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bLaboratoire d’Automatique, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)
e-mail: alireza.karimi@epfl.ch

Abstract

In recent years, direct data-driven controller tuning methods have been proposed as an alternative to the standard model-
based approach for model-reference control design. In this work, the problem of input design for noniterative direct data-
driven techniques, namely Virtual Reference Feedback Tuning (VRFT) and noniterative Correlation-based Tuning (CbT), is
investigated. For bounded input energy, the excitation signal is designed such that the expected value of the considered control
cost is reduced. The above strategy is numerically tested on a benchmark example.
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1 INTRODUCTION

In system identification theory, optimal experiment de-
sign is about finding the operating conditions that pro-
vide the most informative data for modeling the plant.
However, depending on the intended model application,
the optimal experiments appear to be very different.
In control applications, the model is used to design a
suitable controller, and therefore the final aim for iden-
tification and input design is not to accurately describe
the mathematical structure of the system, but to obtain
a closed-loop behavior with some desired properties.
Recently, the term “identification for control” has been
introduced to refer to identification from a control-
oriented perspective (see [H. Hjalmarsson (2005)] for
a survey). In this research area, assessing the model
quality by experiment design is of primary importance,
as is witnessed by a large set of contributions, see e.g.
[M Gevers et al. (1986)] and [M. Gevers (1996)]. Gen-
erally, to the authors’ knowledge, only the case of full-
order modeling is treated, i.e. the case where the real
system belongs to the model set. The only exception
is [X. Bombois et al. (2006)], where upper bounds on
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“New methods for Identification and Adaptive Control for
Industrial Systems” and by the Austrian Center of Compe-
tence in Mechatronics.

modeling errors are considered. In general, parametric
modeling errors influence the control design accuracy,
and thus they might constitute a detrimental effect for
the final control performance. As far as the authors are
aware, input design for direct data-driven controller
tuning, i.e. the case where a fixed-order linearly parame-
terized controller is directly identified from data without
modeling the plant, has not been considered yet. Using
these methods, the typical problems related to modeling
errors can be circumvented. Moreover, these techniques
can be very useful when a mathematical description of
the plant is a costly and time-consuming undertaking.
However, as in standard system-identification, a deep
understanding of the asymptotic accuracy of the esti-
mate is needed.
This paper attempts to obtain some insight into
statistical properties of noniterative data-driven
techniques, i.e. noniterative Correlation-based Tun-
ing (CbT) and Virtual Reference Feedback Tun-
ing (VRFT), whereof the interesting feature is that
they provide a global solution to a model-reference
control issue via simple least squares techniques,
when the controller is linearly parameterized. The
above methodologies have been only recently intro-
duced, respectively in [A. Karimi et al. (2007)] and
in [M.C. Campi et al. (2002)]. Iterative data-driven
methods are instead not subjects of the present
work, but it should be mentioned that an analo-
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gous study was performed for Iterative Feedback
Tuning (IFT) in [R. Hildebrand et al. (2004)] and
[R. Hildebrand et al. (2005)].
In this work, it will be shown that, using both the afore-
mentioned methods, the expectation of the considered
control-relevant criterion rises when measurements are
noisy and that the degradation term depends on the
spectral density of the input signal used for controller
identification. The main goal of the paper will be then to
carry out an input design methodology to reduce such a
degradation effect. Throughout the theoretical analysis,
only the case where the reference model is achievable
will be dealt with, but the method will show effective in
the numerical example also in a more realistic case.

The outline of the paper is as follows. In Section 2, pre-
liminaries on noniterative CbT and VRFT are briefly
recalled. The main analysis results and the input de-
sign procedure are discussed in Section 3, while Section
4 demonstrates the effectiveness of the above method
on the benchmark simulation example proposed in
[I. D. Landau et al. (1995)]. Some concluding remarks
end the paper.

2 BACKGROUNDS

Consider the unknown LTI SISO stable plant G(q−1),
where q−1 denotes the backward shift operator. The ob-
jective of the model-reference control problem is to de-
sign a linear, fixed-order controller K(q−1, ρ), parame-
terized through ρ ∈ R

n, for which the closed-loop system
matches a given stable strictly proper reference model
M(q−1). More specifically, let the controller parameter-
ization be K(q−1, ρ) = βT (q−1)ρ, where β(q−1) is a vec-
tor of n linear discrete-time transfer operators.
Formally, the aim is to find the vector of parameters that
minimizes the (filtered) L2-norm of the difference be-
tween the reference model and the achieved closed-loop
system:

Jmr(ρ) =

∥∥∥∥( GK(ρ)

1 +GK(ρ)
−M

)
W

∥∥∥∥2
2

, (1)

where W (q−1) is a user-defined frequency-weighting
filter. The goal can be interpreted as to find the mini-
mizer of the L2-norm of the matching error signal ε in
Fig. 1, when the reference signal is a white noise of unit
variance.
Consider now that an open-loop collection of input-
output (I/O) data {u(t), y(t)}t=1,...,N is available
and let the output y(t) be affected by additive noise
v(t) = H(q−1)d(t), where H(q−1) is an unknown sta-
ble LTI system and d(t) is a zero mean white Gaussian
noise with variance of σ2.
In standard “indirect” data-driven approaches, the
above objective can be achieved by identifying from data

a model Ĝ of the plant and designing a model-based
controller K(Ĝ) as

K(Ĝ) =
M

Ĝ(1−M)
. (2)

In this work, the case where the controller is directly
derived from the data collection without identifying Ĝ is
instead considered. In such a setting, two situations may
arise, namely, the reference model can be achievable or
unachievable with the given controller parameterization,
according to the following definitions.

Definition 1 The reference model M(q−1) is said
achievable with the selected controller parameterization
K(q−1, ρ) = βT (q−1)ρ if

∃ρo : Jmr(ρo) = 0,

and it is said unachievable otherwise.

In this work, only the case of achievable reference mod-
els will be taken into account, but the strategy will be
tested in both the situations in the numerical example.
From now on, Ko(q

−1) = K(q−1, ρo) = βT (q−1)ρo will
be referred to as “ideal controller” or, equivalently, “op-
timal controller”.

2.1 Noniterative correlation-based Tuning

The sensitivity function of the closed-loop system with
the ideal controller is given by

1

1 +GKo
= 1−M. (3)

It follows that (1) shares the same minimum of a new
cost function, convex in ρ, defined as

J(ρ) = ‖(K(ρ)(1−M)G−M) (1−M)W‖22 . (4)

Such a minimum is also the minimum of the L2-norm of
the matching error signal εc in Fig. 2, when the signals
are noiseless, u(t) is a white noise of unit variance and
used as reference signal, namely r(t) = u(t). The most
important observation at the basis of the CbT rationale
is that, in the noiseless setting, the model matching error
εc(t, ρ) (unlike the signal ε(t, ρ) defined in Fig. 1) can be
directly computed from I/O data as follows:

εc(t, ρ) = WMr(t)−W (1−M)K(ρ)Gr(t)

= WMu(t)−W (1 −M))K(ρ)y(t)

and the minimizer of the L2-norm of εc(t, ρ) is exactly
Ko(q

−1).
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Fig. 1. Model reference control problem.

Fig. 2. Tuning scheme for Correlation-based Tuning.

When data are collected in a noisy environment, the
method resorts to the correlation approach to identify
the controller. Specifically, an extended instrumental
variable ζ(t) correlated with u(t) and uncorrelated with
v(t) is introduced to decorrelate the error signal εc(t)
and u(t). ζ(t) is defined as

ζ(t) = [u(t+ l), . . . , u(t), . . . , u(t− l)]T , (5)

where l is a sufficiently large integer. The correlation
function is defined as

fN,l(ρ) =
1

N

N∑
t=1

ζ(t)εc(t, ρ) (6)

and the correlation criterion as

JN,l(ρ) = fT
N,l(ρ)fN,l(ρ). (7)

In [K. van Heusden et al. (2011a)], it has been proven
that

lim
N,l→∞,l/N→0

JN,l(ρ) = J(ρ), (8)

for any input sequence, if data in ζ(t) are prefiltered by
Lc(q

−1), defined as

Lc(e
−jω) =

1−M(e−jω)

Φu(ω)
, (9)

where Φu(ω) denotes the spectral density of u(t). Notice
that such a prefilter may be non-causal but it can be
implemented off-line.

2.2 Virtual Reference Feedback Tuning

The idea of Virtual Reference Feedback tuning was
first proposed in [G.O.Guardabassi et al. (1997)]
with the name of Virtual Reference Direct Design
(V RD2) and subsequently fixed and extended in
[M.C. Campi et al. (2002)], [M.C. Campi et al. (2006)]
and [S. Formentin et al. (2011)] respectively for LTI,
nonlinear and LPV systems.
The main idea to minimize (1) without identifying
G(q−1) is to build a “virtual” closed-loop system, where
the input and output signals are equal to u(t) and y(t)
and the closed-loop transfer function is assumed to
correspond to M(q−1). From such loop, the so-called
“virtual reference” rv(t) and “virtual error” ev(t) sig-
nals can be computed as rv(t) = M−1(q−1)y(t) and
ev(t) = rv(t) − y(t). The control design issue is then
reduced to an identification problem, where the optimal
controller is the one that generates u(t) when fed by
ev(t). The criterion to be minimized is then

JN
V R(ρ) =

1

N

N∑
t=1

(
uL(t)−K(q−1, ρ)eL(t)

)2
, (10)

where uL(t) = L(q−1)u(t), eL(t) = L(q−1)ev(t)
and L(q−1) is a suitable prefilter such that (10) is
equal to the second-order Taylor expansion of (1)
in the neighborhood of the minimum point (see
[M.C. Campi et al. (2002)]). More specifically, the fre-
quency response of L(q−1) must be such that

L(e−jω) =
M(e−jω)

(
1−M(e−jω)

)
W (e−jω)

Φ
1/2
u (ω)

, (11)
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where Φ
1/2
u (ω) denotes a spectral factor of Φu(ω).

For the final estimate not to be biased, instrumental
variables are used to counteract the effect of noise (see
[L. Ljung (1999)]). This method will be explained in de-
tail in Subsection 3.2, while introducing the optimal in-
put design strategy.

3 OPTIMAL INPUT DESIGN

In this section, the expectation of the considered control
criteria are computed for noniterative CbT and VRFT
in case of achievable reference models. Input spectrum
design is then proposed to cope with the reduction of
the degradation effect due to noise. Note that a sig-
nal with given spectral properties can always be gener-
ated by means of well-known spectral factorization tech-
niques (see e.g. [A.H. Sayed et al. (2001)] and references
therein).

3.1 Noniterative correlation-based Tuning

A preliminary asymptotic analysis of the accuracy of
the controller parameter estimate for noniterative CbT
has been published in [K. van Heusden et al. (2011a)].
The main result states that the expected value of the
correlation criterion (7) can be approximately expressed
by

E [JN,l(ρ)] ≈ J̃N,l(ρ)+

+
σ2(2l+ 1)

2πN

∫ π

−π

|1−M |4 |K(ρ)|2 |H |2 |W |2
Φu(ω)

dω (12)

where J̃N,l(ρ) is the noiseless counterpart of JN,l(ρ).
For the interested reader, the formal proof of this result
is briefly recalled in Appendix A. Since (8) holds and
Jmr(ρ) and J(ρ) are equal at the minimum point ρ0,
Equation (12) can be rewritten (in ρo) as

E [JN,l(ρo)] ≈ Jmr(ρo)+

+
σ2(2l + 1)

2πN

∫ π

−π

|1−M |4 |Ko|2 |H |2 |W |2
Φu(ω)

dω, (13)

where it is clear that the measurement noise has a
detrimental effect on the control cost, because it gen-
erates a degradation term that moves the expectation
of the cost function away from its ideal value. Since l is
fixed (and large enough) to make the first term in (12)
asymptotically equal to Jmr(ρ), then the second term
in (13) might be large.
Nevertheless, Equation (13) shows that the frequency
shaping of the input signal used in the experiment is
strictly related to such a degradation effect (by inverse
relationship) and, therefore, Φu(ω) can be optimally se-
lected in order to minimize it, according to the theorem

presented below.

Remark Notice that the optimal input design problem
can be formulated as stated above because the term
J̃N,l(ρo) does not asymptotically depend on the input,
otherwise its effect on the approximation of Jmr(ρo)
should be also taken into account. The independence of

J̃N,l(ρo) from Φu is formally shown in Appendix B.

Theorem 1 Let the input energy of u(t) be bounded by
the application-dependent parameter γu, i.e.∫ π

−π

Φu(ω) dω < γu. (14)

The optimal expression of the input spectrum Φo
u(ω) for

minimization of the degradation term in (12) is given by

Φo
u(ω) = µ |1−M |2 |Ko| |H | |W | (15)

where

µ =
γu∫ π

−π |1−M |2 |Ko| |H | |W |dω. (16)

Proof. The proof follows the line of [L. Ljung (1999)]
(Chapter 13.6) for high-order black box models. In this
case, the result is not asymptotic in the controller order
as the derivation of (12) does not require this assump-
tion.

�

Notice that the optimal signal with spectrumΦo
u(ω) can-

not be directly implemented as it depends on the optimal
controller Ko and on the noise model H(q−1). The first
problem is typical of any input design procedure (see e.g.
[M. Gevers (1996)]) and, in system-identification theory,
is addressed with a sequential approach, i.e. a prelimi-
nary model is first estimated from a persistently exciting
set of data and such model is used to derive the opti-
mal input. The final result is certainly suboptimal, how-
ever, it can be improved via iterative procedures (see
[H. Hjalmarsson (2005)]). Analogously, also the second
task is typical of any input design problem, as illustrated
in [M Gevers et al. (1986)], and can be handled via pre-
liminary knowledge or noise model identification.

3.2 Virtual Reference Feedback Tuning

As already mentioned in Section 2.2, instrumental vari-
ables are used in VRFT to deal with measurement
noise. For implementing such a strategy, two datasets
are needed as will be explained next.
For given N , the parameter vector are computed as

ρ̂N = R−1
N rN , (17)
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RN =
1

N

N∑
t=1

φ2(t)φ
T
1 (t), rN =

1

N

N∑
t=1

φ2(t)uL(t).

The regressor is defined as

φ1(t) = β(M−1 − 1)Ly1(t), (18)

where y1(t) = yo(t) + v1(t) is the output of the first
dataset, yo(t) = Gu(t) is the noiseless output and v1(t)
is the first realization of noise v(t). Subsequently,

φ1(t) = β(M−1 − 1)Lyo(t) + β(M−1 − 1)Lv1(t)

= φo(t) + φ̃1(t),

The basic instrumental variable is defined as

φ2(t) = β(M−1 − 1)Ly2(t), (19)

where y2(t) is a second set of output data. Specifically,
y2(t) might be selected as the noiseless output, i.e.
y2(t) = yo(t), that can be obtained by feeding a full-
order model of the system, if available, with the same
input u used in the experiment. From now on, this will
be referred to as “optimal instrumental variable”. Oth-
erwise, y2(t) can be derived by feeding again the system
with u; in this case, the output of this second experi-
ment would be y2(t) = yo(t) + v2(t), where v2(t) is a
second realization of the noise v(t). In the latter case,
analogously to φ1(t), the instrumental variable can be
rewritten as

φ2(t) = φo(t) + φ̃2(t), (20)

where
φ̃2(t) = β(M−1 − 1)Lv2(t). (21)

Basic instrumental variables asymptotically guarantee
consistent results but increase the variance of the es-
timate (see [T. Soderstrom et al. (2005)]). In controller
identification, this fact may critically jeopardize the fi-
nal performance.
As a matter of fact, consider the second order approx-
imation of the expected value (with respect to noise)
of Jmr(ρ̂N ) given by the Taylor expansion around the
global minimum ρo (recall that, in the minimum, the
first order derivative is zero)

E [Jmr(ρ̂N )] ≈ Jmr(ρo)+

+
1

2
E

[
(ρ̂N − ρo)

T ∂2Jmr(ρ)

∂ρ2
|ρo(ρ̂N − ρo)

]
. (22)

By employing the cyclic property of the trace operator,
it holds that

E [Jmr(ρ̂N )] ≈ Jmr(ρo)+

+
1

2
tr

{
E
[
(ρ̂N − ρo)(ρ̂N − ρo)

T
]
Λ
}
. (23)

where Λ is the Hessian computed in ρo, that has been
taken out of the E [·] argument as it is deterministic.

The previous expression can be asymptotically approx-
imated (in distribution) by

E [Jmr(ρ̂N )] ≈ Jmr(ρo) +
1

2N
tr {PIV Λ} , (24)

where PIV is the variance of the asymptotic distribution
of NE

[
(ρ̂N − ρo)(ρ̂N − ρo)

T
]
.

Analogously to the CbT case, the objective of reducing
the effect of noise would be to reduce the degradation
term in E [Jmr(ρ̂N )]. In this paper, the input spectrum
minimizing an upper bound of the above degradation
term will be employed. The following theorem holds for
optimal instrumental variables.

Theorem 2 Consider the case where φ2 is built accord-
ing to (19) and y2(t) = yo(t). Then:

• the squared effect of noise on E [Jmr(ρ̂N )] is upper-
bounded as

tr {PIV Λ}2 ≤ α
σ2n

2π

∫ π

−π

|1−M |8 |Ko|4 |H |4 |W |4
Φ2

u(ω)
dω

(25)
where

α = tr

{∫ π

−π

∣∣R−1
o Φφ2(ω)

∣∣2 dω

}
, (26)

Ro = lim
N→∞

1

N

N∑
t=1

φo(t)φ
T
o (t) (27)

and Φφ2(ω) is the spectral density matrix of φ2;
• the optimal expression of Φo

u(ω) for minimization of
the upper bound (25) subject to constraint (14) is
given by (15), with µ as in (16).

Proof. Since the reference model is achievable, uL =
φT
o ρo, that is uL = φT

1 ρo − φ̃T
1 ρo. Then, rN in (17) be-

comes

rN =
1

N

N∑
t=1

φ2(t)φ
T
1 (t)ρo −

1

N

N∑
t=1

φ2(t)φ̃
T
1 (t)ρo

and
√
N (ρ̂N − ρo) can be rewritten as

√
N (ρ̂N − ρo) = R−1

N

1√
N

N∑
t=1

φ2(t)φ̃
T
1 (t)ρo. (28)

According to [L. Ljung (1999)], as N → ∞,

1√
N

N∑
t=1

φ2(t)φ̃
T
1 (t)ρo → N (0, Po) (29)
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Po = lim
N→∞

1

N
E

[
N∑
t=1

N∑
s=1

φ2(t)φ̃
T
1 (t)ρoρ

T
o φ̃1(s)φ

T
2 (s)

]
.

(30)
Following the rationale in [T. Soderstrom et al. (1983)]
(Appendix A8.1, pages 285-286), since n = dim(ρ) =
dim(φ2), the variance expression can be rewritten as

Po = σ2
E
[
F (q−1)φ2(t)

] [
F (q−1)φ2(t)

]T
, (31)

F = Ko(1−M)2HWΦ−1/2
u . (32)

Subsequently, PIV = R−1
o PoR

−1
o , where Ro is as in (27),

because RN → Ro for N → ∞. Since the optimal filter
(11) is designed so as to make the noiseless version of
Jvr equal to the second order approximation of Jmr in
the minimum point (see [M.C. Campi et al. (2002)]), it
holds that

Λ =
∂2Jmr(ρ)

∂ρ2

∣∣∣∣
ρo

= Ro (33)

and, as a consequence,

tr {PIV Λ} = tr
{
R−1

o Po

}
. (34)

The Parseval counterpart of (34) is

tr

{
σ2

2π

∫ π

−π

|F |2 R−1
o Φφ2(ω) dω

}
. (35)

Now recall the Cauchy-Schwarz inequality for matrix-
valued functions in [A. Bultheel (1982)], for which, given
two matrices A and B and a nonnegative functional <
·, · >, it holds that

tr {< A,B >}2 ≤ tr {< A,A >} tr {< B,B >} . (36)

If the above result is applied to (35) where < ·, · > is se-

lected as the integral operator,A = σ2 |F |2 In (where In
is the identity matrix of dimension n) and B = R−1

o Φφ2 ,
then the squared Parseval counterpart of (34) is upper-
bounded as

tr
{
R−1

o Po

}2 ≤ σ2n

2π

∫ π

−π

|F |4 dω tr

{∫ π

−π

Γ(ω) dω

}
,

(37)

Γ(ω) =
∣∣R−1

o Φφ2(ω)
∣∣2 .

By recalling the expression of F in (32) and defining

α = tr

{∫ π

−π

Γ(ω) dω

}
, (38)

the first statement of the theorem is finally proven.
Concerning the second statement, it should be first no-
ticed that Ro asymptotically does not depend on Φu for

the same reason of J̃N,l in CbT, i.e., in few words, be-
cause φo is prefiltered by L (that depends on the inverse

of Φ
1/2
u ); further, since by hypotheses φ2 = φo,

Φφ2 = ββT |1−M |4 |W |2 |G|2 (39)

and Φφ2 does not depend on Φu either. Therefore, anal-
ogously to Theorem 1, the proof of the second state-
ment simply follows the line of [L. Ljung (1999)] (Chap-
ter 13.6) to find the analytical minimum of the integral
term in (25).

�

Remarks

• A very interesting observation is that the optimal
spectra for CbT and VRFT in the proposed formula-
tion are exactly the same.

• Also in identification for control, quantitative mea-
surements of the expected value of the control crite-
rion can be derived from variance of G and K (see
e.g. [H. Hjalmarsson (2005)], [M. Gevers (1996)] and
[M Gevers et al. (1986)]) but computations become
complicated.

• It should be noticed that, when the instrumental vari-
able of VRFT is selected using a second experiment,
the result in Theorem 2 no longer holds. In Section
4, the effectiveness of this input choice with instru-
mental variable built from a second experiment will
be numerically shown.

• As already mentioned in Introduction, a simi-
lar analysis has been done for Iterative Feedback
Tuning (IFT) in [R. Hildebrand et al. (2004)] and
[R. Hildebrand et al. (2005)]. In such a study, the
standard control scheme for disturbance rejection is
taken into account and the expression of a degra-
dation term - due to measurement noise - on the
expected value of the criterion

JIFT (ρ) =
1

2
E[y(t, ρ)2 + λu(t, ρ)2]

can be derived. More specifically, under the assump-
tions that λ = 0, the approximation (3) holds and
the controller is linearly parameterized as in Section
2, then, for the m-th iteration,

E [JIFT (ρ̂m)] = JIFT (ρo) +
a2σ2

(2a− 1)4π
×

×
∫ π

−π

|1−M |4 |H |2
Φr

tr
{
R−1

IFT (ρo)ββ
T
}
dω,

where RIFT (ρo) denotes the Hessian of JIFT around
ρo, Φr is the spectrum of the reference signal to be
selected (the “input signal”) and a is a positive con-
stant determining the step size γm = a/m.
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The aim of experiment design in this framework is
again to minimize the degradation term due to noise.
Notice that, like in noniterative CbT, the additional
term directly depends on |1−M |4 |H |2 and on the in-
verse of the input filtering inside the integral.However,
such a result is different from the ones presented herein

because the term |Ko|2 is missing inside the integral
(the signal routing is slightly different in the noise re-
jection scheme) and only the trace of its parameteri-
zation β occurs. Concerning the frequency weighting,
W is missing in the original formulation but can be
easily added to JIFT to make it appear inside the in-
tegral term.

4 A SIMULATION EXAMPLE: THE FLEXI-
BLE TRANSMISSION SYSTEM

The example proposed herein for testing the above in-
put design strategy is the flexible transmission system
introduced as a benchmark for digital control design in
[I. D. Landau et al. (1995)]. Firstly, the case of achiev-
able reference model will be considered, so as to apply
the theoretical results presented herein. In the VRFT
case, both optimal instrumental variable and instrumen-
tal variable built from two experiments will be employed,
to show that the proposed input is suitable in both the
cases. Secondly, it will be (numerically) shown that the
control-oriented input signals might be better than stan-
dard PRBS also when the desired closed-loop behavior
is unachievable.

The plant is described by the discrete-time model

G(q−1) =
0.28261q−3 + 0.50666q−4

A(q−1)
, (40)

A(q−1) = 1− 1.41833q−1 + 1.58939q−2+

− 1.31608q−3 + 0.88642q−4, (41)

where the sampling time is Ts = 0.05s. The measure-
ment noise is supposed to be white and such that the
signal-to-noise ratio is 5, that is H(q−1) = var[yo(t)]/5,
where var[yo(t)] is the variance of yo(t). Moreover, the
frequency-weighting function W (q−1) = 1, the number
of samples is N = 1000 and γu = 1. Finally, the set of
available controllers is

K(ρ) =
ρ0 + ρ1q

−1 + ρ2q
−2 + ρ3q

−3 + ρ4q
−4 + ρ5q

−5

1− q−1
.

4.1 Achievable reference model

Define the control objective as a reference model that
allows the perfect matching to be achieved, i.e.

M(q−1) =
G(q−1)K(q−1, ρo)

1 +G(q−1)K(q−1, ρo)
, (42)

where the optimal controller is in the controller set and
its parameters are

ρo = [0.2045,−0.2715, 0.2931,−0.2396, 0.1643, 0.0084].

The following steps will be followed for all the data-
driven design procedures:

• a first experiment with PRBS input excitation is per-
formed on the system;

• a preliminary estimate of the controller is carried out
via standard CbT/VRFT; a FIR model of the system
of order 200 is also derived for the design using optimal
instrumental variables;

• the optimal input spectrum is computed according
to Section 3, using the preliminary estimate of the
controller found at the previous step;

• a second experiment with optimal input excitation is
performed on the system;

• the optimal controller is given by CbT/VRFT design
using the optimal experiment data.

With simulation parameters above, the optimal input
spectrum for CbT and VRFT is shaped as illustrated in
Fig. 3, where the magnitude plot ofG is also showed. No-
tice that the input energy is low in the frequencies corre-
sponding to the resonances, whereas it is higher around
the desired bandwidth and at high frequencies, where
the desired sensitivity function 1−M(q−1) is high.
To verify the effectiveness of the proposed strategy, a

10
0

10
1

0

1

2

3

4

5

6

frequency [rad/s]

 

 

Fig. 3. Normalized magnitude plot ofG (dashed) and optimal
input spectrum for CbT and VRFT (solid) on the linear
scale.

Monte-Carlo simulation with 100 running experiments
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is performed, using a different noise realization for each
experiment, and an estimate of E [Jmr(ρ̂N )] in the mini-
mum ρ̂N is computed by samplemean, to comparePRBS
and optimal input. Final results are illustrated in Ta-
ble 1, whereas Fig. 4 and 5 show the accuracy of the
magnitude plots. In each figure, the ideal closed-loop be-
havior M(q−1) is also shown. For CbT, the length of
the instrumental variable vector is l = 35, which cor-
responds to the length of the impulse response of M .
Notice that, when VRFT requires two sets of data for
building the instrumental variable, each experiment is
made of N/2 = 500 samples for a fair comparison be-
tween the methods.
From numerical results, it is clear that the use of the

(a)

(b)

Fig. 4. Magnitude Bode plots of M (black line), achieved
closed-loop performance with PRBS input for the 100/100
stabilizing CbT controllers (blue lines, above), with optimal
input signal for 100/100 stabilizing controllers (blue lines,
below).

optimal input not only improves the closed-loop perfor-
mance but also makes CbT and VRFT (with any kind of
instrumental variable) comparable in terms of statisti-
cal behavior. Moreover, the degrade of performance due
to the use of a double experiment is small. Obviously,
such advantages are not completely costless as a first ex-
perimental session is required to estimate Ko and H re-
quired by (15). However, the proposed approach seems

(a)

(b)

Fig. 5. Magnitude Bode plots of M (black line), achieved
closed-loop performance with PRBS input for the 95/100
stabilizing VRFT controllers (blue lines, above), with op-
timal input signal for 100/100 stabilizing controllers (blue
lines, below). Two experiments are used to build the instru-
mental variable.

Table 1
Mean values (100 iterations) of the achieved performance
Jmr if the reference model (42) is selected. For VRFT design,
results with both optimal instrumental variables (“opt IV”)
and instruments built from two datasets (“2 exp”) are shown.

PRBS optimal input

CbT 0.0527 0.0273

VRFT (opt IV) 0.0477 0.0154

VRFT (2 exp) 0.1769 0.0290

to the authors a very good trade-off for all applications
where experiments are not too costly and high accuracy
is required.
Finally notice that, due to high variance of the param-
eters, some VRFT controllers may destabilize the sys-
tem, e.g. in the example of Fig. 5, 5/100 controllers are
destabilizing. Reduction of the degradation term via op-
timal input design also allows one to reduce the proba-
bility of obtaining such controllers without adding any
additional (and conservative) stability constraint (see
e.g. [K. van Heusden et al. (2011a)]) to the design pro-
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Table 2
Mean values (100 iterations) of the achieved performance
Jmr if the reference model (43) is selected. For VRFT design,
results with both optimal instrumental variables (“opt IV”)
and instruments built from two datasets (“2 exp”) are shown.

PRBS optimal input

CbT 0.1277 0.0800

VRFT (opt IV) 0.0861 0.0775

VRFT (2 exp) 0.1899 0.0814

cedure.

4.2 Unachievable reference model

The same tests of the previous subsection can be carried
out on the system (40), in the case where the controller
structure is not flexible enough to achieve a given refer-
ence model, e.g. when the controller is again as in Sub-
section 4.1 but the reference model is instead selected as

M(q−1) =
(1− α)2q−3

(1− αq−1)2
, α = e−10Ts . (43)

As already illustrated in [M.C. Campi et al. (2002)],
there is no controller in the given set that yields
Jmr(ρ) = 0. Recalling that, being M different from the
previous case, also the control-relevant input spectrum
will be accordingly modified, the input sequence can
still be designed according to the procedure illustrated
in this work. Specifically, the same procedure illustrated
in the previous subsection is employed.
In Table 2, final results are shown, according to the same
rationale of Table 1, whereas Fig. 6 and 7 illustrate the
magnitude plots of the Monte-Carlo runs. Numerical
results point out how the use of a suited input signal
might outperform the standard PRBS solution also in
this situation.

5 CONCLUSIONS AND FUTURE WORKS

In this work, statistical properties of direct data-driven
controller tuning have been analyzed and optimal input
design have been proposed to increase closed-loop per-
formance. Specifically, the innovative contributions of
the paper can be summarized as follows:

• CbT and VRFT have been demonstrated to have the
same problem for large N ; specifically, the expected
value of the considered control-relevant cost function
contains a degradation term when data are noisy;

• the final cost functions and the input spectrum expres-
sions have been shown to be connected in a straight-
forward way. The spectrum can then be directly ex-
ploited to improve the closed-loop performance;

• an optimal experiment design problem has been for-
mulated for each technique and the analytical expres-
sion of the optimal input signal has been provided; an

(a)

(b)

Fig. 6. Magnitude Bode plots of unachievable M (black
solid line), noiseless estimate (black dashed line), achieved
closed-loop performance with PRBS input for the 100/100
stabilizing CbT controllers (blue lines, above), with optimal
input signal for 100/100 stabilizing controllers (blue lines,
below).

open-loop experiment with such an input allows the
degradation effect to be reduced;

• the benchmark numerical example has shown to be-
have much better when the control-relevant input is
used, also in case of unachievable reference model;
moreover, destabilizing controllers are no longer ob-
tained.

Future work will focus on the theoretical analysis of the
performance in case of unachievable reference model.
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Appendix

A. Proof of (12)

Consider again the scheme in Fig. 2. In the noisy case,
the expression of εc becomes

εc(t, ρ) = W [M − (1−M)K(ρ)G]u(t)+

−WK(ρ)(1−M)Hd(t),

that is
εc(t, ρ) = D(ρ)u(t)− C(ρ)d(t), (44)

with obvious definitions for filters D(ρ) and C(ρ).
Now notice that dC(t, ρ) = C(ρ)d(t) can be written as

dC(t, ρ) =

∞∑
k=0

ck(ρ)d(t− k),

10



where ck(ρ) is the impulse response of C(ρ). The vector
of random variables

XN(ρ) =
1√
N

N∑
t=1

ζ(t)dC(t, ρ)

converges in distribution to a normal distribution with
zero mean and variance

PX(ρ) = lim
N→∞

E[XN (ρ)XT
N (ρ)] =

= σ2 lim
N→∞

1

N

N∑
t=1

E[ζ̃(t)ζ̃T (t)],

ζ̃(t) = C(ρ)Lc[u(t+ l), . . . , u(t), . . . , u(t− l)]T .

Now, the expectation of the correlation cost criterion is

E[JN,l(ρ)] = E

[
1

N2

N∑
t=1

ζT (t)εc(t, ρ)

N∑
t=1

ζ(t)εc(t, ρ)

]
,

that is, following the expression of εc,

E[JN,l(ρ)] = E

[
1

N2

N∑
t=1

ζT (t)D(ρ)u(t)

N∑
t=1

ζ(t)D(ρ)u(t)

]
+

−2E

[
1

N2

N∑
t=1

ζT (t)D(ρ)u(t)
N∑
t=1

ζ(t)C(ρ)d(t)

]
+

+E

[
1

N2

N∑
t=1

ζT (t)C(ρ)d(t)

N∑
t=1

ζ(t)C(ρ)d(t)

]
=

= J̃N,l(ρ)− 0 +
1

N

N∑
t=1

E[XT
N (ρ)XN (ρ)].

For large N , the variance of XN tends to PX , therefore,
according to the cyclic property of the trace operator, it
is possible to approximate E[JN,l(ρ)] as

E[JN,l(ρ)] ≈ J̃N,l(ρ) + tr{PX(ρ)}.
To compute the last term, notice that the diagonal ele-
ments of PX are equal to σ2RuCLc

(0), where RuCLc
(τ)

is the autocorrelation function of C(ρ)Lcu(t). Then,

E[JN,l(ρ)] ≈ J̃N,l(ρ) +
2l+ 1

N
σ2RuCLc

(0)

and, using the Parseval theorem,

E[JN,l(ρ)] ≈ J̃N,l(ρ)+
σ2(2l + 1)

2πN

∫ π

−π

|C(ρ)Lc|2 Φu(ω)dω.

(45)
Expression (12) is derived from (45) by simply replacing
C(ρ) and LC with WK(ρ)(1 − M)H and (9), respec-
tively.

B. Proof that J̃N,l(ρ) in (12) is asymptotically indepen-
dent from Φu

From the proof of (12), we have

J̃N,l(ρ) =

[
1

N2

N∑
t=1

ζT (t)uD(t, ρ)

N∑
t=1

ζ(t)uD(t, ρ)

]
(46)

Note that, since no term in the above equation depends
on noise, the expectation is removed. Let the cross-
correlation function between u(t) and ε(t) = LcD(ρ)u(t)
be defined as:

Ruε(τ) = lim
N→∞

1

N

N∑
t=1

u(t− τ)ε(t) (47)

Then for large N we get:

1

N

N∑
t=1

ζT (t)uD(t, ρ) ≈ [Ruε(−l), · · · , Ruε(l)] (48)

It follows that

J̃N,l(ρ) ≈
l∑

τ=−l

R2
uε(τ) (49)

Since ε is obtained by filtering of u with a finite order
stable filter, it is reasonable to assume that Ruε(τ) = 0
for τ > τm. Thus, for l > τm, using Parseval’s theorem,
we have:

l∑
τ=−l

R2
uε(τ) =

1

2π

∫ π

−π

|Lc|2 |D(ρ)|2 Φ2
u(ω)dω. (50)

Replacing Lc with (9), it follows that

J̃N,l(ρ) ≈ 1

2π

∫ π

−π

|1−M |2 |D(ρ)|2 dω, (51)

that is, J̃N,l(ρ) does not (asymptotically) depend on
Φu(ω). Notice that this is due to the frequency shaping
of the filter Lc.
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