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Abstract

This note represents a first attempt to provide a definitiah araracterisation of negative imaginary systems for noesgarily rational
transfer functions via a sign condition expressed in théreemtomain of analyticity, along the same lines of the clasigfinition of

positive real systems. Under the standing assumption ofrstnic transfer function, we then derive a necessary arfitguft condition

that characterises negative imaginary transfer functiorterms of a matrix sign condition restricted to the imagynaxis, once again
following the same line of argument of the standard posite@& case. Using this definition, even transfer functionthwi pole at the
origin with double multiplicity, as well as with a possiblyegative relative degree, can be negative imaginary.

Key words: negative imaginary systems, symmetric transfer functioesiprocalm-ports.

1 Introduction The usual approachin establishing a positive real thedoy is
first introduce the classic definition of positive real fuoot
Positive real linear systems constitute an important gerne @S & (not necessarily rational) complex matrix of functions
stone of passivity theory. The notion of positive real syste  Which is analytic in the right half complex plane and which
was first introduced in electrical network analysis to indi- Saisfies, in the domain of analyticity, a certain ineqyalit
cate dissipativen-port networks. In the single-input single-  FOr rational functions, the second step usually consists in
output case, positive real systems can be realised with elec characterising the concept of positive realness in terms of
trical circuits involving only resistors, capacitors andic- ~ conditions involving properties of the restriction of them
tors. In the multiple-input multiple-output casesportelec-  trix function to the imaginary axis. Another characterisat
trical networks can be realised using also transformers andiS given in terms of the celebratgdsitive real Lemma equa-
gyrators, in addition to the above-mentioned electricatco ~ 1ONS a cornerstone of modern control theory that have gen-
ponents. The most interesting case is by far the one of theerated an endless stream of literature. Two fairly recent pa
so-calledreciprocal mports, which can be realised by re- Pers whose reference lists points to many of the fundamental
sistors, capacitors, inductors and transformers, i.ehouit contributions and generalisations in this field are [5,6].
the need for gyrator elements. The interesting feature-of re
fégfgﬁémg?rqpignggl ggmggﬁiféﬂg fse::(gtttzﬁaéh?nggirce SA fundamental feature of the classic positive real theory
are always symmetric. I’:urthermore, in practice gyratons ca is the fact that the relative degree of rational positive rea

; ; ; : systems is either zero or plus or minus one, [3]. It was
only be realised by using active electrical elements. Werref ' . . ;
to [1,3] and the references cited therein. noticed in [9] that, when modelling undamped or lightly

damped flexible structures with colocated position sensors
P . - . and force actuators, the resulting transfer function has a
* Partially supported by the Italian Ministry for Educationda . o : .

Researchy(MIFEJpR) unde); PRIN grant n. 20)685FFJ2Z “New Al- relative degree which is greater than one. This consid-

gorithms and Applications of System Identification and Atdagp gratiqn led to the i“trF’dUPtiO” of the so-callerdagat.ive
Control” and by the Australian Research Council under trengr ~ imaginary systems, which impose a weaker restriction on

ET120100604. the relative degree of the transfer function. A subsequent
Email addressesaugusto@dei.unipd.it (Augusto very promising stream of literature flourished in the last
Ferrante)L.Ntogramatzidis@curtin.edu.au (Lorenzo few years on the properties of negative imaginary systems,
Ntogramatzidis). see [10,17,18,16,15,14,11,12,19] and the referenced cite

Preprint submitted to Automatica 14 January 2014



therein. and force actuators are characterised by a symmetric trans-
fer function, [14,19].

In the first contribution on this topic [9], a definition was

proposed for negative imaginary function matrix in terms of Notation. Given a matrixA, AT denotes the transpose of

properties of the function on the imaginary axis. In thistfirs A and A* denotes the complex conjugate transpose\of

definition, systems with poles on the imaginary axis were Given a matrix-valued functiof (s), we denote byF*(s)

excluded. This is also the way negative imaginary systemsthe function[F (s)]*.

were introduced in the contribution by the same authors in

IEEE Control Systems Magazin@4]. This restriction was - ) ) )

abandoned in [18,16], where a simple pole on the imaginary 2 Positive Real and Negative Imaginary functions: the

axis except at the origin was allowed. A further important standard definitions

extension of this new negative imaginary theory has subse-

guently been proposed in order to deal with systems with a We begin by recalling the standard definition of positivd rea

single pole at the origin. More recently, also the case of a function. For a detailed discussion on positive real system

double pole at the origin was considered, see [7,13]. In re- we refer to [1,3] and the references cited therein.

cent months, several efforts have been devoted to the gener-

alisation and adaptation of this theory to different cotgex Definition 2.1 The function E C — C™™M s positive real

and scenarios, including implicit systems in [12]. Lossles jf

imaginary systems have been recently introducedin [17] and

[19]. The reason for the success of the negative imaginary F(s) is analytic in the open right half s-plangi¢{s} > 0);
theory is that many systems that are important and useful 4 F(s) is real when s is real and positive;

in practice are negative imaginary. On the other hand, S04 F(s)+ F*(s) is positive semi-definite {Re{s} > 0.
far the theory appears to be incomplete as, differently from
the positive real case, the definitions of negative imaginar
systems have always been restricted to the case of system
with rational transfer function. This paper may be viewed
as a very first attempt to propose a general definition (valid
for systems having non-rational transfer function) that wi
hopefully lead to a general comprehensive theory in the same
vein of that of positive real systems. In particular, our dliefi
tion allows for the presence of delays that, on the one han
have non-rational transfer function and, on the other hand,
are very often present in real applications.

The following classic result provides necessary and suffi-
gient conditions for a real rational transfer function ratr
to be positive real in terms of the features of its restrittio
to the imaginary axis of the complex plane.

Lemma 2.1 Let F(s) be real and rational. Then {5) is
dpositive real if and only if

e F(s) has no poles in the open right half s-plane;

e F(iw)+F*(iw) is positive semi-definite for all reab
such that it is not a pole of Ki w);

e if iap is a pole of any element of(B), it is a simple
pole with Hermitian and positive semidefinite residue. In
particular, if ay is finite, the residue is

Our definition is given in terms of a matrix sign condition
in the entire domain of analyticity, in the same spirit of the
classic positive real case. To that end, the notioskafw-
imaginary matrix function will be instrumental. Our effort
in this direction was motivated by the results on the closed
e . . . def . .
loop stability of systems having (non necessarily ratipnal Ko= lim (s—iap)F(s),
positive real transfer function. Therefore, as pointedhnut S
B.D.O. Andersonin [2], it seems natural and potentiallyver
convenientto have a general definition of negative imaginar
systems that does not require rationality.

while if ay is infinite, the residue is

Koo & fim ~U %)
Then, in a way that once again parallels the conventional T oo iw
positive real approach, [1], a necessary and sufficient con- o o ]
dition will be introduced for the rational case that charac- We now present the definition of negative imaginary trans-
terises a negative imaginary transfer function in termgof i fer function in the way it was presented in [16], which con-
behaviour on the imaginary axis. This alternative approach Stitutes an important extension with respect to the first one
has the advantage of being applicable to possibly non-prope given in [9] because, as already observed, does not exclude
transfer functions, as well as to transfer functions wittreno ~ the case of systems with poles on the imaginary axis (pro-
than one pole at the origin, and even to non rational trans- vided they are not at the origin).
fer functions. The price to pay is the restriction to symmet-
ric transfer functions. Nevertheless, as aforementiotied,  Definition 2.2 ([16, Definition 1])
symmetric case is by far the most relevant and interesting The square real-rational and proper transfer functiorisp
in practice, as it is the one that corresponds to reciprocalis called negative imaginary if
m-port electrical networks. In addition, undamped or lightl
damped flexible structures with colocated position sensors (1) G(s) has no poles at the origin and Me{s} > 0;



(2) i[G(jw) —G*(jw)] > 0 for all w € (0,») except for
the values otv where w is a pole of Gs)

(3) if s=iayp (with ap € (0,)) is a pole of Gs), then itis
a simple pole, and the residual matrix 4 Ks positive
semidefinite Hermitian.

This definition was also generalised in [11] to include the

case of transfer function matrices with a single pole at the

origin. The following Lemma, which is given in [16], is the
analogous of the Positive Real Lemma.

Lemma 2.2 (Negative Imaginary Lemma, [16, Lemma
7).

Let(A,B,C,D) be a minimal realisation of the mm real ra-

tional proper transfer function matrix &), where Ac R™",

Be R™M Ce R™" DeR™M Then, Gs) is negative
imaginary if and only if

(1) Ais non-singular;
(2) D is symmetric;
(38) amatrix Y=Y >0, Y € R™" exists such that

AY+YA' <0 and B+AYC =0. (1)
The following theorem establishes a link between the def-
inition of negative imaginary transfer function matrix tvit
the so-called Passivity Theory.

Theorem 2.1 A minimal realisation(A,B,C,D) is negative
imaginary if and only if A has no eigenvalues at the origin,
D is symmetric and the state equation is dissipative with
respect to the supply function

X

u

Os
SO

¥ ]

where S= —A~TC". The corresponding storage function is
P=(AY A", where Y satisfies (1).

Proof: First, recall that a reachable state realisatiarB)
is dissipative with respect to the supply function

x"Qx+2x"Su+u'Ru (2)
if and only if the linear matrix inequality
Q-A"P-PA S-PB
>0 3

ST-BTP R

admits a symmetric and positive semidefinite solutign
see e.g. [20, page 383].

(Only if). If the system is negative imaginary, @&y #

0 and (1) holds for a matrix¥ = YT > 0. By tak-
ing P=A"TY"1A1 we find S—PB=-ATCT —

A-TY"IA"1(—AY CT) = 0. Moreover,

ATP+PA=Y A 1A TY !
=Y A HYA +AY)ATY 1 <0,

sinceAY +Y AT < 0. Therefore

—ATP-PA S-PB

4
ST-B™P @] )

which implies that (3) holds witlQ = 0 andR= 0.

(If). Let P> 0 be such that (4) holds true. We show tRat

is invertible. We first prove that kéris A-invariant. Let

(5)

Takev € kerP. Thenv'Qv=v'(—ATP—PA)v=0, so that
Qv=0. Then, by post-multiplying (5) by we getP Av=0,

which implies thatAv € kerP, i.e. ket is A-invariant. Now
we show that kel C kerS'. Let v € kerP. For anyw the

inequality
%
w

} > 0. Then, developing the

Q=-A"P-PA

~ATP-PA S-PB

~ATP-PA S-PB
sT-BTP O
products, we gev'Sw+w'S'v=2v'Sw= 0. For the
arbitrariness ofv, we obtainS™v = 0. Then,v € kerS'. It
follows that kelP is A-invariant and is contained in null-
space ofS". Then, it is also contained in the unobservable
subspace of the paiA, S"). Therefore, it is contained in
the unobservable subspace @, C). However, since the
realisation is minimal, such unobservable subspace is zero
Therefore, keP = {0}, which means thaP is invertible.
Now we can defing/ = (ATPA)~L. It is now a matter of
following the same steps of tHenly if) part backwards to
see thaly satisfies (1). |

holds since[

Remark. We have shown that the state equation of a nega-
tive imaginary system is dissipative. It is an interestipgio
problem to understand whether (or under what condition)
there exists a supply function such that the input-output re
lation of a negative imaginary system is dissipative with re
spect to such a function.

3 A general definition

In this section we propose a new definition of negative imag-
inary system for transfer functions which are not necessar-
ily rational. In this definition, similarly to what happenarf

the classic positive real case, the sign condition holdkén t
entire domain of analyticity of the transfer function. We re
call that in this paper we restrict our attention to symneetri
matrix transfer functions. This is the most relevant situat



because it encompasses both the scalar case, and the casepositive definite for alkw > 0.
of a transfer function of a reciprocat-port electrical net-

work. As already observed, the only way to obtain a non- ginajly, to the best of our knowledge, this is the first defini-
symmetric transfer function of am-port electrical network  tjon that allows the notion of negative imaginary system to
is to employ gyrators, whose physical implementation re- e applicable to non-rational transfer functions. In thie fo
quires the use of active components but that cannot be phys"lowing example, we consider a system with a delay.

cally implemented with arbitrary precision. Furthermdie, Example.Let G(s) = —s(e ST+ 1), with T € R, being a

transfer functions from a force actuator to a corresponding positive delay. We now show th&(s) is negative imagi-
collocated position sensor (for instance, a piezoeles#ic nary. Lets= o +i w. A direct calculation yields

sor) in a lightly damped or undamped structure is typically
symmetric, see [10,14,19]. , oT )
i(G(s)—G'(s))=2[w+e 7" (wcofwT) — o sin(wT))].
Definition 3.1 Let G: C — C™™ be analytic in an open

subsefQ of C. Then, G is skew-imaginary ©; C Q if Now define

e i[G(s) —G*(s)] > O for all s € Q1 such thatim{s} > 0; f(o,w) e o+e T (wcodwT) —osin(wT)).
e i[G(s) — G*(s)] =0 for all s € Q1 such thatim{s} = 0;

e i[G(s)—G*(s)] <O forall se Qs such thatim{s} < 0. Sincef(0,0) =0, andf (g, —w) = — (0, w), we only need

to show that, whero > 0 andw > 0, f(o,w) > 0. As-
sume by contradiction tha@ > 0 andwy > 0 exist such that
f(0,wp) < 0. Itisimmediate to see thd{o, wp), as a func-
tion of o, is continuos with all its derivatives. Hence, there
exists gp such that info f(0,w) = Ming>o f(0,w) =
f(0p, ) < (T, ap) <0 and%(oo,wo) = 0. By comput-
ing this derivative, we see that thenly candidateagy is

. T L. .

Notice that sinceG(s) is symmetric,i[G(s) — G*(s)] = given by do = ¢ + “bcs?rf((ng)) To get a contradiction, it
—2Im{G(s)}. is now sufficient to show that itw is such thatoy is fi-
nite and positive, theri (g, wp) > 0. Indeed, f (g, wp) =

As noted above, with respect to the definitions of negative +[wT —e %7 sin(woT)], which is clearly positive for all
imaginary transfer functions given in [9], [11] and [16]rBe  @p > 0, gp > 0 andT > 0.

we restrict our attention to the symmetric ones. On the other

hand, a definition given directly in terms of a sign property e now specialise the notion of negative imaginary function
of the transfer matrix function in its domain of analyticity g real and rational transfer function matrices.

appears to be very appealing since it goes in the direction,
suggested in [2], of an abstract foundation in the sametspiri
of the definition of positive real functions. In particulan,

this definition, there is no need to start with rational and
proper functions asin [9], [11] and [16] or to deal with poles
Notice that this definition may immediately be applied to
non-proper rational transfer functions. For example, m®rs
G(s) =as whereac R. Then,G(s) is analytic infRe{s} > 0

and, by definingg= o +i w, we get

Definition 3.2 Let G: C — C™™ be areal, symmetric
transfer function. We say that G s&/mmetric negative imag-
inary if

e G(9) is analytic inRe{s} > 0;
e G(s) is skew-imaginary ifRe{s} > 0.

Recall that given a real rational functi@i(s) and a simple
polep € C of G(s), we have a unique decompositiGifs) =
Gi1(s)+A/(s—p), whereG4(s) is a rational function which
is analytic in an open set containiggand the (non-zero)
matrix A is the residue corresponding to the pglelf pis

a double pole of5(s), we have the unique decomposition
G(s) = Gy(s) + A1/ (s— p) +Az/(s— p)?, where the matrix
A; is the residue corresponding to the paleln this case,
by analogy, we define the (non-zero) mathx to be the
quadratic residuecorresponding to the polp. If G(s) has
a pole at infinity, it can be uniquely decomposed3s) =
Gi(s) + P(s), whereG(s) is a rational proper function and
P(s) = Tk ; Ais is a homogeneous polynomialgnWe refer
to A as thei-th coefficient in the expansion at infinity of
G(9).

i[G(s)—G*(g)]=ilac+iaw—(ac—iaw)|=—2aw,

which is non-negative for allo > 0 if and only ifa < 0. It
follows thatG(s) is negative imaginary if and only & < 0.

Moreover, the fact, introduced in [7] as ad hocextension,
that a transfer function with a double pole in the origin may
be negative imaginary is also a direct consequence of this ) )
general definition. For exampl&(s) = 1/s? is easily seen ~ Lemma 3.1 Let G(s) be real, symmetric and rational. Then
to be negative imaginary. Indeed, definisg: 0 + i w, in G(s) is symmetric negative imaginary if and only if
the domain of analyticityo > 0) the quantity
(i) G(s) has no poles ifRe{s} > 0;

4dow (i) 1[G(i w) — G*(iw)] > Ofor all w € (0,») except for the

(02— w?)2+402w2 values ofw where w is a pole of Gs);

iG(9) - G*(9)] =



(i) if s=1iaw, with awyp € (0,), is a pole of Gs), then it
is a simple pole and the corresponding residual makrix
Ko = lims i, (S— i) iG(s) is Hermitian and positive
semidefinite;

(iv) if s=0is a pole of Gs), then it is at most a double
pole. Moreover, both its residual and its quadratic resid-
ual (when present) are positive semidefinite Hermitian
matrices;

(v) ifs= o is apole of Gs), thenitis at most a double pole.
Moreover, both the coefficients in the expansion at infinity
of G(s) are negative semidefinite Hermitian matrices.

Proof: Assume that the real and rational matrix function
G(s) is negative imaginary. Thefs(s) is analytic in the
open right half plane, so théi) is immediate. Secondly, if
w > 0 andiw is not a pole ofG(s), thenG(s) is analytic

in an open set containinigo, so thati [G(i w) — G*(iw)] =
limg 01 [G(0+iw)—G*(o+iw)] >0, which proveii). In
order to provéiii) , assume, by contradiction, that> 0 and

iw is a pole ofG(s) having multiplicity 4 > 1. ThenG(s) =
Tt +Gi(s) with A+ 0 andGa(s) such that limic (S
iw)HGy(s) = 0. Lete > 0 andv be a complex vector such
thatv*Av=Mexp(i¢) with M > 0 and¢ € [0,2m). Lets=
iw+ eexp(id). Then, for alld € [—m/2,11/2) and for all
sufficiently smalle > 0 we have:

0 < e!iv*[G(s) — G*(s)[v=—2Msin(¢ — u39)

+eMIV[Gy(S) — Gi(s)v. ()

9 € [0,11/2] ande > 0 we have:

0 < e!iv*[G(s) — G*(s)lv=—2Msin(¢ — ud)
+eHivi[Gi(s) — Gi(s)lv.  (8)

Again, the second term of the sum in the right-hand side of

(8) tends to zero as does. Moreover, ifu > 2, for any ¢

we can selecty € [0, 71/2] in such a way that that sjpp —

Udo) >+/2/2. Then, for alle > 0 sufficiently small we have:

0< —V2M + f(g), 9)
where f (¢) £ eHiv*[Gy (e exp(ido)) — G (eexp(ido))]v. As
before, this leads to a contradiction. Thus;annot be larger
than 2. Assume now that O is a double poleGiE). Then

(8) still holds withu = 2. This implies sii¢ — 25) < 0 for
any & € (0,m/2), yielding ¢ = 0. Then, for any complex
vectorv, the termv*Av is real and non-negative. Equiva-
lently, Ais Hermitian and positive semidefinite. Assume now
G(s) = % + % + G1(s), whereA; is Hermitian and positive
semidefinite (we allow also the possibiliy = 0, so that
also the case of a simple pole in zero is taken into account)
and lims_,0sG; (s) = 0. For alle > 0 we have:

0=c¢i[G(e) —G*(¢g)] =i (AL — A}) + €i[Ga(€) — G{(e()], )

10

which, in view of lims_,0sGyi(s) = 0, impliesA; = A;. It
remains to show tha#; is positive semidefinite. To this
end, lete; > 0 ande, def arcsir{elz) > 0. Moreover, given an

The second term of the sum in the right-hand side of (6) tendsarbitrary complex vectoy, let M; AV, | = 1,2 (notice

to zero ag does. Moreover, ifi > 1, for any$ we can select
9o € [—1/2, /2] in such a way thap — udo = 17/2, which
gives sing — u9g) = 1. Then, for all sufficiently smakt > 0
we have:

0< -2M + f(¢), (7
where f(g) £ eHivi[Gy(iw + eexp(idy)) — Gi(iw +
gexp(ido))]v. Since,M > 0 and, as already observed,
limgof(g) =0, (7) is a contradiction. Hencey cannot
be larger than 1. Assume now that > 0 andiw is a
simple pole ofG(s). Then (6) still holds withyu = 1. This
implies si¢ —3) <0 for anyd € (—m/2,11/2), so that
¢ = —1/2. Then for any complex vectar, the termv*iAv
is real and non-negative. Equivalent{g = iA is Hermitian
and positive semidefinite.

Let us now prove(iv). As before, assume, by contradic-
tion, that O is a pole of5(s) having multiplicity p > 2.
Then G(s) = § + Gi(s) with A 0 andG4(s) such that
lims,08Gi(s) = 0. Let € > 0 andv be a complex vec-
tor such thatv*Av+#£ 0. LetM > 0 and¢ € [0,27) be such
that v:"Av = Mexp(i¢). Let s= gexpid). Then, for all

1 Notice thatKg is the product of the imaginary unitby the
residue inay.

that M; are real numbers). Finally, let® gexpi(m/2—
£)). Then, for all sufficiently smalt; > 0 we have:

0 < giv*[G(s) — G*(s)]v
&
cosez)

=2c08¢&2) |M1+2e1Ma + iv*[G1(s) — Gi(9)]v| ,

(11)
which impliesM; > 0, so thatA; is positive semidefinite.

The proof of(v) is very similar to the proof ofiv). As before,
assume, by contradiction, thet is a pole ofG(s) having
multiplicity y > 2. ThenG(s) = A" + G, (s) with A% 0 and
Ga(s) such that ling e 4G1(s) = 0. LetR> 0 andv be a
complex vector such thatAv=Mexp(i¢) with M > 0 and
¢ € [0,2m). Let s<' Rexp(i9). Then, for all§ € [0,71/2)
and for all sufficiently largdR > 0 we have:

0< R—luiv* [G(s) — G*(5)]lv=—2Msin(¢ + ud)
+R—1uiv* [G1(s) — Gi(s)]v. (12)

The second term of the sum in the right-hand side of (12)
tends to zero aR tends to infinity. Now the same argument



employed in the proof ofiv) allows to conclude thag
cannot be larger than 2. Assume now thats a double
pole of G(s). Then (12) still holds withu = 2. This implies
that sif(¢ +23) < 0 for anyd € (0, 17/2), which givesp =
1. Then for any complex vectoy, the termv*Av is real
and non-positive. Equivalenth is Hermitian and negative
semidefinite. Assume no@(s) = Ao+ Ags+ Gi(s), where
A, is Hermitian and negative semidefinite (we allow also the
possibility A, = 0 so that also the case of a simple polecin
is taken into account) and liM %Gl(s) =0.Foralle>0
we have:

1. . . 1. »
0= Zi[G(R) ~ G'(R) = A1~ Aj + Zi[GL(R) - Gi(R)
(13)
which, in view of lims . 1Gy(s) = 0, implies Ay = A;. It
remains to show thaf; is negative semidefinite. To this
end, letR > 0 (sufficiently large) ana &' arcsir(1/R?) > 0.

. . def
Moreover, given an arbitrary complex vecter let M; =

V*Av, i = 1,2 (notice thatV; are real numbers). Finally, let
def

s= Rexp(i(1r/2—¢€)). Then, for all sufficiently larg&k > 0
we have:

0< %\ﬁ [G(s) — G*(9)]v
1

:2C0$£) —Mq — 2+ wiv*[Gl(s)

- ~Gi(9)v|,

(14)
which impliesM; <0, i.e.,A; is negative semidefinite.

Conversely, assume th@(s) is real symmetric and rational
and that it satisfie§) to (v). We have to show that for any
given vector € C™, the functioniv*[G(s) — G*(s)]v (which

in view of (i) is well defined infRe{s} > 0) is non-negative

in the whole open upper-right quarter of the complex plane
(the conditions on the positive real axis and on the lower-
right quarter of the complex plane are clearly met siG¢s)

is assumed to be real).

Consider the following closed curye

A

o

&

imaginary poles of*[G(s) — G*(s)]v and have radius (if
Vv*[G(s) — G*(s)]v has no poles in the origin, then the pieces
of y in the real and in the imaginary axes are connected
through the origin). The radius of the large quarter of a cir-
cle centred in the origin iR Now notice that the poles of
V¥ [G(s) — G*(s)]v are a subset of the poles &fs). If iy

is a pole ofG(s) but not of v*[G(s) — G*(s)]v, assumption

(i) and continuity imply that*[G(iwp) — G*(iap)]v is well
defined and non-negative.

Let K be the compact set formed by the cumwéogether
with the set that it encircles. For amy> 0 andR > 0,K is a
compact subset of the domain of analytici®yof G(s). For
any given vector € C™ ands € Q, the functionv*G(s)v is
analytic in the open right half plane. Thus, its imaginargt pa
Im[V*G(s)V] = 3-v*[-i[G(s) — G*(s)]]v is a harmonic func-
tion and therefore, by the maximum principlen|[v*G(s)v]|
restricted toK attains its maximum and minimum on the
boundary ofK, i.e., on the curvey. Now notice that any
given point in the open right half plane belongskdor a
sufficiently largeR and a sufficiently smalt. Therefore, it
is sufficient to show that for any ¢ C™ andk > 0, there
existR and£ such that for anlR > R, € € (0,€), andse y,
iv¥[G(s) — G*(s)]v > —k. To this aim, let us first observe
that:

1. Forsin the intersection betwegnand the real axis, since
G(s) is real and symmetric, we have thgte€ R implies
G(s0) € R™MandG*(sp) = G"(s0) = G(s0), so thaG(sp) —
G*(sp) = 0 and hencév*[G(s) — G*(s)]v=0.

2. Forsin the intersection betwegnand the imaginary axis,
we havei[G(s) — G*(s)] > 0 by assumptiofii) .

3. Forsin the large quarter of a circle, 16 (s) = Axs® +
Ags+ Gi(s) with Gy(s) proper, where the Hermitian and
negative semidefinite matricely and A, can also vanish
to encompass the cases wha(s) is proper or has a sim-
ple pole at infinity. If at least one of the two real num-
bersv*Ayv and v*Ajv is nonzero, then it is easy to see
that assumptior(v) implies that, forR sufficiently large,
iv¥[G(s) — G*(s)]v > 0; if, instead v*Apv = v*Ajv = 0, then
iv¥[G(s) — G*(9)]v=Iv*[G1(s) — G;(s)]v. SinceG(s) is sym-
metric,G1(s) — Gj(9) is strictly proper. Hence, for any given
v, the quantityiv*[G1(s) — Gj(s)]v tends to 0 aR tends to
infinity. Thus, for anyk > 0, there exist&R such that for any
R> R, ands= Rexp(j&), with 3 € [0,71/2], it is found that
iV*[G1(s) — Gj(s)]v> —K.

4. Fors in the small semicircles (when present), consider
a semicircle centred ifrty. The presence of this semicircle
implies thatv*[G(s) — G*(s)]v has a pole iniay, i.e. that
G(s) = A/(s—iwp) + Gi(s), wherev*Av# 0 andGs(s) is
analytic in an open set containirigy. Then, employing
assumptior(iii), it is easy to check that fog in the small

where the small semicircles and the small quarter of a cir- semicircle centred inwy, we getiv*[G(s) — G*(s)lv >0
cle, when present, are centred in the (finitely many) purely provided thate is sufficiently small.



5. Forsin the small quarter of a circle (when present) we
have thaG(s) = % + A—Sl + G1(s) whereG4(s) is analytic in

Proof: Let G(s) be a symmetric, real rational and proper

negative imaginary matrix transfer function. We have to
def

an open set containing 0. As before, we have that at least oneshow thatF(s) = s|G(s) — G()] is positive real. It is clear

of the termsv*Ayv andv*Aqv is non-zero. Then, invoking
assumption(iv), it is easy to check that fos in the small
quarter of a circle centred in 0, we fid [G(s) — G*(s)]v >
0 provided that is sufficiently small. |

that F(s) is analytic in the open right half plane and has
no pole at infinity. Moreovelf: andG have the same poles
with the possible exception of the pole at the origin. Let
ap > 0 be given and assume thaty is not a pole ofG(s).
Then, it is not a pole oF(s) and, taking into account that

We now present a result that establishes a relationship be-G*(®) = G'(») = G(«), we have:

tween positive real and symmetric negative imaginary fatio
nal transfer functions. In particular, the result in Theore
3.1 parallels [11, Lemma 1] and [13, Lemma 1] obtained
for definitions of negative imaginary systems allowing for
one or two poles at the origin, respectively, to the definitio
of symmetric negative imaginary system given in this pa-

per. Before establishing this result, we need the following

technical lemma.

Lemma 3.2 F(s) is a real rational positive real function if
and only if it may be written as

F(s) = (1/s)A+Fi(s) (15)
where A is symmetric and positive semi-definite an@)F

is a real rational positive real function with no poles at the
origin.

Proof: If F(s) has the form (15) then it is clearly positive
real in view of Lemma 2.1. Conversely, assume thés)

is positive real. IfF (s) has no poles at the origin, we may
takeF;(s) = F(s) andA =0 and we have the required de-
composition. IfF(s) has a pole at the origin, this pole is
simple and with symmetric and positive definite residye
in view of Lemma 2.1. Then, we can decompdsg) in
the form (15) wheréA is indeed the residue at the origin
and has therefore the prescribed properties Bytd) is a
real rational function without poles at the origin. It remsi
to show thatF; is itself positive real. To this end, we use
again Lemma 2.1. Sincdeé(s) is positive real, it is analytic
on the open right half-plane and herfggs) has the same
property. Moreover, ifay is a pole off(s) with multiplic-

ity u and residue?, then it is also a pole oF(s) with
the same multiplicity and the same residue. Then; 1,
and Ag is symmetric and positive semi-definite. The same
holds for a possible pole d#(s) at infinity. Finally, notice
that for w # 0 such thatiw is not a pole ofF; we have
F(iw)+F*(iw) = Fy(iow) + F (iw) so thatF (iw) + F (iw)

is Hermitian and positive semi-definite. Sinegs) + F;"(s)

is analytic at the origin, we also have tta{0) + F;*(0) is
Hermitian and positive semi-definite O

Theorem 3.1 Let G(s) be a real, rational and proper sym-

metric negative imaginary matrix transfer function. Then
def

F(s) = s[G(s) — G(»)] is positive real. Conversely, let(B)
be symmetric, real rational and positive real matrix tragrsf
function. Then Gs) d:ef(l/s)F(s) + D is symmetric negative
imaginary for any symmetric matrix D.

F(iap) +F"(iap)
= iw[G(iap) — G(w)] —iwn[G" (iwp) — G ()]
= iw[G(iwp) — G (iap)] +iap[GT () — G(w)]
= o (i[G(iw) — G (iw)]) = 0 (16)
where the last inequality is due to the fact that> 0 and
G is negative imaginary. Assume now thag > 0 is such
thatiay is a pole ofG(s). Then, it is necessarily a simple
pole of G(s), and it is also a simple pole &%(s). We then

haveG(s) = Sf’?ah +Gi(s) andKq £'iA is Hermitian and
positive semidefinite. Let us compute the residu€ () in
iap. This is given by:

s—iap)F(s) =
Siri'nw0 SA+ (S—in)[G1(S) — G(e)] = aniA > 0.

lim (
s—iay

Let us consider now the case wheg < 0. If iwyp is not

a pole of G(s) and F(s), we haveF (i) + F*(ia) =
F(—iap) + F*(—iap) which is positive semi-definite since

it is the complex conjugate &f (—iwy) + F*(—iwp), which

we have already seen to be positive semi-definite. A simi-
lar argument can be used to show that wieg is a pole

of G(s) andF(s), its residue as a pole &f is the complex
conjugate of the residue of the pole®in —iwy, and hence

is positive semi-definite.

Let us consider now the case wheg = 0. Let us first
assume that(s) has no pole at the origin. In this case
F(s) has no pole at the origin arfé(0) = 0, so that~ (0) +
F*(0) = 0> 0. If G(s) has a simple pole at the origin, then
F (s) has no pole at the origin. Moreov&(s) = A/s+ G1(s)
whereA is positive semi-definite. Thus(0) + F*(0) = A+
AT =2A> 0. If G(s) has a double pole at the origiB(s) =
Ay/S + A1 /s+ Gi(s), whereA, > 0. HenceF (s) = Ay /s+

A1 +5(G1(s) — G()). SinceG;(s) is analytic in an open set
containing the origin, alséy + s(G1(s) — G(»)) is analytic

in such an open set. Th&gs) has a simple pole at the origin
and the corresponding residbg is positive semi-definite.

Conversely, let=(s) be symmetric, real rational and posi-

tive real matrix transfer function ar@(s) £ (1/s)F (s) +D.

As long asD = DT, the matrixD is clearly irrelevant for

the definition of negative imaginary, and it is sufficient to

show thatGp(s) & (1/s)F(s) is negative imaginary. To this



end, we first observe th&y(s) is a proper rational func-
tion and it is analytic in the open right half-plane. Moregve
F(s) andGy(s) have the same poles with the possible ex-
ception of the pole at the origin. Lety > 0 be given and
assume thatw is not a pole of- (s). Then it is not a pole of
Go(s). Moreover|[Go(iwy) — G§(ian)] =i[(1/icn)F (iawn)+
(1/iawn)F* (i) = (1) [F (icn) + F* (iop)] which is posi-
tive semi-definite because) > 0 andF is positive real. Let
now ayp > 0 be given and assume tha, is a pole ofF(s)
and hence 06q(s). SinceF (s) is positive realay is a sim-
ple pole ofF(s) and hence 06Gy(s). Moreover, the residue
of iap as a pole of (s) is a positive semi-definite matri.

It is now evident that lirg,j ., (S—iwn)iGo(s) = (1/wn)A
which is clearly positive semi-definite.

The case of a pole at the origin is more delicaté: (®) =0
thenGyp(s) does not have a pole at the origin and this con-
cludes the proof. IfF(s) does not have a pole at the ori-
gin but F(0) # 0, thenGgp(s) has a simple pole at the ori-
gin and its residue i§(0) which is positive semi-definite
becausd- is positive real. In the case whénhas a sim-

ple pole at the origin we use Lemma 3.2 and decompose

F(s) = (1/s)A+Fi(s) with A symmetric and positive semi-
definite andF;(s) positive real. Hencel;(0) is positive
semi-definite. ThusGy(s) has a double pole at the origin,
whose residue i§;(0) > 0 and whose quadratic residue is
A>0. ]

Remark 3.1 As aforementioned, the difference between th

above result and Lemma 1 in [11] is that we allow a double

pole at the origin for negative imaginary transfer function
This is very natural for two reasons: (i) positive real func-

tions can have a single pole at the origin (the most common

example beind-(s) = 1/s which is easily seen to be posi-
tive real) so that it is natural to allow a double pole at the
origin for negative imaginary transfer functions. In faitt,

is easily seen theft (s) = 1/s satisfies Definition 1 in [11]
and is therefore positive real (and this is extremely intait
sinceF (s) is the transfer function of a capacitor). Hence, in
view of Lemma 1 in [11] we should have th@is) = 1/s°

is negative imaginary which is, again, intuitive. However,
G(s) = 1/s° is not negative imaginary according to the Def-
inition 2 in [11]. (ii) Since G(s) = 1/(s* + €?) is negative
imaginary for anye # 0, it is natural to require, by continu-
ity, that alsoG(s) = 1/ is negative imaginary. We observe
that the above result is in line with Lemma 1 in [13], in

which the definition of negative imaginary system was ex-
tended to include systems with a double pole at the origin.

Concluding remarks

In this paper we presented a definition of symmetric nega-
f [15] Z. Song, A. Lanzon, S. Patra, and |.R. Petersen. Towendsroller

tive imaginary system that hinges entirely on properties o
the transfer function matrix, and not on properties of adit

dimensional realisation. Thus, with the approach presente

here even non rational transfer functions — which corredpon
to infinite-dimensional realisations — can turn out to be-neg

ative imaginary. We have then characterised negative imag-

inary rational transfer functions by an algebraic conditio

and established a connection between negative imaginary

and positive real transfer functions.
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