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Abstract

The problem of robustly, asymptotically stabilizing a pdior a set) with two output-feedback hybrid controllers
is considered. These control laws may have different obgsxte.g., the closed-loop systems resulting with each
controller may have different attractors. We provide a oardlgorithm that combines the two hybrid controllers
to accomplish the stabilization task. The algorithm cdssef a hybrid supervisor that, based on the values of
plant’s outputs and (norm) state estimates, selects theichgbntroller that should be applied to the plant. The
accomplishment of the stabilization task relies on an adtpistate stability property induced by the controllers,
which enables the construction of an estimator for the ndrthe plant’s state. The algorithm is motivated by and
applied to robust, semi-global stabilization problemstingitwo controllers.

|. INTRODUCTION
Background and Motivation

Many control applications cannot be solved by means of aleistate-feedback controller. As a
consequence, control algorithms combining more than omérater have been thoroughly investigated
in the literature. Particular attention has been given eoptoblem of uniting local and global controllers,
in which two control laws are used: one that is supposed tkweoly locally, perhaps guaranteeing
good performance, and another that is capable of steermgybtem trajectories to a neighborhood of
the operating point, where the local control law works. &i#int strategies are possible to tackle this
problem. In [21], this problem is solved by patching togethelocal optimal controller and a global
controller designed using backstepping. In [17], a statietinvariant controller was designed by smoothly
blending global and local controllers. In [2], two contitglapunov functions are combined to design a
global stabilizer for a class of nonlinear systems.

The use of discrete dynamics may be necessary when piecgeghter local and global controllers
(e.g., see the example in [22], where local and global caotis-time controllers cannot be united
using a continuous-time supervisor). This additional neguent leads to a control scheme with mixed
discrete/continuous dynamics, see [30], [22], and [10]emhcontrollers to piece together two given
state-feedback laws are proposed. Based on these techndiffierent applications have been considered,
such as the stabilization of the inverted pendulum [27] dedposition and orientation of a mobile robot
[26]. These ideas have been extended in [25] to allow for tmakination of multi-objective controllers,
including state-feedback laws as well as open-loop coréwk. More recently, they have also been
extended to the case when, rather than state-feedbackpotgyt-feedback controllers are available [24].
A trajectory-based approach for the design of robust naldjective controllers that regulate a particular
output to zero while keeping another output within a prdsadti limit was introduced in [9]. In the
context of performance, a trajectory-based approach veaseahployed in [8] to generate dwell-time and
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hysteresis-based control strategies that guarantee at-onput stability property characterizing closed-
loop system performance.
In this paper, we study the robust stabilization of nonlimggstems of the form

P é: fo(§5up) §ER™, u, € R™ (1)

via the combination of two hybrid controllers that use onlgasurements of outputs of the plant. The
motivation of such a problem is twofold. On the one hand, thedssibility of robustly stabilizing an
equilibrium point (or set) with smooth or discontinuous tohlaws (see, e.g., [3]) precludes utilizing
uniting controllers that combine smooth or discontinuausnthybrid) state-feedback laws. On the other
hand, the typical limitation of measuring all of the plantighles for state-feedback control demands
the use of output-feedback controllers as well as the useuifipte controllers that can be combined
in a systematic manner to accomplish a given task. Thesdeohak emerge in stabilization problems
with information and actuation constraints. For instanoanotion planning of autonomous vehicles for
navigation in cluttered environments, in addition to undable input constraints, obstacles introduce
topological constraints that restrict the sensing rangesulch scenarios, control algorithms may combine
information from multiple sensors and select the most gmpeite control strategy to execute. Due to the
different properties induced by the individual contradlen such applications, we refer to the problem
studied in this paper as the problem whiting two output-feedbaclkhybrid controllerswith different
objectives, where one of the controllers steers the trajiest to a set (this is the objective of the global
controller) and another controller asymptotically stale$ a different target set (this is the objective of
the local controller); cf. [9].

Contributions

We propose a hybrid controller to solve the problem of ugitiwo output-feedback laws with different
objectives. Figur€ll depicts the proposed solution, whimhsists of supervising the two output hybrid
controllers, which are denoted iy, and/C,, with “local” and “global” stabilizing capabilities, resptively.

By combining a discrete and several continuous states, rigrceampact set of initial conditions, we
design a robustly stabilizing supervisory algorithm withasin of attraction containing the given compact
set of initial conditions, i.e., the controller renders eg&d set semi-globally asymptotically stable. The
supervisory algorithm consists of a hybrid controller, gbiis denoted byK,, and uses logic-based
switching to unite controller&, and ;. Our approach builds from the ideas in [24] on uniting output
feedback continuous-time controllers and in [18], [19B][126] on supervisory control algorithms.
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controller |"¢° o
Ko N plant yzl
controller | ¢! | P
K4 g
supervisor
(20, 21, 7) ’CS’

Fig. 1. Proposed control approach for Problem (

The features of the proposed hybrid supervisor include:

« Uniting of hybrid controllers:controllers Ky and KC; are not restricted to being continuous-time
controllers; instead, they can be hybrid controllers imal continuous and discrete variables. In this



way, the proposed solution extends the technique of unitimgcontinuous-time controllers available
in the literature to the case when the individual contrsli@re hybrid, which, in turn, permits applying
the uniting method to plants that cannot be robustly stadliby smooth or discontinuous control
laws.

« Controllers with different objectivegontrollers/Cy andC; can have different objectives in the sense
that they may stabilize different attractors. This enalihessystematic design of controllers that steer
trajectories to a certain point (or set) from where localtoafers can take over and stabilize the
desired point (or set). This procedure has been heuristiogaéd in robotic applications [4].

« Output feedback without underlying input-output-to-statability assumption on the planfor the
solution of the uniting problem of interest (see Probles i Section[Ill) the proposed hybrid
supervisor requires an output-to-state stability proptat each of the closed-loop systems resulting
when the individual controllers are used. This assumptooweaker that the input-output-to-state
stability condition on the plant in [24]. The mechanism dimapthis relaxation is a timer state
included in the proposed hybrid supervisor.

In this work, each of the output-feedback hybrid contraller known to confer certain properties to each
of the resulting closed-loop systems: the first controlearders, for the plant state, a target compact set
locally asymptotically stable, while the second contnoflenders a particular compact set attractive. As a
difference to the controllers in [25], [9], [8], the indiwdl controllers can be hybrid and their objectives
given in terms of compact sets rather than equilibrium o(ttte latter feature actually enables the use
of hybrid controllers as these typically stabilize setgdarthan a single point; see [13] for a discussion).
Note that as a difference to [8], where switching times arénuoglly computed, the objective of the
proposed hybrid supervisor is to robustly stabilize a @estompact set. Our construction exploits the
fact that, as established in [29] for continuous-time noedir systems and generalized to hybrid systems
in [6], [5], this property implies the existence of an estioreof the norm of the state. We work within the
hybrid systems framework of [13] (see also [11], [14]) andpéy results on robust asymptotic stability
reported in [14]. Two examples involving systems with inpahstraints and limited information are used
throughout the paper to illustrate the application of owutts.

Organization of the paper

The remainder of the paper is organized as follows. Afteidaastation is introduced, Secti@d Il presents
a short description of the framework used for analysis. Thémesult follows in Sectiopll. This section
starts by introducing the problem to be solved, the propdsedulation of a solution, and the required
assumptions. In addition to presenting a design procedurthé supervisor, it establishes a robust stability
property of the closed-loop system. Examples are introdisiceoughout the paper to illustrate the ideas.
In Section 1V, the proposed hybrid supervisor is appliedht® $ystems in these examples.

We use the following notation and definitions throughoutghperR™ denotes:-dimensional Euclidean
space.R-, denotes the nonnegative real numbers, ., = [0,00). N denotes the natural numbers
including 0, i.e., N ={0,1,...}. B denotes the open unit ball in Euclidean space centered airitje.
Given a vectorz € R, |z| denotes the Euclidean vector norm. Given a $gt5 denotes its closure.
Given a setS C R” and a pointr € R", |z|g := inf,cq|z — y|. The notationF' : S = S indicates
that F is a set-valued map that maps pointsSno subsets ofS. For simplicity in the notation, given
vectorsz and y, we write, when convenienfxz"y']" with the shorthand notatiofiz, y). A function
a:Rsy — R is said to belong to the clagds if it is continuous, zero at zero, and strictly increasing. A
functiona : R>y — R is said to belong to the clads, if it belongs to the clask’ and is unbounded.
A function g : R>p x R5g — R is said to belong to clas&€L if it is nondecreasing in its first
argument, nonincreasing in its second argument, lamg\ o 5(s,t) = lim,_,», 5(s,t) = 0. A function
B Rsp x Rsg x Rsg — R is said to belong to clas€LL if, for eachr € R, the functions5(-, -, r)
and3(-,r,-) belong to classCL.



[I. HYBRID SYSTEMS PRELIMINARIES

In this paper, we consider hybrid systems as in [13], [12]emhsolutions can evolve continuously
(flow) and/or discretely (jump) depending on the continuand discrete dynamics of the hybrid systems,
and the sets where those dynamics apply. In general, a hgysiém? is given by datah,C, F, D, G)
and can be written in the compact form

X € F(x) xecC
H - xT € G(x) x €D
y = h(x)

wherey is the state taking values frof®”, the set-valued map’' defines the continuous dynamics on the
setC' and the set-valued ma@ defines the discrete dynamics on the BefThe notationy™ indicates the
value of the statg after ajumE. The functionh defines the output. Solutions # will be given onhybrid
time domains, which are subseis of R>, x N that, for every(7,.J) € E, E N ([0,T] x{0,1,...J})
can be written asUj:‘Ol ([tj,tj+1],7) for some finite sequence of tim@&s= ¢, < ¢,... < t;. A solution

to H will consist of a hybrid time domaidom x and ahybrid arc x : dom y — R", which is a function
with the property thaty(z, j) is locally absolutely continuous ofy := {t : (t,j) € dom x} for each

j € N, satisfying the dynamics imposed By. More precisely, the following hold:

(S1) For eacly € N such that/; has nonempty interior

x(t,j) € ¢ forall t € [min I;,sup ;)

x(t,7) € F(x(t,j)) for almost allt € I;; (2)

(S2) For eacht, j) € dom y such that(t,j + 1) € dom y;,

x(t,j) € D, x(t,j+1)€G(x(t j)) 3)

Hence, solutions are parameterized(hyj), wheret is the ordinary time ang corresponds to the number
of jumps. A solutiony to A is said to becompletef dom y is unboundedZenoif it is complete but the
projection ofdom x onto R is bounded, andnaximalif there does not exist another hybrid arcsuch
that y is a truncation ofy’ to some proper subset dbm \’. For more details about this hybrid systems
framework, we refer the reader to [13].

When the datéh, C, F, D, G) of H satisfies the conditions given next, hybrid systems are pasled in
the sense that they inherit several good structural priggent their solution sets. These include sequential
compactness of the solution set, closedness of perturltedrgperturbed solutions, etc. We refer the reader
to [14] (see also [11]) and [28] for details on and conseqasraf these conditions.

Definition 2.1: (Well-posed hybrid systems) The hybrid systen# with data(h,C, F, D,G) is said
to be well posed if it satisfies the followin@aybrid basic conditions: the set§' and D are closed, the
mappingst : ¢ = R™ and G : D = R™ are outer semicontinuous and locally bounEeﬂ(x) is
nonempty and convex for alt € C, G(z) is nonempty for allz € D, andh : R™ — R™ is continuous.

[1l. UNITING TwO OUTPUT-FEEDBACK HYBRID CONTROLLERSUSING A HYBRID SUPERVISOR
A. Problem statement, solution approach, and assumptions

We consider the stabilization of a compact set for nonliremtrol systems of the fornil(1) with only
measurements of two outpugs, andy,, given by functions of the statk, andh,, respectively, where
fp is a continuous function. That is, we are interested in sglthe following problem:

'Precisely,x™ = x(t,7 + 1).

2A set-valued mapping? defined onR™ is outer semicontinuoui for each sequence; € R™ converging to a point: € R™ and each
sequencey; € G(z;) converging to a poiny, it holds thaty € G(z). It is locally boundedif, for each compact seM C R" there exists
p > 0 such thatU,c mG(z) C puB.



(x) Given compact setsly, M, C R"™ and continuous functions,, h; defining outputsy,, = ho(¢)
andy,; = hy(§) of (1), design an output feedback controller that rendéssasymptotically stable
with a basin of attraction containing1,

As shown in Figuré]l, the proposed approach to solve thisl@molsonsists of supervising two output
hybrid controllers, which are denoted By and C;, with “local” and “global” stabilizing capabilities,
respectively, which are properties that will be made pebislow. The supervisory algorithm consists of
a hybrid controller, which is denoted l3y,, that uses logic-based decision making to unite contkgr
and IC;. The individual controllersC, and K; have state, and (;, both in R", respectlvelﬁ For each
i €{0,1}, the hybrid controlletC; = (., Ce, feis D, gc.i) IS given by

éi = fc,i (uc,iu Cz) (uc,i7 Cz) S Cc,i
Ici : <z+ c gc,i (uc,i7 Cz) (uc,i7 CZ) S Dc,i (4)
Yei = Kc,i(uc,ia Ci)v

where(; € R is thei-th controller’s statey,.; € R™* thei-th controller's inputC.; and D, ; are subsets
of R™e* xR™, k., : R" — R™ is thei-th controller’'s outputf., : C., = R", andg.; : D.; = R". For
eachi € {0, 1}, thei-th controllerC; measures the plant’s outpyt; = h;(£) only and, via the assignment
Uei = Ypir Up = Y.; defines the hybrid closed-loop system denoted ByX;) = (hi, Cy, fi, Di, g;) With
state(¢, ¢;) € R, n = n, + n., and given by

] =gy = [PEROO (e g

e+ (5)
N € gi(§,G) = (€, G)e
Cz' gcz h 5 Cz
Yi = hl(€)7
wherey; is the output,
{<€ Cz) . g S Rn,,’ (hl(g)v CZ) S Cc,i}a
{<€ CZ) g S an)’ (hz(g)v Cz) S Dc,i} :

(An assignment different fronncv,- = Yp.i» Up = Y.; Will be employed when a hybrid supervisor is used
— see Theorern_3.5.) We say that the controlleris well posed when the resulting closed-loop system
from controlling the plant[{1) with continuous right-hanides is well posed as in Definitidn 2.1.

The controllersC; are assumed to induce the properties that, fer0, a compact se#d, x &, C R",
where®, C R, is locally asymptotically stable fdrP, K,) and, fori = 1, a compact setl; x &; C R",
o, C R", is attractive for(P, IC;). For a combination of both controllers to work, the sgtwill have to
be contained in the plant component of the basin of attraaifo/Cy. In such a case, the said properties
of Ky and C; readily suggest that, when far away frofy, K, can be used to steer the plant’s state to a
region from wherefC, can be used to asymptotically stabilizg. However, these controllers cannot be
combined using supervisory control techniques in thedttee (see, e.g., [26] and the references therein)
due to being hybrid and to the lack of full measurements. de resolve this issue by designing two norm
observers. The existence of such observers is guaranteed tle hybrid controllers induce an output-
to-state stability (OSS) property. More precisely, thisSO@operty assures the existence of an (smooth)
exponential-decay OSS-Lyapunov functibhwith respect ta4; x ®; for (P, K;); see [6, Theorem 3.1].
As defined in [6, Definition 2.2]}; : R* — R, is such that there exist cla&ss, functionsa 1, «; 9,
classK function~;, ande; € (0, 1] satisfying: for all(¢, ¢;) € R",

ai1(|(€,¢) D < Vi€, G) < aia(|(€,G) s (6)

%It is desired that the basin of attraction of the closed-leggtem contains\, when projected ontd"».
“The case where the hybrid controllers have a dynamical igrespectively(;) in a setR™< (respectivelyR"™<!) of different dimension
neo # Ne1 €an be treated similarly by embedding both sets into the fsketrger dimension.




for all (¢,¢;) € C;
(VVi(&,G), fil&, G)) < —eVi(€, G) + v([ha(©)]); (7)

for all (¢,¢;) € D;,

MaXgeg,(£,¢) Vz‘(g) - Vz‘(fa Cz‘) < —&Vi(fa Cz‘) + %‘(|hz‘(€)|)- (8)

The next assumption guarantees that the resulting clasgzidystemgP, Ky) and (P, ;) satisfy these
properties.

Assumption 3.1Given a compact setl, C R™ and continuous functiong, : R"» x R™ — R,
ho : R™ — R™e0, hy : R™ — R™e1, wherehy(§) = 0 for all £ € Ay, assume there exist compact sets
Ay CR™, &y, & C R, whereh,(£) = 0 for all £ € Ay, such that:

1) A well-posed hybrid controlleiCy =

(Ke0, Ce0s fe0, Deo, ge0) for the plant outputy, o = ho(§) inducing the following properties exists:
a) Stability: For eaclr > 0 there exists) > 0 such that every solutiof¥, ¢y) to (P, Ky) with
1(€(0,0), 6o(0, 0)) ]y, < 6 satisfies|(&(t, ), Golt, 7)) |agwa, < € for all (¢, j) € dom(g, ¢o)H
b) Attractivity: There existg: > 0 such that every solutioft, {,) to (P, Ky) with
1(£(0,0),¢0(0,0))] 49xa, < p is complete and satisfies

¢ hm |(€(t7])7 CO(tvj))|Ao><<I>o - Oa
+7—00

c) Output-to-state stability (OSS): The hybrid systé&h K,) with outputy, o = ho(§) is output-
to-state stable with respect t, x ®,. Let V, denote an OSS-Lyapunov function associated
with this property, and let, € K ande, > 0 satisfy [T) and[(8) with = 0. Lets,;, > 0 define
an estimation of the basin of attractiéiy of (P, k) of the form{(£, (o) = Vo(&, Co) < eop})-

2) A well-posed hybrid controlleiC; =
(e, Cets fer, Den, geq) for the plant outputy, ; = hy(§) inducing the following properties exists:
a) Attractivity: Every maximal solutiorié, ¢;) to (P, K;) is complete and satisfies

i [(6(83). Gt )agco, =0

b) Output-to-state stability: The hybrid systéfR, £C;) with outputy, ; = h, () is output-to-state
stable with respect tol; x ®;. Let V; denote an OSS-Lyapunov function associated with this
property.

3) There exist,, 1, > 0 such thats,, < 9, and, for each solutiof¢, ¢,) to (P, Ky) from

{€eR™ : Vi(£,G) <e1p, G € P} x Do,

we have
Yo(|ho(€(t, 5))]) < €0u80 V(t,7) € dom(§, (o). 9)

Remark 3.2:Assumptior 3.1 assures the existence of individual cdet®with enough properties so
that the uniting problem of interest is at all solvable and ftoposed approach provides a solution to
it. More precisely, items 1.a and 1.b are required so thatabal stability requirement in Problem)(is
attainable while 2.a is needed so that the semi-globallgyat@quirement therein can be met. The other
assumptions are particular to our proposed solution. Iteimsind 2.b are imposed so that norm observers
can be constructed. Item 3 permits the combination of thedwmrollers using a hybrid supervisor by
ensuring that the compact sdt, which is the plant component of the set rendered attraetitle the
controller Iy, is included in the basin of attraction of the closed-loogtesn with the controllerCy.

In this way, A, x ®, can be asymptotically stabilized oné& steers the plant state nearby;. Note

°The plant state is parameterized byt, j) since it is a state component of the hybrid systgh ko), whose solutions are defined on
hybrid time domains.



that items 1.a, 1.b, and 2.a are the hybrid version of thenaggons in [24]. Items 1.c and 2.b relax
the assumptions in [24] as rather than asking for inputatdtip-state stability (IOSS) of the plant, they
impose OSS properties of the closed-loop systémsCy) and (P, K;).

The stabilizing property induced by controll&f, in Assumptior 3.1l holds when the nonlinear system
is locally stabilizable to the sefl, by hybrid feedback. Note that hybrid feedback permits $iabhg a
larger class of systems than standard continuous feedBaekaples of systems that can be asymptotically
stabilized by hybrid feedback include the nonholonomiegmator and Artstein circles [23], the pendubot
[25], and rigid bodies [16]. The attractivity property irmkd by the controllerC; in Assumption3.1L
holds when the trajectories of the plant can be asymptdtichéered to the setl; (contained in the
basin of attraction of the local controller). Note that, adiffeerence to controllefCy, it is not required for
controller K, to render the said set stable. This feature of the proposetiotier allows for the design
of Ky and K; separately, being item 3 of Assumption]3.1 a common desigstcaint.

Next, we introduce an example and associated control prolite which the supervision of two
controllers with properties as in Assumptionl3.1 will be kgh

Example 3.3:Consider the stabilization of the poigt*} for the point-mass syster = u,, Where
¢ € R? is the state andi, = [u; us]' is the control inpull A controller is to be designed to solve
the following control problem: guarantee that the solwida the plant avoid a neighborhood around
the point¢, which is given byN = ¢ + aB and represents an obstacle, and that converge to the target
point £*. Convergence to the target can be attained by steering theoss in the clockwise or in the
counter-clockwise direction around the obstacle, depgndn the initial condition. Measurements of the
distance to the target may not be available from points whezdarget is not visible due to the presence
of the obstacle. Due to the topological constraint of thdiszation task and the limited measurements,
a single controller or a controller uniting two controllesgth the same objectives would be difficult to
design.

To solve the stated control problem, functions defining p&k fields capturing the presence of the
obstacle and vanishing at some paoffitfrom where the target is visible, i.e., from points wherer¢he
is a “line-of-sight” to the target poin{*, can be generated. Then, a gradient descent controller €an b
designed to steer the state of the point-mass system toyn#ehbntermediate poing°. In this way, the
point£° would define the setl; and the gradient-descent controller would defiile This controller would
use measurements of the functions defining the potentidkfigs well as their gradients. These functions
would define the plant’s output, ;. A particular construction of a hybrid controller implentiexy a robust
gradient-descent-like strategy and satisfying the camuitin Assumptiol_3]1.2 is given in Sectibn 1V-B.
To satisfy the conditions in Assumptidn B.1.1, a “local” totler capable of asymptotically stabilizing
¢* from nearby¢® would play the role of the controllelC, above, with.A, given by {¢*}. Due to¢°
being at a location unobstructed by the obstacle, this obetrcould use relative position measurements
to the target, which would define the plant’s outpys. Item 3 of Assumptio_3]1 will be satisfied by
placing .4, in the basin of attraction induced ;. JAN

As pointed out in Remark_3.2, items 1.c and 2.b in Assumpfidih é&sure OSS the existence of
exponential-decay OSS-Lyapunov functions with respegt;to®; for (P, K;). As stated in [5, Proposition
2], a norm estimator for the stat€, ¢;) (and, hence, fo€) exists. A particular construction is

i = —&izi +%(lhi(6)]) (€, G) € G, (10)
zr = (I=e)zi+n(hi(6)]) (€, G) € Di.

In fact, given a solutiori¢, ¢;) to (P, K;), using [T) and[(8), for each < N and for almost alt € I, I;
with nonempty interior(t, j) € dom(¢&, ¢;), we have

5See [9] where the problem of stabilizing a unicycle whileweirgy obstacle avoidance is studied.



—&; (‘/z(g(tvj)v Cz(taj)) - Zz(taj)) )
and, for each’t, j) € dom(¢, ¢;) such that(¢,j + 1) € dom(¢, (;), we have

Using the upper bound i](6), it follows that, for &H, j) € dom(¢,¢;), Vi(€(t,7),G(t, 7)) < zi(t, J) +

exp(—¢it)(1—¢;)7 (Vi(£(0,0),¢i(0,0)) — 2:(0,0)) < z(t, j)+exp(—eit)(1—&;) (i2(](£(0,0), (0,0))] 4, x4,)
—2;(0,0)) . Assuming, without loss of generality, that,(s) > s for all s > 0 and definingg; (s, ¢, j) :=
2exp(—e;it)(1 — &;) ay 2(s) gives for any solution(¢, ¢;) to (P, K;)

Zi(t7.j> + ﬁz(‘(&(& 0)7 CZ(07 O)) A x®; + |Zi(07 0)‘7 t7.])
A xa, follows with (6):

The following bound on(¢(¢, 7), Gi(t, 7))

‘(£(t7.]>7cl(t7.]>> Aix®; < (12>
it (z(t,7) + Bi(1(£(0,0), 6:(0,0)) | axa, + |2:(0,0)], 7, 7))

(%

for all (t,7) € dom(¢, ().
The following example illustrates the construction of amoobserver for a nonlinear system. This
observer will be used in the design of a hybrid supervisorent®n[IV-Al.

Example 3.4:Consider the nonlinear system

: _ | &+ (= &)E

§= fp(&up) = —& _|_€% ta+uy |’ (13)
where¢ € R? is the state and,, = [u; us]' is the control input. An output-feedback controller has
been designed for this system in ﬂlMeasurements of, and &, are available but not simultaneously.
Consider a controllefC, given by a static feedback controller that measurgs) := & to stabilize¢ to
Ao = {(0,0)}. Following {4), an example of such a controller is definednby= 0, x.(¢) := [0, —a],
and no dynamical state (i.(.o = D.o = (0 and f.o, g.o are arbitrary). Fol;(¢) = %ng , it follows
that, for all¢ € R2f

<V‘/O(§)7 fp(€7 K’c,O(&))) = _5% - 5?52 - 5; + 5%52

< V@) + &+, (14)
Then, a norm observer fa¢| 4, is given byzg = —zo + vo(|ho(£)]) With o(s) = s*(1 + s?) for all s > 0.
This norm estimator and the controll&€l, above are such that Assumption]3.1.1 holds. A

In the next section, we provide a solution to Probledtkat consists of a hybrid supervisor coordinating,
using control logic and norm observers, the two (well-pgdsmdput-feedback hybrid controllers, and
Ky

B. Proposed Control Strategy

As depicted in Figuréll, we propose a hybrid controlter to supervisek, and ;. This hybrid
controller, referred to as thieybrid supervisor, is designed to perform the uniting task as \iato

A) Apply the hybrid controllerC; when the estimate dt| 4, is away from the origin.

"For the casé& = 0, dynamic output feedback laws for outputs givendayor ¢ that globally asymptotically stabilize the origin &’
have been proposed in [1].
8Using Young's inequality to obtaigfé, < &7 + 1£3 and&?é, < & + 163.



B) Permit estimate of¢| 4, to converge.

C) Apply Ky when the estimate dt| 4, is close enough to zero.
To accomplish these tasks, the supervisor has a discrége;staQ := {0, 1} and a timer state € R with
reset threshold* > 0. The constant* is a design parameter of the hybrid supervisor. The dynaatfittse
stateq are designed to indicate that the controlf¢ris connected to the plant. While the accomplishment
of tasksA)-C) with the proposed hybrid supervisor requires finitely manmyps in the state, the number
of jumps ing depends on the initial conditions as well as on the dynamiickeo closed-loop system. A
hybrid supervisor implementing taskg-C) is presented next.

1) Supervision of Controllef’; (¢ = 1): Item 2.a of Assumptiof 3.1 implies that for every solution
(&,¢1) to (P, Ky) we have

lim ([ ((2,5))]) = 0.

t4+j—00

Using [10) for: = 1, it follows that z; also approaches zero, and that, eventually, when; are large
enough,|| 4, is small enough. This suggests that the supervisor shouydly &p until, eventually,z; is
small enough. This can be implemented as follows:

« Flow according to

&= fol&, prea(h(€),G1)), Go =0, G = fea(M(€), G, (15)
=0, Z1=—ez +n(|h(§l]), ¢=0, 7=1
when, for a design parameter, > 0, either one of the following conditions hold:
(£, Q) e, GePy, 2=0, 21 >c14 ¢=1, (16)
or
(57(1) € Clv CO S q)()a 20 = 07 21 Z 07 q= 17 T S 7_*- (17)

« Jump according to
€+ = 57 CS_ € q)()v Cf_ € (blv
za =0, 2 =0, ¢t =0, 77 =0

(18)

when
€Dy, 20=0, €10>22>0, ¢q=1, 7>71" (19)

The flows defined in[(15) enforce, in particular, tlhatemains constant and that the estimateof,
converges. Condition_(16) allows flows when the estimate<pf, is not small enough, while, when
condition [19) holds, the statgis set to0 so thatk’, is applied. The stat€, is updated to any value in
®, and the estimator statg is reset to zero. These selections are to properly inigaliz. However, to
guarantee that the stafe converges tab,, the state is reset to any point dn .

Due to the impossibility of measuring it is not possible to ensure thatis such that(£, () is in
the basin of attractio8, after jumps fromg = 1 to ¢ = 0 occur. Hence, it could be the case that there
are jumps fromg = 0 back toq = 1. The logic in [I5){(IP) uses the timerto guarantee convergence
of the state ta53,. The conditionr < 7* in (I7) allows the estimat& |, to converge by enforcing that,
perhaps after a few jumps to= 0 and back ta; = 1, £ eventually is so that¢, {y) is in the said basin of
attraction. The conditions involving, in (18), (17), and[(1l9) force, to remain at zero along solutions
with ¢ = 1. These choices facilitate the establishment of our maiultrés Section 1lI-G. A procedure to
design the controller parameters is given in Sedfion 11I-D.
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2) Supervision of Controlle, (¢ = 0): From item 1 of Assumptioh 3.1 and (10) foe= 0, it follows
that z(t, j) approaches zero as(|ho(£(t,7))|) approaches zero. Furthermore, whgn< ¢ ,, (o € Do,
andt or j are large enough, it follows froni_(lL11) far= 0 and items 1.b and 3 in Assumptién3.1 that
after jumps tog = 0, (&, (o) will be in the set

{(67 CO) : ‘/0(67 CO) S 60,1)}7 (20)

which, by definition ofs(,, is a subset of the basin of attraction @, /Cy). Then, the supervisor is
designed to applyCy as long asz, is smaller or equal thas,,, and when is larger or equal to that
parameter, a jump tg = 1 is triggered. Note that the logic for= 1 eventually forces flows for at least
7* units of time, which allows or j to become large enough, and with that, guarantee (thap) is
eventually in the sef(20). This mechanism is implementetbkmws:

« Flow according to ' '
§ = fp(& reo(ho(€), €)): o = feo(ho(§), Co),
1 =0, 2 = —coz0 + v0(ho(§)]), (21)
z71=0, ¢g=0, 7=0

(€,¢0) € Co, ¢ €Dy, €0a>20 >0,
when { z71=0, ¢q=0, 7=0. (22)
« Jump according to
£+ - 57 C0+ € (I)(]? Cf_ € (I)h ZS_ = 07 (23)
=0, ¢t=1, 77 =0,
when
G €D, 20>¢€0a, 21=0, ¢=0, 7=0. (24)

As (18), the flows defined il (21) enforce, in particular, thaémains constant and that the estimate of
|€] 4, converges. In fact, conditiof (22) allows flows when theraate of|¢| 4, is small enough, permitting
it to converge. When conditiori_(P4) holds, a jump backgte- 1 occurs. As explained below ([19), in
particular, such a jump would occur when, after a jump frem 1 to ¢ = 0, the state(¢, (o) is not in
By. The state; is updated to any value if?; and the estimator statg is reset to zero. These selections
properly initialize C; and enable our main result in Section TlI-C.

3) Closed-loop systenmiWe are now ready to write the resulting closed loop as a hydyglem. The
closed-loop hybrid system has state= (¢, (o, (1, 20, 21, ¢, 7) € R™ xR xR" xR XR5qx QXR5g =:
X. Collecting the definitions in Sectiohs 1I-B.1 and lI-B.the resulting closed-loop system, which is
denoted by, has dynamics given as follows:

o€, feq(hq(§), Cq))
(1 = a)feo(ho(§), Co)
q fea(hi(§), 1)
X = | (1=a)(=e0z0+%(ho(&)) | = FO): x€C,
q(—erz1 +m([h (1))
0

q

Xt € Go(x) UGi(x) UGs(x) = G(x), x € D,
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where: for eachy = 0, (£, () € Dy

§
9e0(ho(§), Co)
G
Go(x) = | (1 —¢20)20 +70(|Ro(E)]) | >
q

T

Go(x) = () otherwise; for eacly = 1, (£,¢1) € Dy

3
Co
gea(h1(§), 1)

G1(x) = 0 otherwise; for eachy € D;, U Dy,
GS(X) = (57 (b07 q)b 07 07 1- q, 0) )
G4(x) = 0 otherwise;

C = {x : (£¢)€CHN(CoaUC,UC),
Csa = {x : G €P1,600>2>0,21=0,g=0,7=0},
Cop = {x : (o€ Po,20=0,21 > €14,0=1},
C's,c = {X : Coe(I)Q,Zo:O,ZlZo,qzl,TST*},
D = {X : (£7CQ>ED(]}UDS,(1UDS,b7
Do = {x : G €P1,2 > 604,21 =0,¢g=0,7 =0},
Dep = {x : (o€ Po,20=0,610>2>0,g=1,7>7"}.

The flow mapF is defined in terms of the discrete statgo “select” the appropriate flow dynamics
when K, and K, are applied. The flow set' allows flow when both(¢, ¢,) is in the flow setC, and
the conditions for flow imposed by the hybrid supervisor atsfied. The latter are given ib_(22), {16),
and [17), which are captured in the séts,, Cs;, andC; ., respectively. The jump mapS,, G, and
G, above are defined to execute the jumps of the individual dybointrollers when their state jumps
due to (h,(€),(,) € D., or when reset of the appropriate states is required by thergispr jump
setsD,, and D,,;, which are given in[(24) and(119), respectively. Note thatsig. , is only defined
on D.,, the set-valued map§, and GG; are nonempty at pointg with components inD.,. For each

i = 0,1, the functionsy; and constants; are obtained from the OSS properties(&f, ;) imposed in
Assumptiori3.]1. Existence of parameters and* guaranteeing a solution to Proble#) {s established
in the next section. A design method for these parameterivén gn Sectiori -D.
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C. Nominal Properties of Closed-loop System
Our main result is as follows.

Theorem 3.5:(semi-global asymptotic stability) Suppose Assumptién B.1 holds. Then, for each com-
pact setM C X of initial conditions there exists an output-feedback ylsupervisorC, such that the
compact set

Ay = Ag x o x &1 x {0} x {0} x {0} x {0}

is asymptotically stable for the closed-loop systHm with a basin of attraction containingv1; i.e., for
eache > 0 there exist9 > 0 such that each solutiog to H,.; with |x(0,0)|4, < 0 satisfiedx(t,7)|4, < €
for all (¢,5) € dom x, and every maximal solutiog to H with x(0,0) € M is complete and satisfies
liHlt+j—>oo ‘X(tvj)
Proof: By the continuity of f,,, h;, and .; for each: = 0,1 imposed by Assumptioh 3.1, and
continuity of+;, F' is continuous. By the regularity properties @f; guaranteed by well posednessiof
and continuity ofh; from Assumptiod 311, compactness ®f for eachi = 0, 1, and the definition of the
set-valued mayds, G : D = X is outer semicontinuous, locally bounded, and nonemptylfiopoints in
D. By closedness of’, and D, guaranteed by well posedness/of and continuity ofr;, C' and D are
closed sets. This establishes that the hybrid supervisardk that the closed-loop system is a well-posed
hybrid system. Moreover, the constructionfof is such that solutions to the closed-loop syst&m exist
from points inR™ x R™ x R™ x R>p x R>g x Q X Rxy.

Now we show that4, is attractive fromAM. By the attractivity property induced b, in Assump-
tion[3.1.2.a and Assumptién 3.1.3, for every maximal sohufj to H,, from C'U D with ¢(0,0) = 1 there
exists(7', .J) € dom x such thaty(7, J) € Ds,. By definition of G, there exists/’ > J, (T, J') € dom x
such thaty* = x(T,J') € Cs,. Let X’ be the tail of the maximal solutioy from (7”,J') onwards.
With some abuse of notation, every maximal solutidrto ., with x’(0,0) € Cs, (in particular, with
X'(0,0) = x*) and(¢'(0,0), ¢;(0,0)) in the set[(2D), is complete and, by Assumpfion 3.1.1.a asdtisfies
limey oo [€'(2, 5)] a4y = 0. 1f (§'(8, ), C4(t, 7)) never reache$ (20), we claim that there existg) such that
2,(t,7) > €04, @and then, by the definition a0 andG, ¢ is mapped tal. Suppose not. Then, the solution
X' remains inCj, for all (', ;') € domy’ such thatt’ + j* > ¢ + j, which implies that{(t, ') < o,
since the norm estimatof ({10) fér= 0 remains on. Then, since,, < ¢, from (11) for: = 0, there
exists large enough+ j, (¢,7) € dom x’, such thatV,(¢'(¢,7), ¢)(t, 7)) < €o0p. This is a contradiction.
Then, a jump tay = 1 occurs. By the construction @f; . and D, the closed-loop system will remain
at ¢ = 1 for at leastr* units of time. Repeating this argument if needed, the faat e norm estimator
(10) for ¢ = 1 guarantees that the estimates converge (even when resajoimplies that, eventually, a
jump to ¢ = 0 will occur with (£, () in the set[(2D). Note that this is the case due to the fact treabt
are finitely many jumps frong = 0 to ¢ = 1 and back, as the following result guarantees.

Lemma 3.6: There exist positive parameters ¢, ,, and 1, such that there is no nondecreasing
sequence of timEs{(t;L,j;)}neN € dom y for which, for alln € N,

Q(t/%w]én) = 07 Q<t/2n+17jén+1> =L (25)
Proof: By contradiction, suppose that there exist a complete isolytand a nondecreasing sequence
{(t},, 1) }nen € dom x, which can always be chosen so thatl (25) hojdss 0, z(t;, j;) = 0, flows with
g = 0 occur with (t,j) € domy, t € [t},,t),.,), and flows withg = 1 occur with (¢,j) € dom,
t € [thy11,thn42), n € N. Due to the dynamics of the timer, which enforces that the time between two
jumps fromq = 1 to ¢ = 0 of the supervisor havés separated by at least > 0 seconds, the solution
cannot be Zeno (see Section Il for a definition of Zeno sohgjolt follows that, for each € N,

4, = 0.

(., —1) e domy, (t,],) € domy,

. . 26
Zo(tl2n+17jén+1 - 1) > €0,a5 Z1<tl2n+27jén+2 - 1) < €l,a- ( )

°In the sense that, ,; + ji,.1 > t,, + ji, for all n € N.
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By considering the restriction ofi(t,j) € domy’ : t € [t5, 1,15, 5],q(t,7) = 1} of the solution

x as a solution ta(P, K;) issuing fromx(t5,. 1, j5,.1), We get, from [(Il) withi = 1 and [26), that

%(5(t3n+27‘jén+2_1)7 Cl(tl2n+2>jén+2_1)) < Zl(tén+2>jén+2_1)+61(|(g(tén—i-lajén—i-l)a Cl(tén+1?jén+1))|-41><¢1
121 (L0415 Jonr1)]s 03n42) < €10

FO1 €15 onr1)s G (Boni1s Ton 1))l Ay xrs 00y 0), WhETES] = (#—1,_,, ji—ji,—1) and we have used
the fact that, (t5,,, ,, j5,,1) = 0. Due to the expression 6,, we havet (t5,, .5, jo,12) = §(thyta: Jonso—1)

an.d Cl(tén+27jén+2). € (I)l' Then! Sincején—i& >0 and |(€7Cl)(tén+2>jén+2)|.41><<1>1 - |€(t/2n+2?jén+2)|u41’
using [6) we obtain

a1([(€, ) (ansas Jont2)| arxar) <

W(f(tén+2,j§n+2 - 1)7 Cl(tén+2ajén+2 - 1))
Using (26) we get

|(§a Cl)(tén-l—% jén+2) |A1><<I>1 S (27)
al_,% (81,11 + 51(|(§a Cl)(t/Zn+17jén+l)|.A1 X Py 5én+2)) .

In the same way, from_(11) with = 0 we have, for each, V4(£(th,, 1, J9ns1)s Co(tonits Jonin)) <
Z0<t,2n+17jén+1 - 1) + BO(Kgu CO)(ténvjén)‘AOX‘I’o + ‘Zo(t§n7jén)‘7 (%n—i-l)’ This Imp“es

(&, <0)<t§n+1aj§n+1)|on‘l>o < O‘o_,i (Zo(tén—l-l?jén-i-l —-1)
+B0(|(£7CO)(ténhjén)‘-AOXq)O’5én+l)) ’ (28>

where we have used the fact thatt,,, j5,,) = 0. Sinceq(t;, j;) = 0 by construction of the sequence
(t;L?];’L)’ we have, from 8)1 (57 CO)(t/laji)|A0><<I>o < O‘(Y& (ZO(t/laji - 1) + 50(|(§a CO)(t6>j6)|AoX¢oa 59)
and, from [2),|(&, Ci)(t5, j5)|ayxe, < a7 (1ot

51(‘(57 Cl)(tllajiﬂfh X®1 5 6&)) ) which lmplles

(€, C1) (s, Jo) |y xay < (29)
041_& (51,a + 5 (A + Oé(ﬁ (20(t, j1 — 1)
+60(1(&: Co) (6, Jo) | Ao x @05 01)) 5 63))

where A = max,c 4, xa,, yed, xo, | — y|, Which denotes the maximal distance between the dgts @,
and A; x ®;, which is finite since both sets are compact. Consider thepastrsetM in the assumption
of Theoren{3.b. Due td_(12), there exists a compact set congaall solutions of( P, Ky) starting from
M. By this compactness property, the valuks := max zy(¢,7) and Ay = max |(&, (o) (¢, J)|40x @
are finite, where the maximum are taken {fa, j) € dom x : x is a solution of(P, Ky) starting from M }.
Therefore, either there does not exist a sequeite j/)}.en € dom x satisfying [25), or there exists
such a sequence and inequalityl(29) holds. However, in #tisrlcase, usinghax{t; + ji, th + j5} < 7,
pick 7" > 0 ande, 4, €1, such that

ozm(ozl_& (81,[1 + B, (A + oza& (Al + Bo(As, T*)) ,T*))
<en (30)

whereg; (s, t) := 2 exp(—¢&;t)a;2(s), i = 0, 1. Then, using[{B) with = 1, we getV; (£(t, 75), Ci(th, 75)) <
e1p. With (@), since (), 75) € 1 and (o(th, j5) € Py, we getvyo(ho(E(th, 75))) < €o0.4c0. Since the
supervisor use&, at (t,, j5) and Assumptiof_3]1.3 implies that, along solutiohs.< —c¢zo + €040,

we have thaty (¢, j) < ¢¢, for all future (¢, j). Then, no future jump of the supervisor is possible, which
is a contradiction, showing that there is no sequence gatis{25). [ ]
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By the attractivity properties of the basin of attractionasfd completeness of solutions (B, ), it
follows that every maximal solution convergesAQ. Hence, solutions are bounded. By the construction
of the jump map in equatiori_(118), the staje converges tob, while z; and 7, converge to zero. To
conclude the proof, note that the local stability properiieduced by, and the propertyi,(.4y) = 0
imply that A, is stable. [ |

Remark 3.7:Note that when assuming the existence of a norm-observé? {and not a pair of norm-
observers forP in closed loop withCy and with P in closed loop withkC; as in Assumption_3]1), we
obtain a globally asymptotic stabilizing hybrid controll€,. Indeed, following the proof of Theorem
[B.3 with this additional assumption, we may strength thailtesf Lemma[3.6 and obtain that there
is no nondecreasing sequence of times satisfyling f{@5pny initial condition (globally). With such a
detectability assumption, the obtained result would beelio spirit to [24], but generalizes it since [24]
pertains to the problem of uniting continuous-time comérsl with same objectives.

D. A Design Procedure

Theorem[ 3.6 guarantees the existence of an output-feedbduid supervisor solving Problem)(
While this result does not explicitly provide values of thgervisor parameters, the steps in its proof
provide guidelines (potentially conservative) on how toa$e these parameters. When exponential-decay
OSS-Lyapunov functions and associated functions cemtifthe OSS properties in Assumptibn]3.1 are
available (se€e (6)-[8)), the design procedure in the faligwesult is a consequence of the arguments in
the proof of Theoreri 3/5.

Corollary 3.8: (design procedure) Suppose Assumption B.1 holds. The output-feedback hylgpit-s
visor KC; with parameters ,, €1, and 7* designed following the next steps solves Problem (

Step 1) Let;, > 0 such thatl'y:={(&, ) : Vo(&, ) < e€op} iS a subset of the basin of attraction
By for the asymptotic stabilization ofly x ¢, with K.

Step 2) Chooss), > 0ande;;, > 0sothateg, < cop, 't :={E € R™ : Vi(&, () <erp, G € Pr}x
P, is a subset of'y, and every solution, ¢y) to (P, ICy) from I'y satisfiesyy(|ho(£(t, 5))|) < €0,a€0
for all (¢,5) € dom(¢, (o).

Step 3) Desigr;, > 0 and7* > 0 such that

ong(ozl_j (El,a + B, (A + ozo_& (Al + By (As, T*)) ,T*))
< E1p.

whereA = max,e 4o x @, yed, x@, [T — Y[, A1 = max 2o(t, j), Ay = max [(&, (o)(%, j)|.4,xa, fOr each

solution (¢, ¢o) to (P, Ko) from M (projected ontdR™ x R"), and 3,(s, t) = 2 exp(—e;t)a;2(s) for

eachi =0, 1.
Note that the condition in Step 3 can always be satisfied biinmcsmall enough parametey ,, which
defines the threshold for, to switch fromg = 1 to ¢ = 0, and large enough parameter, which forces
flows with controllerC; until the timer reaches such value. Such selections havefteet of enlarging
the time the controlleiC; is in the loop, making it possible that, after a jump frgm= 1 to ¢ = 0, the
state of the plant is such that controlliey stabilizes. A, x ¢, without further jump back tg = 1. Note
that the condition in Step 3 is a consequence of the proof afrhal3.6, which guarantees that there are
finitely many jumps fromg = 0 to ¢ = 1 and back (but does not quantify the number of such jumps).
The design procedure and, in particular, the tuninggf and 7* are illustrated in Section IV-A when
revisiting Examplé_314.

E. Robustness of the Closed-loop System
The following model of the plant with perturbations is cafesied

£=f(&u+dy) +dy (31)
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with outputsy, o = ho(&) + ds andy, 1 = hy(§) + d4, Whered; corresponds to actuator erral, captures
unmodeled dynamics, and;, d, represent measurement ndt8eThen, denoting byrlZ the signalsd;
extended to the state space)gfthe overall closed-loop syste#,; results in a perturbed hybrid system,
which is denoted byH,;, with dynamics

X = Flx+d)+d x+deC
X+ S G(X"‘dl)—'—dg x+deD.

The following result asserts that the stability of the cbbémop system is robust to a class of perturba-
tions. It follows from the asymptotic stability propertytaklished in Theorerh 3.5 and the fact that the
construction of the hybrid supervisor leads to a well-posleded-loop system.

Theorem 3.9:(stability under perturbations) Suppose Assumptigén B.1 holds. Then, there exists
KLL such that, for eactr > 0 and each compact se¥! C X, there exists) > 0 such that for each
measurablel;, ds : R — 0B every solutiony to H., with x(0,0) € M satisfies

IX(t, ). < B(Ix(0,0)|a,.t,5) +€ V(t,j) € dom.

Proof: By Theorem 6.5 in [14], there exist$ € KLL such that all solutiong to H,, satisfy
Ix(t,7)|a. < B(Ix(0,0)|4,,t,7) for all (¢,j) € dom x. Consider the perturbed hybrid systefy,. Since
dy(t),dy(t) € 0B for all t > 0, the closed-loop systeri,., can be written as

X €Fkx) xeCs

X" €Gs(x) xE€ Dy, (32)

where Fs5(x) := ¢oF(x + 0B) + 0B,
Gs(x):=={n : n €X' + B, X € G(x+B)},
Cy = {X : (X+6]B%)ﬁ()7é(2)}, and

Ds = {X : (x +0B)N D #(¢. This hybrid system corresponds to an outer perturbatiofgfand
satisfies (C1), (C2), (C3), and (C4) in [14] (see Example B.314] for more details). Then, the claim
follows by Theorem 6.6 in [14] since, for each compact 44t of the state space and eaeh> 0,
there existsd* > 0 such that for eachh € (0,0*], every solutionys to (32) from M satisfy, for all
(t7.]> € dom x5, ‘Xc;(tvj) As S 5(|X5<07 O) As7t7j) te. u

Remark 3.10:The stability and attractivity assumptions imposed in Teed3.5 and Theorein 3.9 can
be further relaxed as in [24]. In particular, the attrat¢yivhduced bykC; can be relaxed to be semi-global
and practical (by adapting the considered compact/getC X to these “semi-global and practical’
properties). Also, it can be relaxed to allow the individaahtrollers to have solutions that are bounded
but not complete, as long as the solutions to the closed-fyspem are all complete. Lastly, note that
Theoren 3.0 gives a qualitative robustness result. Whemsfog on specific nonlinear systems (such as
linear systems with saturation at the input), estimatiohbasins of attraction of individual continuous-
time controllers have been used in [24] and thus it may beilplesgor this class of specific nonlinear
systems, to derive qualitative results and more explicitriols for the robustness issue.

V. EXAMPLES

The proposed control algorithm piecing together two oufpatiback hybrid controllers is applicable
to numerous control systems where the design of a singlestatabilizing controller is difficult or even
impossible. Such applications include the stabilizatibthe inverted position of the single pendulum [27],
the inverted position of the pendubot [25], the position anéntation of a mobile robot [26], and the

9 The exogenous signals, i = 1,...,4, are given on hybrid time domains, and in general, theirevalan jump at jump times. For
exogenous signald;(t), that is, given by functions of time, given a hybrid time dom& it is possible to define, with some abuse of
notation,d; (¢, 7) := d;(t) for each(t, 7) € S. Solutions to hybrid systems with the perturbations absvenderstood similarly to the concept
of solution defined in Sectidnlll.
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synchronization of Lorenz oscillators [8]. An implememat of the proposed controller in a real-world
system will result in a logic-based algorithm that triggéve discrete updates of the variablgs 21, q,
and7 by checking viafl/else statements if the variables and measurements dhe ijump setD. In such
situations, the algorithm will update the values of the ales at the next time step. For an example of
such an implementation, see [20].

Next, we revisit Examples_3.3 afd B.4.

A. Stabilization with constrained inputs and limited infaation

Consider the stabilization of the origin ¢f (13) in Examjpld.3Suppose that the inputs are constrained
to uyuy = 0 and thata is a constant satisfyingx| € (0, ?). Measurements of; and ¢, are available
but not simultaneously. Due to these constraints, the thslesigning a single controller or a controller
uniting two controllers with the same objectives for thebdization of the origin is daunting. However, a
hybrid controllerC,, as presented in this paper, can be designed to accompiéstaik by coordinating
two controllers,KCy and K;, with different objectives. Consider the controllEy, in Example[ 3.4 which
consists of a static feedback controller that measigs) := &, to stabilize¢ to A, = (0,0). From
(@4), it can be verified thafs : V(&) < &} C By, with B, being the basin of attraction fd€,. Since
lal € (0, ?), we have thal/;((0,@)) < # and thus the point0, @) is in the interior of53,. A controller
K1 can be designed to steer the solutions4p := (0,@). From [14), it follows that the point0, @)
belongs to the interior oB,; hence item 3 in Assumptidn 3.1 holds. Uet({) := & — @. The controller
K, is given as in[(#) withn, = 0, r.1(€) := [k (€)+@, 0]7, and no dynamical state (i.€,; = D.; = ()
and f.1, g.1 are arbitrary). With this controller, the functidr (¢) = i&f + %(52 — @)? satisfies, for all
¢ € R (VVI(E), (& ker(€))) < =V1(€), from where a norm observer fd¢| 4, follows; e.g., we can
usez; = —z;. Then, Assumption 31 holds with. oy = m.; =1, &g = &, =0, g = 1, ande; = 1. Then,
using Theorerh 315 there exists a hybrid superviSpsuch that the origin of(13) is asymptotically stable.
Following Sectioi TII-B.3B, the closed-loop system hasestat= (£, 2, 21,¢,7) € RZXRXxRx QxR =: X
and is given

—&1+ (ke (§) — &)&F

—&HEFa+ Rz, €
(1= q)(—z0 + [ho(OI*(1 + |ho(§)[?))
—q4z=

0

q

GOX)=[T 00 1—¢q 0]7,C:=C,,UC,,UCs,

Cs,a = {X . 607(122020,21:0,61:0,7':0},
Cop = X 20=0,21>¢14,g=1},
Cse = {x 1 20=0,20 >0,g=1,7 < 7%},

D = Ds,a U Ds,ba
DS,“ = {X : 20250,(1721:07q:077-20}7
Dsp = {x 1 20=0,61,>2>0,g=1,7>7"}.

Figure[2 shows a trajectory to the closed-loop system when i €00 = €14 = 0.01, 7 = 1, and
M, = 10B, which are parameters found numerically. The trajectoaytstfrom£(0,0) = (3, —3) with
controller IC; connected to the plant & 1), which steers the plant component to a neighborhood of the

1 We denote the-th component ofi. by k% (£), i =1,2, ¢ =0, 1.
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origin. At about(¢,j) ~ (4.65,0), z; reaches:; , and 7 is abover*, triggering a jump toy = 0. In that
mode, the local controller steers the plant component to, zgrapproaches zero, and the other controller
components remain at zero. Figlile 3 shows a trajectory taltsed-loop system with(0,0) = 0 and
£(0,0) = (30,—30). In this case, a jump of the supervisor o= 1 occurs initially2d Since after the
jump z; is mapped to zero;; remains at zero for the remainder of the solution, jumps liack= 0 are
triggered everyr* seconds, with instantaneous jumps back te 1 until the local controller is capable
of stabilizing A,.

The design procedure in Corollary B.8 can be used to sysieatiptselect parameters , and 7. In
this way, we follow the steps proposed therein with= i and M, = 10B. Since, as shown earlier, we
have{¢ : Vy(¢) < &} C By, then we picksg, = ¢ in Step 1 and defin&,. When - < ¢y, < o, and
e1 < 0.015, we have that the conditions in Step 2 hold. In fact, soliofrom I'y satisfy [£(¢, 7)| < ?
for all (¢,5) € dom¢ and, sincey(s) = s*(1 + s*), we haveyy(|ho(£(t,5))|) < 5. Moreover, a simple
check on level sets indicates tht := {¢ € R? : V;(¢) < 0.015} C T. To pick ¢;, and 7* in Step
3, we first obtain the following values after straightfordlazomputationsA = |a|, A; = g4, Aoy =
a1 (0 + 2002(10 + £04)), g 1(s) = (25)/2, apa(s) = 3% andaij(s) = 2max {s'/* s'/2}. Using
€00 = 3=, then the condition in Step 3 is satisfied with, = 0.00005 and 7* = 15. Figure[4 shows
a simulation of the closed-loop system with these parametenich indicates that convergence to the
origin occurs after only one jump.

2 Q05

0 ;

25 o 1 2 3 4 5 6 7 8 9 10
x 10
z\? > [\
35 05 ) 05 1 15 2 25 3 35 0 L L L !

g 1 0 1 2 3 4 5 6 7 8 9 10

t

(a) Plant trajectory (b) Controller trajectory

Fig. 2. Plant and controller states of a closed-loop trajgct(a) Plant componerg(t, j) for (Z3) from £(0,0) = (3,—3), ¢(0,0) = 1,

7(0,0) = 20(0,0) = 0, 21(0,0) = 1. Dotted lines denote an estimate 8§, « (red) the jump fromg = 1 to 0, and x the setsA; = (0, @)

and Ao = (0,0), witha = %. (b) Controller states of hybrid superviskl;. The dashed lines represent the jumps in the variables r@lent
parameterszg,, = €1, = 0.01, and7" = 1.

B. Stabilization under topological obstructions

Consider the stabilization of the poist, := {£*}, for the point-mass system in Example]3.3. Following
the discussions therein, the measurements available are

n = hl (5) = (901 (5)7 v@l(&)v @2(5)7 v<p2(£)) vg S RZ? (33)
Y = hg(g) sz V§€§*+€B

2Dashed (red) lines denote jumps in the state components.
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Fig. 3. Plant and controller states of a closed-loop trajgct(a) Plant componerg(t, ;) for (I3) from £(0,0) = (30, —30), ¢(0,0) =
7(0,0) = 20(0,0) = 0, 21(0,0) = 1. Dotted lines denote an estimate 8§, « (red) the jump fromg = 1 to 0, and x the setsA; = (0, @)

and Ao = (0,0)(= A), with @ = 1. (b) Controller states of hybrid supervisii.. The dashed lines represent the jumps in the variables.
Controller parameters,, = €1, = 0.01, and7™ = 1.
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(a) Plant trajectory (b) Controller trajectory

Fig. 4. Plant and controller states of a closed-loop trajgct(a) Plant componerg(t, j) for (Z3) from £(0,0) = (3,—3), ¢(0,0) = 1,

7(0,0) = 20(0,0) = 0, 21(0,0) = 1. Dotted lines denote an estimate f8f, x (red) the jump fromy = 1 to 0, and x the sets4; = (0, @)

and Ao = (0,0), witha = %. (b) Controller states of hybrid superviskl;. The dashed lines represent the jumps in the variables r@lent
parameterszo, = ==, 1,0 = 0.00005, andr* = 15.

for somee > 0, wherey;, i = 1,2, are continuously differentiable functions given by
1 o [}
pi(6) = 5~ &) (€~ ) + Bdi())

with B : R>o — R a continuously differentiable function defined B$z) := max{0, (z — 1)*In 1} and
d; : R* — R, a continuously differentiable function that measures tistadce from any point i, to
the setN. These functions define “potential” functions relative b tintermediate target poigf that
include the presence of the obstacle. The $étfor & = 0.07 and¢ = (1,0), A, for {&*} = {(4,-1)},
and O; given by O, = {€ € R? : [§|-1.1> &}, O = {€€eR? ¢ |&] +1.1 <&} are depicted in
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Figure[5. The point° is the point at whichp; vanishes. The local controller can measure the full state
¢ in the neighborhood4, + B for ¢ = 1.

(a) Plant trajectory with initial condition§(0,0) = 0, ¢(0,0) =1,  (b) Plant trajectory with initial conditions(0, 0) = 0, ¢(0,0) = 1,
¢1(0,0) = 1, steered below the obstacle usirg(¢, 1) while in (1(0,0) = 2, steered above the obstacle using¢,2) while in
Cl - 1. Cl = 2_

Fig. 5. Trajectoriest(¢,7) to point-mass system with hybrid superviskl,. Dotted circle denotes an estimate Bf and x the sets

A1 ={(3,0)} and Ao = {(4,—1)}. The setO; is the region below the upper “wedge,” while the €&t is the region above the lower
“wedge,” which is depicted in dotted line. The cone emangafiom the initial condition depicts that, initially, thertgt point is not in the

line-of-sight of the point-mass system. The controllerapaeters used ane = 1.1 and A = 0.09.

We design a hybrid supervisdi, to coordinate two output-feedback controllers. The cdieravhile
in modeg = 1 is hybrid with a discrete statg € {1,2} evolving continuously according t¢, = 0.
The target stabilization set for this controller is takerb®.A; = {¢°}. Let u > 1,\ € (0, — 1). The
following hybrid controller defines the feedback la@ x.1(¢.¢1) == —V, (§) when (&,() € Ceq,
where

Cer :=A{(§ 1) € Uaen21(O¢, x {Gi}) -
P (6) < 1% minC1€{1,2} P (6)}
and has discrete dynamics given by

G € Gy, G1) == {C{ e{L,2} 1 () > (n— A)%{(f)}
when (¢, (1) € D1, where

Dey = {(y1,¢1) : 9¢ (€)= (p— N mingepaypc (§) ] -

The design parameters of the controliér are i and .
Take V(&,¢1) = ¢, (€), then with theC; dynamics we obtain, with/ := (n — \)™, 7/ € (0,1),
p(s) = s,
V(ga C{) S V/V(gv Cl) VC{ € Gl(gv Cl)? \V/(S, Cl) € Dc,l )

and!v(€7C1) S C(c,la
<VV(§7 C{)a fp(ga K’l(ga Cl))) S —2 V(€7 Cl) :

Global asymptotic stability of4, (on C.; U D, ) follows, from where a norm observer f¢f| 4, exists;
e.g., we can use; = 1 —+/ and any clasgc function ~; for the norm observer in_(10). The local
controller to use in mode = 0 is a static, continuous-time feedback of the forxy, (&) == —& + £*.
Local asymptotic stability of4, follows with basin of attractiond,+<B andz, = —z, is @ norm observer

for |£|Ao'
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Figure[% depicts trajectories to the plant with the propdsglrid supervisor for two different initial
conditions of the staté; of the controllerK;. The trajectories converge first to a neighborhoodA4ef
and whenz; becomes small enough, a jumpA@ is triggered and the trajectories converge4g

V. CONCLUSION

A solution to a general uniting problem was formulated andreised in examples. The controllers
considered can be hybrid, nonlinear, output-feedback,have different objectives. The solution consists
of constructing a well-posed hybrid supervisor that appetely combines two hybrid controllers to
accomplish the task. In addition to stability and attrattiproperties, to guarantee the existence of
norm estimators, the individual controllers are assumedhdoice an output-to-state stability property.
Robustness of the full closed-loop system is asserted sialtsefor perturbed hybrid systems. Examples
illustrating the design methodology of the hybrid supeyvizere presented. The proposed algorithm can
also be used for waypoint navigation and loitering contfolilmmanned aerial vehicles [7]. The proposed
solution does not assume a detectability property for taatpnd thus, in contrast to [24], a global norm
observer may not exist. When this stronger property is asduthe proposed hybrid supervisor achieves
robust, global asymptotic stability. Moreover, the attiraty property in Assumptio_3]1 can be relaxed
to a semi-global, practical attractivity property.
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