym-
metries in the problem constraints will, in general, lead
to symmetric mpQP solutions [12]. In this section, we
want to present some results concerning symmetry ex-
ploitation in the context of combinatorial mpQP. On the
one hand, we extend the existing results for completely
symmetric constraints to the combinatorial approach,
and, on the other hand, we introduce a concept of par-
tial symmetry in mpQP and derive sufficient conditions
for exploiting this kind of incomplete symmetry in the
combinatorial enumeration.

Definition 7 (Symmetric mpQP problem)

An mpQP problem of the form (1) is called symmetric
if all the involved constraints are symmetric, i.e., if they
can be represented in the form

Wi
Wo

S1
S

z <

+ T, (9)

with GQ = —Gl, W2 = Wl, SQ = —Sl.

Note that since linear systems are inherently symmetry
preserving, all mpQP problems related to linear MPC
applications with symmetric input, state, or output con-
straints will in general be of this form. Moreover, also
standard terminal set constraints based on LQR invari-
ant sets will typically result in symmetric problem con-
straint formulations.

Definition 8 (Symmetric active set) Let A; be an
active set for a symmetric mpQP problem. Then, we
define as the symmetric active set A; the set containing
the row indices of those constraints which are symmetric
to the constraints in A;, i.e.,

G = -G, WA =wA sS4 = _gAT L (10)

Lemma 9 (Symmetry in combinatorial mpQP)
For an mpQP problem that is symmetric in the sense of
Definition 7, the LP (5) for the candidate set A; has a
feasible solution if and only if the LP for the symmetric
candidate set A; has a feasible solution; i.e., the LPs for
A; and A; are equivalent.

PROOF. Can be shown easily by inserting 2~ = —z,
2z~ = —z and the symmetry relations (10) into LP (5).0

Theorem 10 (Symmetric candidate set branches)
Consider a symmetric mpQP problem according to Defi-
nition 7. Let i € Q denote an arbitrary constraint index
and i~ € Q\ i with i~ > i the index of the correspond-
ing symmetric constraint. Furthermore, let B; and B;-
be the branches of the active set tree related to the root
nodes A; = {i} and A7 = {i~}, respectively. If the
constraints of the mpQP problem are arranged in such a
way that it holds

iy > iy =iy >ip Vipis € Q, iy #£ia,  (11)

then, all candidate sets in B;— are symmetric to the can-
didate sets in B; Hence, the complete branch B;- can be
checked implicitly by checking all sets in branch B;.

PROOF. Branch B;- of the active set tree contains all
ordered selections of the indices {i 7,7~ +1,..., ¢}, all of
which have i~ as the first set element. If we now construct
the symmetric set for each candidate set in branch 5;-
by replacing all indices with their symmetric partner,
condition (11) ensures that the index order will stay the
same and that all symmetric sets will have the index ¢
as the first element. Hence, they will, by definition, be
contained in B;. [l

Theorem 10 shows that only half of the active set
branches need to be considered in the case of symmet-
ric mpQP problem constraints. However, since the tree
structure underlying the active set enumeration is not
balanced, the way in which the symmetric constraints
are arranged in the matrices G, W, and S will heavily
influence the achievable effect of symmetry exploitation.
Two possible constraint matrix configurations satisfy-
ing condition (11) are, for example, the ordering in two
symmetric blocks, as in Equation (9), or in alternat-
ing symmetric pairs, i.e., G' = -Gl §F = —§it1
Wi=Wl i=1,3,...,9— 1. Since it makes the best
use of the asymmetric tree structure, it is obvious that
arranging the constraints in symmetric pairs allows to
prune the maximal number of symmetric candidate sets
and will result in the maximal complexity reduction of
about 50 %, i.e., n?p' = $(npp + 1) since Ay = { } has
no symmetric partner set (see [3] for more details). Con-
sequently, this constraint matrix configuration is used
for exploiting symmetries in the numerical examples
in Section 4. Note that rearranging the constraints in
the matrices G, W, and S does not change the analytic
mpQP solution.



Of course, complete symmetry in the sense of Defini-
tion 7 cannot be assumed in general. Especially in the
context of explicit linear MPC, situations can occur in
which asymmetric box constraints on z and x have to
be considered. In this case, the constraint matrices G
and S may still have a symmetric structure, while only
the matrix W is afflicted by the constraints asymmetry.
In the following, we will present some results for this
class of partially symmetric mpQP problems.

Definition 11 (Partial symmetry in mpQP)
We refer to an mpQP problem of the form (1) as partially
symmetric if the involved constraints can be rewritten as

Wi S1
2z < [ + [Sj x, (12)

= lw,
where Go = —Gq, Wo = W1 4+ 0W, So = —51. Clearly,
the only difference to a completely symmetric problem in
the sense of Definition 7 is the additional term 6W.

Gy
G

Furthermore, we can define the symmetric set A to
a candidate active set A; similar to the case of com-
plete symmetry, with the modification that for a par-
tially symmetric mpQP problem it holds

Gh = -GN WA = WA+ AW, §A = —5A

(13)
where AW is defined as AW = [—~6W,§W]T. Now, as
the constraints are not completely symmetric, Lemma 9
does not hold and the LPs for A; and A, will, in general,
not be equivalent. Note that it may be possible to re-
cover the complete symmetry of the constraints (5) by a
change of coordinates. However, in general this will lead
to a loss of symmetry in the cost function V;(z). In the
following we will derive a sufficient condition that allows
to prove feasibility of the LP (5) for a candidate active
set A; based on computations related to the (partially)
symmetric set A;.

Let us assume A; is an optimal active set and we know
the Lagrangian multipliers A and the vector of slack
variables s7¢ which satisfy the KKT conditions for fea-
sible z and z(z), i.e., Mi, s7 z, 2 solve the LP (5).
Using the assumption £~ = —x and the partial symme-
try relations (13) between the constraint matrices, we
can formulate similar KKT conditions for the symmetric
candidate set A; :

Hz™ — (GM)"Ax4 =0 (14a)

—GAizT — §Ap — (WA — AWAY) =0 (14D)
—GT = 8T — (WP — AWT) 457 =0 (14c)
AT >0, 87 > 0. (14d)

Since complete symmetry does not hold, the optimizer
is not symmetric and we have

= et A @ E G LA (15)
Inserting this into Equation (14a), we get for Az
Az = H Y (GA)T (A — ). (16)

Furthermore, inserting (15) and (16) into (14b) and ex-
ploiting G4z — SAix — WA = (0 yields

M= ML L AW, (17)

where Hg;}li = (GAH YGA)T)~1. In a similar way,
we can insert the Equations (15) and (16) into Equation
(14c) and exploit (5f) in order to write the vector of slack
variables for A as

s7i =57 + GTH Y (GY)THS L, AW — AW
(18)
In combination with the feasibility and optimality con-
ditions M > 0, s > 0 (see Equation (14d)), the
obtained Equations (17) and (18) yield sufficient condi-
tions for the optimality of the candidate set A, in terms
of its symmetric set A;.

Theorem 12 (Exploiting partial symmetry)

Consider the class of partially symmetric mpQP prob-
lems in the sense of Definition 11. Let A; denote the
considered candidate active set and A; its symmetric
set in the sense of partial symmetry. If A; is an optimal
active set and the vectors of Lagrangian multipliers A
and slack variables s7¢ in the feasible solution of the LP

(5) satisfy

M > —H L AW (19)

2
57 > —GJiH_l(G'Ai)THC_;}\i AWA AWJ«L’ (20)

then A; will also be an optimal active set and the corre-
sponding LP needs not be solved.

PROOF. The conditions on \* and s guarantee by

construction that there exist feasible AMi |, s7i for LP
(6) with x4y~ = —x4,, 24~ = —24, + Aza,. O

There are different ways to make use of Theorem 12 in
Algorithm 1. One way is to simply check the conditions
on M and s7i for every candidate set A; for which the
LP (5) results in a feasible solution. However, the solu-
tion of (5) is not unique and the efficiency of this ap-
proach is limited by the assumption 2~ = —x. Another
possibility, which is used for the numerical example com-
putations in the next section, is to include the conditions



(19) and (20) as additional constraints in the LP formu-
lation. In this case, A; and A, can be checked simulta-
neously by an augmented LP, and the maximal number
of symmetric optimal active sets will be found. Unfor-
tunately, no conclusions can be drawn from infeasibility
of the augmented LP, in which case the standard LPs
for A; and A;" have to be solved in addition. Hence, this
approach is mainly suited for problems with a relatively
small number of suboptimal candidate active sets. Note,
however, that for AW = 0, i.e., for the case of complete
symmetry, the conditions (19) and (20) reduce to the
redundant standard conditions A4 > 0, s7 > 0.

4 Numerical Examples

In order to compare our algorithm with the one from
[6], we implemented and tested Algorithm 1, Algorithm
2, and two additional versions of Algorithm 2 that com-
bine the saturation matrix pruning with the symmetry
exploitation techniques from Section 3.2. The saturation
matrix S was constructed by computing the vertices of
the constraint polyhedron with the MIPPT extreme point
solver extreme () using CDD via cddmex [7]. Several
mpQP problems have been solved, related to varying
horizon linear MPC open-loop optimal control problems
for the following two example systems. All computa-
tions were performed on a 3 GHz Dual Core PC with
8 GB RAM, running MATLAB 7.11 and MPT 2.6.3.
More details and numerical results can be found in [3]
and, for the saturation matrix case, in [4].

Example 1. Considered is the discrete-time double
integrator system discussed by [13] with a discretiza-
tion time of Ty = 0.3s. For this system, the linear MPC
open-loop optimal control problem is formulated us-
ing a quadratic cost function with the weight matrices
Q = diag(1,0), R =1, P = Prgr and the input and
state constraints |u| < 1, |z2| < 0.8, z(t+ N) € Qror.
Here, Prgr has been computed from the algebraic Ric-
cati equation and Qrgr is the LQR invariant set. The
resulting mpQP problems are symmetric in the sense of
Definition 7.

Example 2. As a second example, we considered
the laboratory model helicopter described by [13],
which is given in form of a linear state space model
involving six system states and two inputs. The MPC
optimization problems were formulated using @ =
diag(100, 100, 10, 10,400,200), R = I>x2, P = Pror
and the input constraints —1 < u; < 3, ¢ = 1,2. The
mpQP problems for this example are partially symmet-
ric in the sense of Definition 11.

The numerical results for the two examples are pre-
sented in Table 1 and Table 2, respectively. Here, IV
denotes the horizon in the MPC problem formulation,
n, the number of critical regions in the state space par-
tition, and nz p the number of optimization problems of
type (5) that were solved in the combinatorial enumer-
ation process. The superscripts “cSym” and “pSym”

Table 1
Results for the double integrator example.

N Ny NLPmax TNLPAlg.l TLPAlg.2 nzsgf,ilg,g
1 11 15 13 13 7
2 33 172 131 7 39
3 57 1794 631 383 192
4 83 17902 6695 1733 867
5 111 174437 30717 7569 3785
6 135 1676116 263 503 32017 16 009

Table 2

Results for the helicopter example.

N Ny NLPmax NLPAlg.l TNLPAlg2 nIL)/SID}iIXlg'Q
1 9 11 9 9 5
2 81 163 81 81 41
3 729 2510 729 729 365
4 4461 39203 8589 6561 6129
5 18413 616666 99119 59 049 76 089

refer to the algorithm versions exploiting complete and
partial symmetry. As can be seen, the number of LPs is
considerably reduced by using the proposed saturation
matrix pruning criterion and exploiting the symmetries
in the problem constraints. An exception is the heli-
copter example for N = 5. Exploiting partial symmetry
with the augmented LP approach results here in an
increased number of optimization problems since the
number of additional LPs that are needed in cases where
the augmented LP is infeasible exceeds the number of
LPs that are saved by exploiting Theorem 12.

The achievable computation times depend, of course,
on the speed of the computer system and the efficiency
of the used LP solvers. However, we made the follow-
ing qualitative observations. For small-scale problems,
e.g., like the double integrator example, the effort of
constructing and handling the saturation matrix is
negligible, and the reduction in the computation time
will, in general, almost be equivalent to the reduction
in the number of LPs. Hence, concerning the results
in Table 1, Algorithm 2 with symmetry exploitation is
approximately up to 16 times faster than the algorithm
of [6]. On the other hand, when considering more com-
plex mpQP problems, e.g., like the helicopter example,
computing all the vertices of the constraint polyhe-
dron and constructing the saturation matrix becomes
computationally more demanding, and the achievable
benefit depends on the speed of the LP solver. If a
fast solver, e.g., from the NAG Toolbox [11], is used,
the time needed for the saturation matrix operations
may even exceed the time that is saved by reducing the
number of LPs. Of course, this point may be addressed
by using a more efficient extreme point solver or a spe-
cialized library like Polylib for the construction of the
saturation matrix S. Moreover, for growing size of S, it



might be helpful to exploit sparsity or to minimize the
number of saturation matrix checks by pruning infeasi-
ble constraint combinations explicitly. However, up to
now, these points have not been investigated in detail
and may be considered as possible future work.
Another interesting point is to compare the performance
of the combinatorial algorithms with the performance
of the geometric mpQP solver that is included in the
MIPT. Here, our benchmark tests showed that the orig-
inal combinatorial approach is rather badly-suited for
small-scale mpQP problems with a large number of con-
straints. In such situations, the proposed methods can
achieve significant performance improvements, which
may help to establish combinatorial mpQP as a real
alternative to existing geometric approaches. On the
other hand, the combinatorial mpQP algorithms seem
to have significant speed and robustness advantages
over the geometric MPT algorithm when considering
moderately constrained higher-dimensional problems,
e.g., like the helicopter example. More detailed results
for different LP solvers can be found in [3].

5 Conclusion

In this paper, we have proposed an improved combina-
torial mpQP algorithm that uses a saturation matrix
pruning criterion for excluding infeasible candidate ac-
tive sets, which allows to speed up the combinatorial enu-
meration process and eliminates the need for an explicit
pruning mechanism. In addition, techniques have been
presented that allow further complexity reduction by ex-
ploiting symmetries in the mpQP problem formulation.
The results show the benefit of using geometric prop-
erties of the mpQP problem constraints for improving
the efficiency of combinatorial mpQP. Interesting future
topics could be to design and incorporate suboptimality-
based pruning criteria or to exploit the decoupling char-
acter of the proposed pruning mechanism in a paral-
lelized combinatorial mpQP algorithm.
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