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Research partially carried out while visitingCurtin University, Perth (WA), Australia.

bDepartment of Mathematics and Statistics, Curtin University, Perth (WA), Australia.

Abstract

This note represents a first attempt to provide a definition and characterisation of negative imaginary systems for not necessarily rational
transfer functions via a sign condition expressed in the entire domain of analyticity, along the same lines of the classic definition of
positive real systems. Under the standing assumption of symmetric transfer function, we then derive a necessary and sufficient condition
that characterises negative imaginary transfer functionsin terms of a matrix sign condition restricted to the imaginary axis, once again
following the same line of argument of the standard positivereal case. Using this definition, even transfer functions with a pole at the
origin with double multiplicity, as well as with a possibly negative relative degree, can be negative imaginary.
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1 Introduction

Positive real linear systems constitute an important corner-
stone of passivity theory. The notion of positive real system
was first introduced in electrical network analysis to indi-
cate dissipativem-port networks. In the single-input single-
output case, positive real systems can be realised with elec-
trical circuits involving only resistors, capacitors and induc-
tors. In the multiple-input multiple-output case,m-port elec-
trical networks can be realised using also transformers and
gyrators, in addition to the above-mentioned electrical com-
ponents. The most interesting case is by far the one of the
so-calledreciprocal m-ports, which can be realised by re-
sistors, capacitors, inductors and transformers, i.e., without
the need for gyrator elements. The interesting feature of re-
ciprocalm-port electrical networks is the fact that the cor-
responding impedance, admittance and scattering matrices
are always symmetric. Furthermore, in practice gyrators can
only be realised by using active electrical elements. We refer
to [1,3] and the references cited therein.
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The usual approach in establishing a positive real theory isto
first introduce the classic definition of positive real function
as a (not necessarily rational) complex matrix of functions
which is analytic in the right half complex plane and which
satisfies, in the domain of analyticity, a certain inequality.
For rational functions, the second step usually consists in
characterising the concept of positive realness in terms of
conditions involving properties of the restriction of the ma-
trix function to the imaginary axis. Another characterisation
is given in terms of the celebratedpositive real Lemma equa-
tions, a cornerstone of modern control theory that have gen-
erated an endless stream of literature. Two fairly recent pa-
pers whose reference lists points to many of the fundamental
contributions and generalisations in this field are [5,6].

A fundamental feature of the classic positive real theory
is the fact that the relative degree of rational positive real
systems is either zero or plus or minus one, [3]. It was
noticed in [9] that, when modelling undamped or lightly
damped flexible structures with colocated position sensors
and force actuators, the resulting transfer function has a
relative degree which is greater than one. This consid-
eration led to the introduction of the so-callednegative
imaginary systems, which impose a weaker restriction on
the relative degree of the transfer function. A subsequent
very promising stream of literature flourished in the last
few years on the properties of negative imaginary systems,
see [10,17,18,16,15,14,11,12,19] and the references cited
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therein.

In the first contribution on this topic [9], a definition was
proposed for negative imaginary function matrix in terms of
properties of the function on the imaginary axis. In this first
definition, systems with poles on the imaginary axis were
excluded. This is also the way negative imaginary systems
were introduced in the contribution by the same authors in
IEEE Control Systems Magazine, [14]. This restriction was
abandoned in [18,16], where a simple pole on the imaginary
axis except at the origin was allowed. A further important
extension of this new negative imaginary theory has subse-
quently been proposed in order to deal with systems with a
single pole at the origin. More recently, also the case of a
double pole at the origin was considered, see [7,13]. In re-
cent months, several efforts have been devoted to the gener-
alisation and adaptation of this theory to different contexts
and scenarios, including implicit systems in [12]. Lossless
imaginary systems have been recently introduced in [17] and
[19]. The reason for the success of the negative imaginary
theory is that many systems that are important and useful
in practice are negative imaginary. On the other hand, so
far the theory appears to be incomplete as, differently from
the positive real case, the definitions of negative imaginary
systems have always been restricted to the case of systems
with rational transfer function. This paper may be viewed
as a very first attempt to propose a general definition (valid
for systems having non-rational transfer function) that will
hopefully lead to a general comprehensive theory in the same
vein of that of positive real systems. In particular, our defini-
tion allows for the presence of delays that, on the one hand
have non-rational transfer function and, on the other hand,
are very often present in real applications.

Our definition is given in terms of a matrix sign condition
in the entire domain of analyticity, in the same spirit of the
classic positive real case. To that end, the notion ofskew-
imaginarymatrix function will be instrumental. Our effort
in this direction was motivated by the results on the closed
loop stability of systems having (non necessarily rational)
positive real transfer function. Therefore, as pointed outby
B.D.O. Anderson in [2], it seems natural and potentially very
convenient to have a general definition of negative imaginary
systems that does not require rationality.

Then, in a way that once again parallels the conventional
positive real approach, [1], a necessary and sufficient con-
dition will be introduced for the rational case that charac-
terises a negative imaginary transfer function in terms of its
behaviour on the imaginary axis. This alternative approach
has the advantage of being applicable to possibly non-proper
transfer functions, as well as to transfer functions with more
than one pole at the origin, and even to non rational trans-
fer functions. The price to pay is the restriction to symmet-
ric transfer functions. Nevertheless, as aforementioned,the
symmetric case is by far the most relevant and interesting
in practice, as it is the one that corresponds to reciprocal
m-port electrical networks. In addition, undamped or lightly
damped flexible structures with colocated position sensors

and force actuators are characterised by a symmetric trans-
fer function, [14,19].

Notation. Given a matrixA, AT denotes the transpose of
A and A∗ denotes the complex conjugate transpose ofA.
Given a matrix-valued functionF(s), we denote byF∗(s)
the function[F(s)]∗.

2 Positive Real and Negative Imaginary functions: the
standard definitions

We begin by recalling the standard definition of positive real
function. For a detailed discussion on positive real systems
we refer to [1,3] and the references cited therein.

Definition 2.1 The function F:C−→Cm×m is positive real
if

• F(s) is analytic in the open right half s-plane (Re{s}>0);
• F(s) is real when s is real and positive;
• F(s)+F∗(s) is positive semi-definite ifRe{s}> 0.

The following classic result provides necessary and suffi-
cient conditions for a real rational transfer function matrix
to be positive real in terms of the features of its restriction
to the imaginary axis of the complex plane.

Lemma 2.1 Let F(s) be real and rational. Then F(s) is
positive real if and only if

• F(s) has no poles in the open right half s-plane;
• F(i ω) +F∗(i ω) is positive semi-definite for all realω

such that iω is not a pole of F(i ω);
• if i ω0 is a pole of any element of F(s), it is a simple

pole with Hermitian and positive semidefinite residue. In
particular, if ω0 is finite, the residue is

K0
def
= lim

s→iω0
(s− i ω0)F(s),

while if ω0 is infinite, the residue is

K∞
def
= lim

ω→∞

F(i ω)

i ω
.

We now present the definition of negative imaginary trans-
fer function in the way it was presented in [16], which con-
stitutes an important extension with respect to the first one
given in [9] because, as already observed, does not exclude
the case of systems with poles on the imaginary axis (pro-
vided they are not at the origin).

Definition 2.2 ([16, Definition 1])
The square real-rational and proper transfer function G(s)
is called negative imaginary if

(1) G(s) has no poles at the origin and inRe{s}> 0;
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(2) i [G( jω)−G∗( jω)] ≥ 0 for all ω ∈ (0,∞) except for
the values ofω where iω is a pole of G(s)

(3) if s= i ω0 (with ω0 ∈ (0,∞)) is a pole of G(s), then it is
a simple pole, and the residual matrix iK0 is positive
semidefinite Hermitian.

This definition was also generalised in [11] to include the
case of transfer function matrices with a single pole at the
origin. The following Lemma, which is given in [16], is the
analogous of the Positive Real Lemma.

Lemma 2.2 (Negative Imaginary Lemma, [16, Lemma
7]).
Let(A,B,C,D) be a minimal realisation of the m×m real ra-
tional proper transfer function matrix G(s), where A∈Rn×n,
B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m. Then, G(s) is negative
imaginary if and only if

(1) A is non-singular;
(2) D is symmetric;
(3) a matrix Y=Y⊤ > 0, Y ∈ Rn×n exists such that

AY+Y AT ≤ 0 and B+AY CT = 0. (1)

The following theorem establishes a link between the def-
inition of negative imaginary transfer function matrix with
the so-called Passivity Theory.

Theorem 2.1 A minimal realisation(A,B,C,D) is negative
imaginary if and only if A has no eigenvalues at the origin,
D is symmetric and the state equation is dissipative with
respect to the supply function

[

xT uT

]

[

O S

ST O

][

x

u

]

where S=−A−TCT. The corresponding storage function is
P= (AY AT)−1, where Y satisfies (1).

Proof: First, recall that a reachable state realisation(A,B)
is dissipative with respect to the supply function

xT Qx+2xT Su+uT Ru (2)

if and only if the linear matrix inequality

[

Q−AT P−PA S−PB

ST −BTP R

]

≥ 0 (3)

admits a symmetric and positive semidefinite solutionP,
see e.g. [20, page 383].
(Only if). If the system is negative imaginary, det(A) 6=
0 and (1) holds for a matrixY = YT ≥ 0. By tak-
ing P = A−TY−1A−1 we find S− PB = −A−TCT −

A−TY−1A−1(−AY CT) = 0. Moreover,

AT P+PA=Y−1A−1+A−TY−1

=Y−1A−1(Y AT +AY)A−TY−1 ≤ 0,

sinceAY+Y AT ≤ 0. Therefore

[

−AT P−PA S−PB

ST −BTP O

]

≥ 0, (4)

which implies that (3) holds withQ= 0 andR= 0.
(If). Let P≥ 0 be such that (4) holds true. We show thatP
is invertible. We first prove that kerP is A-invariant. Let

Q=−AT P−PA. (5)

Takev∈ kerP. ThenvTQv= vT(−AT P−PA)v= 0, so that
Qv= 0. Then, by post-multiplying (5) byv we getPAv= 0,
which implies thatAv∈ kerP, i.e. kerP is A-invariant. Now
we show that kerP ⊆ kerST. Let v ∈ kerP. For anyw the
inequality

0≤
[

vT wT
]

[

−AT P−PA S−PB

ST −BTP O

][

v

w

]

holds since
[

−AT P−PA S−PB

ST−BTP O

]

≥ 0. Then, developing the

products, we getvTSw+ wT STv = 2vT Sw= 0. For the
arbitrariness ofw, we obtainSTv = 0. Then,v ∈ kerST. It
follows that kerP is A-invariant and is contained in null-
space ofST. Then, it is also contained in the unobservable
subspace of the pair(A,ST). Therefore, it is contained in
the unobservable subspace of(A,C). However, since the
realisation is minimal, such unobservable subspace is zero.
Therefore, kerP = {0}, which means thatP is invertible.
Now we can defineY = (ATPA)−1. It is now a matter of
following the same steps of the(only if) part backwards to
see thatY satisfies (1).

Remark. We have shown that the state equation of a nega-
tive imaginary system is dissipative. It is an interesting open
problem to understand whether (or under what condition)
there exists a supply function such that the input-output re-
lation of a negative imaginary system is dissipative with re-
spect to such a function.

3 A general definition

In this section we propose a new definition of negative imag-
inary system for transfer functions which are not necessar-
ily rational. In this definition, similarly to what happens for
the classic positive real case, the sign condition holds in the
entire domain of analyticity of the transfer function. We re-
call that in this paper we restrict our attention to symmetric
matrix transfer functions. This is the most relevant situation,
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because it encompasses both the scalar case, and the case
of a transfer function of a reciprocalm-port electrical net-
work. As already observed, the only way to obtain a non-
symmetric transfer function of anm-port electrical network
is to employ gyrators, whose physical implementation re-
quires the use of active components but that cannot be physi-
cally implemented with arbitrary precision. Furthermore,the
transfer functions from a force actuator to a corresponding
collocated position sensor (for instance, a piezoelectricsen-
sor) in a lightly damped or undamped structure is typically
symmetric, see [10,14,19].

Definition 3.1 Let G: C−→ Cm×m be analytic in an open
subsetΩ of C. Then, G is skew-imaginary inΩ1 ⊆ Ω if

• i [G(s)−G∗(s)]≥ 0 for all s∈ Ω1 such thatIm{s}> 0;
• i [G(s)−G∗(s)] = 0 for all s∈ Ω1 such thatIm{s}= 0;
• i [G(s)−G∗(s)]≤ 0 for all s∈ Ω1 such thatIm{s}< 0.

Definition 3.2 Let G : C −→ Cm×m be a real, symmetric
transfer function. We say that G issymmetric negative imag-
inary if

• G(s) is analytic inRe{s}> 0;
• G(s) is skew-imaginary inRe{s}> 0.

Notice that sinceG(s) is symmetric, i [G(s)− G∗(s)] =
−2Im{G(s)}.

As noted above, with respect to the definitions of negative
imaginary transfer functions given in [9], [11] and [16], here
we restrict our attention to the symmetric ones. On the other
hand, a definition given directly in terms of a sign property
of the transfer matrix function in its domain of analyticity
appears to be very appealing since it goes in the direction,
suggested in [2], of an abstract foundation in the same spirit
of the definition of positive real functions. In particular,in
this definition, there is no need to start with rational and
proper functions as in [9], [11] and [16] or to deal with poles.
Notice that this definition may immediately be applied to
non-proper rational transfer functions. For example, consider
G(s) = as, wherea∈R. Then,G(s) is analytic inRe{s}> 0
and, by definings= σ + i ω , we get

i [G(s)−G∗(s)]= i [aσ+iaω−(aσ−iaω)]=−2aω,

which is non-negative for allω ≥ 0 if and only if a≤ 0. It
follows thatG(s) is negative imaginary if and only ifa≤ 0.

Moreover, the fact, introduced in [7] as anad hocextension,
that a transfer function with a double pole in the origin may
be negative imaginary is also a direct consequence of this
general definition. For example,G(s) = 1/s2 is easily seen
to be negative imaginary. Indeed, definings= σ + i ω , in
the domain of analyticity(σ > 0) the quantity

i [G(s)−G∗(s)] =
4σ ω

(σ2−ω2)2+4σ2ω2

is positive definite for allω ≥ 0.

Finally, to the best of our knowledge, this is the first defini-
tion that allows the notion of negative imaginary system to
be applicable to non-rational transfer functions. In the fol-
lowing example, we consider a system with a delay.
Example.Let G(s) = −s(e−sT + 1), with T ∈ R+ being a
positive delay. We now show thatG(s) is negative imagi-
nary. Lets= σ + i ω . A direct calculation yields

i (G(s)−G∗(s))= 2
[

ω +e−σ T (ω cos(ω T)−σ sin(ω T))
]

.

Now define

f (σ ,ω)
def
= ω +e−σ T (ω cos(ω T)−σ sin(ω T)) .

Sincef (σ ,0)≡ 0, andf (σ ,−ω) =− f (σ ,ω), we only need
to show that, whenσ > 0 and ω > 0, f (σ ,ω) ≥ 0. As-
sume by contradiction thatσ ≥ 0 andω0 > 0 exist such that
f (σ ,ω0)< 0. It is immediate to see thatf (σ ,ω0), as a func-
tion of σ , is continuos with all its derivatives. Hence, there
exists σ0 such that infσ≥0 f (σ ,ω0) = minσ≥0 f (σ ,ω0) =

f (σ0,ω0)≤ f (σ ,ω0)< 0 and ∂ f
∂σ (σ0,ω0) = 0. By comput-

ing this derivative, we see that theonly candidateσ0 is
given by σ0 = 1

T +ω0
cos(ω0T)
sin(ω0T) . To get a contradiction, it

is now sufficient to show that ifω0 is such thatσ0 is fi-
nite and positive, thenf (σ0,ω0) > 0. Indeed, f (σ0,ω0) =
1
T [ω0T −e−σ0T sin(ω0T)], which is clearly positive for all
ω0 > 0, σ0 > 0 andT > 0.

We now specialise the notion of negative imaginary function
to real and rational transfer function matrices.

Recall that given a real rational functionG(s) and a simple
polep∈C of G(s), we have a unique decompositionG(s) =
G1(s)+A/(s− p), whereG1(s) is a rational function which
is analytic in an open set containingp and the (non-zero)
matrix A is the residue corresponding to the polep. If p is
a double pole ofG(s), we have the unique decomposition
G(s) = G1(s)+A1/(s− p)+A2/(s− p)2, where the matrix
A1 is the residue corresponding to the polep. In this case,
by analogy, we define the (non-zero) matrixA2 to be the
quadratic residuecorresponding to the polep. If G(s) has
a pole at infinity, it can be uniquely decomposed asG(s) =
G1(s)+P(s), whereG1(s) is a rational proper function and
P(s) =∑k

i=1Aisi is a homogeneous polynomial ins. We refer
to Ai as thei-th coefficient in the expansion at infinity of
G(s).

Lemma 3.1 Let G(s) be real, symmetric and rational. Then
G(s) is symmetric negative imaginary if and only if

(i) G(s) has no poles inRe{s}> 0;
(ii) i [G(i ω)−G∗(iω)]≥ 0 for all ω ∈ (0,∞) except for the
values ofω where iω is a pole of G(s);
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(iii) if s= i ω0, with ω0 ∈ (0,∞), is a pole of G(s), then it
is a simple pole and the corresponding residual matrix1

K0 = lims→i ω0(s− i ω0) iG(s) is Hermitian and positive
semidefinite;

(iv) if s= 0 is a pole of G(s), then it is at most a double
pole. Moreover, both its residual and its quadratic resid-
ual (when present) are positive semidefinite Hermitian
matrices;

(v) if s=∞ is a pole of G(s), then it is at most a double pole.
Moreover, both the coefficients in the expansion at infinity
of G(s) are negative semidefinite Hermitian matrices.

Proof: Assume that the real and rational matrix function
G(s) is negative imaginary. ThenG(s) is analytic in the
open right half plane, so that(i) is immediate. Secondly, if
ω > 0 and iω is not a pole ofG(s), thenG(s) is analytic
in an open set containingiω , so thati [G(i ω)−G∗(iω)] =
limσց0 i [G(σ + i ω)−G∗(σ + iω)]≥0, which proves(ii) . In
order to prove(iii) , assume, by contradiction, thatω > 0 and
iω is a pole ofG(s) having multiplicityµ > 1. ThenG(s) =

A
(s−iω)µ +G1(s) with A 6= 0 andG1(s) such that lims→iω (s−
iω)µG1(s) = 0. Let ε > 0 andv be a complex vector such
thatv∗Av= M exp(iϕ) with M > 0 andϕ ∈ [0,2π). Let s=
iω + ε exp(iϑ). Then, for allϑ ∈ [−π/2,π/2] and for all
sufficiently smallε > 0 we have:

0≤ εµ iv∗[G(s)−G∗(s)]v=−2M sin(ϕ − µϑ)

+εµ iv∗[G1(s)−G∗
1(s)]v. (6)

The second term of the sum in the right-hand side of (6) tends
to zero asε does. Moreover, ifµ > 1, for anyϕ we can select
ϑ0 ∈ [−π/2,π/2] in such a way thatϕ −µϑ0 = π/2, which
gives sin(ϕ−µϑ0) = 1. Then, for all sufficiently smallε > 0
we have:

0≤−2M+ f (ε), (7)

where f (ε) def
= εµ iv∗[G1(iω + ε exp(iϑ0)) − G∗

1(iω +
ε exp(iϑ0))]v. Since, M > 0 and, as already observed,
limε→0 f (ε) = 0, (7) is a contradiction. Hence,µ cannot
be larger than 1. Assume now thatω > 0 and iω is a
simple pole ofG(s). Then (6) still holds withµ = 1. This
implies sin(ϕ −ϑ) ≤ 0 for any ϑ ∈ (−π/2,π/2), so that
ϕ = −π/2. Then for any complex vectorv, the termv∗iAv
is real and non-negative. Equivalently,K0 = iA is Hermitian
and positive semidefinite.

Let us now prove(iv). As before, assume, by contradic-
tion, that 0 is a pole ofG(s) having multiplicity µ > 2.
Then G(s) = A

sµ +G1(s) with A 6= 0 andG1(s) such that
lims→0sµG1(s) = 0. Let ε > 0 and v be a complex vec-
tor such thatv∗Av 6= 0. Let M > 0 andϕ ∈ [0,2π) be such
that v∗Av = M exp(iϕ). Let s = ε exp(iϑ). Then, for all

1 Notice thatK0 is the product of the imaginary uniti by the
residue inω0.

ϑ ∈ [0,π/2] andε > 0 we have:

0≤ εµ iv∗[G(s)−G∗(s)]v=−2M sin(ϕ − µϑ)

+εµ iv∗[G1(s)−G∗
1(s)]v. (8)

Again, the second term of the sum in the right-hand side of
(8) tends to zero asε does. Moreover, ifµ > 2, for anyϕ
we can selectϑ0 ∈ [0,π/2] in such a way that that sin(ϕ −
µϑ0)≥

√
2/2. Then, for allε > 0 sufficiently small we have:

0≤−
√

2M+ f (ε), (9)

where f (ε) def
= εµ iv∗[G1(ε exp(iϑ0))−G∗

1(ε exp(iϑ0))]v. As
before, this leads to a contradiction. Thus,µ cannot be larger
than 2. Assume now that 0 is a double pole ofG(s). Then
(8) still holds withµ = 2. This implies sin(ϕ −2ϑ)≤ 0 for
any ϑ ∈ (0,π/2), yielding ϕ = 0. Then, for any complex
vector v, the termv∗Av is real and non-negative. Equiva-
lently,A is Hermitian and positive semidefinite. Assume now
G(s) = A2

s2 +
A1
s +G1(s), whereA2 is Hermitian and positive

semidefinite (we allow also the possibilityA2 = 0, so that
also the case of a simple pole in zero is taken into account)
and lims→0 sG1(s) = 0. For allε > 0 we have:

0= ε i[G(ε)−G∗(ε)] = i (A1−A∗
1)+ ε i[G1(ε)−G∗

1(ε)],
(10)

which, in view of lims→0sG1(s) = 0, implies A1 = A∗
1. It

remains to show thatA1 is positive semidefinite. To this

end, letε1 > 0 andε2
def
= arcsin(ε2

1)> 0. Moreover, given an

arbitrary complex vectorv, let Mi
def
= v∗Aiv, i = 1,2 (notice

that Mi are real numbers). Finally, lets
def
= ε1exp(i(π/2−

ε2)). Then, for all sufficiently smallε1 > 0 we have:

0≤ ε1iv∗[G(s)−G∗(s)]v

= 2cos(ε2)

[

M1+2ε1M2+
ε1

cos(ε2)
iv∗[G1(s)−G∗

1(s)]v

]

,

(11)

which impliesM1 ≥ 0, so thatA1 is positive semidefinite.

The proof of(v) is very similar to the proof of(iv). As before,
assume, by contradiction, that∞ is a pole ofG(s) having
multiplicity µ > 2. ThenG(s) =Asµ +G1(s) with A 6= 0 and
G1(s) such that lims→∞

1
sµ G1(s) = 0. Let R> 0 andv be a

complex vector such thatv∗Av= M exp(iϕ) with M > 0 and

ϕ ∈ [0,2π). Let s
def
= Rexp(iϑ). Then, for allϑ ∈ [0,π/2]

and for all sufficiently largeR> 0 we have:

0≤ 1
Rµ iv∗[G(s)−G∗(s)]v=−2M sin(ϕ + µϑ)

+
1

Rµ iv∗[G1(s)−G∗
1(s)]v. (12)

The second term of the sum in the right-hand side of (12)
tends to zero asR tends to infinity. Now the same argument

5



employed in the proof of(iv) allows to conclude thatµ
cannot be larger than 2. Assume now that∞ is a double
pole ofG(s). Then (12) still holds withµ = 2. This implies
that sin(ϕ +2ϑ)≤ 0 for anyϑ ∈ (0,π/2), which givesϕ =
π . Then for any complex vectorv, the termv∗Av is real
and non-positive. Equivalently,A is Hermitian and negative
semidefinite. Assume nowG(s) =A2s2+A1s+G1(s), where
A2 is Hermitian and negative semidefinite (we allow also the
possibilityA2 = 0 so that also the case of a simple pole in∞
is taken into account) and lims→∞

1
sG1(s) = 0. For allε > 0

we have:

0=
1
R

i[G(R)−G∗(R)] = A1−A∗
1+

1
R

i[G1(R)−G∗
1(R)],

(13)
which, in view of lims→∞

1
sG1(s) = 0, impliesA1 = A∗

1. It
remains to show thatA1 is negative semidefinite. To this
end, letR> 0 (sufficiently large) andε def

= arcsin(1/R2)> 0.

Moreover, given an arbitrary complex vectorv, let Mi
def
=

v∗Aiv, i = 1,2 (notice thatMi are real numbers). Finally, let
s

def
= Rexp(i(π/2− ε)). Then, for all sufficiently largeR> 0

we have:

0≤ i
R

v∗[G(s)−G∗(s)]v

= 2cos(ε)
[

−M1−
2
R

M2+
1

Rcos(ε)
iv∗[G1(s)−G∗

1(s)]v

]

,

(14)

which impliesM1 ≤ 0, i.e.,A1 is negative semidefinite.

Conversely, assume thatG(s) is real symmetric and rational
and that it satisfies(i) to (v). We have to show that for any
given vectorv∈Cm, the functioniv∗[G(s)−G∗(s)]v (which
in view of (i) is well defined inRe{s}> 0) is non-negative
in the whole open upper-right quarter of the complex plane
(the conditions on the positive real axis and on the lower-
right quarter of the complex plane are clearly met sinceG(s)
is assumed to be real).

Consider the following closed curveγ:

000000

ω ′
0

ω ′′
0

where the small semicircles and the small quarter of a cir-
cle, when present, are centred in the (finitely many) purely

imaginary poles ofv∗[G(s)−G∗(s)]v and have radiusε (if
v∗[G(s)−G∗(s)]v has no poles in the origin, then the pieces
of γ in the real and in the imaginary axes are connected
through the origin). The radius of the large quarter of a cir-
cle centred in the origin isR. Now notice that the poles of
v∗[G(s)−G∗(s)]v are a subset of the poles ofG(s). If iω0
is a pole ofG(s) but not ofv∗[G(s)−G∗(s)]v, assumption
(ii) and continuity imply thatv∗[G(iω0)−G∗(iω0)]v is well
defined and non-negative.

Let K be the compact set formed by the curveγ together
with the set that it encircles. For anyε > 0 andR> 0, K is a
compact subset of the domain of analyticityΩ of G(s). For
any given vectorv∈Cm ands∈ Ω, the functionv∗G(s)v is
analytic in the open right half plane. Thus, its imaginary part
Im[v∗G(s)v] = 1

2·v∗[−i[G(s)−G∗(s)]]v is a harmonic func-
tion and therefore, by the maximum principle,Im[v∗G(s)v]
restricted toK attains its maximum and minimum on the
boundary ofK, i.e., on the curveγ. Now notice that any
given point in the open right half plane belongs toK for a
sufficiently largeR and a sufficiently smallε. Therefore, it
is sufficient to show that for anyv ∈ C

m and κ > 0, there
exist R̃ andε̃ such that for anyR> R̃, ε ∈ (0, ε̃), ands∈ γ,
iv∗[G(s)−G∗(s)]v > −κ . To this aim, let us first observe
that:

1. Fors in the intersection betweenγ and the real axis, since
G(s) is real and symmetric, we have thats0 ∈ R implies
G(s0)∈Rm×m andG∗(s0)=GT(s0)=G(s0), so thatG(s0)−
G∗(s0) = 0 and henceiv∗[G(s)−G∗(s)]v= 0.

2. Fors in the intersection betweenγ and the imaginary axis,
we havei[G(s)−G∗(s)]≥ 0 by assumption(ii) .

3. For s in the large quarter of a circle, letG(s) = A2s2 +
A1s+G1(s) with G1(s) proper, where the Hermitian and
negative semidefinite matricesA1 and A2 can also vanish
to encompass the cases whenG(s) is proper or has a sim-
ple pole at infinity. If at least one of the two real num-
bers v∗A2v and v∗A1v is nonzero, then it is easy to see
that assumption(v) implies that, forR sufficiently large,
iv∗[G(s)−G∗(s)]v> 0; if, instead,v∗A2v= v∗A1v= 0, then
iv∗[G(s)−G∗(s)]v= iv∗[G1(s)−G∗

1(s)]v. SinceG(s) is sym-
metric,G1(s)−G∗

1(s) is strictly proper. Hence, for any given
v, the quantityiv∗[G1(s)−G∗

1(s)]v tends to 0 asR tends to
infinity. Thus, for anyκ > 0, there exists̃Rsuch that for any
R> R̃, ands= Rexp( jϑ), with ϑ ∈ [0,π/2], it is found that
iv∗[G1(s)−G∗

1(s)]v>−κ .

4. For s in the small semicircles (when present), consider
a semicircle centred iniω0. The presence of this semicircle
implies thatv∗[G(s)−G∗(s)]v has a pole iniω0, i.e. that
G(s) = A/(s− iω0)+G1(s), wherev∗Av 6= 0 andG1(s) is
analytic in an open set containingiω0. Then, employing
assumption(iii) , it is easy to check that fors in the small
semicircle centred iniω0, we get iv∗[G(s)− G∗(s)]v ≥ 0
provided thatε is sufficiently small.
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5. For s in the small quarter of a circle (when present) we
have thatG(s) = A2

s2 + A1
s +G1(s) whereG1(s) is analytic in

an open set containing 0. As before, we have that at least one
of the termsv∗A2v andv∗A1v is non-zero. Then, invoking
assumption(iv), it is easy to check that fors in the small
quarter of a circle centred in 0, we findiv∗[G(s)−G∗(s)]v≥
0 provided thatε is sufficiently small.

We now present a result that establishes a relationship be-
tween positive real and symmetric negative imaginary ratio-
nal transfer functions. In particular, the result in Theorem
3.1 parallels [11, Lemma 1] and [13, Lemma 1] obtained
for definitions of negative imaginary systems allowing for
one or two poles at the origin, respectively, to the definition
of symmetric negative imaginary system given in this pa-
per. Before establishing this result, we need the following
technical lemma.

Lemma 3.2 F(s) is a real rational positive real function if
and only if it may be written as

F(s) = (1/s)A+F1(s) (15)

where A is symmetric and positive semi-definite and F1(s)
is a real rational positive real function with no poles at the
origin.

Proof: If F(s) has the form (15) then it is clearly positive
real in view of Lemma 2.1. Conversely, assume thatF(s)
is positive real. IfF(s) has no poles at the origin, we may
takeF1(s) = F(s) andA= 0 and we have the required de-
composition. IfF(s) has a pole at the origin, this pole is
simple and with symmetric and positive definite residueA,
in view of Lemma 2.1. Then, we can decomposeF(s) in
the form (15) whereA is indeed the residue at the origin
and has therefore the prescribed properties andF1(s) is a
real rational function without poles at the origin. It remains
to show thatF1 is itself positive real. To this end, we use
again Lemma 2.1. SinceF(s) is positive real, it is analytic
on the open right half-plane and henceF1(s) has the same
property. Moreover, ifiω0 is a pole ofF1(s) with multiplic-
ity µ and residueA0, then it is also a pole ofF(s) with
the same multiplicity and the same residue. Then,µ = 1,
and A0 is symmetric and positive semi-definite. The same
holds for a possible pole ofF1(s) at infinity. Finally, notice
that for ω 6= 0 such thatiω is not a pole ofF1 we have
F(iω)+F∗(iω) = F1(iω)+F∗

1 (iω) so thatF1(iω)+F∗
1 (iω)

is Hermitian and positive semi-definite. SinceF1(s)+F∗
1 (s)

is analytic at the origin, we also have thatF1(0)+F∗
1 (0) is

Hermitian and positive semi-definite.✷

Theorem 3.1 Let G(s) be a real, rational and proper sym-
metric negative imaginary matrix transfer function. Then

F(s)
def
= s[G(s)−G(∞)] is positive real. Conversely, let F(s)

be symmetric, real rational and positive real matrix transfer

function. Then G(s)
def
= (1/s)F(s)+D is symmetric negative

imaginary for any symmetric matrix D.

Proof: Let G(s) be a symmetric, real rational and proper
negative imaginary matrix transfer function. We have to

show thatF(s)
def
= s[G(s)−G(∞)] is positive real. It is clear

that F(s) is analytic in the open right half plane and has
no pole at infinity. Moreover,F andG have the same poles
with the possible exception of the pole at the origin. Let
ω0 > 0 be given and assume thatiω0 is not a pole ofG(s).
Then, it is not a pole ofF(s) and, taking into account that
G∗(∞) = GT(∞) = G(∞), we have:

F(iω0)+F∗(iω0)

= iω0[G(iω0)−G(∞)]− iω0[G
∗(iω0)−G∗(∞)]

= iω0[G(iω0)−G∗(iω0)]+ iω0[G
T(∞)−G(∞)]

= ω0 (i[G(iω0)−G∗(iω0)])≥ 0 (16)

where the last inequality is due to the fact thatω0 > 0 and
G is negative imaginary. Assume now thatω0 > 0 is such
that iω0 is a pole ofG(s). Then, it is necessarily a simple
pole of G(s), and it is also a simple pole ofF(s). We then

haveG(s) = A
s−iω0

+G1(s) and K0
def
= iA is Hermitian and

positive semidefinite. Let us compute the residue ofF(s) in
iω0. This is given by:

lim
s→iω0

(s− iω0)F(s) =

lim
s→iω0

sA+(s− iω0)[G1(s)−G(∞)] = ω0iA ≥ 0.

Let us consider now the case whenω0 < 0. If iω0 is not
a pole of G(s) and F(s), we haveF(iω0) + F∗(iω0) =

F(−iω0)+F∗(−iω0) which is positive semi-definite since
it is the complex conjugate ofF(−iω0)+F∗(−iω0), which
we have already seen to be positive semi-definite. A simi-
lar argument can be used to show that wheniω0 is a pole
of G(s) andF(s), its residue as a pole ofF is the complex
conjugate of the residue of the pole ofF in −iω0, and hence
is positive semi-definite.

Let us consider now the case whenω0 = 0. Let us first
assume thatG(s) has no pole at the origin. In this case
F(s) has no pole at the origin andF(0) = 0, so thatF(0)+
F∗(0) = 0≥ 0. If G(s) has a simple pole at the origin, then
F(s) has no pole at the origin. Moreover,G(s) =A/s+G1(s)
whereA is positive semi-definite. ThusF(0)+F∗(0) = A+
AT = 2A≥ 0. If G(s) has a double pole at the origin,G(s) =
A2/s2+A1/s+G1(s), whereA2 ≥ 0. HenceF(s) = A2/s+
A1+s(G1(s)−G(∞)). SinceG1(s) is analytic in an open set
containing the origin, alsoA1+s(G1(s)−G(∞)) is analytic
in such an open set. ThusF(s) has a simple pole at the origin
and the corresponding residueA2 is positive semi-definite.

Conversely, letF(s) be symmetric, real rational and posi-

tive real matrix transfer function andG(s)
def
= (1/s)F(s)+D.

As long asD = DT, the matrixD is clearly irrelevant for
the definition of negative imaginary, and it is sufficient to

show thatG0(s)
def
= (1/s)F(s) is negative imaginary. To this
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end, we first observe thatG0(s) is a proper rational func-
tion and it is analytic in the open right half-plane. Moreover,
F(s) andG0(s) have the same poles with the possible ex-
ception of the pole at the origin. Letω0 > 0 be given and
assume thatiω0 is not a pole ofF(s). Then it is not a pole of
G0(s). Moreover,i[G0(iω0)−G∗

0(iω0)] = i[(1/iω0)F(iω0)+
(1/iω0)F∗(iω0) = (1/ω0)[F(iω0)+F∗(iω0)] which is posi-
tive semi-definite becauseω0 > 0 andF is positive real. Let
now ω0 > 0 be given and assume thatiω0 is a pole ofF(s)
and hence ofG0(s). SinceF(s) is positive realiω0 is a sim-
ple pole ofF(s) and hence ofG0(s). Moreover, the residue
of iω0 as a pole ofF(s) is a positive semi-definite matrixA.
It is now evident that lims→i ω0(s− i ω0) iG0(s) = (1/ω0)A
which is clearly positive semi-definite.

The case of a pole at the origin is more delicate. IfF(0) = 0
thenG0(s) does not have a pole at the origin and this con-
cludes the proof. IfF(s) does not have a pole at the ori-
gin but F(0) 6= 0, thenG0(s) has a simple pole at the ori-
gin and its residue isF(0) which is positive semi-definite
becauseF is positive real. In the case whenF has a sim-
ple pole at the origin we use Lemma 3.2 and decompose
F(s) = (1/s)A+F1(s) with A symmetric and positive semi-
definite andF1(s) positive real. Hence,F1(0) is positive
semi-definite. Thus,G0(s) has a double pole at the origin,
whose residue isF1(0) ≥ 0 and whose quadratic residue is
A≥ 0.

Remark 3.1 As aforementioned, the difference between the
above result and Lemma 1 in [11] is that we allow a double
pole at the origin for negative imaginary transfer functions.
This is very natural for two reasons: (i) positive real func-
tions can have a single pole at the origin (the most common
example beingF(s) = 1/s which is easily seen to be posi-
tive real) so that it is natural to allow a double pole at the
origin for negative imaginary transfer functions. In fact,it
is easily seen thatF(s) = 1/s satisfies Definition 1 in [11]
and is therefore positive real (and this is extremely intuitive
sinceF(s) is the transfer function of a capacitor). Hence, in
view of Lemma 1 in [11] we should have thatG(s) = 1/s2

is negative imaginary which is, again, intuitive. However,
G(s) = 1/s2 is not negative imaginary according to the Def-
inition 2 in [11]. (ii) SinceG(s) = 1/(s2+ ε2) is negative
imaginary for anyε 6= 0, it is natural to require, by continu-
ity, that alsoG(s) = 1/s2 is negative imaginary. We observe
that the above result is in line with Lemma 1 in [13], in
which the definition of negative imaginary system was ex-
tended to include systems with a double pole at the origin.

Concluding remarks

In this paper we presented a definition of symmetric nega-
tive imaginary system that hinges entirely on properties of
the transfer function matrix, and not on properties of a finite-
dimensional realisation. Thus, with the approach presented
here even non rational transfer functions – which correspond
to infinite-dimensional realisations – can turn out to be neg-
ative imaginary. We have then characterised negative imag-

inary rational transfer functions by an algebraic condition
and established a connection between negative imaginary
and positive real transfer functions.
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