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Abstract

Much recent progress has been achieved for stabilization of linear and nonlinear systems with input delays that are long and
dependent on either time or the plant state—provided the dependence is known. In this paper we consider the delay variations
as unknown and study robustness of nominal constant-delay predictor feedbacks under delay variations that depend on time
and the state. We show that when the delay perturbation and its rate have sufficiently small magnitude, the local asymptotic
stability of the closed-loop system, under the nominal predictor-based design, is preserved. For the special case of linear systems,
and under only time-varying delay perturbations, we prove robustness of global exponential stability of the predictor feedback
when the delay perturbation and its rate are small in any one of four different metrics. We present two examples, one that is
concerned with the control of a DC motor through a network and one of a bilateral teleoperation between two robotic systems.

1 Introduction

Networked control systems are present in various en-
gineering applications such as tele-robotics, remote
surgery and automotive systems among others. One of
the major reasons is that they are advantageous over
traditional control systems in terms of flexibility, relia-
bility, maintenance cost etc. [14]. However, often their
performance can be severely degraded in the presence
of delays induced by the network [3], [13]. When the
delay is constant and known, the predictor-based con-
troller compensates the network-induced delay [25].
Yet, the networked-induced delay might be subject to
time-varying and state-dependent uncertainties, which,
when they are not considered in the control design,
not only can degrade the performance of the control
system, but can also destabilize the network [32]. It is
therefore crucial to quantify the robustness properties
of the constant-delay predictor feedback in the presence
of time- and state-dependent delay uncertainties.

Numerous methodologies exist, dealing with the stabil-
ity or stabilization of nonlinear systems with input [20],
[33], [34], [35], [36], [37], [38], [39], [48], [49], [50], or state
[16], [18], [21], [22], [23], [42], [45] delays. Predictor-based
techniques are developed for the compensation of long
actuator delays in linear [2], [7], [17], [19], [29], [41] or
nonlinear [4], [5], [24], [31] systems. Among them, [4],
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[30], [41] are dealingwith time-varying and [5] with state-
dependent input delays. Predictor feedback has been
also successful in designing stabilizing controllers for lin-
ear systems with uncertainties either on the delays [6],
[8] or on the plant parameters [40], [47] or on both [10].

Although, some of the first predictor-based designs for
linear, unstable plants, with constant input delays go
back to the 1980s [2], a Lyapunov construction has been
unavailable until recently [29]. In addition, a Lyapunov
functional is provided in [31], which is employed to the
stability analysis of the proposed control design. Yet,
the robustness properties of the nominal, constant-
delay, predictor-based feedback under time- and state-
dependent delay perturbations remain unexplored.

We consider forward-complete nonlinear systems that
are locally, exponentially stabilizable in the absence of
the delay (by a possibly time-varying control law), for
which we employ the predictor-based design. The pre-
dictor controller is designed assuming constant input
delay and using only an estimation of the unmeasured
(since the delay is not known) infinite-dimensional ac-
tuator state. We prove robustness of the constant-delay
predictor-based feedback, under simultaneous time-
varying and state-dependent perturbations on the delay.
Specifically, using the nonlinear infinite-dimensional
backstepping transformation, we construct a Lyapunov
functional for the closed-loop system that is comprised
of the plant, the predictor feedback and the observer
for the actuator state. With the constructed Lyapunov
functional, we prove that the closed-loop system remains
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locally asymptotically stable when the perturbation
and its rate are small (Section 2).

We also deal with linear systems under time-varying de-
lay perturbations. We show robustness of global expo-
nential stability of the predictor feedback for the cases
where the delay perturbation and its rate either have
small magnitude, or their L1 norm is small, or they con-
verge to zero as the time goes to infinity or, finally, have
a small moving average for large times (Section 3). Fi-
nally, we illustrate the robustness properties of the pre-
dictor feedback with two examples. The first one is an
example of aDCmotorwhich is controlled through a net-
work. The network induces a delay which is comprised
of a known constant part and an unknown time-varying
perturbation on this nominal value. In addition, the de-
lay is subject to a state-dependent perturbation that de-
pends on the armature current. The second example is
concerned with the bilateral teleoperation between two
robotic systems through a network. The network induces
a constant nominal delay which is subject to an unknown
time-varying perturbation that has a small moving av-
erage after a long period of time (Section 4).

Notation: We use the common definition of class K, K∞
and KL functions from [26]. For an n-vector, the norm
| · | denotes the usual Euclidean norm. We say that a
function ζ : R+× (0, 1) 7→ R+ belongs to class KC if it is
of classKwith respect to its first argument for each value
of its second argument and continuous with respect to its
second argument. It belongs to class KC∞ if it is in KC
and also in K∞ with respect to its first argument. With
ζ̄ we denote the inverse of the function ζ with respect to
its first argument for each value of its second argument.

2 Robustness to time- and state-dependent de-
lay perturbations for nonlinear systems

We consider nonlinear plants of the form

Ẋ(t) = f
(

X(t), U
(

t− D̂ − δ (t,X(t))
))

, (1)

where f : C2 (Rn × R;Rn), satisfies f(0, 0) = 0, D̂ > 0,
under the nominal, constant-delay predictor feedback
given by

U(t) = κ
(

t+ D̂, P̂ (t)
)

, (2)

where for all t− D̂ ≤ θ ≤ t

P̂ (θ) = X(t) +

∫ θ

t−D̂

f
(

P̂ (s), U(s)
)

ds, (3)

Fig. 1. Control over a network, with delay that varies with
time (as a result of other users’s activities) and may be
state-dependent. The designer only knows a nominal, con-

stant delay value D̂. The delay fluctuation δ(t,X) is un-
known.

is the estimate of the actual predictor state P ∗(θ), de-
fined for all t− D̂ − δ(t,X(t)) ≤ θ ≤ t as

P ∗(θ) =X(t) +

∫ θ

t−D̂−δ(t,X(t))

f (P ∗(s), U (s))

1−G(s)
ds (4)

G(s) = δt (σ(s), P
∗(s))

+∇δ (σ(s), P ∗(s)) f (P ∗(s), U(s)) , (5)

where σ, the actual predicted time (which should be

compared with the estimated predicted time t+ D̂) is

σ(θ) = t+

∫ θ

t−D̂−δ(t,X(t))

ds

1−G(s)
. (6)

An example of such a model together with the predictor-
based controller is shown in Fig. 1.

Let us now make clear why P ∗ is the actual predictor
state of X . Define the actual delayed time as

φ(t) = t− D̂ − δ(t,X(t)), (7)

and the actual predicted time as

σ(t) = φ−1(t)

= t+ D̂ + δ (σ(t), X(σ(t))) . (8)

Then we show that the signal in (4) satisfies P ∗(t) =
X(σ(t)). Differentiating (8) we get that

σ̇(t) = 1 + δt (σ(t), X(σ(t))) σ̇(t)

+∇δ (σ(t), X(σ(t)))X ′(σ(t))σ̇(t), (9)

and since σ(t) = φ−1(t), using (1) we have

σ̇(t) =
1

1− F (t)
(10)

F (t) = δt (σ(t), X(σ(t)))

+∇δ (σ(t), X(σ(t))) f (X(σ(t)), U(t)) . (11)
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Define the change of variables t = σ(θ), where φ(t) ≤
θ ≤ t. With the help of (10) re-write (1) in terms of θ as

dP ∗(θ)

dθ
=

f (P ∗(θ), U (θ))

1−G(θ)
, for all φ(t) ≤ θ ≤ t, (12)

where we substitute X(σ(θ)) with P ∗(θ). Integrating
(12) from φ(t) to θ we get (4) by using the fact that
P ∗(φ(t)) = X(σ(φ(t))) = X(t). Noting that σ(φ(t)) = t
we also get (6). A more detailed discussion about defi-
nition (4) can be found in [5].

The predictor state (3) is the certainty equivalent pre-
dictor for system (1). This becomes clear by setting

δ = 0 in (4). Note that P̂ (θ) (or P ∗(θ)) should be viewed
as the output of an operator, parametrized by t, act-
ing on P (s) and U(s), t − D̂ ≤ s ≤ θ (or t − D̂ −
δ(t,X(t)) ≤ s ≤ θ) in the same way that the solution
X(t) to an ODE can be viewed as the output of an oper-
ator, parametrized by t0, acting on X(s) and the input

U(s), t0 ≤ s ≤ t. However, P̂ is given implicitly since the
plant is nonlinear (for the same reason that the solution
X(t) to a nonlinear ODE is given implicitly). In the case

of a linear plant Ẋ(t) = AX(t) + BU
(

t− D̂
)

, equa-

tion (3) for the predictor state can be solved explicitly

as P̂ (θ) = eA(θ−t+D̂)X(t) +
∫ θ

t−D̂
eA(θ−s)BU(s)ds, and

hence, P̂ (t) = eAD̂X(t) +
∫ t

t−D̂
eA(t−θ)BU(θ)dθ. This is

the standard predictor (used for example in [2]), which
is obtained using the variations of constants formula for
the linear ODE satisfied by the plant. An equivalent rep-
resentation of the signal P̂ (θ) is

p̂(x, t) = X(t) + D̂

∫ x

0

f (p̂(y, t), û(y, t)) , (13)

for all x ∈ [0, 1], where û, is the estimation of the actua-

tor state U (θ), t−D̂−δ (t,X(t)) ≤ θ ≤ t, which satisfies

D̂ût(x, t) = ûx(x, t) (14)

û(1, t) =U(t), (15)

that is,

û(x, t) = U(t+ D̂(x − 1)), for all x ∈ [0, 1]. (16)

With this definition, p̂(x, t) is the output of an operator,
parametrized by t, that acts on p̂(y, t) and û(y, t), y ∈
[0, x]. With this representation p̂(1, t) = P̂ (t).

Note also that from relation (4) we see that for P ∗ to
be well-defined the denominator in (4) must satisfy the
following condition for all θ ≥ t0 −D (X(t0))

c > δt (σ(θ), P
∗(θ))

+∇δ (σ(θ), P ∗(θ)) f (P ∗(θ), U(θ)) , (17)

for c ∈ (0, 1], which is a condition on the perturbation
δ, the initial conditions and the solutions of the system.
As it turns out later on, this condition is satisfied by
appropriately restricting the perturbation δ and the ini-
tial conditions of the plant. We proceed by imposing the
following assumptions on the delay-free plant.

Assumption 1 The plant Ẋ = f (X,ω) is strongly for-
ward complete, that is, there exist a smooth positive def-
inite function R and class K∞ functions α1, α2 and α3

such that

α1 (|X |)≤R (X) ≤ α2 (|X |) (18)

∂R (X)

∂X
f (X,ω)≤R (X) + α3 (|ω|) , (19)

for all X ∈ R
n and for all ω ∈ R.

Assumption 1 guarantees that for every initial condition
and every measurable locally essentially bounded input
signal, the corresponding solution of the system exists
for all times. Forward-completeness is a natural require-
ment for nonlinear plants with input delay. In the ab-
sence of this assumption, i.e., when the plant exhibits
a finite-escape time, the control signal might reach the
plant “too late”. The difference with standard forward-
completeness from [1] lies in the fact that R in Assump-
tion 1 is positive definite, in accordance to the fact that
f(0, 0) = 0.

Assumption 2 There exist positive constants µ, r∗, b,
λ∗, a function α̂ which belongs to classK∞ and a function
κ : C3 ([t0,∞)× R

n;R) satisfying for all t ≥ t0

∣

∣

∣

∣

∂i+jκ (t, ξ)

∂it∂jξ

∣

∣

∣

∣

≤
{

α̂ (|ξ|), 0≤ i≤ 3, j=0

µ+ α̂ (|ξ|),0≤ i≤ 3, j=1 . . . 3− i

}

,(20)

such that for the plant Ẋ(t) = f (X(t), κ(t,X(t))) the
following holds for all X(t0) ∈ Dr∗,

|X(t)| ≤ b|X(t0)|e−λ∗(t−t0), for all t ≥ t0, (21)

where Dr∗ = {X ∈ R
n||X | ≤ r∗}.

Theorem 1 Consider the closed-loop system consisting
of the plant (1), control law (2), (3) and observer (14)–
(15). Under Assumptions 1 and 2 there exist positive
constants c1, c

∗∗, class K∞ functions µ̂, α∗, a class KC∞
function ζ, and a class KL function β such that if the
perturbation δ satisfies

|δ (t, ξ)|+ |δt (t, ξ)|+ |∇δ (t, ξ)| ≤ c1 + µ̂ (|ξ|) , (22)

for all (t, ξ) ∈ [t0,∞)×R
n, then for all initial conditions

which satisfy

Π(t0) < c∗∗, (23)
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where

Π(t) = |X(t)|+
∫ t

t−D̂

α∗ (|U(θ)|) dθ +
∫ t

t−D̂

Ü(θ)2dθ

+

∫ t

t−D̂−max{0,δ(t,X(t))}
U̇(θ)2dθ, (24)

it holds that

Π(t) ≤ β
(

ζ
(

Π(t0),min
{

r∗, c, D̂
})

, t− t0

)

, (25)

for all t ≥ t0 and some 0 < c < 1.

We now introduce the backstepping transformation.

Lemma 1 Define the backstepping transformation

ŵ(x, t) = û(x, t)− κ
(

t+ D̂x, p̂(x, t)
)

, (26)

together with its inverse,

û(x, t) = ŵ(x, t) + κ
(

t+ D̂x, ρ̂(x, t)
)

, (27)

where ρ̂ is given for all x ∈ [0, 1] by 1

ρ̂(x, t) =X(t) + D̂

∫ x

0

f

(

ρ̂(y, t),

ŵ(y, t) + κ
(

t+ D̂y, ρ̂(y, t)
)

)

dy. (28)

System (1) together with the control law (2), (3) can be
written in the following form

Ẋ(t) = f (X(t), κ (t,X(t)) + ŵ(0, t) + ũ(0, t)) (29)

D̂ŵt(x, t) = ŵx(x, t) + r1(x, t)f̃ (t) (30)

ŵ(1, t) = 0, (31)

where

f̃(t)=f (ρ̂(0, t), ũ(0, t) + û(0, t))− f (ρ̂(0, t), û(0, t)),(32)

and r1 is defined in Appendix A. The observer error

ũ(x, t) = u(x, t)− û(x, t), (33)

1 An important observation at this point is that p̂ in (13)
and ρ̂ in (28) are identical. To see this, observe that, through
the backstepping transformation, both p̂ and ρ̂ satisfy the
same ODEs in the spatial variable x, with the same initial
condition X. However, p̂ is expressed in terms of the original
variables (X, û) in the direct backstepping transformation,
whereas ρ̂, is expressed in terms of the transformed variables
(X, ŵ) and is used in the inverse transformation.

satisfies

ũt(x, t) = π(x, t)ũx(x, t)−
(

1− D̂π(x, t)
)

r(x, t) (34)

ũ(1, t) = 0, (35)

and

ũxt(x, t) = π(x, t)ũxx(x, t) + πx(x, t)ũx(x, t)− (1

−D̂π(x, t)
)

rx(x, t) + D̂πx(x, t)r(x, t) (36)

ũx(1, t) =

(

1

π(1, t)
− D̂

)

r(1, t), (37)

where

π(x, t) =
1 + x (σ̇(t)− 1)

σ(t)− t
, (38)

the function σ is defined in (8), and the function r is
defined in Appendix A. Furthermore,

D̂ŵxt(x, t) = ŵxx(x, t) + r2(x, t)f̃(t) (39)

ŵx(1, t) =−r1(1, t)f̃(t), (40)

and

D̂ŵxxt(x, t) = ŵxxx(x, t) + r3(x, t)f̃(t) (41)

ŵxx(1, t) =−r2(1, t)f̃(t) + r4(t)f̃(t) + f̃T (t)r5(t)f̃(t)

−r1(1, t)f̃ρ̂(t)f(ρ̂(0, t), ũ(0, t) + û(0, t))

−r1(1, t)D̂r(0, t)f̃û + D̂r1(1, t)r(0, t) (1

−D̂π(0, t)
) ∂f (ρ̂(0, t), ũ(0, t) + û(0, t))

∂û

−D̂r1(1, t)π(0, t)ũx(0, t)

×∂f (ρ̂(0, t), ũ(0, t) + û(0, t))

∂û
, (42)

where

f̃ρ̂(t) =
∂f (ρ̂(0, t), ũ(0, t) + û(0, t))

∂ρ̂

−∂f (ρ̂(0, t), û(0, t))

∂ρ̂
(43)

f̃û(t) =
∂f (ρ̂(0, t), ũ(0, t) + û(0, t))

∂û

−∂f (ρ̂(0, t), û(0, t))

∂û
, (44)

and r2, r3, r4 and r5 are defined in Appendix A.

Proof We re-write system (1) in the form

Ẋ(t) = f (X(t), u(0, t)) (45)

ut(x, t) = π(x, t)ux(x, t) (46)

u(1, t) =U(t), (47)
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where the actual actuator state u(x, t) (for which an
observer is given in (14)–(15)) satisfies (46)–(47) and

u(x, t) = U (φ (t+ x (σ(t) − t))) , for all x ∈ [0, 1],(48)

where φ is defined in (7), or, incorporating δ, as

u(x, t) =U

(

t+ x
(

D̂ + δ (σ(t), X(σ(t)))
)

− D̂

−δ
(

t+ x
(

D̂ + δ (σ(t), X(σ(t)))
))

)

. (49)

The rest of the lemma is proved with lengthy but
straightforward calculations and using Lemma 11 from
Appendix B, the backstepping transformation (26), its
inverse (27), and (13), (14)–(15), (45)–(47), (28), (33).

For π to be a meaningful propagation speed it should be
positive and uniformly bounded from below and above.
Using (38), one can conclude that δ, the initial conditions
and the solutions of the system should satisfy, in addition
to (17) which guarantees that 0 < σ̇(t), also

0 < D̂ + δ(σ(θ), P ∗(θ)), for all θ ≥ t0 −D (X(t0)),(50)

which guarantees 0 < σ(t)− t. The two conditions (17),
(50) incorporate the functions σ and P ∗, that is, they
are not expressed in terms of the perturbation δ and the
functional Π. We derive next a sufficient condition for
(17), (50) to be satisfied, in terms of Π.

Lemma 2 There exist positive constants c1, c∗, such
that if the perturbation δ satisfies (22), then for all solu-
tions of the system satisfying,

Π(t) < c∗, (51)

they also satisfy

(c1 + µ̂ (|P ∗(θ)|)) (1 + |f (P ∗(θ), U(θ))|)<R, (52)

for all φ(t) ≤ θ ≤ t, where

R = min
{

r∗, c, D̂
}

, (53)

for some 0 < c < 1, and hence, conditions (17) for
0 < c < 1, and (50) are satisfied.

Proof See Appendix C.

Lemma 3 There exist a continuously differentiable,
positive definite function S∗, a class K∞ function α∗

and positive constants λ, c1, c
∗ such that if the perturba-

tion δ satisfies (22) then for all solutions of the system

satisfying (51), the Lyapunov function

V (t) = S∗ (X(t)) + g11

∫ 1

0

eg1x|ũ(x, t)|dx + g6

∫ 1

0

eg2x

×ũx(x, t)
2dx+ g9D̂

∫ 1

0

eg10x |ŵx(x, t)| dx

+g12D̂

∫ 1

0

eg3xα∗(|ŵ(x, t)|)dx + g8D̂

∫ 1

0

eg5x

×ŵxx(x, t)
2dx+ g7D̂

∫ 1

0

eg4xŵx(x, t)
2dx, (54)

where gi > 0, i = 1 . . . 12, satisfies

V (t) ≤ V (t0)e
−λ(t−t0), for all t ≥ t0. (55)

Proof See Appendix D.

The next two lemmas relate the Lyapunov function V
with the norm of the system in the original variables,
represented with PDEs, and the norm in PDE represen-
tation with the norm in standard delay form.

Lemma 4 There exist a positive constant c∗, a class
KC∞ function α24 and a class K∞ function α25 such that
for all solutions of the system satisfying (51) the follow-
ing holds

α24 (Γ(t), R) ≤ V (t) ≤ α25 (Γ(t)) , (56)

where

Γ(t) = |X(t)|+
∫ 1

0

α∗ (|û(x, t)|) dx+

∫ 1

0

ux(x, t)
2dx

+

∫ 1

0

ûx(x, t)
2dx+

∫ 1

0

ûxx(x, t)
2dx. (57)

Proof See Appendix E.

Lemma 5 There exists positive constants c∗, c1 and
class KC∞ functions ζ1 and ζ2 such that if the perturba-
tion δ satisfies (22), then for all solutions of the system
satisfying (51) the following holds

ζ1 (Π(t), R) ≤ Γ(t) ≤ ζ2 (Π(t), R) . (58)

Proof Using Lemma 2 and (8), (10) we get that

1

D̂ +R
≤ 1

σ(t) − t
≤ 1

D̂ −R
(59)

1

1 +R
≤ σ̇(θ) ≤ 1

1−R
, for all φ(t) ≤ θ ≤ t. (60)

With relations (16), (48), (24), (57) and applying the
appropriate change of variables in the integrals the proof
is immediate using (59), (60).
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Proof of Theorem 1: Using Lemma 5 we conclude that
(51) is satisfied if Γ(t) ≤ ζ1 (c

∗, R), and hence, with
Lemma 4, (51) is satisfied if

V (t) ≤ α24 (ζ1 (c
∗, R) , R) , (61)

is satisfied. Assume for the moment that (61) is satisfied.
With Lemmas 3, 4 and 5, relation (61) is satisfied if c∗∗

in (23) is such that

c∗∗ ≤ ζ̄2
(

α−1
25 (α24 (ζ1 (c

∗, R) , R)) , R
)

. (62)

Using (55), with some routine classKmajorizations that
involve Lemmas 4 and 5, we get estimate (25).

3 Robustness to time-varying delay perturba-
tion for linear systems

We consider the following special case of system (1)

Ẋ(t) = AX(t) +BU
(

t− D̂ − δ(t)
)

, (63)

where for the rest of the section δ is a function only
of the time t. For this linear case, the predictor-based
controller is given explicitly as

U(t) = KeAD̂X(t) +

∫ t

t−D̂

eA(t−θ)BU(θ)dθ. (64)

Theorem 2 Consider the closed-loop system consisting
of the plant (63), observer (14)–(15), and control law
(64). There exists a positive δ1, such that if the pertur-
bation δ satisfies

|δ(t)|+ |δ′(t)|< δ1, for all t ≥ t0, (65)

then, the closed-loop system is exponentially stable, in
the sense that there exist positive constants R and λ such
that the following holds:

ΠL(t)≤RΠL(t0)e
−λ(t−t0) (66)

ΠL(t) = |X(t)|2 +
∫ t

t−D̂−max{0,δ(t)}
U(θ)2dθ

+

∫ t

t−D̂

U̇(θ)2dθ. (67)

The proof of Theorem 2 is based on the application of
Lemmas 1, 3, 4 and 5 for the special case of plant (63)
and the special perturbation δ as in (63). However, we
give each of these lemmas specialized to the present case
for two reasons. Firstly, in the special case of linear sys-
tems with only time-varying perturbation, we study sta-
bility of the closed-loop system in the H1 norm. This

is a consequence of the fact that when δ does not de-
pend on the state, the conditions (17), (50) are satisfied
without restricting the supremum norm of the real ac-
tuator state U(θ), for all φ(t) ≤ θ ≤ t. Secondly, in the
linear case the control law, as well as the direct and in-
verse backstepping transformations are given explicitly
and are globally well-defined.

When (65) does not hold, one can still derive exponential
stability of the closed-loop system, by imposing other
conditions on the perturbation δ, such us the ones from
[26] Chapter 9.3. However, in this case one has to guar-
antee in addition that the propagation speed π is still
uniformly bounded from above and below and strictly
positive. Therefore, we make the following assumptions
which δ has to a priori satisfy.

Assumption 3 The perturbation δ satisfies

δ′(t) < 1, for all t ≥ t0, (68)

and is such that

π∗
1 =

1

supθ≥σ(t0)(1− δ′(θ))
> 0. (69)

Assumption 4 The perturbation δ satisfies

D̂ + δ(t) > 0, for all t ≥ t0, (70)

and is such that

π∗
0 =

1

supθ≥σ(t0)(D̂ + δ(θ))
> 0. (71)

Theorem 3 Assume that δ satisfy Assumptions 3, 4.
There exist positive δ2 and δ3 such that if the perturbation
δ satisfies either

∫ ∞

0

(|δ′(θ)| + |δ(θ)|) dθ≤ δ2, (72)

or

|δ(t)|+ |δ′(t)| → 0, when t → ∞, (73)

or

1

∆

∫ t+∆

t

(|δ′(θ)|+ |δ(θ)|) dθ≤ δ3 for all t ≥ T , (74)

for some positive ∆ and nonnegative T , then, the closed-
loop system consisting of the plant (63), observer (14)–
(15), and control law (64) is exponentially stable, in the
sense that there exist positive constants R and λ such
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that the following holds:

ΠL(t)≤RΠL(t0)e
−λ(t−t0) (75)

ΠL(t) = |X(t)|2 +
∫ t

t−D̂−max{0,δ(t)}
U(θ)2dθ

+

∫ t

t−D̂

U̇(θ)2dθ. (76)

FromTheorem 3 we observe that in the case of linear sys-
tems and when the perturbation depends only on time
and not on the state, we prove robustness of global ex-
ponential stability of the predictor feedback under three
alternative conditions on the delay perturbation rather
than just restricting the magnitude of the delay and its
rate. This is not possible in the case where the perturba-
tion depends on the state because for the conditions (17)
and (50) to be satisfied one has to necessarily restrict
the magnitude of the perturbation and its rate such that
they are both sufficiently small.

We introduce now the backstepping transformation of
the estimated actuator state.

Lemma 6 Consider the backstepping transformation

ŵ(x, t) = û(x, t)−KeAD̂xX(t)

−D̂K

∫ x

0

eAD̂(x−y)Bû(y, t)dy, (77)

together with its inverse given by

û(x, t) = ŵ(x, t) +Ke(A+BK)D̂xX(t)

+D̂K

∫ x

0

e(A+BK)D̂(x−y)Bŵ(y, t)dy. (78)

System (63) together with the control law (64) can be
represented as

Ẋ(t) = (A+BK)X(t) +Bŵ(0, t) +Bũ(0, t) (79)

D̂ŵt(x, t) = ŵx(x, t) − D̂KeAD̂xBũ(0, t) (80)

ŵ(1, t) = 0, (81)

where the observer error

ũ(x, t) = u(x, t)− û(x, t), (82)

satisfies

ũt(x, t) = π(x, t)ũx(x, t)−
(

1− D̂π(x, t)
)

r(x, t) (83)

ũ(1, t) = 0, (84)

with

π(x, t) =
1 + x (σ̇(t)− 1)

σ(t)− t
(85)

φ(t) = t− D̂ − δ(t) (86)

σ(t) = φ−1(t)

= t+ D̂ + δ(σ(t)) (87)

r(x, t) =
1

D̂
ŵx(x, t) +Ke(A+BK)D̂x(A+BK)X(t)

+KBŵ(x, t) + D̂K(A+BK)

×
∫ x

0

e(A+BK)D̂(x−y)Bŵ(y, t)dy. (88)

Furthermore,

D̂ŵxt(x, t) = ŵxx(x, t) − D̂2KeAD̂xABũ(0, t) (89)

ŵx(1, t) = D̂KeAD̂Bũ(0, t). (90)

Proof System (63) can be re-written in the form

Ẋ(t) =AX(t) +Bu(0, t) (91)

ut(x, t) = π(x, t)ux(x, t) (92)

u(1, t) =U(t), (93)

where π is defined in (85). The predictor feedback (64)
can be written as

U(t) = KeAD̂X(t) + D̂

∫ 1

0

eAD̂(1−y)Bû(y, t)dy, (94)

where the estimation of the unmeasured actuator state
U(θ), for all t − D̂ − δ(t) ≤ θ ≤ t, û(x, t) is defined in
(14), (15) and satisfies (16). With representation (91)–
(93) for system (63), the actuator state u(x, t) is

u(x, t) = U (φ (t+ x (σ(t) − t))) , for all x ∈ [0, 1],(95)

or, incorporating δ, u(x, t) = U
(

t+ x
(

D̂ + δ(σ(t))
)

−D̂ − δ
(

t+ x
(

D̂ + δ(σ(t))
)))

for all x ∈ [0, 1]. Since

the perturbation δ satisfies (65), it follows from defini-
tion (85) and relations (86), (87) that σ(t) − t > 0 and
that 1− δ′(t) > 0, for all t ≥ t0. Define the quantities

π∗∗
1 =

1

supθ≥σ(t0)(1− δ′(θ))
(96)

π∗∗
0 =

1

supθ≥σ(t0)(D̂ + δ(θ))
. (97)

From (65) it follows that supθ≥σ(0)(1− δ′(θ)) < ∞ and

that supθ≥σ(0)(D̂ + δ(θ)) < ∞, and hence, π∗∗
1 > 0,

π∗∗
0 > 0. Since σ(t) − t = D̂ + δ(σ(t)) and σ̇(t) =

1
1−δ′(σ(t)) , using (65) we conclude that π is positive and

uniformly bounded from above and below. Hence, π is a
meaningful propagation speed. The rest of the proof is
based on algebraic manipulations and it is omitted.
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Lemma 7 There exist positive constants r1 and r2 such
that the derivative of the Lyapunov function

VL(t) =X(t)TPX(t) + b1

∫ 1

0

ebxũ(x, t)2dx

+D̂b2

∫ 1

0

(1 + x)ŵ(x, t)2dx

+D̂b2

∫ 1

0

(1 + x)ŵx(x, t)
2dx, (98)

along the solutions of (79)–(81), (83)–(84), (89)–(90)
satisfies

V̇L(t)≤−r1VL(t) + r2γ(t)VL(t), (99)

γ(t) =max {|δ (σ(t))| ,
∣

∣

∣δ(σ(t)) (1− δ′(σ(t))) − D̂δ′(σ(t))
∣

∣

∣

}

. (100)

Proof See Appendix F.

Lemma 8 There exists a positive δ1 such that if the per-
turbation δ satisfies (65), then there exists a positive λ
such that V in (98) satisfies

V̇L(t) ≤ −λVL(t). (101)

Proof See Appendix G

Lemma 9 There exist positive constantsM5,L andM6,L

such that

M5,LVL(t)≤ ΓL(t) ≤ M6,LVL(t) (102)

ΓL(t) = |X(t)|2 +
∫ 1

0

u(x, t)2dx+

∫ 1

0

û(x, t)2dx

+

∫ 1

0

ûx(x, t)
2dx. (103)

Proof See Appendix H.

Lemma 10 There exist positive constants M7,L and
M8,L such that

M7,LΓL(t) ≤ ΠL(t) ≤ M8,LΓL(t). (104)

Proof From (16) we get ûx(x, t)= D̂U ′
(

t+D̂(x− 1)
)

.

Applying a change of variables in (103), with (95) we get

ΓL(t) = |X(t)|2 + 1

σ(t)− t

∫ t

t−D̂−δ(t)

1

φ′ (σ(θ))
U(θ)2dθ

+
1

D̂

∫ t

t−D̂

U(θ)2dθ +

∫ t

t−D̂

U̇(θ)2dθ. (105)

Hence, the lemma is proved with M7,L = 1

max{1,ML+
1

D̂
} ,

ML =
supt−D̂−δ(t)≤θ≤t

1
1−δ′(σ(θ))

inft≥t0(D̂+δ(σ(t)))
, M8,L = 1

min{1,π∗∗
0 π∗∗

1 , 1

D̂
} .

Proof of Theorem 2: Using Lemma 8 and the comparison
principle ([26]), we get VL(t) ≤ VL(t0)e

−λ(t−t0). With

Lemmas 9 and 10 we get (66) with R =
M6,LM8,L

M5,LM7,L
. ✷

Proof of Theorem 3: We consider first the case where δ
satisfies (72). Under Assumptions 3 and 4, Lemmas 6,
7, 9 and 10 apply to this case as well (with π∗∗

0 and π∗∗
1

replaced by π∗
0 and π∗

1 respectively). The only difference
with the proof of Theorem 2 is in the proof of Lemma 8.
Towards that end, we solve (99) to get

VL(t) ≤ e
−r1(t−t0)+r2

∫

t

t0
γ(τ)dτ

VL(t0). (106)

Consider that γ(t) =
∣

∣

∣

1
π(0,t) − D̂

∣

∣

∣. Applying the change

of variables τ = φ(θ) in the integral and using the facts
that σ(t0) > t0 and φ′(t) = 1− δ′(t) we get

∫ ∞

t0

γ(τ)dτ ≤ 1

π∗
1

∫ ∞

t0

|δ (θ)| dθ ≤ δ2

π∗
1

. (107)

Analogously, for the case γ(t) =
∣

∣

∣

1
π(1,t) − D̂

∣

∣

∣, we get

∫ ∞

t0

γ(τ)dτ ≤ δ2

π∗
1

(

D̂ +
1

π∗
1

)

. (108)

Hence, Lemma 8 is proved with r2δ2 < min {π∗
1r1 ,

π∗
1
2r1

(1+π∗
1D̂)

}

and the fact that
∫ t

t0
γ(τ)dτ ≤

∫∞
t0

γ(τ)dτ .

Note that in the present case, Lemma 8 can be proved
directly from relation (99) using Lemma B.6 in [28].

For the case where δ satisfies (73), Lemma 8 is proved
by combining Lemma 7, Lemma B.8 in [28] and the fact
that γ(t) satisfies

γ(t) ≤
(

1 +
1

π∗
1

+ D̂

)

(|δ(σ(t))| + |δ′(σ(t))|) . (109)

Finally, if δ satisfies (74), Lemma 8 is proved using
Lemma 9.5 in [26]. ✷

4 Examples

4.1 Control of a DC motor over a network

We consider the following model of a field-controlled DC
motor ([44]) with negligible shaft damping

dω(t)

dt
= θif(t)ia(t) (110)

dia(t)

dt
=−bia(t)+k−cif(t)ω(t) (111)

dif(t)

dt
=−aif(t)+U

(

t−D̂−ρ(t, if(t), ia(t), ω(t))
)

,(112)
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where if , ia are field and armature currents respec-
tively, ω is angular velocity and a, b, c, θ are positive
constants. The equilibria of the unforced system are
(ω, ia, if) =

(

ω0,
k
b
, 0
)

for some constant ω0. The sys-
tem is feedback linearizable for (ω, ia, if) ∈ D,D =
{

(ω, ia, if) ∈ R
3|ω > 0 and ia>

k
2b

}

. A delay-free design,
based on full-state linearization, is (Chapter 13.3 in [26])

U(t) =
1

γ
(−K1Z1(t)−K2Z2(t)−K3Z3(t)− α) (113)

Z1(t) = θia(t)
2 + cω(t)2 − θ

k2

b2
− cω2

0 (114)

Z2(t) = 2θia(t) (k − bia(t)) (115)

Z3(t) = 2θ (k − 2bia(t)) (−bia(t) + k − cif(t)ω(t)) (116)

γ =−2cθ (k − 2bia(t))ω(t) (117)

α= 2caθ (k − 2bia(t)) if(t)ω(t)− 2bθ (3k − 4bia(t)

−2cif(t)ω(t)) (−bia(t) + k − cif(t)ω(t))

−2cθ (k − 2bia(t)) if(t)
2ω(t). (118)

Shifting the equilibrium
(

ω0,
k
b
, 0
)

of the system to the

origin and setting X1 = ω − ω0, X2 = ia − k
b
, X3 = if ,

δ(t,X1(t), X2(t), X3(t)) = ρ(t, if(t), ia(t), ω(t)) we get

Ẋ1(t) = θX2(t)X3(t) +
θk

b
X3(t) (119)

Ẋ2(t) =−bX2(t)− cX3(t)X1(t)− cω0X3(t) (120)

Ẋ3(t) =−aX3(t)

+U
(

t− D̂ − δ(t,X1(t), X2(t), X3(t))
)

. (121)

The motor is controlled through a network that induces
a constant delay D̂ (e.g. [11]). The known, constant de-
lay, is subject to a time-varying perturbation due to the
effect of transmission of control signals to other motors
through the network.We further assume that the pertur-
bation δ increases when the armature current increases.
Define the estimated predictors of X1, X2 and X3 as

P̂1(t) =X1(t) + θ

∫ t

t−D̂

(

P̂2(s)P̂3(s) +
k

b
P̂3(s)

)

ds(122)

P̂2(t) =X2(t) +

∫ t

t−D̂

(

−bP̂2(s)− cP̂1(s)P̂3(s)

−cω0P̂3(s)

)

ds (123)

P̂3(t) =X3(t) +

∫ t

t−D̂

(

−aP̂3(s) + U(s)
)

ds, (124)

respectively. Setting in (113)–(118) ω = X1 + ω0, ia =
X2+

k
b
, if = X3 and replacingX1,X2,X3 by the predic-

tors (122)–(124) we get the nominal predictor feedback.

We choose the set-point for the angular velocity of the
motor as ω0 = 2, the nominal delay D̂ = 1 and the pa-
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Fig. 2. The field (top) and armature (bottom) currents for
a network controlled DC motor modeled by (110)–(112)
with the nominal predictor feedback, under an input de-
lay perturbation δ (t, ia(t)) = 0.5ia(t)

2 + 0.2 sin(t)2 (solid
line) and δ(t, ia(t)) = 0 (dotted line). The initial condi-
tions are if(0) = 0.1, ia(0) = 0.8, ω(0) = 1 and U(θ) = 0,
−1− δ(0, ia(0)) ≤ θ ≤ 0.

rameters of the plant as a = b = c = k = θ = 1. The

delay perturbation is δ (t,X2(t)) = 0.5
(

X2(t) +
k
b

)2
+

0.2 sin(t)2. The initial conditions for the plant and the
actuator state are chosen asX1(0) = −1,X2(0) = −0.2,

X3(0) = 0.1 and U(θ) = 0, −1− 0.5 (X2(0) + 1)2 ≤ θ ≤
0 respectively. The parameters of the controller are cho-
sen as K1 = −1, K2 = K3 = −3, such as the lineariz-
able, delay-free, system (i.e., the delay-free plant in theZ
coordinates) has three eigenvalues at −1, and the initial
estimate of the actuator state as U(θ) = 0, −1 ≤ θ ≤ 0.

In Fig. 2 we show the field and armature currents, and
in Fig. 3 the input voltage and the angular velocity of
the motor. The nominal predictor feedback achieves lo-
cal stabilization of the closed-loop system at the desired
equilibrium, despite the presence of the perturbation.

4.2 Bilateral teleoperation

In bilateral teleoperation [15], the operator (e.g. a hu-
man) controls a robotic system, called the master, at the
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Fig. 3. The angular velocity (top) and the field voltage
(bottom) for a network controlled DC motor modeled by
(110)–(112) with the nominal predictor feedback, under an
input delay perturbation δ (t, ia(t)) = 0.5ia(t)

2 + 0.2 sin(t)2

(solid line) and δ(t, ia(t)) = 0 (dotted line). The initial con-
ditions are if(0) = 0.1, ia(0) = 0.8, ω(0) = 1 and U(θ) = 0,
−1− δ(0, ia(0)) ≤ θ ≤ 0.

one end of the communication network. The actions of
the master are transmitted (through the network) to an-
other robotic system, called the slave, at the other end
of the network. The goal of the control algorithm is the
slave manipulator to behave (in a certain sense) as the
master manipulator. A model of two robotic systems,
each one having n degrees of freedom, representing the
master and the slave manipulators is written as ([15])

ẍm(t) + ẋm(t) = τm

(

t− D̂ − δ(t)
)

(125)

ẍs(t) + ẋs(t) = τs

(

t− D̂ − 2δ(t)
)

, (126)

where xm, xs ∈ R
n are the degrees of freedom of the

robotic systems and the torques τm, τs ∈ R
n are to be

designed such as coordination between the master and
the slave is achieved asymptotically, i.e., xm − xs → 0
as t → ∞. The constant delay D̂ represents the known,
network-induced delay which is subject to time-varying
perturbations that are often present due to congestion,
distance etc. [12]. For simplicity we assume scalar xm,

xs, τm, τs and we re-write (125), (126) as

Ẋ1(t) =X2(t) (127)

Ẋ2(t) =U1

(

t− D̂ − δ(t)
)

(128)

Ẋ3(t) =X4(t) (129)

Ẋ4(t) =U2

(

t− D̂ − 2δ(t)
)

, (130)

where X1 = xm, X2 = ẋm, X3 = xs, X4 = ẋs, U1 =
τm and U2 = τs. A simple controller is ([15]) τm(t) =
−Kp (xm(t)− xs(t)) − Bmẋm(t) − Kp(xm(t) − r) and
τs(t) = Kp (xm(t)− xs(t)) − Bsẋs(t) − Kp (xs(t)− r),
where r is the set-point for the positions of the manipu-
lators. The predictor-based version of this controller is

U1(t) =−Kp

(

P̂1(t)− P̂3(t)
)

−BmP̂2(t)

−Kp

(

P̂1(t)− r
)

(131)

U2(t) =Kp

(

P̂1(t)− P̂3(t)
)

−BsP̂4(t)

−Kp

(

P̂3(t)− r
)

(132)

P̂i(t) =Xi(t) +

∫ t

t−D̂

P̂i+1(θ)dθ, i = 1, 3 (133)

P̂j(t) =Xj(t) +

∫ t

t−D̂

U j
2
(θ)dθ, j = 2, 4. (134)

We choose the desired set-point for xm and xs as r = 2,
the parameters of the controller as Kp = Bm = Bs = 2,

the known delay as D̂ = 1, the initial condition of the
plant as xm(0) = ẋm = ẋs = 0, xs(0) = 1, the initial

actuator state as U(θ) = 0, −D̂ − δ(0) ≤ θ ≤ 0 and
the initial estimation of the actuator state as U(θ) = 0,

−D̂ ≤ θ ≤ 0. We illustrate the robustness properties of
the predictor feedback under a time-varying delay per-
turbation that is neither in L1 nor converges to zero as
the time goes to infinity nor is small in magnitude. How-
ever, after some long period of time its mean is small.
This disturbance is show in Fig. 4.

In Fig. 5 we show the difference between the positions of
the master and the slave for the cases where either there
is or there is not a perturbation δ. In both cases, under
the nominal predictor feedback the position of the slave
tracks the position of the master. In Fig. 6 we show the
torques applied to the two robotic systems under the
perturbation δ. The control efforts are oscillatory as a
result of the effect of the oscillatory perturbation.

5 Conclusions

Looking into the details of the proofs, we note that in the
case of nonlinear systems with state-dependent pertur-
bations, there is a trade off between the achievable re-
gion of attraction and the size of the perturbation and its
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Fig. 4. The delay perturbation δ satisfying
δ̇(t) = −δ(t) + 0.1 sin(t)2, δ(0) = 1 induced by the network
in bilateral teleoperation. The model of the two robotic
systems is (125)–(126).
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Fig. 5. The error between the position of the master and
the slave manipulators for two robotic systems modeled by
(125)–(126). The two manipulators are coordinated through
a network with the predictor feedback (131)–(134), under an
input delay perturbation δ(t) = 0 (dotted) and δ satisfying

δ̇(t) = −δ(t) + 0.1 sin(t)2, δ(0) = 1 (solid), induced by the
network. The initial conditions are xm(0) = 0, xs(0) = 1,
ẋm(0) = ẋs(0) = 0 and τm(θ) = τs(θ) = 0,−1−δ(0) ≤ θ ≤ 0.

rate, at the origin. For linear systems under time-varying
perturbations, global exponential stability holds, but the
size of the perturbation and its rate should be appropri-
ately restricted.With the available Lyapunov functional,
our next step is to study the inverse optimal redesign
problem of predictor feedback for nonlinear systems.

One might raise the question of robustness to stochastic
delay perturbations, since stochastic perturbations have
some resemblances with the time-varying case. Yet, in
our analysis we restrict not only the magnitude of the
perturbation δ but also the magnitude of its derivative
(which also guarantees the invertibility of φ = t−D̂−δ),

0 2 4 6 8
−5

0

5

10

t

 

 

τm

τs

Fig. 6. The input torques of the master and the slave ma-
nipulators for two robotic systems modeled by (125)–(126)
coordinated through a network with the predictor feedback
(131)–(134), under an input delay perturbation δ satisfy-

ing δ̇(t) = −δ(t) + 0.1 sin(t)2, δ(0) = 1, induced by the
network. The initial conditions are xm(0) = 0, xs(0) = 1,
ẋm(0) = ẋs(0) = 0 and τm(θ) = τs(θ) = 0,−1−δ(0) ≤ θ ≤ 0.

which can be unbounded in the case where δ is white
noise, or even when δ is a low pass version of white noise.

Appendices

A The perturbation signals of Lemma 1

With û defined in (27) in terms of ρ̂ and ŵ, the pertur-
bation signals r1, r, r2, r3, r4 and r5 are

r1(x, t) =−D̂
∂κ
(

t+ D̂x, ρ̂(x, t)
)

∂ρ̂

×e
D̂
∫

x

0

∂f(ρ̂(y,t),û(y,t))
∂ρ̂

dy
(A.1)

r(x, t) =
1

D̂
ŵx(x, t) +

∂κ
(

t+ D̂x, ρ̂(x, t)
)

∂t

+
∂κ
(

t+ D̂x, ρ̂(x, t)
)

∂ρ̂
f (ρ̂(x, t), û(x, t)) (A.2)

r2(x, t)=−D̂



D̂
∂2κ

(

t+ D̂x, ρ̂(x, t)
)

∂ρ̂∂t

+fT (ρ̂(x, t), û(x, t))
∂2κ

(

t+ D̂x, ρ̂(x, t)
)

∂ρ̂2





×e
D̂
∫

x

0

∂f(ρ̂(y,t),û(y,t))
∂ρ̂

dy − D̂2

×
∂κ
(

t+ D̂x, ρ̂(x, t)
)

∂ρ̂

∂f (ρ̂(x, t), û(x, t))

∂ρ̂
(A.3)

r3(x, t) = r2x(x, t) (A.4)
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r4(t) = D̂2
∂2κ

(

t+ D̂, ρ̂(1, t)
)

∂t∂ρ̂
e
D̂
∫

1

0

∂f(ρ̂(x,t),û(x,t))
∂ρ̂

dx

+D̂2fT (ρ̂, û)
∂2κ

(

t+ D̂, ρ̂(1, t)
)

∂2ρ̂

×e
D̂
∫

1

0

∂f(ρ̂(x,t),û(x,t))
∂ρ̂

dx
+

∂κ
(

t+ D̂, ρ̂(1, t)
)

∂ρ̂

×e
D̂
∫ 1

0

∂f(p(x,t),û(x,t))
∂p

dx
D̂2

×
(

∫ 1

0

∂2f (ρ̂(x, t), û(x, t))

∂2ρ̂
f(ρ̂(x, t), û)dx

+D̂

∫ 1

0

∂2f (ρ̂(x, t), û(x, t))

∂ρ̂∂û
r(x, t)dx

)

(A.5)

r5(t) = e
D̂
∫

1

0

∂f(ρ̂(y,t),û(y,t))
∂ρ̂

dy
T ∂2κ

(

t+ D̂, ρ̂(1, t)
)

∂2ρ̂

×D̂3e
D̂
∫ 1

0

∂f(ρ̂(x,t),û(x,t))
∂ρ̂

dx
, (A.6)

where the notation ∂2f(ρ̂(x,t),û(x,t))
∂2ρ̂

f(ρ̂(x, t), û(x, t))

corresponds to a matrix Q = {gi,j}1≤i,j≤n
with ele-

ments qi,j = ∂2fi(ρ̂(x,t),û(x,t))
∂ρ̂j∂ρ̂

f(ρ̂(x, t), û(x, t)), where

f = (f1, . . . , fn)
T and ρ̂ = (ρ̂1, . . . , ρ̂n)

T .

B Technical Lemmas

Lemma 11 The predictor p in (13) satisfies

D̂p̂t(x, t) = p̂x(x, t) + D̂e
D̂
∫

x

0

∂f(p̂(y,t),û(y,t))
∂p̂

dy
f̃(t), (B.1)

where f̃ is defined in (32).

Proof Differentiating (13) with respect to t, x and using
(14)–(15) with the fact that p(0, t) = X(t) we get

Ψ(x, t) = D̂f(p̂(0, t), ũ(0, t) + û(0, t))

+D̂

∫ x

0

∂f (p̂(y, t), û(y, t))

∂p̂
D̂p̂t(y, t)dy

+D̂

∫ x

0

∂f (p̂(y, t), û(y, t))

∂û
ûy(y, t)dy

−D̂f(p̂(x, t), û(x, t)) (B.2)

Ψ(x, t) = D̂p̂t(x, t)− p̂x(x, t). (B.3)

Since

f(p̂(x, t), û(x, t)) =

∫ x

0

(

∂f (p̂(y, t), û(y, t))

∂p̂
p̂y(y, t)

+
∂f (p̂(y, t), û(y, t))

∂û
ûy(y, t)

)

dy

+f(p̂(0, t), û(0, t)), (B.4)

we get that

Ψ(x, t)=D̂

∫ x

0

∂f (p̂(y, t), û(y, t))

∂p̂
Ψ(y, t) + D̂f̃(t).(B.5)

Solving (B.5) for Ψ the lemma is proved.

Lemma 12 There exists a class K∞ function α6 such
that for all x ∈ [0, 1]

|p̂(x, t)| ≤ α6

(

|X(t)|+
∫ 1

0

α∗(|û(x, t)|)dx
)

. (B.6)

Proof Differentiating (13) with respect to x and com-
paring the resulting ODE with the ODE in t for X , the
proof is complete with Assumption 1 and the comparison

principle after appropriately majorizing eD̂D̂α3 < α∗.
The detailed proof can be found in [31] (Lemma 7).

Lemma 13 There exists class K∞ function α11 . . . α13

such that for all x ∈ [0, 1]

|ŵ(x, t)| ≤ α11 (Ω(t)) (B.7)

|ŵx(x, t)| ≤ |ûx(x, t)|+ α12 (Ω(t)) (B.8)
∫ 1

0

ŵxx(x, t)
2dx≤ 6

∫ 1

0

ûxx(x, t)
2dx+ α13 (Ω(t)) ,(B.9)

where

Ω(t)= |X(t)|+
∫ 1

0

α∗(|û(x, t)|)dx+
∫ 1

0

ûx(x, t)
2dx.(B.10)

Proof The proof of the lemma is based on algebraic ma-
nipulations and routine class K majorizations using the
direct (26) backstepping transformation together with
relations (13) for the predictor state and Lemma 12. For
the reader’s benefit we prove (B.7) and (B.8). The rest
can be proved similarly. From (26) and (20) we get that
|ŵ(x, t)| ≤ |û(x, t)|+ α̂ (|p̂(x, t)|). Using the fact that

sup
x∈[0,1]

|û(x, t)| ≤ |û(1, t)|+
∫ 1

0

|ûx(x, t)|dx, (B.11)

with relation (2) and Lemma 12we get (B.7). For proving
(B.8) we proceed as follows. Differentiating (26) with
respect to x we get that

ŵx(x, t)=ûx(x, t) + D̂
∂κ
(

t+ D̂x, p̂(x, t)
)

∂t
+ D̂

×
∂κ
(

t+ D̂x, p̂(x, t)
)

∂p̂
f (p̂(x, t), û(x, t)).(B.12)

Combining (20), (B.32) with Lemma 12 and (B.11) we
arrive at (B.8) with appropriate class K majorizations.
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Lemma 14 There exists positive constantsM∗, c∗ such
that for all solutions of the system satisfying (51) the
following holds for all x ∈ [0, 1]

|ρ̂(x, t)| ≤ M∗
(

|X(t)|+
∫ 1

0

α∗(|ŵ(x, t)|)dx
)

. (B.13)

Proof Under Assumtpion 2 and choosing c∗ < R, from
Theorem 4.14 from [26] there exist a continuously dif-
ferentiable function S : [t0,∞) × DR → R

n, where
DR = {X ∈ R

n||X | < R}, and positive constants M1,
M2, M3 and M4 such that for all X ∈ DR

M1|X |2 ≤ S(t,X) ≤ M2|X |2 (B.14)

∂S (t,X(t))

∂t
+

∂S (t,X(t))

∂X
f (X(t), κ (t,X(t)))

≤−M3|X(t)|2 (B.15)
∣

∣

∣

∣

∂S (t,X)

∂X

∣

∣

∣

∣

≤M4|X |. (B.16)

Since f ∈ C2 (Rn × R;R), for all X ∈ DR and every
ω ∈ R such that |ω| ≤ M for some positive constant M ,
there exists an increasing function in both arguments
L ∈ C

(

R
2
+;R+

)

such that along the solutions of Ẋ(t) =
f (X(t), κ (t,X(t) + ω(t))) it holds that

Ṡ≤−M3|X(t)|2+ ∂S (t,X)

∂X
(f (X(t), κ (t,X(t))+ω(t))

−f (X(t), κ (t,X(t))))

≤−M3|X(t)|2 +M4|X(t)|L(R,M)|ω(t)|, (B.17)

where we used Lemma 3.1 in [26]. With S∗ =
√
S we get

Ṡ∗(t,X(t))≤− M3

2
√
M1

|X(t)|+M4L(R,M)

2
√
M1

|ω(t)|. (B.18)

Differentiating (28) with respect to x we get that

ρ̂x(x, t) = D̂f
(

ρ̂(x, t), κ
(

t+ D̂x, ρ̂(x, t)
)

+ ŵ(x, t)) . (B.19)

Using the fact that for all x ∈ [0, 1], |ŵ(x, t)| ≤
∫ 1

0
|ŵx(x, t)|dx (which follows from (31)), relation (B.8)

together with (51) and Lemma 5 give that for all
x ∈ [0, 1], |ŵ(x, t)| ≤ M , withM = ζ2(c

∗)+α12 (ζ2(c
∗)).

Using a change of variables in (B.19) as x′ = t+ D̂x and
comparing the resulting ODE in x′ for ρ̂ with the ODE
in t for Ẋ(t) = f (X(t), κ(t,X(t) + ω(t)), with (B.14)
and after appropriately majorizing s < α∗(s), the proof

is complete with M∗(R,M) =
√
M2√
M1

+ D̂
M4L(R,M)

2M1
, and

hence, with c∗ = min {R, c∗1}, where c∗1 satisfies

M∗(R,M(c∗1)) (c
∗
1 + α11 (ζ2(c

∗
1))) < R. (B.20)

Lemma 15 There exists classKC∞ functionsα14 . . . α16

and a positive constant c∗ such that for all solutions of
the systems satisfying (51), the following holds

|û(x, t)| ≤ α14 (Y (t), R) (B.21)

|ûx(x, t)| ≤ |ŵx(x, t)|+ α15 (Y (t), R) (B.22)
∫ 1

0

ûxx(x, t)
2 ≤ 6

∫ 1

0

ŵxx(x, t)
2dx+α16 (Y (t), R),(B.23)

for all x ∈ [0, 1], where

Y (t)=|X(t)|+
∫ 1

0

α∗(|ŵ(x, t)|)dx+
∫ 1

0

ŵx(x, t)
2dx.(B.24)

Proof Choose c∗ as in Lemma 14. Then, the proof of the
lemma is based on algebraic manipulations and routine
class K majorizations using the inverse transformation
(27), relation (28) for the predictor state and Lemma 14.

Lemma 16 There exist class KC∞ functions α17 . . . α23

and positive constants c∗, µ1, µ2, µ3, µ4, µ5 such that for
all solutions of the system satisfying (51) the following
holds for all x ∈ [0, 1]

|r(x, t)| ≤ 1

D̂
|ŵx(x, t)|+ α17 (Y (t), R) (B.25)

|r1(x, t)| ≤ µ1 + α18 (Y (t), R) (B.26)

|r2(x, t)| ≤ µ2 + α19 (Y (t), R) (B.27)
∫ 1

0

r3(x, t)
2dx≤ µ3 + α20 (Y (t), R) (B.28)

|r4(t)| ≤ µ4 + α21 (Y (t), R) (B.29)

|r5(t)| ≤ µ5 + α22 (Y (t), R) (B.30)
∫ 1

0

rx(x, t)
2dx≤ α23 (Y (t), R)

+
6

D̂2

∫ 1

0

ŵxx(x, t)
2dx, (B.31)

where Y (t) is defined in (B.24).

Proof Let c∗ be as in Lemma 14. The proof is based
on (A.1)–(A.6) combined with (20), the fact that f is
twice differentiable and with similar calculations as in
the proof of Lemma 13. Yet, we provide the proofs of
(B.25), (B.31) as some of the steps are useful later on.
Under Assumption 2 (which allows us to choose α̂ contin-
uously differentiable without loss of generality), Lemma

14, and the facts that, |ŵ(x, t)| ≤
∫ 1

0 |ŵx(x, t)|dx, for
all x ∈ [0, 1] (which follows from (31)), and that f :
C2 (Rn × R;Rn), f(0, 0)=0, which allows us to conclude

|f (X,ω)| ≤ α5 (|X |+ |ω|) , (B.32)

for some function α5 ∈ K∞∩C1, we get from (A.2) that

|r(x, t)| ≤ 1

D̂
|ŵx(x, t)| + αr (Λ(t), R) (B.33)
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Λ(t) = |X(t)|+
∫ 1

0

α∗(|ŵ(x, t)|)dx

+

∫ 1

0

|ŵx(x, t)|dx, (B.34)

for some class KC∞ function αr, continuously differen-
tiable in its first argument. Analogously, differentiating
(A.2) with respect to x and using (28) together with the

fact that D̂r(x, t) = ûx(x, t) it is shown that

|rx(x, t)| ≤
1

D̂
|ŵxx(x, t)|+ α1,rx (Λ(t), R)

+ (µ∗ + α2,rx (Λ(t), R)) |r(x, t)|, (B.35)

for some positive constant µ∗ and some functions α1,rx ,
α2,rx ∈ KC∞ which are continuously differentiable
with respect to their first argument. With the Cauchy-
Schwarz inequality we get (B.25), (B.31).

C Proof of Lemma 2

The proof of this lemma is based on the following fact.

Fact 1 There exists a class KC∞ function ζ̂1 such that
if the perturbation δ and the solutions of the system sat-
isfying (17) for 0 < c < 1 and (50), the following holds
for all φ(t) ≤ θ ≤ t

|P ∗(θ)| ≤ ζ̂1

(

|X(t)|+ sup
φ(t)≤s≤t

|U(s)| , R
)

. (C.1)

Proof The proof can be found in [5] (Lemma 4).

It holds U(θ) = U(t) −
∫ t

θ
U̇(s)ds, for all φ(t) ≤ θ ≤ t,

and hence, using (20), (2) and the fact that
∫ t

θ
U̇(s)ds =

∫ 1
σ(θ)−t

σ(t)−t

ux(x, t)dx we get supφ(t)≤θ≤t |U(θ)|≤ α̂ (|p̂(1, t)|)
+
∫ 1

0
(|ûx(x, t)| + |ũx(x, t)|) dx. Lemma 12 (App. B) and

the Cauchy-Schwarz give

sup
φ(t)≤θ≤t

|U(θ)|≤α4

(

|X(t)|+
∫ 1

0

α∗(|û(x, t)|)dx

+

∫ 1

0

ûx(x, t)
2dx+

∫ 1

0

ũx(x, t)
2dx

)

,(C.2)

for some class K∞ function α4. Using (22), (B.32), con-
ditions (17) for 0 < c < 1 and (50) are satisfied, if the
following relation is satisfied for all φ(t) ≤ θ ≤ t

R1 > c1 + µ̂(|P ∗(θ)|) + (c1 + µ̂(|P ∗(θ)|))

×α5

(

|X(t)|+ sup
φ(t)≤θ≤t

|U(θ)|
)

, (C.3)

where R1 = min
{

c, D̂
}

. With Fact 1, Lemma 5 and

(C.2) the lemma is proved with c∗ = c∗2 and c1 satisfying

R>
(

c1 + µ̂
(

ζ̂1 (α4 (3ζ2 (c
∗
2, R)) , R)

))

× (1 + α5 (α4 (3ζ2 (c
∗
2, R)))) . (C.4)

D Proof of Lemma 3

Let c∗ be the minimum of c∗1 and c∗2 defined in (B.20)
and (C.4) respectively. Taking the derivative of V with

S∗ =
√
S and using integration by parts together with

(29)–(30), (34)–(35), (36)–(37), (39)–(42), (B.18) we get

V̇ (t)≤− M3

2
√
M1

|X(t)|+ M4L
∗(R)

2
√
M1

|ŵ(0, t)|

+
M4L

∗(R)

2
√
M1

|ũ(0, t)| − g11π(0, t)|ũ(0, t)|

−g1g11

∫ 1

0

eg1xπ(x, t)|ũ(x, t)|dx − g11πx(x, t)

×
∫ 1

0

eg1x|ũ(x, t)|dx + g11 sup
x∈[0,1]

∣

∣

∣1− D̂π(x, t)
∣

∣

∣

×
∫ 1

0

eg1x|r(x, t)|dx + g6e
g2

∣

∣

∣

∣

1

π(1, t)
− D̂

∣

∣

∣

∣

2

×r(1, t)2 − g6π(0, t)ũx(0, t)
2 − g2g6

×
∫ 1

0

eg2xπ(x, t)ũx(x, t)
2dx+ g6πx(x, t)

×
∫ 1

0

eg2xũx(x, t)
2dx+ 2g6 sup

x∈[0,1]

∣

∣

∣1− D̂π(x, t)
∣

∣

∣

×
∫ 1

0

eg2x|rx(x, t)||ũx(x, t)|dx − g7ŵx(0, t)
2

−g4g7

∫ 1

0

eg4xŵx(x, t)
2dx− g9g10

×
∫ 1

0

eg10x|ŵx(x, t)|dx − g9|wx(0, t)|+ 2g7

×
∫ 1

0

eg4x|ŵx(x, t)||r2(x, t)|dx
∣

∣

∣f̃(t)
∣

∣

∣

+g9

∫ 1

0

eg10x|r2(x, t)|dx|f̃ (t)|+ g7e
g4r1(1, t)

2

×
∣

∣

∣f̃(t)
∣

∣

∣

2

+ g9e
g10 |r1(1, t)||f̃(t)|+ g8e

g5

×ŵxx(1, t)
2 − g8ŵxx(0, t)

2 − g8g5

∫ 1

0

eg5x

×ŵxx(x, t)
2dx+ 2g8

∫ 1

0

eg5x|r3(x, t)|

×|ŵxx(x, t)|dx
∣

∣

∣f̃(t)
∣

∣

∣− g12α
∗ (|ŵ(0, t)|)

−g12g3

∫ 1

0

α∗ (|ŵ(x, t)|) dx+ g12
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×
∫ 1

0

eg3x|α∗′(|ŵ(x, t)|)||r1(x, t)|dx
∣

∣

∣f̃(t)
∣

∣

∣ , (D.1)

for an increasing function L∗ ∈ C (R+;R+). Using (38)
and Lemma 2 we get for all x ∈ [0, 1], 1

(1+R)(D̂+R)
≤

π(x, t) ≤ 1

(1−R)(D̂−R)
, |πx(x, t)| ≤ ĉ

(1−R)(D̂−R)
, where

ĉ=
(

c1 + µ̂
(

ζ̂1 (α4 (3ζ2 (min {c∗1, c∗2} , R)) , R)
))

× (1 + α5 (α4 (3ζ2 (min {c∗1, c∗2} , R)))) . (D.2)

Moreover, since π(x, t) is linear in x, it takes its maxi-
mum value either at x = 0 or at x = 1, and hence,

∣

∣

∣1− D̂π(x, t)
∣

∣

∣≤max
{∣

∣

∣1− D̂π(0, t)
∣

∣

∣ ,
∣

∣

∣1− D̂π(1, t)
∣

∣

∣

}

≤M2Z(t), (D.3)

where M2 = π(0, t) + π(1, t) ≤ 2

(1−R)(D̂−R)
, and

Z(t) = max
{

|δ (σ(t), P ∗(t))| ,
∣

∣

∣δ (σ(t), P ∗(t)) + D̂
∣

∣

∣

×(|δt (σ(t), P ∗(t))|+|∇δ (σ(t), P ∗(t))f (P ∗(t), U(t))|)}.
Therefore, using (C.4) we have that

sup
x∈[0,1]

∣

∣

∣1− D̂π(x, t)
∣

∣

∣≤ 2ĉB∗(R) (D.4)

B∗(R) =
1

D̂ −R
× D̂ + 2

1−R
. (D.5)

Since f : C2 (Rn × R;Rn), using relations (32), (43) and
(44), with Lemma 3.1 from [26] and (51) we have that

∣

∣

∣f̃(t)
∣

∣

∣+
∣

∣

∣f̃ρ̂(t)
∣

∣

∣+
∣

∣

∣f̃û(t)
∣

∣

∣≤ κ1(R) |ũ(0, t)| , (D.6)

for an increasing function κ1 ∈ C (R+;R+). Hence, from
(40), (B.33) we conclude after using (D.6), (B.34) that

r(1, t)2 ≤ κ2(R)|ũ(0, t)|+ 2α2
r (Λ(t), R) , (D.7)

for an increasing function κ2 ∈ C (R+;R+) (where we

also used the fact that
∣

∣

∣
f̃
∣

∣

∣

2

≤ c(R)
∣

∣

∣
f̃
∣

∣

∣
which follows form

(32) and (51)). We are concerned next with ŵxx(1, t)
2.

With Young’s inequality and (B.25), from (42) we get
that there exists an increasing function κ3 ∈ C (R+;R+)

such that (where we absorb the powers of
∣

∣

∣
f̃
∣

∣

∣
,
∣

∣

∣
f̃ρ̂

∣

∣

∣
and

∣

∣

∣f̃û

∣

∣

∣ higher than one in κ3 based on (32), (43), (44), (51))

ŵxx(1, t)
2 ≤ κ3(R)

(∣

∣

∣f̃(t)
∣

∣

∣+
∣

∣

∣f̃ρ̂(t)
∣

∣

∣+
∣

∣

∣f̃û(t)
∣

∣

∣

)

+κ3(R)ũx(0, t)
2 + κ3(R)ŵx(0, t)

+

(

sup
x∈[0,1]

∣

∣

∣
1− D̂π(x, t)

∣

∣

∣

)2

κ3(R)

×α2
r (Λ(t), R) , (D.8)

where we used (B.34) and the fact that r(0, t)2 ≤
2
D̂2

ŵx(0, t)
2 + 2α2

r (Λ(t), R) which follows from (B.25).

From (B.34), (B.35) and (51) we get

∫ 1

0

rx(x, t)
2dx≤ 3

D̂2

∫ 1

0

ŵxx(x, t)
2dx+ κ4(R)

×
(∫ 1

0

ŵx(x, t)
2dx+ α2

r (Λ(t), R)

)

+3α2
1,rx (Λ(t), R) . (D.9)

With relation (51) and Lemmas 4, 5, 16 (App. B), from

(D.1) one can conclude that the terms that multiply |f̃ |
are bounded by (g7e

g4 + g9e
g10 + g8e

g5 + g12e
g3)κ5(R).

Choosing g1=g2=(1 +R)
(

D̂ +R
)

(

1 + R

(1−R)(D̂−R)

)

and combining (D.7), (D.8), (D.9), (D.6) with Young’s
inequality, we get from (D.1), (B.33), (B.34) and (B.35)

V̇ (t)≤− M3

2
√
M1

|X(t)|+ M4L
∗(R)

2
√
M1

(|ŵ(0, t)|+ |ũ(0, t)|)

−g11

∫ 1

0

|ũ(x, t)|dx − g12α
∗ (|ŵ(0, t)|)

−g11(1 +R)−1
(

D̂ +R
)−1

|ũ(0, t)| − ũx(0, t)
2

×
(

g6(1 +R)
−1
(

D̂ +R
)−1

− g8e
g5κ3(R)

)

− (g7 − g8e
g5κ3(R)) ŵx(0, t)

2 − g6

× (1− 2ĉB∗(R))

∫ 1

0

eg2xũx(x, t)
2dx

−g12g3

∫ 1

0

α∗ (|ŵ(x, t)|) dx− g8ŵxx(0, t)
2

−
(

g7g4 − 2ĉeg2g6

(

D̂κ4(R) + 1
)

D̂−1B∗(R)
)

×
∫ 1

0

eg4xŵx(x, t)
2dx−

(

g8g5 − g6e
g2D̂−2

×6ĉB∗(R))

∫ 1

0

ŵxx(x, t)
2dx

+

(

4g6e
g2
(

D̂ + 1
)2 ∣
∣

∣1− D̂π(1, t)
∣

∣

∣

2

κ2(R)

+ (g7e
g4 + g9e

g10 + g8e
g5 + g12e

g3)κ5(R))

×|ũ(0, t)| −
(

g9g10 − g11e
g12ĉB∗(R)D̂−1

)

×
∫ 1

0

eg10x|ŵx(x, t)|dx + 2g6e
g2 ĉB∗(R)

×
(

3α2
1,rx (Λ(t), R) + κ4(R)α2

r (Λ(t), R)
)

−g9|wx(0, t)|+ g11 sup
x∈[0,1]

∣

∣

∣1− D̂π(x, t)
∣

∣

∣ eg1

×αr (Λ(t), R) +

(

sup
x∈[0,1]

∣

∣

∣1− D̂π(x, t)
∣

∣

∣

)2

(8g6

×eg2(D̂+1)2+g8e
g5κ3(R))α2

r (Λ(t), R) . (D.10)
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From the proof of Lemma 16 (App. B) we have
that αr and α1,rx are continuously differentiable
and hence locally Lipschitz with respect to their
first argument. Using (51) we can write α2

r(s,R) ≤
α26(R)αr(s,R) ≤ L1(R)α26(R)s and α2

1,rx(s,R) ≤
α26(R)αr(s,R) ≤ L2(R)α26(R)s for every bounded s,
some increasing functions Li ∈ C (R+;R+), i = 1, 2,
and some class K∞ function α26. Choosing g6 >

(1 +R)
(

D̂ +R
)

g8e
g5κ3(R), g7 > g8e

g5κ3(R), g11 >

(1 +R)
(

D̂ +R
)

(

4g6e
g2

(

D̂ + 1
)2

4B∗2(R)κ2(R)

+ (g7e
g4 + g9e

g10 + g8e
g5 + g12e

g3) κ5(R) + M4L
∗(R)

2
√
M1

)

,

g4 > 1
g7

(

eg2g6

(

κ4(R) + 1
D̂

)

2B∗(R) + 1), g3 = g5 =

g8 = g9 = g10 = g = 1 and since from the proof of

Lemma 14 α∗(s) > s choosing g12 >
M4L

∗(R)

2D̂
√
M1

we get

V̇ (t)≤−
(

M3

2
√
M1

− ĉB

)

|X(t)| − g11

∫ 1

0

|ũ(x, t)|

×dx− g6 (1− ĉB2)

∫ 1

0

eg2xũx(x, t)
2dx

−
∫ 1

0

ŵx(x, t)
2dx− (1− ĉ (B3 +B))

×
∫ 1

0

|ŵx(x, t)|dx − (g12 − ĉB)

×
∫ 1

0

α∗ (|ŵ(x, t)|) dx− (1− ĉB1)

×
∫ 1

0

ŵxx(x, t)
2dx, (D.11)

where we used (B.34) and

B (R) = 2g6e
g2B∗(R)α26(R) (3L2(R) + κ4(R)L1(R))

+32g6e
g2
(

D̂ + 1
)2

L1(R)α26(R)4B∗2(R)

2L1(R)B∗(R) (g11e
g1+2α26(R)eB∗(R))(D.12)

B1(R) = 6g6e
g2D̂−2B∗(R) (D.13)

B2(R) = 2B∗(R) (D.14)

B3(R) = 2eg11e
g1D̂−1B∗(R). (D.15)

Restricting c∗ = min {c∗1, c∗2} and c1 such that ĉ in (D.2)
satisfies ĉ<min {R, ĉ1}, with ĉ1max {B2, B1, B3 +B}≤
1
2min

{

M3

2
√
M1

, g12, 1
}

, we arrive at V̇ (t) ≤ −λV (t), with

λ = 1
2 min

{

M3

2
√
M1

, 2g11, g6, 1, g12}. With the compari-

son principle (Lemma 3.4 in [26]) we get (55).

E Proof of Lemma 4

Using (B.14), Lemma 13 (App. B), the fact that for all

x ∈ [0, 1], |ũ(x, t)| ≤
∫ 1

0 |ũx(x, t)| dx (which follows from

(35)), the Cauchy-Schwarz inequality and some routine
class K calculations the proof is immediate.

F Proof of Lemma 7

Taking the derivative of VL along (79)–(81), (83)–(84)
and (89)–(90) and using integration by parts, we get that

V̇L(t)≤− |X(t)|2 λmin(Q) + 2X(t)TPBŵ(0, t)

+2X(t)TPBũ(0, t)− b1b

∫ 1

0

ebxπ(x, t)ũ(x, t)2

×dx− b1π(0, t)ũ(0, t)
2 − b1

∫ 1

0

ebxπx(x, t)

×ũ(x, t)2dx− 2b1

∫ 1

0

ebxũ(x, t)
(

1− D̂π(x, t)
)

×r(x, t)dx + b2

(

−ŵ(0, t)2 −
∫ 1

0

ŵ(x, t)2dx

+2D̂2|K|2e2|A|D̂ × |B|2ũ(0, t)2 − ŵx(0, t)
2
)

−b2

∫ 1

0

ŵx(x, t)
2dx− 2b2D̂

∫ 1

0

(1 + x)

×ŵ(x, t)KeAD̂xBũ(0, t)dx− 2b2

×
∫ 1

0

(1 + x)ŵx(x, t)D̂
2KeAD̂xABũ(0, t)dx.(F.1)

With similar calculations as in [30] and with Lemma 6

by choosing b > (1− π∗∗
1 )max

{

1, 1
π∗∗
1

}

we get that

bπ(x, t) + πx(x, t) ≥ π∗∗
0 β∗, (F.2)

where β∗ = min {b− 1 + π∗∗
1 , (b+ 1)π∗∗

1 − 1} > 0. Since
π(x, t) is linear in x, it takes its maximum value either
at x = 0 or at x = 1, and hence,

(

1− D̂π(x, t)
)

≤max
{∣

∣

∣1− D̂π(0, t)
∣

∣

∣ ,
∣

∣

∣1− D̂π(1, t)
∣

∣

∣

}

≤M2,Lγ(t), (F.3)

where

M2,L = π(0, t) + π(1, t) ≤
1 + supt≥t0

σ̇(t)

inft≥t0 (σ(t) − t)
, (F.4)

and γ is defined in (100). We derive next a bound for
r(x, t) in terms ofX, ŵ and ŵx. Using (88) together with
Young’s and Cauchy-Schwarz’s inequalities we get that

‖r(t)‖2 ≤M1,L

(

|X(t)|2 + ‖ŵ(t)‖2 + ‖ŵx(t)‖2
)

(F.5)

‖r(t)‖2 =
∫ 1

0

r(x, t)2dx, (F.6)

M1,L = 4D̂−1 + 4D̂
∣

∣

∣Ke(A+BK)D̂(A+BK)
∣

∣

∣

2

+ 4D̂

×|KB|2+4D̂
∣

∣

∣Ke(A+BK)D̂(A+BK)D̂B
∣

∣

∣

2

.(F.7)
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Using (F.2), (F.3), (F.5) and Young’s inequality we get

V̇L(t)≤−λmin(Q)

4
|X(t)|2 − b1π

∗∗
0 β∗

∫ 1

0

ebxũ(x, t)2dx

−b2

2

∫ 1

0

ŵ(x, t)2dx− b2

2

∫ 1

0

ŵx(x, t)
2dx

+

(

8|PB|
λmin(Q)

− b2

)

ŵ(0, t)2 +

(

8|PB|
λmin(Q)

+8b2D̂
2|K|e|A|D̂|B|2

(

2 + |A|2
)

− b1π
∗∗
0

)

×ũ(0, t)2 + b1M2,L(1 +M1,L)γ(t)Ξ(t), (F.8)

where

Ξ(t) = |X(t)|2 +
∫ 1

0

ebxũ(x, t)2dx

+

∫ 1

0

ŵ(x, t)2dx+

∫ 1

0

ŵx(x, t)
2dx. (F.9)

Choosing b1 = 8|PB|
λmin(Q) + 8b2D̂

2|K|e|A|D̂|B|2
(

2 + |A|2
)

,

b2 = 8|PB|
λmin(Q) , and using the fact that

M4,LΞ(t) ≤ VL(t) ≤ M3,LΞ(t), (F.10)

where

M3,L = λmax(P ) + b1 + 2D̂b2 (F.11)

M4,L =min
{

λmin(P ), b1, D̂b2

}

, (F.12)

we get relation (99) with

r1 =
min {λmin(Q), 4b1π

∗∗
0 β∗, 2b2}

4M3,L
(F.13)

r2 =
b1M2,L(1 +M1,L)

M4,L
. (F.14)

G Proof of Lemma 8

Consider first that γ(t) =
∣

∣

∣

1
π(0,t) − D̂

∣

∣

∣. Using (87), we

get π(x, t) =
1+x

δ′(σ(t))

1−δ′(σ(t))

D̂+δ(σ(t))
, and hence, γ(t) = |δ (σ(t))|.

Therefore, if δ satisfies (65) with δ1r2 < r1, the lemma is

proved. Assume next γ(t) =
∣

∣

∣

1
π(1,t) − D̂

∣

∣

∣. Thus, γ(t) =
∣

∣

∣δ(σ(t))(1−δ′(σ(t)))−D̂δ′(σ(t))
∣

∣

∣. With (96), (65) we get

γ(t) < δ1

(

1 + δ1 + D̂
)

. Hence, the lemma is proved if

δ1r2 < r1
d
, where d = 1 + δ1 + D̂. Note that since one

can choose π∗∗
0 β∗ sufficiently large (by choosing a large

b) such that r1 in (F.13) is independent of δ1 (or very
large), and since from (F.14) together with (F.7), (F.4),
(F.12) r2 is bounded, one can always find a sufficiently
small δ1 such that relation δ1r2 < r1

d
is satisfied.

H Proof of Lemma 9

Using relations (77), (78) together with Young’s and
Cauchy-Schwarz’s inequalities we get that

‖û(t)‖2 ≤N1

(

|X(t)|2 + ‖ŵ(t)‖2
)

(H.1)

‖ûx(t)‖2 ≤N2

(

|X(t)|2 + ‖ŵ(t)‖2 + ‖ŵx(t)‖2
)

(H.2)

‖ŵ(t)‖2 ≤N3

(

|X(t)|2 + ‖û(t)‖2
)

(H.3)

‖ŵx(t)‖2 ≤N4

(

|X(t)|2 + ‖û(t)‖2 + ‖ûx(t)‖2
)

, (H.4)

where ‖ · ‖ is defined in (F.6) and

N1 = 3 + 3
∣

∣

∣
Ke(A+BK)D̂

∣

∣

∣

2

+ 3D̂2
∣

∣

∣
Ke(A+BK)D̂B

∣

∣

∣

2

(H.5)

N2 = 4 + 4
∣

∣

∣Ke(A+BK)D̂(A+BK)D̂
∣

∣

∣

2

+ 4D̂2|KB|2

+4D̂2
∣

∣

∣Ke(A+BK)D̂
∣

∣

∣

2

|B|2
(

1 + D̂|A+BK|
)

(H.6)

N3 = 3 + 3
∣

∣

∣KeAD̂
∣

∣

∣

2

+ 3D̂2
∣

∣

∣KeAD̂B
∣

∣

∣

2

(H.7)

N4 = 4 + 4
∣

∣

∣KeAD̂AD̂
∣

∣

∣

2

+ 4D̂2|KB|2

+4D̂2
∣

∣

∣KeAD̂B
∣

∣

∣

2

+ 4D̂2
∣

∣

∣KeAD̂AD̂B
∣

∣

∣

2

. (H.8)

Using (F.10), (H.1)–(H.4) the lemma is proved with
M5,L = 1

M3,L

(

2eb +N3 +N4 + 1
)

, M6,L = 3+3N1+N2

M4,L
.
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