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Robust Supervisory Control for Uniting Two
Output-Feedback Hybrid Controllers with

Different Objectives
Ricardo G. Sanfelice and Christophe Prieur

Abstract

The problem of robustly, asymptotically stabilizing a point (or a set) with two output-feedback hybrid controllers
is considered. These control laws may have different objectives, e.g., the closed-loop systems resulting with each
controller may have different attractors. We provide a control algorithm that combines the two hybrid controllers
to accomplish the stabilization task. The algorithm consists of a hybrid supervisor that, based on the values of
plant’s outputs and (norm) state estimates, selects the hybrid controller that should be applied to the plant. The
accomplishment of the stabilization task relies on an output-to-state stability property induced by the controllers,
which enables the construction of an estimator for the norm of the plant’s state. The algorithm is motivated by and
applied to robust, semi-global stabilization problems uniting two controllers.

I. INTRODUCTION

Background and Motivation

Many control applications cannot be solved by means of a single state-feedback controller. As a
consequence, control algorithms combining more than one controller have been thoroughly investigated
in the literature. Particular attention has been given to the problem of uniting local and global controllers,
in which two control laws are used: one that is supposed to work only locally, perhaps guaranteeing
good performance, and another that is capable of steering the system trajectories to a neighborhood of
the operating point, where the local control law works. Different strategies are possible to tackle this
problem. In [21], this problem is solved by patching together a local optimal controller and a global
controller designed using backstepping. In [17], a static time-invariant controller was designed by smoothly
blending global and local controllers. In [2], two control-Lyapunov functions are combined to design a
global stabilizer for a class of nonlinear systems.

The use of discrete dynamics may be necessary when piecing together local and global controllers
(e.g., see the example in [22], where local and global continuous-time controllers cannot be united
using a continuous-time supervisor). This additional requirement leads to a control scheme with mixed
discrete/continuous dynamics, see [30], [22], and [10], where controllers to piece together two given
state-feedback laws are proposed. Based on these techniques, different applications have been considered,
such as the stabilization of the inverted pendulum [27] and the position and orientation of a mobile robot
[26]. These ideas have been extended in [25] to allow for the combination of multi-objective controllers,
including state-feedback laws as well as open-loop controllaws. More recently, they have also been
extended to the case when, rather than state-feedback, onlyoutput-feedback controllers are available [24].
A trajectory-based approach for the design of robust multi-objective controllers that regulate a particular
output to zero while keeping another output within a prescribed limit was introduced in [9]. In the
context of performance, a trajectory-based approach was also employed in [8] to generate dwell-time and
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hysteresis-based control strategies that guarantee an input-output stability property characterizing closed-
loop system performance.

In this paper, we study the robust stabilization of nonlinear systems of the form

P : ξ̇ = fp(ξ, up) ξ ∈ R
np, up ∈ R

mp (1)

via the combination of two hybrid controllers that use only measurements of outputs of the plant. The
motivation of such a problem is twofold. On the one hand, the impossibility of robustly stabilizing an
equilibrium point (or set) with smooth or discontinuous control laws (see, e.g., [3]) precludes utilizing
uniting controllers that combine smooth or discontinuous (non-hybrid) state-feedback laws. On the other
hand, the typical limitation of measuring all of the plant variables for state-feedback control demands
the use of output-feedback controllers as well as the use of multiple controllers that can be combined
in a systematic manner to accomplish a given task. These challenges emerge in stabilization problems
with information and actuation constraints. For instance,in motion planning of autonomous vehicles for
navigation in cluttered environments, in addition to unavoidable input constraints, obstacles introduce
topological constraints that restrict the sensing range. In such scenarios, control algorithms may combine
information from multiple sensors and select the most appropriate control strategy to execute. Due to the
different properties induced by the individual controllers in such applications, we refer to the problem
studied in this paper as the problem ofuniting two output-feedbackhybrid controllerswith different
objectives, where one of the controllers steers the trajectories to a set (this is the objective of the global
controller) and another controller asymptotically stabilizes a different target set (this is the objective of
the local controller); cf. [9].

Contributions

We propose a hybrid controller to solve the problem of uniting two output-feedback laws with different
objectives. Figure 1 depicts the proposed solution, which consists of supervising the two output hybrid
controllers, which are denoted byK0 andK1, with “local” and “global” stabilizing capabilities, respectively.
By combining a discrete and several continuous states, for any compact set of initial conditions, we
design a robustly stabilizing supervisory algorithm with abasin of attraction containing the given compact
set of initial conditions, i.e., the controller renders a target set semi-globally asymptotically stable. The
supervisory algorithm consists of a hybrid controller, which is denoted byKs, and uses logic-based
switching to unite controllersK0 andK1. Our approach builds from the ideas in [24] on uniting output-
feedback continuous-time controllers and in [18], [19], [15], [26] on supervisory control algorithms.
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Fig. 1. Proposed control approach for Problem (⋆).

The features of the proposed hybrid supervisor include:
• Uniting of hybrid controllers:controllersK0 and K1 are not restricted to being continuous-time

controllers; instead, they can be hybrid controllers involving continuous and discrete variables. In this



3

way, the proposed solution extends the technique of unitingtwo continuous-time controllers available
in the literature to the case when the individual controllers are hybrid, which, in turn, permits applying
the uniting method to plants that cannot be robustly stabilized by smooth or discontinuous control
laws.

• Controllers with different objectives:controllersK0 andK1 can have different objectives in the sense
that they may stabilize different attractors. This enablesthe systematic design of controllers that steer
trajectories to a certain point (or set) from where local controllers can take over and stabilize the
desired point (or set). This procedure has been heuristically used in robotic applications [4].

• Output feedback without underlying input-output-to-state stability assumption on the plant:for the
solution of the uniting problem of interest (see Problem (⋆) in Section III) the proposed hybrid
supervisor requires an output-to-state stability property for each of the closed-loop systems resulting
when the individual controllers are used. This assumption is weaker that the input-output-to-state
stability condition on the plant in [24]. The mechanism enabling this relaxation is a timer state
included in the proposed hybrid supervisor.

In this work, each of the output-feedback hybrid controllers is known to confer certain properties to each
of the resulting closed-loop systems: the first controller renders, for the plant state, a target compact set
locally asymptotically stable, while the second controller renders a particular compact set attractive. As a
difference to the controllers in [25], [9], [8], the individual controllers can be hybrid and their objectives
given in terms of compact sets rather than equilibrium points (the latter feature actually enables the use
of hybrid controllers as these typically stabilize sets larger than a single point; see [13] for a discussion).
Note that as a difference to [8], where switching times are optimally computed, the objective of the
proposed hybrid supervisor is to robustly stabilize a desired compact set. Our construction exploits the
fact that, as established in [29] for continuous-time nonlinear systems and generalized to hybrid systems
in [6], [5], this property implies the existence of an estimator of the norm of the state. We work within the
hybrid systems framework of [13] (see also [11], [14]) and employ results on robust asymptotic stability
reported in [14]. Two examples involving systems with inputconstraints and limited information are used
throughout the paper to illustrate the application of our results.

Organization of the paper

The remainder of the paper is organized as follows. After basic notation is introduced, Section II presents
a short description of the framework used for analysis. The main result follows in Section III. This section
starts by introducing the problem to be solved, the proposedformulation of a solution, and the required
assumptions. In addition to presenting a design procedure for the supervisor, it establishes a robust stability
property of the closed-loop system. Examples are introduced throughout the paper to illustrate the ideas.
In Section IV, the proposed hybrid supervisor is applied to the systems in these examples.

We use the following notation and definitions throughout thepaper.Rn denotesn-dimensional Euclidean
space.R≥0 denotes the nonnegative real numbers, i.e.,R≥0 = [0,∞). N denotes the natural numbers
including 0, i.e.,N = {0, 1, . . .}. B denotes the open unit ball in Euclidean space centered at theorigin.
Given a vectorx ∈ R

n, |x| denotes the Euclidean vector norm. Given a setS, S denotes its closure.
Given a setS ⊂ R

n and a pointx ∈ R
n, |x|S := infy∈S |x − y|. The notationF : S ⇒ S indicates

that F is a set-valued map that maps points inS to subsets ofS. For simplicity in the notation, given
vectorsx and y, we write, when convenient,[x⊤y⊤]⊤ with the shorthand notation(x, y). A function
α : R≥0 → R≥0 is said to belong to the classK if it is continuous, zero at zero, and strictly increasing. A
functionα : R≥0 → R≥0 is said to belong to the classK∞ if it belongs to the classK and is unbounded.
A function β : R≥0 × R≥0 → R≥0 is said to belong to classKL if it is nondecreasing in its first
argument, nonincreasing in its second argument, andlimsց0 β(s, t) = limt→∞ β(s, t) = 0. A function
β : R≥0 ×R≥0 ×R≥0 → R≥0 is said to belong to classKLL if, for eachr ∈ R≥0, the functionsβ(·, ·, r)
andβ(·, r, ·) belong to classKL.



4

II. HYBRID SYSTEMS PRELIMINARIES

In this paper, we consider hybrid systems as in [13], [12], where solutions can evolve continuously
(flow) and/or discretely (jump) depending on the continuousand discrete dynamics of the hybrid systems,
and the sets where those dynamics apply. In general, a hybridsystemH is given by data(h, C, F,D,G)
and can be written in the compact form

H :





χ̇ ∈ F (χ) χ ∈ C
χ+ ∈ G(χ) χ ∈ D

y = h(χ),

whereχ is the state taking values fromRn, the set-valued mapF defines the continuous dynamics on the
setC and the set-valued mapG defines the discrete dynamics on the setD. The notationχ+ indicates the
value of the stateχ after a jump1. The functionh defines the output. Solutions toH will be given onhybrid
time domains, which are subsetsE of R≥0 × N that, for every(T, J) ∈ E, E ∩ ([0, T ]× {0, 1, . . . J})
can be written as

⋃J−1
j=0 ([tj , tj+1], j) for some finite sequence of times0 = t0 ≤ t1 . . . ≤ tJ . A solution

to H will consist of a hybrid time domaindomχ and ahybrid arcχ : domχ → R
n, which is a function

with the property thatχ(t, j) is locally absolutely continuous onIj := {t : (t, j) ∈ domχ} for each
j ∈ N, satisfying the dynamics imposed byH. More precisely, the following hold:

(S1) For eachj ∈ N such thatIj has nonempty interior

χ(t, j) ∈ C for all t ∈ [min Ij , sup Ij)
χ̇(t, j) ∈ F (χ(t, j)) for almost allt ∈ Ij;

(2)

(S2) For each(t, j) ∈ domχ such that(t, j + 1) ∈ domχ,

χ(t, j) ∈ D, χ(t, j + 1) ∈ G(χ(t, j)). (3)

Hence, solutions are parameterized by(t, j), wheret is the ordinary time andj corresponds to the number
of jumps. A solutionχ to H is said to becompleteif domχ is unbounded,Zenoif it is complete but the
projection ofdomχ ontoR≥0 is bounded, andmaximalif there does not exist another hybrid arcχ′ such
thatχ is a truncation ofχ′ to some proper subset ofdomχ′. For more details about this hybrid systems
framework, we refer the reader to [13].

When the data(h, C, F,D,G) of H satisfies the conditions given next, hybrid systems are wellposed in
the sense that they inherit several good structural properties of their solution sets. These include sequential
compactness of the solution set, closedness of perturbed and unperturbed solutions, etc. We refer the reader
to [14] (see also [11]) and [28] for details on and consequences of these conditions.

Definition 2.1: (Well-posed hybrid systems) The hybrid systemH with data (h, C, F,D,G) is said
to be well posed if it satisfies the followinghybrid basicconditions: the setsC andD are closed, the
mappingsF : C ⇒ R

n and G : D ⇒ R
n are outer semicontinuous and locally bounded,2 F (x) is

nonempty and convex for allx ∈ C, G(x) is nonempty for allx ∈ D, andh : Rn → R
m is continuous.

III. U NITING TWO OUTPUT-FEEDBACK HYBRID CONTROLLERS USING A HYBRID SUPERVISOR

A. Problem statement, solution approach, and assumptions

We consider the stabilization of a compact set for nonlinearcontrol systems of the form (1) with only
measurements of two outputsyp,0 andyp,1 given by functions of the stateh0 andh1, respectively, where
fp is a continuous function. That is, we are interested in solving the following problem:

1Precisely,χ+ = χ(t, j + 1).
2A set-valued mappingG defined onRn is outer semicontinuousif for each sequencexi ∈ R

n converging to a pointx ∈ R
n and each

sequenceyi ∈ G(xi) converging to a pointy, it holds thaty ∈ G(x). It is locally boundedif, for each compact setM ⊂ R
n there exists

µ > 0 such that∪x∈MG(x) ⊂ µB.
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(⋆) Given compact setsA0,M0 ⊂ R
np and continuous functionsh0, h1 defining outputsyp,0 = h0(ξ)

and yp,1 = h1(ξ) of (1), design an output feedback controller that rendersA0 asymptotically stable
with a basin of attraction containingM0.3

As shown in Figure 1, the proposed approach to solve this problem consists of supervising two output
hybrid controllers, which are denoted byK0 andK1, with “local” and “global” stabilizing capabilities,
respectively, which are properties that will be made precise below. The supervisory algorithm consists of
a hybrid controller, which is denoted byKs, that uses logic-based decision making to unite controllersK0

andK1. The individual controllersK0 andK1 have stateζ0 and ζ1, both inR
nc, respectively.4 For each

i ∈ {0, 1}, the hybrid controllerKi = (κc,i, Cc,i, fc,i, Dc,i, gc,i) is given by

Ki :





ζ̇i = fc,i(uc,i, ζi) (uc,i, ζi) ∈ Cc,i

ζ+i ∈ gc,i(uc,i, ζi) (uc,i, ζi) ∈ Dc,i

yc,i = κc,i(uc,i, ζi),
(4)

whereζi ∈ R
nc is thei-th controller’s state,uc,i ∈ R

mc,i thei-th controller’s input,Cc,i andDc,i are subsets
of Rmc,i×R

nc, κc,i : R
nc → R

mp is thei-th controller’s output,fc,i : Cc,i → R
nc, andgc,i : Dc,i ⇒ R

nc. For
eachi ∈ {0, 1}, thei-th controllerKi measures the plant’s outputyp,i = hi(ξ) only and, via the assignment
uc,i = yp,i, up = yc,i defines the hybrid closed-loop system denoted by(P,Ki) = (hi, Ci, fi, Di, gi) with
state(ξ, ζi) ∈ R

n, n = np + nc, and given by
[
ξ̇

ζ̇i

]
= fi(ξ, ζi) :=

[
fp(ξ, κc,i(hi(ξ), ζi))

fc,i(hi(ξ), ζi)

]
(ξ, ζi)∈Ci,


ξ

+

ζ+i


 ∈ gi(ξ, ζi) :=


 ξ

gc,i(hi(ξ), ζi)


 (ξ, ζi)∈Di,

yi = hi(ξ),

(5)

whereyi is the output,
Ci := {(ξ, ζi) : ξ ∈ R

np , (hi(ξ), ζi) ∈ Cc,i} ,
Di := {(ξ, ζi) : ξ ∈ R

np , (hi(ξ), ζi) ∈ Dc,i} .

(An assignment different fromuc,i = yp,i, up = yc,i will be employed when a hybrid supervisor is used
– see Theorem 3.5.) We say that the controllerKi is well posed when the resulting closed-loop system
from controlling the plant (1) with continuous right-hand side is well posed as in Definition 2.1.

The controllersKi are assumed to induce the properties that, fori = 0, a compact setA0 × Φ0 ⊂ R
n,

whereΦ0 ⊂ R
nc, is locally asymptotically stable for(P,K0) and, fori = 1, a compact setA1×Φ1 ⊂ R

n,
Φ1 ⊂ R

nc, is attractive for(P,K1). For a combination of both controllers to work, the setA1 will have to
be contained in the plant component of the basin of attraction of K0. In such a case, the said properties
of K0 andK1 readily suggest that, when far away fromA0, K1 can be used to steer the plant’s state to a
region from whereK0 can be used to asymptotically stabilizeA0. However, these controllers cannot be
combined using supervisory control techniques in the literature (see, e.g., [26] and the references therein)
due to being hybrid and to the lack of full measurements ofξ. We resolve this issue by designing two norm
observers. The existence of such observers is guaranteed when the hybrid controllers induce an output-
to-state stability (OSS) property. More precisely, this OSS property assures the existence of an (smooth)
exponential-decay OSS-Lyapunov functionVi with respect toAi ×Φi for (P,Ki); see [6, Theorem 3.1].
As defined in [6, Definition 2.2],Vi : R

n → R≥0 is such that there exist class-K∞ functionsαi,1, αi,2,
class-K function γi, andεi ∈ (0, 1] satisfying: for all(ξ, ζi) ∈ R

n,

αi,1(|(ξ, ζi)|Ai×Φi
) ≤ Vi(ξ, ζi) ≤ αi,2(|(ξ, ζi)|Ai×Φi

); (6)

3It is desired that the basin of attraction of the closed-loopsystem containsM0 when projected ontoRnp .
4The case where the hybrid controllers have a dynamical stateζ0 (respectively,ζ1) in a setRnc0 (respectively,Rnc1 ) of different dimension

nc0 6= nc1 can be treated similarly by embedding both sets into the set of larger dimension.
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for all (ξ, ζi) ∈ Ci,
〈∇Vi(ξ, ζi), fi(ξ, ζi)〉 ≤ −εiVi(ξ, ζi) + γi(|hi(ξ)|); (7)

for all (ξ, ζi) ∈ Di,

maxg∈gi(ξ,ζi) Vi(g)− Vi(ξ, ζi) ≤ −εiVi(ξ, ζi) + γi(|hi(ξ)|). (8)

The next assumption guarantees that the resulting closed-loop systems(P,K0) and (P,K1) satisfy these
properties.

Assumption 3.1:Given a compact setA0 ⊂ R
np and continuous functionsfp : Rnp × R

mp → R
np,

h0 : Rnp → R
mc,0 , h1 : Rnp → R

mc,1 , whereh0(ξ) = 0 for all ξ ∈ A0, assume there exist compact sets
A1 ⊂ R

np, Φ0,Φ1 ⊂ R
nc, whereh1(ξ) = 0 for all ξ ∈ A1, such that:

1) A well-posed hybrid controllerK0 =
(κc,0, Cc,0, fc,0, Dc,0, gc,0) for the plant outputyp,0 = h0(ξ) inducing the following properties exists:

a) Stability: For eachε > 0 there existsδ > 0 such that every solution(ξ, ζ0) to (P,K0) with
|(ξ(0, 0), ζ0(0, 0))|A0×Φ0

≤ δ satisfies|(ξ(t, j), ζ0(t, j))|A0×Φ0
≤ ε for all (t, j) ∈ dom(ξ, ζ0);5

b) Attractivity: There existsµ > 0 such that every solution(ξ, ζ0) to (P,K0) with
|(ξ(0, 0), ζ0(0, 0))|A0×Φ0

≤ µ is complete and satisfies

lim
t+j→∞

|(ξ(t, j), ζ0(t, j))|A0×Φ0
= 0;

c) Output-to-state stability (OSS): The hybrid system(P,K0) with outputyp,0 = h0(ξ) is output-
to-state stable with respect toA0 × Φ0. Let V0 denote an OSS-Lyapunov function associated
with this property, and letγ0 ∈ K andε0 > 0 satisfy (7) and (8) withi = 0. Let ε0,b > 0 define
an estimation of the basin of attractionB0 of (P,K0) of the form{(ξ, ζ0) : V0(ξ, ζ0) ≤ ε0,b}.

2) A well-posed hybrid controllerK1 =
(κc,1, Cc,1, fc,1, Dc,1, gc,1) for the plant outputyp,1 = h1(ξ) inducing the following properties exists:

a) Attractivity: Every maximal solution(ξ, ζ1) to (P,K1) is complete and satisfies

lim
t+j→∞

|(ξ(t, j), ζ1(t, j))|A1×Φ1
= 0;

b) Output-to-state stability: The hybrid system(P,K1) with outputyp,1 = h1(ξ) is output-to-state
stable with respect toA1 ×Φ1. Let V1 denote an OSS-Lyapunov function associated with this
property.

3) There existε0,a, ε1,b > 0 such thatε0,a < ε0,b and, for each solution(ξ, ζ0) to (P,K0) from

{ξ ∈ R
np : V1(ξ, ζ1) ≤ ε1,b, ζ1 ∈ Φ1} × Φ0,

we have
γ0(|h0(ξ(t, j))|) < ε0,aε0 ∀(t, j) ∈ dom(ξ, ζ0). (9)

Remark 3.2:Assumption 3.1 assures the existence of individual controllers with enough properties so
that the uniting problem of interest is at all solvable and the proposed approach provides a solution to
it. More precisely, items 1.a and 1.b are required so that thelocal stability requirement in Problem (⋆) is
attainable while 2.a is needed so that the semi-global stability requirement therein can be met. The other
assumptions are particular to our proposed solution. Items1.c and 2.b are imposed so that norm observers
can be constructed. Item 3 permits the combination of the twocontrollers using a hybrid supervisor by
ensuring that the compact setA1, which is the plant component of the set rendered attractivewith the
controller K1, is included in the basin of attraction of the closed-loop system with the controllerK0.
In this way,A0 × Φ0 can be asymptotically stabilized onceK1 steers the plant state nearbyA1. Note

5The plant stateξ is parameterized by(t, j) since it is a state component of the hybrid system(P ,K0), whose solutions are defined on
hybrid time domains.
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that items 1.a, 1.b, and 2.a are the hybrid version of the assumptions in [24]. Items 1.c and 2.b relax
the assumptions in [24] as rather than asking for input-output-to-state stability (IOSS) of the plant, they
impose OSS properties of the closed-loop systems(P,K0) and (P,K1).

The stabilizing property induced by controllerK0 in Assumption 3.1 holds when the nonlinear system
is locally stabilizable to the setA0 by hybrid feedback. Note that hybrid feedback permits stabilizing a
larger class of systems than standard continuous feedback.Examples of systems that can be asymptotically
stabilized by hybrid feedback include the nonholonomic integrator and Artstein circles [23], the pendubot
[25], and rigid bodies [16]. The attractivity property induced by the controllerK1 in Assumption 3.1
holds when the trajectories of the plant can be asymptotically steered to the setA1 (contained in the
basin of attraction of the local controller). Note that, as adifference to controllerK0, it is not required for
controllerK1 to render the said set stable. This feature of the proposed controller allows for the design
of K0 andK1 separately, being item 3 of Assumption 3.1 a common design constraint.

Next, we introduce an example and associated control problem for which the supervision of two
controllers with properties as in Assumption 3.1 will be applied.

Example 3.3:Consider the stabilization of the point{ξ∗} for the point-mass systeṁξ = up, where
ξ ∈ R

2 is the state andup = [u1 u2]
⊤ is the control input.6 A controller is to be designed to solve

the following control problem: guarantee that the solutions to the plant avoid a neighborhood around
the pointξ, which is given byN = ξ + α̂B and represents an obstacle, and that converge to the target
point ξ∗. Convergence to the target can be attained by steering the solutions in the clockwise or in the
counter-clockwise direction around the obstacle, depending on the initial condition. Measurements of the
distance to the target may not be available from points wherethe target is not visible due to the presence
of the obstacle. Due to the topological constraint of the stabilization task and the limited measurements,
a single controller or a controller uniting two controllerswith the same objectives would be difficult to
design.

To solve the stated control problem, functions defining potential fields capturing the presence of the
obstacle and vanishing at some pointξ◦ from where the target is visible, i.e., from points where there
is a “line-of-sight” to the target pointξ∗, can be generated. Then, a gradient descent controller can be
designed to steer the state of the point-mass system to nearby the intermediate pointξ◦. In this way, the
pointξ◦ would define the setA1 and the gradient-descent controller would defineK1. This controller would
use measurements of the functions defining the potential fields as well as their gradients. These functions
would define the plant’s outputyp,1. A particular construction of a hybrid controller implementing a robust
gradient-descent-like strategy and satisfying the conditions in Assumption 3.1.2 is given in Section IV-B.
To satisfy the conditions in Assumption 3.1.1, a “local” controller capable of asymptotically stabilizing
ξ∗ from nearbyξ◦ would play the role of the controllerK0 above, withA0 given by {ξ∗}. Due to ξ◦

being at a location unobstructed by the obstacle, this controller could use relative position measurements
to the target, which would define the plant’s outputyp,0. Item 3 of Assumption 3.1 will be satisfied by
placingA1 in the basin of attraction induced byK0. △

As pointed out in Remark 3.2, items 1.c and 2.b in Assumption 3.1 assure OSS the existence of
exponential-decay OSS-Lyapunov functions with respect toAi×Φi for (P,Ki). As stated in [5, Proposition
2], a norm estimator for the state(ξ, ζi) (and, hence, forξ) exists. A particular construction is

żi = −εizi + γi(|hi(ξ)|) (ξ, ζi) ∈ Ci,

z+i = (1− εi)zi + γi(|hi(ξ)|) (ξ, ζi) ∈ Di.
(10)

In fact, given a solution(ξ, ζi) to (P,Ki), using (7) and (8), for eachj ∈ N and for almost allt ∈ Ij, Ij
with nonempty interior,(t, j) ∈ dom(ξ, ζi), we have

d
dt
(Vi(ξ(t, j), ζi(t, j))− zi(t, j))≤

6See [9] where the problem of stabilizing a unicycle while ensuring obstacle avoidance is studied.
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−εi (Vi(ξ(t, j), ζi(t, j))− zi(t, j)) ,

and, for each(t, j) ∈ dom(ξ, ζi) such that(t, j + 1) ∈ dom(ξ, ζi), we have

Vi(ξ(t, j + 1), ζi(t, j + 1))− zi(t, j + 1) ≤

(1− εi)(Vi(ξ(t, j), ζi(t, j))− zi(t, j)).

Using the upper bound in (6), it follows that, for all(t, j) ∈ dom(ξ, ζi), Vi(ξ(t, j), ζi(t, j)) ≤ zi(t, j) +
exp(−εit)(1−εi)

j (Vi(ξ(0, 0), ζi(0, 0))− zi(0, 0)) ≤ zi(t, j)+exp(−εit)(1−εi)
j (αi,2(|(ξ(0, 0), ζi(0, 0))|Ai×Φi

)
−zi(0, 0)) . Assuming, without loss of generality, thatαi,2(s) ≥ s for all s ≥ 0 and definingβi(s, t, j) :=
2 exp(−εit)(1− εi)

jαi,2(s) gives for any solution(ξ, ζi) to (P,Ki)

Vi(ξ(t, j), ζi(t, j)) ≤ (11)

zi(t, j) + βi(|(ξ(0, 0), ζi(0, 0))|Ai×Φi
+ |zi(0, 0)|, t, j).

The following bound on|(ξ(t, j), ζi(t, j))|Ai×Φi
follows with (6):

|(ξ(t, j), ζi(t, j))|Ai×Φi
≤ (12)

α−1
i,1 (zi(t, j) + βi(|(ξ(0, 0), ζi(0, 0))|Ai×Φi

+ |zi(0, 0)|, t, j))

for all (t, j) ∈ dom(ξ, ζi).
The following example illustrates the construction of a norm observer for a nonlinear system. This

observer will be used in the design of a hybrid supervisor in Section IV-A.
Example 3.4:Consider the nonlinear system

ξ̇ = fp(ξ, up) :=

[
−ξ1 + (u1 − ξ2)ξ

2
1

−ξ2 + ξ21 + α + u2

]
, (13)

where ξ ∈ R
2 is the state andup = [u1 u2]

⊤ is the control input. An output-feedback controller has
been designed for this system in [1].7 Measurements ofξ1 and ξ2 are available but not simultaneously.
Consider a controllerK0 given by a static feedback controller that measuresh0(ξ) := ξ1 to stabilizeξ to
A0 = {(0, 0)}. Following (4), an example of such a controller is defined bync = 0, κc,0(ξ) := [0, −α]⊤,
and no dynamical state (i.e.,Cc,0 = Dc,0 = ∅ and fc,0, gc,0 are arbitrary). ForV0(ξ) =

1
2
ξ⊤ξ, it follows

that, for all ξ ∈ R
2,8

〈∇V0(ξ), fp(ξ, κc,0(ξ))〉 = −ξ21 − ξ31ξ2 − ξ22 + ξ21ξ2

≤ −V0(ξ) + ξ41(1 + ξ21). (14)

Then, a norm observer for|ξ|A0
is given byż0 = −z0+ γ0(|h0(ξ)|) with γ0(s) = s4(1+ s2) for all s ≥ 0.

This norm estimator and the controllerK0 above are such that Assumption 3.1.1 holds. △

In the next section, we provide a solution to Problem (⋆) that consists of a hybrid supervisor coordinating,
using control logic and norm observers, the two (well-posed) output-feedback hybrid controllersK0 and
K1.

B. Proposed Control Strategy

As depicted in Figure 1, we propose a hybrid controllerKs to superviseK0 and K1. This hybrid
controller, referred to as thehybrid supervisor, is designed to perform the uniting task as follows:

A) Apply the hybrid controllerK1 when the estimate of|ξ|A1
is away from the origin.

7For the caseα = 0, dynamic output feedback laws for outputs given byξ1 or ξ2 that globally asymptotically stabilize the origin inR2

have been proposed in [1].
8Using Young’s inequality to obtainξ31ξ2 ≤ ξ61 + 1

4
ξ22 andξ21ξ2 ≤ ξ41 + 1

4
ξ22 .
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B) Permit estimate of|ξ|A1
to converge.

C) Apply K0 when the estimate of|ξ|A1
is close enough to zero.

To accomplish these tasks, the supervisor has a discrete state q ∈ Q := {0, 1} and a timer stateτ ∈ R with
reset thresholdτ ∗ > 0. The constantτ ∗ is a design parameter of the hybrid supervisor. The dynamicsof the
stateq are designed to indicate that the controllerKq is connected to the plant. While the accomplishment
of tasksA)-C) with the proposed hybrid supervisor requires finitely many jumps in the stateq, the number
of jumps inq depends on the initial conditions as well as on the dynamics of the closed-loop system. A
hybrid supervisor implementing tasksA)-C) is presented next.

1) Supervision of ControllerK1 (q = 1): Item 2.a of Assumption 3.1 implies that for every solution
(ξ, ζ1) to (P,K1) we have

lim
t+j→∞

γ1(|h1(ξ(t, j))|) = 0.

Using (10) fori = 1, it follows that z1 also approaches zero, and that, eventually, whent or j are large
enough,|ξ|A1

is small enough. This suggests that the supervisor should apply K1 until, eventually,z1 is
small enough. This can be implemented as follows:

• Flow according to

ξ̇ = fp(ξ, κc,1(h1(ξ), ζ1)), ζ̇0 = 0, ζ̇1 = fc,1(h1(ξ), ζ1),
ż0 = 0, ż1 = −ε1z1 + γ1(|h1(ξ)|), q̇ = 0, τ̇ = 1

(15)

when, for a design parameterε1,a > 0, either one of the following conditions hold:

(ξ, ζ1) ∈ C1, ζ0 ∈ Φ0, z0 = 0, z1 ≥ ε1,a, q = 1, (16)

or
(ξ, ζ1) ∈ C1, ζ0 ∈ Φ0, z0 = 0, z1 ≥ 0, q = 1, τ ≤ τ ∗. (17)

• Jump according to
ξ+ = ξ, ζ+0 ∈ Φ0, ζ+1 ∈ Φ1,

z+0 = 0, z+1 = 0, q+ = 0, τ+ = 0
(18)

when
ζ0 ∈ Φ0, z0 = 0, ε1,a ≥ z1 ≥ 0, q = 1, τ ≥ τ ∗. (19)

The flows defined in (15) enforce, in particular, thatq remains constant and that the estimate of|ξ|A1

converges. Condition (16) allows flows when the estimate of|ξ|A1
is not small enough, while, when

condition (19) holds, the stateq is set to0 so thatK0 is applied. The stateζ0 is updated to any value in
Φ0 and the estimator statez0 is reset to zero. These selections are to properly initialize K0. However, to
guarantee that the stateζ1 converges toΦ1, the state is reset to any point inΦ1.

Due to the impossibility of measuringξ, it is not possible to ensure thatξ is such that(ξ, ζ0) is in
the basin of attractionB0 after jumps fromq = 1 to q = 0 occur. Hence, it could be the case that there
are jumps fromq = 0 back toq = 1. The logic in (15)-(19) uses the timerτ to guarantee convergence
of the state toB0. The conditionτ ≤ τ ∗ in (17) allows the estimate|ξ|A1

to converge by enforcing that,
perhaps after a few jumps toq = 0 and back toq = 1, ξ eventually is so that(ξ, ζ0) is in the said basin of
attraction. The conditions involvingz0 in (16), (17), and (19) forcez0 to remain at zero along solutions
with q = 1. These choices facilitate the establishment of our main result in Section III-C. A procedure to
design the controller parameters is given in Section III-D.
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2) Supervision of ControllerK0 (q = 0): From item 1 of Assumption 3.1 and (10) fori = 0, it follows
that z0(t, j) approaches zero asγ0(|h0(ξ(t, j))|) approaches zero. Furthermore, whenz0 ≤ ε0,a, ζ0 ∈ Φ0,
and t or j are large enough, it follows from (11) fori = 0 and items 1.b and 3 in Assumption 3.1 that
after jumps toq = 0, (ξ, ζ0) will be in the set

{(ξ, ζ0) : V0(ξ, ζ0) ≤ ε0,b} , (20)

which, by definition ofε0,b, is a subset of the basin of attraction of(P,K0). Then, the supervisor is
designed to applyK0 as long asz0 is smaller or equal thanε0,a, and when is larger or equal to that
parameter, a jump toq = 1 is triggered. Note that the logic forq = 1 eventually forces flows for at least
τ ∗ units of time, which allowst or j to become large enough, and with that, guarantee that(ξ, ζ0) is
eventually in the set (20). This mechanism is implemented asfollows:

• Flow according to
ξ̇ = fp(ξ, κc,0(h0(ξ), ζ0)), ζ̇0 = fc,0(h0(ξ), ζ0),

ζ̇1 = 0, ż0 = −ε0z0 + γ0(|h0(ξ)|),
ż1 = 0, q̇ = 0, τ̇ = 0

(21)

when

{
(ξ, ζ0) ∈ C0, ζ1 ∈ Φ1, ε0,a ≥ z0 ≥ 0,
z1 = 0, q = 0, τ = 0.

(22)

• Jump according to
ξ+ = ξ, ζ+0 ∈ Φ0, ζ+1 ∈ Φ1, z+0 = 0,
z+1 = 0, q+ = 1, τ+ = 0,

(23)

when
ζ1 ∈ Φ1, z0 ≥ ε0,a, z1 = 0, q = 0, τ = 0. (24)

As (15), the flows defined in (21) enforce, in particular, thatq remains constant and that the estimate of
|ξ|A0

converges. In fact, condition (22) allows flows when the estimate of|ξ|A0
is small enough, permitting

it to converge. When condition (24) holds, a jump back toq = 1 occurs. As explained below (19), in
particular, such a jump would occur when, after a jump fromq = 1 to q = 0, the state(ξ, ζ0) is not in
B0. The stateζ1 is updated to any value inΦ1 and the estimator statez1 is reset to zero. These selections
properly initializeK1 and enable our main result in Section III-C.

3) Closed-loop system:We are now ready to write the resulting closed loop as a hybridsystem. The
closed-loop hybrid system has stateχ = (ξ, ζ0, ζ1, z0, z1, q, τ) ∈ R

np×R
nc×R

nc×R≥0×R≥0×Q×R≥0 =:
X. Collecting the definitions in Sections III-B.1 and III-B.2,the resulting closed-loop system, which is
denoted byHcl, has dynamics given as follows:

χ̇ =




fp(ξ, κc,q(hq(ξ), ζq))

(1− q)fc,0(h0(ξ), ζ0)

q fc,1(h1(ξ), ζ1)

(1− q)(−ε0z0 + γ0(|h0(ξ)|))

q(−ε1z1 + γ1(|h1(ξ)|))

0

q




=: F (χ), χ ∈ C̃,

χ+ ∈ G0(χ) ∪G1(χ) ∪Gs(χ) =: G(χ), χ ∈ D̃,
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where: for eachq = 0, (ξ, ζ0) ∈ D0

G0(χ) =




ξ

gc,0(h0(ξ), ζ0)

ζ1

(1− ε0)z0 + γ0(|h0(ξ)|)

z1

q

τ




,

G0(χ) = ∅ otherwise; for eachq = 1, (ξ, ζ1) ∈ D1

G1(χ) =




ξ

ζ0

gc,1(h1(ξ), ζ1)

z0

(1− ε1)z1 + γ1(|h1(ξ)|)

q

τ




,

G1(χ) = ∅ otherwise; for eachχ ∈ Ds,a ∪Ds,b,

Gs(χ) = (ξ,Φ0,Φ1, 0, 0, 1− q, 0) ,

Gs(χ) = ∅ otherwise;

C̃ := {χ : (ξ, ζq) ∈ Cq} ∩ (Cs,a ∪ Cs,b ∪ Cs,c) ,
Cs,a := {χ : ζ1 ∈ Φ1, ε0,a ≥ z0 ≥ 0, z1 = 0, q = 0, τ = 0} ,
Cs,b := {χ : ζ0 ∈ Φ0, z0 = 0, z1 ≥ ε1,a, q = 1} ,
Cs,c := {χ : ζ0 ∈ Φ0, z0 = 0, z1 ≥ 0, q = 1, τ ≤ τ ∗} ,

D̃ := {χ : (ξ, ζq) ∈ Dq} ∪Ds,a ∪Ds,b,

Ds,a := {χ : ζ1 ∈ Φ1, z0 ≥ ε0,a, z1 = 0, q = 0, τ = 0} ,
Ds,b := {χ : ζ0 ∈ Φ0, z0 = 0, ε1,a ≥ z1 ≥ 0, q = 1, τ ≥ τ ∗} .

The flow mapF is defined in terms of the discrete stateq to “select” the appropriate flow dynamics
whenK0 andK1 are applied. The flow set̃C allows flow when both(ξ, ζq) is in the flow setCq and
the conditions for flow imposed by the hybrid supervisor are satisfied. The latter are given in (22), (16),
and (17), which are captured in the setsCs,a, Cs,b, andCs,c, respectively. The jump mapsG0, G1, and
Gs above are defined to execute the jumps of the individual hybrid controllers when their state jumps
due to (hq(ξ), ζq) ∈ Dc,q or when reset of the appropriate states is required by the supervisor jump
setsDs,a and Ds,b, which are given in (24) and (19), respectively. Note that since gc,q is only defined
on Dc,q, the set-valued mapsG0 andG1 are nonempty at pointsχ with components inDc,q. For each
i = 0, 1, the functionsγi and constantsεi are obtained from the OSS properties of(P,Ki) imposed in
Assumption 3.1. Existence of parametersε1,a andτ ∗ guaranteeing a solution to Problem (⋆) is established
in the next section. A design method for these parameters is given in Section III-D.
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C. Nominal Properties of Closed-loop System

Our main result is as follows.

Theorem 3.5:(semi-global asymptotic stability) Suppose Assumption 3.1 holds. Then, for each com-
pact setM ⊂ X of initial conditions there exists an output-feedback hybrid supervisorKs such that the
compact set

As := A0 × Φ0 × Φ1 × {0} × {0} × {0} × {0}

is asymptotically stable for the closed-loop systemHcl with a basin of attraction containingM; i.e., for
eachǫ > 0 there existsδ > 0 such that each solutionχ to Hcl with |χ(0, 0)|As

≤ δ satisfies|χ(t, j)|As
≤ ǫ

for all (t, j) ∈ domχ, and every maximal solutionχ to H with χ(0, 0) ∈ M is complete and satisfies
limt+j→∞ |χ(t, j)|As

= 0.

Proof: By the continuity offp, hi, and κc,i for each i = 0, 1 imposed by Assumption 3.1, and
continuity of γi, F is continuous. By the regularity properties ofgc,i guaranteed by well posedness ofKi

and continuity ofhi from Assumption 3.1, compactness ofΦi for eachi = 0, 1, and the definition of the
set-valued mapG, G : D̃ ⇒ X is outer semicontinuous, locally bounded, and nonempty forall points in
D̃. By closedness ofCq andDq guaranteed by well posedness ofKi and continuity ofhi, C̃ and D̃ are
closed sets. This establishes that the hybrid supervisor issuch that the closed-loop system is a well-posed
hybrid system. Moreover, the construction ofKs is such that solutions to the closed-loop systemHcl exist
from points inRnp × R

nc × R
nc × R≥0 × R≥0 ×Q× R≥0.

Now we show thatA0 is attractive fromM. By the attractivity property induced byK1 in Assump-
tion 3.1.2.a and Assumption 3.1.3, for every maximal solutionχ to Hcl from C̃∪D̃ with q(0, 0) = 1 there
exists(T, J) ∈ domχ such thatχ(T, J) ∈ Ds,b. By definition ofG, there existsJ ′ > J , (T, J ′) ∈ domχ

such thatχ∗ = χ(T, J ′) ∈ Cs,a. Let χ′ be the tail of the maximal solutionχ from (T ′, J ′) onwards.
With some abuse of notation, every maximal solutionχ′ to Hcl, with χ′(0, 0) ∈ Cs,a (in particular, with
χ′(0, 0) = χ∗) and(ξ′(0, 0), ζ ′0(0, 0)) in the set (20), is complete and, by Assumption 3.1.1.a and b,satisfies
limt+j→∞ |ξ′(t, j)|A0

= 0. If (ξ′(t, j), ζ ′0(t, j)) never reaches (20), we claim that there exists(t, j) such that
z′0(t, j) > ε0,a, and then, by the definition ofD andG, q is mapped to1. Suppose not. Then, the solution
χ′ remains inCs,a for all (t′, j′) ∈ domχ′ such thatt′ + j′ ≥ t + j, which implies thatz′0(t

′, j′) ≤ ε0,a
since the norm estimator (10) fori = 0 remains on. Then, sinceε0,a < ε0,b, from (11) for i = 0, there
exists large enought + j, (t, j) ∈ domχ′, such thatV0(ξ

′(t, j), ζ ′0(t, j)) ≤ ε0,b. This is a contradiction.
Then, a jump toq = 1 occurs. By the construction ofCs,c andDs,b, the closed-loop system will remain
at q = 1 for at leastτ ∗ units of time. Repeating this argument if needed, the fact that the norm estimator
(10) for i = 1 guarantees that the estimates converge (even when reset to zero) implies that, eventually, a
jump to q = 0 will occur with (ξ, ζ0) in the set (20). Note that this is the case due to the fact that there
are finitely many jumps fromq = 0 to q = 1 and back, as the following result guarantees.

Lemma 3.6: There exist positive parametersτ ∗, ε1,a, and ε1,b such that there is no nondecreasing
sequence of times9 {(t′n, j

′
n)}n∈N ∈ domχ for which, for all n ∈ N,

q(t′2n, j
′
2n) = 0, q(t′2n+1, j

′
2n+1) = 1. (25)

Proof: By contradiction, suppose that there exist a complete solutionχ and a nondecreasing sequence
{(t′n, j

′
n)}n∈N ∈ domχ, which can always be chosen so that (25) holds,j′0 > 0, z0(t′0, j

′
0) = 0, flows with

q = 0 occur with (t, j) ∈ domχ, t ∈ [t′2n, t
′
2n+1), and flows withq = 1 occur with (t, j) ∈ domχ,

t ∈ [t′2n+1, t
′
2n+2), n ∈ N. Due to the dynamics of the timerτ , which enforces that the time between two

jumps fromq = 1 to q = 0 of the supervisor havet’s separated by at leastτ ∗ > 0 seconds, the solution
cannot be Zeno (see Section II for a definition of Zeno solutions). It follows that, for eachn ∈ N,

(t′n, j
′
n − 1) ∈ domχ, (t′n, j

′
n) ∈ domχ,

z0(t
′
2n+1, j

′
2n+1 − 1) ≥ ε0,a, z1(t

′
2n+2, j

′
2n+2 − 1) ≤ ε1,a.

(26)

9In the sense thatt′n+1 + j′n+1 ≥ t′n + j′n for all n ∈ N.
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By considering the restriction on{(t, j) ∈ domχ′ : t ∈ [t′2n+1, t
′
2n+2], q(t, j) = 1} of the solution

χ as a solution to(P,K1) issuing fromχ(t′2n+1, j
′
2n+1), we get, from (11) withi = 1 and (26), that

V1(ξ(t
′
2n+2, j

′
2n+2−1), ζ1(t

′
2n+2, j

′
2n+2−1)) ≤ z1(t

′
2n+2, j

′
2n+2−1)+β1(|(ξ(t

′
2n+1, j

′
2n+1), ζ1(t

′
2n+1, j

′
2n+1))|A1×Φ1

+|z1(t′2n+1, j
′
2n+1)|, δ

′
2n+2) ≤ ε1,a

+β1(|(ξ(t
′
2n+1, j

′
2n+1), ζ1(t

′
2n+1, j

′
2n+1))|A1×Φ1

, δ′2n+2), whereδ′s = (t′s−t′s−1, j
′
s−j′s−1−1) and we have used

the fact thatz1(t′2n+1, j
′
2n+1) = 0. Due to the expression ofGs, we haveξ(t′2n+2, j

′
2n+2) = ξ(t′2n+2, j

′
2n+2−1)

and ζ1(t
′
2n+2, j

′
2n+2) ∈ Φ1. Then, sincej′2n+2 > 0 and |(ξ, ζ1)(t′2n+2, j

′
2n+2)|A1×Φ1

= |ξ(t′2n+2, j
′
2n+2)|A1

,
using (6) we obtain

α1,1(|(ξ, ζ1)(t
′
2n+2, j

′
2n+2)|A1×Φ1

) ≤

V1(ξ(t
′
2n+2, j

′
2n+2 − 1), ζ1(t

′
2n+2, j

′
2n+2 − 1)).

Using (26) we get

|(ξ, ζ1)(t′2n+2, j
′
2n+2)|A1×Φ1

≤ (27)

α−1
1,1

(
ε1,a + β1(|(ξ, ζ1)(t′2n+1, j

′
2n+1)|A1×Φ1

, δ′2n+2)
)
.

In the same way, from (11) withi = 0 we have, for eachn, V0(ξ(t
′
2n+1, j

′
2n+1), ζ0(t

′
2n+1, j

′
2n+1)) ≤

z0(t
′
2n+1, j

′
2n+1 − 1) + β0(|(ξ, ζ0)(t′2n, j

′
2n)|A0×Φ0

+ |z0(t′2n, j
′
2n)|, δ

′
2n+1). This implies

|(ξ, ζ0)(t′2n+1, j
′
2n+1)|A0×Φ0

≤ α−1
0,1

(
z0(t

′
2n+1, j

′
2n+1 − 1)

+β0(|(ξ, ζ0)(t′2n, j
′
2n)|A0×Φ0

, δ′2n+1)
)
, (28)

where we have used the fact thatz0(t
′
2n, j

′
2n) = 0. Sinceq(t′0, j

′
0) = 0 by construction of the sequence

(t′n, j
′
n), we have, from (28),|(ξ, ζ0)(t′1, j

′
1)|A0×Φ0

≤ α−1
0,1 (z0(t

′
1, j

′
1 − 1) + β0(|(ξ, ζ0)(t′0, j

′
0)|A0×Φ0

, δ′1))
and, from (27),|(ξ, ζ1)(t′2, j

′
2)|A1×Φ1

≤ α−1
1,1 (ε1,a+

β1(|(ξ, ζ1)(t′1, j
′
1)|A1×Φ1

, δ′2)) , which implies

|(ξ, ζ1)(t′2, j
′
2)|A1×Φ1

≤ (29)

α−1
1,1

(
ε1,a + β1

(
∆+ α−1

0,1 (z0(t
′
1, j

′
1 − 1)

+β0(|(ξ, ζ0)(t′0, j
′
0)|A0×Φ0

, δ′1)) , δ
′
2)) ,

where∆ = maxx∈A0×Φ0, y∈A1×Φ1
|x− y|, which denotes the maximal distance between the setsA0 × Φ0

andA1×Φ1, which is finite since both sets are compact. Consider the compact setM in the assumption
of Theorem 3.5. Due to (12), there exists a compact set containing all solutions of(P,K0) starting from
M. By this compactness property, the values∆1 := max z0(t, j) and ∆2 = max |(ξ, ζ0)(t, j)|A0×Φ0

are finite, where the maximum are taken on{(t, j) ∈ domχ : χ is a solution of(P,K0) starting fromM}.
Therefore, either there does not exist a sequence{(t′n, j

′
n)}n∈N ∈ domχ satisfying (25), or there exists

such a sequence and inequality (29) holds. However, in this latter case, usingmax{t′1 + j′1, t
′
2 + j′2} < τ ∗,

pick τ ∗ > 0 andε1,a, ε1,b such that

α1,2(α
−1
1,1

(
ε1,a + β1

(
∆+ α−1

0,1

(
∆1 + β0(∆2, τ

∗)
)
, τ ∗

))

≤ ε1,b (30)

whereβi(s, t) := 2 exp(−εit)αi,2(s), i = 0, 1. Then, using (6) withi = 1, we getV1(ξ(t
′
2, j

′
2), ζ1(t

′
2, j

′
2)) ≤

ε1,b. With (9), sinceζ1(t′2, j
′
2) ∈ Φ1 and ζ0(t

′
2, j

′
2) ∈ Φ0, we getγ0(h0(ξ(t

′
2, j

′
2))) < ε0,aε0. Since the

supervisor usesK0 at (t′2, j
′
2) and Assumption 3.1.3 implies that, along solutions,ż0 < −ε0z0 + ε0,aε0,

we have thatz0(t, j) < ε0,a for all future (t, j). Then, no future jump of the supervisor is possible, which
is a contradiction, showing that there is no sequence satisfying (25).
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By the attractivity properties of the basin of attraction ofand completeness of solutions to(P,K0), it
follows that every maximal solution converges toAs. Hence, solutions are bounded. By the construction
of the jump map in equation (18), the stateζ1 converges toΦ1 while z1 and τ0 converge to zero. To
conclude the proof, note that the local stability properties induced byK0 and the propertyh0(A0) = 0
imply thatAs is stable.

Remark 3.7:Note that when assuming the existence of a norm-observer forP (and not a pair of norm-
observers forP in closed loop withK0 and withP in closed loop withK1 as in Assumption 3.1), we
obtain a globally asymptotic stabilizing hybrid controller Ks. Indeed, following the proof of Theorem
3.5 with this additional assumption, we may strength the result of Lemma 3.6 and obtain that there
is no nondecreasing sequence of times satisfying (25)for any initial condition (globally). With such a
detectability assumption, the obtained result would be close in spirit to [24], but generalizes it since [24]
pertains to the problem of uniting continuous-time controllers with same objectives.

D. A Design Procedure

Theorem 3.5 guarantees the existence of an output-feedbackhybrid supervisor solving Problem (⋆).
While this result does not explicitly provide values of the supervisor parameters, the steps in its proof
provide guidelines (potentially conservative) on how to choose these parameters. When exponential-decay
OSS-Lyapunov functions and associated functions certifying the OSS properties in Assumption 3.1 are
available (see (6)-(8)), the design procedure in the following result is a consequence of the arguments in
the proof of Theorem 3.5.

Corollary 3.8: (design procedure) Suppose Assumption 3.1 holds. The output-feedback hybrid super-
visor Ks with parametersε0,a, ε1,b, and τ ∗ designed following the next steps solves Problem (⋆).

Step 1) Letε0,b > 0 such thatΓ0 := {(ξ, ζ0) : V0(ξ, ζ0) ≤ ε0,b} is a subset of the basin of attraction
B0 for the asymptotic stabilization ofA0 × Φ0 with K0.

Step 2) Chooseε0,a > 0 andε1,b > 0 so thatε0,a < ε0,b, Γ1 := {ξ ∈ R
np : V1(ξ, ζ1) ≤ ε1,b, ζ1 ∈ Φ1}×

Φ0 is a subset ofΓ0, and every solution(ξ, ζ0) to (P,K0) from Γ1 satisfiesγ0(|h0(ξ(t, j))|) < ε0,aε0
for all (t, j) ∈ dom(ξ, ζ0).

Step 3) Designε1,a > 0 and τ ∗ > 0 such that

α1,2(α
−1
1,1

(
ε1,a + β1

(
∆+ α−1

0,1

(
∆1 + β0(∆2, τ

∗)
)
, τ ∗

))

≤ ε1,b.

where∆ = maxx∈A0×Φ0, y∈A1×Φ1
|x− y|, ∆1 = max z0(t, j), ∆2 = max |(ξ, ζ0)(t, j)|A0×Φ0

for each
solution(ξ, ζ0) to (P,K0) fromM (projected ontoRnp ×R

nc), andβi(s, t) = 2 exp(−εit)αi,2(s) for
eachi = 0, 1.

Note that the condition in Step 3 can always be satisfied by picking small enough parameterε1,a, which
defines the threshold forz1 to switch fromq = 1 to q = 0, and large enough parameterτ ∗, which forces
flows with controllerK1 until the timer reaches such value. Such selections have theeffect of enlarging
the time the controllerK1 is in the loop, making it possible that, after a jump fromq = 1 to q = 0, the
state of the plant is such that controllerK0 stabilizesA0 × Φ0 without further jump back toq = 1. Note
that the condition in Step 3 is a consequence of the proof of Lemma 3.6, which guarantees that there are
finitely many jumps fromq = 0 to q = 1 and back (but does not quantify the number of such jumps).
The design procedure and, in particular, the tuning ofε1,a and τ ∗ are illustrated in Section IV-A when
revisiting Example 3.4.

E. Robustness of the Closed-loop System

The following model of the plant with perturbations is considered

ξ̇ = fp(ξ, u+ d1) + d2 (31)
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with outputsyp,0 = h0(ξ) + d3 andyp,1 = h1(ξ) + d4, whered1 corresponds to actuator error,d2 captures
unmodeled dynamics, andd3, d4 represent measurement noise.10 Then, denoting byd̃i the signalsdi
extended to the state space ofχ, the overall closed-loop systemHcl results in a perturbed hybrid system,
which is denoted byH̃cl, with dynamics

χ̇ = F (χ+ d̃1) + d̃2 χ+ d̃1 ∈ C̃

χ+ ∈ G(χ+ d̃1) + d̃2 χ+ d̃1 ∈ D̃ .

The following result asserts that the stability of the closed-loop system is robust to a class of perturba-
tions. It follows from the asymptotic stability property established in Theorem 3.5 and the fact that the
construction of the hybrid supervisor leads to a well-posedclosed-loop system.

Theorem 3.9:(stability under perturbations) Suppose Assumption 3.1 holds. Then, there existsβ ∈
KLL such that, for eachε > 0 and each compact setM ⊂ X, there existsδ > 0 such that for each
measurablẽd1, d̃2 : R≥0 → δB every solutionχ to H̃cl with χ(0, 0) ∈ M satisfies

|χ(t, j)|As
≤ β(|χ(0, 0)|As

, t, j) + ε ∀(t, j) ∈ domχ.

Proof: By Theorem 6.5 in [14], there existsβ ∈ KLL such that all solutionsχ to Hcl satisfy
|χ(t, j)|As

≤ β(|χ(0, 0)|As
, t, j) for all (t, j) ∈ domχ. Consider the perturbed hybrid system̃Hcl. Since

d̃1(t), d̃2(t) ∈ δB for all t ≥ 0, the closed-loop system̃Hcl can be written as

χ̇ ∈ Fδ(χ) χ ∈ Cδ

χ+ ∈ Gδ(χ) χ ∈ Dδ,
(32)

whereFδ(χ) := coF (χ+ δB) + δB,
Gδ(χ) := {η : η ∈ χ′ + δB, χ′ ∈ G(χ+ δB)},

Cδ :=
{
χ : (χ+ δB) ∩ C̃ 6= ∅

}
, and

Dδ :=
{
χ : (χ+ δB) ∩ D̃ 6= ∅

}
. This hybrid system corresponds to an outer perturbation ofHcl and

satisfies (C1), (C2), (C3), and (C4) in [14] (see Example 5.3 in [14] for more details). Then, the claim
follows by Theorem 6.6 in [14] since, for each compact setM of the state space and eachε > 0,
there existsδ∗ > 0 such that for eachδ ∈ (0, δ∗], every solutionχδ to (32) from M satisfy, for all
(t, j) ∈ domχδ, |χδ(t, j)|As

≤ β(|χδ(0, 0)|As
, t, j) + ε.

Remark 3.10:The stability and attractivity assumptions imposed in Theorem 3.5 and Theorem 3.9 can
be further relaxed as in [24]. In particular, the attractivity induced byK1 can be relaxed to be semi-global
and practical (by adapting the considered compact setM ⊂ X to these “semi-global and practical”
properties). Also, it can be relaxed to allow the individualcontrollers to have solutions that are bounded
but not complete, as long as the solutions to the closed-loopsystem are all complete. Lastly, note that
Theorem 3.9 gives a qualitative robustness result. When focusing on specific nonlinear systems (such as
linear systems with saturation at the input), estimations of basins of attraction of individual continuous-
time controllers have been used in [24] and thus it may be possible, for this class of specific nonlinear
systems, to derive qualitative results and more explicit bounds for the robustness issue.

IV. EXAMPLES

The proposed control algorithm piecing together two output-feedback hybrid controllers is applicable
to numerous control systems where the design of a single robust stabilizing controller is difficult or even
impossible. Such applications include the stabilization of the inverted position of the single pendulum [27],
the inverted position of the pendubot [25], the position andorientation of a mobile robot [26], and the

10 The exogenous signalsdi, i = 1, . . . , 4, are given on hybrid time domains, and in general, their value can jump at jump times. For
exogenous signalsdi(t), that is, given by functions of time, given a hybrid time domain S it is possible to define, with some abuse of
notation,di(t, j) := di(t) for each(t, j) ∈ S. Solutions to hybrid systems with the perturbations above is understood similarly to the concept
of solution defined in Section II.
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synchronization of Lorenz oscillators [8]. An implementation of the proposed controller in a real-world
system will result in a logic-based algorithm that triggersthe discrete updates of the variablesz0, z1, q,
andτ by checking viaif/else statements if the variables and measurements are inthe jump setD̃. In such
situations, the algorithm will update the values of the variables at the next time step. For an example of
such an implementation, see [20].

Next, we revisit Examples 3.3 and 3.4.

A. Stabilization with constrained inputs and limited information

Consider the stabilization of the origin of (13) in Example 3.4. Suppose that the inputs are constrained
to u1u2 = 0 and thatα is a constant satisfying|α| ∈ (0,

√
3
3
). Measurements ofξ1 and ξ2 are available

but not simultaneously. Due to these constraints, the task of designing a single controller or a controller
uniting two controllers with the same objectives for the stabilization of the origin is daunting. However, a
hybrid controllerKs, as presented in this paper, can be designed to accomplish this task by coordinating
two controllers,K0 andK1, with different objectives. Consider the controllerK0 in Example 3.4 which
consists of a static feedback controller that measuresh0(ξ) := ξ1 to stabilizeξ to A0 = (0, 0). From
(14), it can be verified that

{
ξ : V0(ξ) ≤

1
6

}
⊂ B0, with B0 being the basin of attraction forK0. Since

|α| ∈ (0,
√
3
3
), we have thatV0((0, α)) <

1
6

and thus the point(0, α) is in the interior ofB0. A controller
K1 can be designed to steer the solutions toA1 := (0, α). From (14), it follows that the point(0, α)
belongs to the interior ofB0; hence item 3 in Assumption 3.1 holds. Leth1(ξ) := ξ2 − α. The controller
K1 is given as in (4) withnc = 0, κc,1(ξ) := [h1(ξ)+α, 0]⊤, and no dynamical state (i.e.,Cc,1 = Dc,1 = ∅
and fc,1, gc,1 are arbitrary). With this controller, the functionV1(ξ) =

1
4
ξ41 +

1
2
(ξ2 − α)2 satisfies, for all

ξ ∈ R
2, 〈∇V1(ξ), fp(ξ, κc,1(ξ))〉 ≤ −V1(ξ), from where a norm observer for|ξ|A1

follows; e.g., we can
useż1 = −z1. Then, Assumption 3.1 holds withmc,0 = mc,1 = 1, Φ0 = Φ1 = ∅, ε0 = 1, andε1 = 1. Then,
using Theorem 3.5 there exists a hybrid supervisorKs such that the origin of (13) is asymptotically stable.
Following Section III-B.3, the closed-loop system has stateχ = (ξ, z0, z1, q, τ) ∈ R

2×R×R×Q×R =: X
and is given by11

F (χ) :=






 −ξ1 + (κ1
c,q(ξ)− ξ2)ξ

2
1

−ξ2 + ξ21 + α + κ2
c,q(ξ)





(1− q)(−z0 + |h0(ξ)|4(1 + |h0(ξ)|2))

−q z1

0

q




,

G(χ) := [ξ⊤ 0 0 1− q 0]⊤, C̃ := Cs,a ∪ Cs,b ∪ Cs,c,

Cs,a := {χ : ε0,a ≥ z0 ≥ 0, z1 = 0, q = 0, τ = 0} ,
Cs,b := {χ : z0 = 0, z1 ≥ ε1,a, q = 1} ,
Cs,c := {χ : z0 = 0, z1 ≥ 0, q = 1, τ ≤ τ ∗} ,

D̃ := Ds,a ∪Ds,b,
Ds,a := {χ : z0 ≥ ε0,a, z1 = 0, q = 0, τ = 0} ,
Ds,b := {χ : z0 = 0, ε1,a ≥ z1 ≥ 0, q = 1, τ ≥ τ ∗} .

Figure 2 shows a trajectory to the closed-loop system whenα = 1
4
, ε0,a = ε1,a = 0.01, τ ∗ = 1, and

M0 = 10B, which are parameters found numerically. The trajectory starts fromξ(0, 0) = (3,−3) with
controllerK1 connected to the plant (q = 1), which steers the plant component to a neighborhood of the

11 We denote thei-th component ofκc,q by κi
c,0(ξ), i = 1, 2, q = 0, 1.
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origin. At about(t, j) ≈ (4.65, 0), z1 reachesε1,a and τ is aboveτ ∗, triggering a jump toq = 0. In that
mode, the local controller steers the plant component to zero, z0 approaches zero, and the other controller
components remain at zero. Figure 3 shows a trajectory to theclosed-loop system withq(0, 0) = 0 and
ξ(0, 0) = (30,−30). In this case, a jump of the supervisor toq = 1 occurs initially.12 Since after the
jump z1 is mapped to zero,z1 remains at zero for the remainder of the solution, jumps backto q = 0 are
triggered everyτ ∗ seconds, with instantaneous jumps back toq = 1 until the local controller is capable
of stabilizingA0.

The design procedure in Corollary 3.8 can be used to systematically select parametersε1,a and τ ∗. In
this way, we follow the steps proposed therein withᾱ = 1

4
andM0 = 10B. Since, as shown earlier, we

have
{
ξ : V0(ξ) ≤

1
6

}
⊂ B0, then we pickε0,b = 1

6
in Step 1 and defineΓ0. When 4

27
≤ ε0,a < ε0,b and

ε1,b ≤ 0.015, we have that the conditions in Step 2 hold. In fact, solutions ξ from Γ0 satisfy|ξ(t, j)| ≤
√
3
3

for all (t, j) ∈ dom ξ and, sinceγ0(s) = s4(1 + s2), we haveγ0(|h0(ξ(t, j))|) ≤
4
27

. Moreover, a simple
check on level sets indicates thatΓ1 := {ξ ∈ R

2 : V1(ξ) ≤ 0.015} ⊂ Γ0. To pick ε1,a and τ ∗ in Step
3, we first obtain the following values after straightforward computations:∆ = |ᾱ|, ∆1 = ε0,a, ∆2 =
α−1
0,1 (ε0,a + 2α0,2(10 + ε0,a)), α

−1
0,1(s) = (2s)1/2, α0,2(s) = 1

2
s2, andα−1

1,1(s) = 2max
{
s1/4, s1/2

}
. Using

ε0,a = 4
27

, then the condition in Step 3 is satisfied withε1,a = 0.00005 and τ ∗ = 15. Figure 4 shows
a simulation of the closed-loop system with these parameters, which indicates that convergence to the
origin occurs after only one jump.
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Fig. 2. Plant and controller states of a closed-loop trajectory. (a) Plant componentξ(t, j) for (13) from ξ(0, 0) = (3,−3), q(0, 0) = 1,
τ (0, 0) = z0(0, 0) = 0, z1(0, 0) = 1. Dotted lines denote an estimate ofB0, ⋆ (red) the jump fromq = 1 to 0, and× the setsA1 = (0, α)
andA0 = (0, 0), with α = 1

4
. (b) Controller states of hybrid supervisorKs. The dashed lines represent the jumps in the variables. Controller

parameters:ε0,a = ε1,a = 0.01, andτ∗ = 1.

B. Stabilization under topological obstructions

Consider the stabilization of the pointA0 := {ξ∗}, for the point-mass system in Example 3.3. Following
the discussions therein, the measurements available are

y1 = h1(ξ) := (ϕ1(ξ),∇ϕ1(ξ), ϕ2(ξ),∇ϕ2(ξ)) ∀ξ ∈ R
2,

y2 = h2(ξ) := ξ ∀ξ ∈ ξ∗ + εB
(33)

12Dashed (red) lines denote jumps in the state components.
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Fig. 3. Plant and controller states of a closed-loop trajectory. (a) Plant componentξ(t, j) for (13) from ξ(0, 0) = (30,−30), q(0, 0) =
τ (0, 0) = z0(0, 0) = 0, z1(0, 0) = 1. Dotted lines denote an estimate ofB0, ⋆ (red) the jump fromq = 1 to 0, and× the setsA1 = (0, α)
andA0 = (0, 0)(= A), with α = 1

4
. (b) Controller states of hybrid supervisorKs. The dashed lines represent the jumps in the variables.

Controller parameters:ε0,a = ε1,a = 0.01, andτ∗ = 1.
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Fig. 4. Plant and controller states of a closed-loop trajectory. (a) Plant componentξ(t, j) for (13) from ξ(0, 0) = (3,−3), q(0, 0) = 1,
τ (0, 0) = z0(0, 0) = 0, z1(0, 0) = 1. Dotted lines denote an estimate ofB0, ⋆ (red) the jump fromq = 1 to 0, and× the setsA1 = (0, α)
andA0 = (0, 0), with α = 1

4
. (b) Controller states of hybrid supervisorKs. The dashed lines represent the jumps in the variables. Controller

parameters:ε0,a = 4

27
, ε1,a = 0.00005, andτ∗ = 15.

for someε > 0, whereϕi, i = 1, 2, are continuously differentiable functions given by

ϕi(ξ) :=
1

2
(ξ − ξ◦)⊤(ξ − ξ◦) +B(di(ξ))

with B : R≥0 → R a continuously differentiable function defined asB(z) := max{0, (z − 1)2 ln 1
z
} and

di : R
2 → R≥0 a continuously differentiable function that measures the distance from any point inOi to

the setN . These functions define “potential” functions relative to the intermediate target pointξ◦ that
include the presence of the obstacle. The setsN for α̂ = 0.07 and ξ = (1, 0), A0 for {ξ∗} = {(4,−1

4
)},

and Oi given by O1 = {ξ ∈ R
2 : |ξ1| − 1.1 ≥ ξ2}, O2 = {ξ ∈ R

2 : |ξ1|+ 1.1 ≤ ξ2} are depicted in
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Figure 5. The pointξ◦ is the point at whichϕi vanishes. The local controller can measure the full state
ξ in the neighborhoodA0 + εB for ε = 1.
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(a) Plant trajectory with initial conditionsξ(0, 0) = 0, q(0, 0) = 1,
ζ1(0, 0) = 1, steered below the obstacle usingκ1(ξ, 1) while in
ζ1 = 1.
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(b) Plant trajectory with initial conditionsξ(0, 0) = 0, q(0, 0) = 1,
ζ1(0, 0) = 2, steered above the obstacle usingκ1(ξ, 2) while in
ζ1 = 2.

Fig. 5. Trajectoriesξ(t, j) to point-mass system with hybrid supervisorKs. Dotted circle denotes an estimate ofB0 and × the sets
A1 = {(3, 0)} andA0 = {(4,− 1

4
)}. The setO1 is the region below the upper “wedge,” while the setO2 is the region above the lower

“wedge,” which is depicted in dotted line. The cone emanating from the initial condition depicts that, initially, the target point is not in the
line-of-sight of the point-mass system. The controller parameters used areµ = 1.1 andλ = 0.09.

We design a hybrid supervisorKs to coordinate two output-feedback controllers. The controller while
in modeq = 1 is hybrid with a discrete stateζ1 ∈ {1, 2} evolving continuously according tȯζ1 = 0.
The target stabilization set for this controller is taken tobe A1 = {ξ◦}. Let µ > 1, λ ∈ (0, µ − 1). The
following hybrid controller defines the feedback lawK1 κc,1(ξ, ζ1) := −∇ϕζ1(ξ) when (ξ, ζ1) ∈ Cc,1,
where

Cc,1 := {(ξ, ζ1) ∈ ∪ζ1∈{1,2}(Oζ1 × {ζ1}) :

ϕζ1(ξ) ≤ µminζ1∈{1,2} ϕζ1(ξ)}

and has discrete dynamics given by

ζ+1 ∈ G1(y1, ζ1) :=
{
ζ ′1 ∈ {1, 2} : ϕζ1(ξ) ≥ (µ− λ)ϕζ′

1
(ξ)

}

when (ξ, ζ1) ∈ Dc,1, where

Dc,1 :=
{
(y1, ζ1) : ϕζ1(ξ) ≥ (µ− λ)minζ′

1
∈{1,2} ϕζ′

1
(ξ)

}
.

The design parameters of the controllerK1 areµ andλ.
Take V (ξ, ζ1) = ϕζ1(ξ), then with theK1 dynamics we obtain, withγ′ := (µ − λ)−1, γ′ ∈ (0, 1),

ρ(s) = s2,
V (ξ, ζ ′1) ≤ γ′V (ξ, ζ1) ∀ζ ′1 ∈ G1(ξ, ζ1), ∀(ξ, ζ1) ∈ Dc,1 ,

and,∀(ξ, ζ1) ∈ Cc,1,
〈∇V (ξ, ζ ′1), fp(ξ, κ1(ξ, ζ1))〉 ≤ −2 V (ξ, ζ1) .

Global asymptotic stability ofA1 (on Cc,1 ∪Dc,1) follows, from where a norm observer for|ξ|A1
exists;

e.g., we can useε1 = 1 − γ′ and any class-K function γ1 for the norm observer in (10). The local
controller to use in modeq = 0 is a static, continuous-time feedback of the formκc,0(ξ) := −ξ + ξ∗.
Local asymptotic stability ofA0 follows with basin of attractionA0+εB andż0 = −z0 is a norm observer
for |ξ|A0

.
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Figure 5 depicts trajectories to the plant with the proposedhybrid supervisor for two different initial
conditions of the stateζ1 of the controllerK1. The trajectories converge first to a neighborhood ofA1,
and whenz1 becomes small enough, a jump toK0 is triggered and the trajectories converge toA0.

V. CONCLUSION

A solution to a general uniting problem was formulated and exercised in examples. The controllers
considered can be hybrid, nonlinear, output-feedback, andhave different objectives. The solution consists
of constructing a well-posed hybrid supervisor that appropriately combines two hybrid controllers to
accomplish the task. In addition to stability and attractivity properties, to guarantee the existence of
norm estimators, the individual controllers are assumed toinduce an output-to-state stability property.
Robustness of the full closed-loop system is asserted via results for perturbed hybrid systems. Examples
illustrating the design methodology of the hybrid supervisor were presented. The proposed algorithm can
also be used for waypoint navigation and loitering control of unmanned aerial vehicles [7]. The proposed
solution does not assume a detectability property for the plant and thus, in contrast to [24], a global norm
observer may not exist. When this stronger property is assumed, the proposed hybrid supervisor achieves
robust, global asymptotic stability. Moreover, the attractivity property in Assumption 3.1 can be relaxed
to a semi-global, practical attractivity property.

REFERENCES

[1] V. Andrieu and L. Praly. A unifying point of view on outputfeedback designs for global asymptotic stabilization.Automatica,
45(8):1789–1798, 2009.

[2] V. Andrieu and C. Prieur. Uniting two control Lyapunov functions for affine systems.IEEE Transactionson Automatic Control,
55(8):1923–1927, 2010.

[3] R. W. Brockett. Differential GeometricControl Theory, chapter Asymptotic stability and feedback stabilization, pages 181–191.
Birkhauser, Boston, MA, 1983.

[4] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Toward asystems theory for the composition of dynamically dexterous robot
behaviors. InInternationalSymposiumon RoboticsResearch, volume 7, pages 149–161. MIT PRESS, 1996.

[5] C. Cai and A. R. Teel. A globally detectable hybrid systemadmits a smooth OSS-Lyapunov function. InAmericanControlConference,
pages 4049–4054, 2006.

[6] C. Cai and A. R. Teel. Output-to-state stability for hybrid systems.Systems& Control Letters, 60:62–68, 2011.
[7] D. W. Smith III and R. G. Sanfelice. A hybrid control strategy for waypoint transitioning and loitering of unmanned aerial vehicles.

Submitted to 2014 American Control Conference.
[8] D.Efimov, A. Loria A., and E. Panteley. Robust output stabilization: Improving performance via supervisory control. International

Journalof RobustandNonlinearControl , 21(10):1219–1236, 2011.
[9] D.Efimov, A. Loria, and E. Panteley. Multigoal output regulation via supervisory control: Application to stabilization of a unicycle. In

Proc.2009 AmericanControl Conference, 2009.
[10] D. V. Efimov. Uniting global and local controllers underacting disturbances.Automatica, 42:489–495, 2006.
[11] R. Goebel, J.P. Hespanha, A.R. Teel, C. Cai, and R.G. Sanfelice. Hybrid systems: generalized solutions and robust stability. In Proc.

6th IFAC Symposiumin NonlinearControl Systems, pages 1–12, 2004.
[12] R. Goebel, R. G. Sanfelice, and A. R. Teel.Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University

Press, New Jersey, 2012.
[13] R. Goebel, R.G. Sanfelice, and A.R. Teel. Hybrid dynamical systems.IEEEControlSystemsMagazine, 29(2):28–93, April 2009.
[14] R. Goebel and A.R. Teel. Solutions to hybrid inclusionsvia set and graphical convergence with stability theory applications.Automatica,

42(4):573–587, 2006.
[15] J. P. Hespanha, D. Liberzon, and A. S. Morse. Supervision of integral-input-to-state stabilizing controllers.Automatica, 38:1327–335,

2002.
[16] C. G. Mayhew, R. G. Sanfelice, and A. R. Teel. Quaternion-based hybrid controller for robust global attitude tracking. IEEETransactions

on AutomaticControl, 56(11):2555–2566, November 2011.
[17] P. Morin, R.M. Murray, and L. Praly. Nonlinear rescaling of control laws with application to stabilization in the presence of magnitude

saturation. InProc.4th IFAC Symposiumon NonlinearControl Systems, Enschede, the Netherlands, 1998.
[18] A. S. Morse. Supervisory control of families of linear set-point controllers - Part 1: Exact matching.IEEE Transactionson Automatic

Control, 41:1413–1431, 1996.
[19] A. S. Morse. Supervisory control of families of linear set-point controllers - Part 2: Robustness.IEEE Transactionson Automatic

Control, 42:1500–1515, 1997.
[20] R. O’Flaherty, R. G. Sanfelice, and A. R. Teel. Robust global swing-up of the pendubot via hybrid control. InProc.27th American

Control Conference, pages 1424–1429, 2008.
[21] Z. Pan, K. Ezal, A.J. Krener, and P.V. Kokotovic. Backstepping design with local optimality matching.IEEE Transactionson Automatic

Control, 46(7):1014–1027, 2001.



21

[22] C. Prieur. Uniting local and global controllers with robustness to vanishing noise.Math. Control SignalsSystems, 14:143–172, 2001.
[23] C. Prieur, R. Goebel, and A. R. Teel. Hybrid feedback control and robust stabilization of nonlinear systems.IEEE Transactionson

AutomaticControl, 52(11):2103–2117, November 2007.
[24] C. Prieur and A.R. Teel. Uniting local and global outputfeedback controllers.IEEE Transactionson AutomaticControl, 56(7):1636–

1649, 2011.
[25] R. G. Sanfelice and A. R. Teel. A “throw-and-catch” hybrid control strategy for robust global stabilization of nonlinear systems. In

Proc.26th AmericanControl Conference, pages 3470–3475, 2007.
[26] R. G. Sanfelice, A. R. Teel, and R. Goebel. Supervising afamily of hybrid controllers for robust global asymptotic stabilization. In

Proc.47th IEEE Conferenceon DecisionandControl , pages 4700–4705, 2008.
[27] R. G. Sanfelice, A. R. Teel, R. Goebel, and C. Prieur. On the robustness to measurement noise and unmodeled dynamics of stability

in hybrid systems. InProc.25th AmericanControl Conference, pages 4061–4066, 2006.
[28] R.G. Sanfelice, R. Goebel, and A.R. Teel. Generalized solutions to hybrid dynamical systems.ESAIM: Control, Optimisationand

Calculusof Variations, 14(4):699–724, 2008.
[29] E. D. Sontag and Y. Wang. Output-to-state stability anddetectability of nonlinear systems.Systems& Control Letters, 29:279–290,

1997.
[30] A.R. Teel and N.Kapoor. Uniting global and local controllers. In Proc.EuropeanControl Conference, 1997.


	I Introduction
	II Hybrid Systems Preliminaries
	III Uniting Two Output-Feedback Hybrid Controllers Using a Hybrid Supervisor
	III-A Problem statement, solution approach, and assumptions
	III-B Proposed Control Strategy
	III-B.1 Supervision of Controller K1 (q=1)
	III-B.2 Supervision of Controller K0 (q=0)
	III-B.3 Closed-loop system

	III-C Nominal Properties of Closed-loop System
	III-D A Design Procedure
	III-E Robustness of the Closed-loop System

	IV Examples
	IV-A Stabilization with constrained inputs and limited information
	IV-B Stabilization under topological obstructions

	V Conclusion
	References

