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Abstract: This paper considers the distributed consensus problem of multi-agent systems with general

continuous-time linear dynamics. Two distributed adaptive dynamic consensus protocols are proposed,

based on the relative output information of neighboring agents. One protocol assigns an adaptive coupling

weight to each edge in the communication graph while the other uses an adaptive coupling weight for each

node. These two adaptive protocols are designed to ensure that consensus is reached in a fully distributed

fashion for any undirected connected communication graphs without using any global information. A

sufficient condition for the existence of these adaptive protocols is that each agent is stabilizable and

detectable. The cases with leader-follower and switching communication graphs are also studied.
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1 Introduction

Consensus is an important problem in the area of cooperative control of multi-agent systems.

The main idea of consensus is to develop distributed control policies that enable a group of agents

to reach an agreement on certain quantities of interest. Due to its potential applications in broad

areas such as spacecraft formation flying and sensor networks, the consensus problem has been

extensively studied by numerous researchers from various perspectives; see [1, 2, 3, 4, 5, 6, 7]

and references therein. Specifically, a general framework of the consensus problem for networks

of integrators with fixed or switching topologies is proposed in [2]. The controllability of leader-

follower multi-agent systems is considered in [8] from a graph-theoretic perspective. Distributed

tracking control for multi-agent consensus with an active leader is addressed in [9, 10] by using

neighbor-based state estimators. Consensus of networks of double- and high-order integrators

is studied in [6, 11, 12]. Consensus algorithms are designed in [7, 13] for a group of agents with

quantized communication links and limited data rate. In most existing studies on consensus,

the agent dynamics are assumed to be first-, second-, or high-order integrators, which might be

restrictive in many cases.

This paper considers the distributed consensus problem of multi-agent systems with general

continuous-time linear dynamics. Previous works along this line include [14, 15, 16, 17, 18, 19,
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20]. One common feature in [14, 15, 17, 19, 20] is that at least the smallest nonzero eigenvalue

of the Laplacian matrix associated with the communication graph is required to be known

for the consensus protocol design. However, the smallest nonzero eigenvalue of the Laplacian

matrix is global information in the sense that each agent has to know the entire communication

graph to compute it. Therefore, the consensus protocols given in [14, 15, 17, 19, 20] cannot be

implemented by the agents in a fully distributed fashion, i.e., using only the local information

of its own and neighbors. To overcome this limitation, an adaptive static consensus protocol is

proposed in [21], which is motivated by the adaptive strategies for synchronization of complex

networks in [22]. Similar adaptive schemes are presented to achieve second-order consensus with

inherent nonlinear dynamics in [23]. Note that the protocols in [21, 22, 23] rely on the relative

states of neighboring agents, which however might not be available in many circumstances.

In this paper, we extend [21, 23] to investigate the case where the relative outputs, rather than

the relative states, of neighboring agents are accessible. Two novel distributed adaptive dynamic

consensus protocols are proposed, namely, one protocol assigns an adaptive coupling weight to

each edge in the communication graph while the other uses an adaptive coupling weight for

each node. These two adaptive protocols are designed to ensure that consensus is reached in a

fully distributed fashion for any undirected connected communication graph without using any

global information. A sufficient condition for the existence of these adaptive protocols is that

each agent is stabilizable and detectable. The cases with leader-follower and switching graphs

are also studied. It is shown that the consensus protocol with an adaptive coupling weight for

each edge is applicable to arbitrary switching connected communication graphs. It is worth

mentioning that the consensus protocols in [16, 18] do not need any global information either.

However, in [16] the protocol is based on the relative states of neighboring agents and the agent

dynamics are restricted to be neutrally stable. In [18], the eigenvalues of the state matrix of

each agent are assumed to lie in the closed left-half plane. Furthermore, the dimension of the

protocol in [18] is higher than that of the consensus protocol with an adaptive coupling weight

for each node in the current paper.

The rest of this paper is organized as follows. Some useful results of the graph theory are

reviewed in Section 2. The consensus problems under the proposed two distributed adaptive

protocols are investigated in Section 3. The consensus problem with leader-follower and switch-

ing communication graphs are studied, respectively, in Sections 4 and 5. A simulation example

is presented in Section 6 to illustrate the analytical results. Section 7 concludes the paper.

2 Notation and Graph Theory

Let Rn×n be the set of n × n real matrices. The superscript T means the transpose for real

matrices. IN represents the identity matrix of dimension N . Matrices, if not explicitly stated,

are assumed to have compatible dimensions. Denote by 1 the column vector with all entries

equal to one. The matrix inequality A > B (respectively, A ≥ B) means that A−B is positive
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definite (respectively, positive semi-definite). A⊗B denotes the Kronecker product of matrices

A and B. diag(A1, · · · , AN ) represents a block-diagonal matrix with matrices Ai, i = 1, · · · , N,

on its diagonal. A matrix is Hurwitz if all of its eigenvalues have negative real parts.

A directed graph G is a pair (V, E), where V = {v1, · · · , vN} is a nonempty finite set of nodes

and E ⊆ V × V is a set of edges, in which an edge is represented by an ordered pair of distinct

nodes. For an edge (vi, vj), node vi is called the parent node, node vj the child node, and vi

is a neighbor of vj . A graph with the property that (vi, vj) ∈ E implies (vj , vi) ∈ E for any

vi, vj ∈ V is said to be undirected. A path from node vi1 to node vil is a sequence of ordered

edges of the form (vik , vik+1
), k = 1, · · · , l−1. An undirected graph is connected if there exists a

path between every pair of distinct nodes, otherwise is disconnected. A directed graph contains

a directed spanning tree if there exists a node called the root, which has no parent node, such

that the node has directed paths to all other nodes in the graph.

The adjacency matrix A = [aij ] ∈ RN×N associated with the directed graph G is defined by

aii = 0, aij = 1 if (j, i) ∈ E and aij = 0 otherwise. The Laplacian matrix L = [Lij] ∈ RN×N

is defined as Lii =
∑

j 6=i aij and Lij = −aij, i 6= j. For undirected graphs, both A and L are

symmetric.

Lemma 1 [24, 2, 3].

(1) Zero is an eigenvalue of L with 1 as a corresponding right eigenvector, and all nonzero

eigenvalues have positive real parts. Furthermore, zero is a simple eigenvalue of L if and only if

the graph G has a directed spanning tree.

(2) For an undirected graph G, the smallest nonzero eigenvalue λ2(L) of the Laplacian matrix

L satisfies λ2(L) = min
x 6=0,1Tx=0

xTLx
xTx

.

3 Consensus with Undirected Communication Graphs

In this section, we assume that the communication graph among the agents, denoted by G, is

undirected. Consider a group of N identical agents with general linear dynamics. The dynamics

of the i-th agent are described by

ẋi = Axi +Bui,

yi = Cxi, i = 1, · · · , N,
(1)

where xi ∈ Rn is the state, ui ∈ Rp the control input, yi ∈ Rq the measured output, and A, B,

C are constant matrices with compatible dimensions.

In order to achieve consensus for the agents in (1), a variety of static and dynamic consensus

protocols have been proposed in, e.g., [14, 15, 16, 17, 18, 19, 20]. One common feature in

[14, 15, 17, 19, 20] is that at least the smallest nonzero eigenvalue λ2 of the Laplacian matrix

associated with G is required to be known for the consensus protocol design. However, λ2 is

global information in the sense that each agent has to know the entire graph G to compute

it. Therefore, the consensus protocols given in [14, 15, 17, 19, 20] cannot be implemented by

the agents in a fully distributed fashion, i.e., using only the local information of its own and
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neighbors. To overcome this limitation, an adaptive static consensus protocol is proposed in

[21], which is motivated by the adaptive strategies for synchronization of complex networks in

[22]. Note that the protocols in [21, 22] are based on the relative states of neighboring agents,

which however might not be available in many circumstances.

In this paper, we extend to investigate the case where each agent knows the relative outputs,

rather than the relative states, of its neighbors with respect to itself. Two novel distributed

adaptive dynamic consensus protocols are proposed. The first adaptive consensus protocol

dynamically updates the coupling weight for each edge (i.e., the communication links between

neighboring agents), which is given by

v̇i = (A+BF )vi + L

N∑

j=1

cijaij [C(vi − vj)− (yi − yj)] ,

ċij = κijaij

[
yi − yj

C(vi − vj)

]T

Γ

[
yi − yj

C(vi − vj)

]
,

ui = Fvi, i = 1, · · · , N,

(2)

where vi ∈ Rn is the protocol state, i = 1, · · · , N , aij is the (i, j)-th entry of the adjacency

matrix A associated with G, cij(t) denotes the time-varying coupling weight for the edge (i, j)

with cij(0) = cji(0), κij = κji are positive constants, and L ∈ Rq×n, F ∈ Rp×n, and Γ ∈ R2q×2q

are gain matrices to be determined.

The second adaptive consensus protocol assigns an adaptive coupling weight to each node

(i.e., agent), described by

˙̃vi = (A+BF )ṽi + diL

N∑

j=1

aij [C(ṽi − ṽj)− (yi − yj)] ,

ḋi = τi




N∑

j=1

aij

[
yi − yj

C(ṽi − ṽj)

]T

Γ




N∑

j=1

aij

[
yi − yj

C(ṽi − ṽj)

]
 ,

ui = F ṽi, i = 1, · · · , N,

(3)

where ṽi ∈ Rn is the protocol state, i = 1, 2, · · · , N , di(t) denotes the coupling weight for agent

i, τi are positive constants, and the rest of the variables are defined as in (2).

The objective in this section is to find proper gain matrices in (2) and (3) such that the N

agents in (1) achieve consensus in the sense of limt→∞ ‖xi(t)− xj(t)‖ = 0, ∀ i, j = 1, · · · , N.

3.1 Consensus Under Adaptive Protocol (2)

In this section, we study the consensus problem of the agents in (1) under the adaptive protocol

(2). Let zi = [xTi , v
T
i ]

T , ei = zi −
1
N

∑N
j=1 zj, z = [zT1 , · · · , z

T
N ]T , and e = [eT1 , · · · , e

T
N ]T . Then,

we get e = [(IN − 1
N
11T ) ⊗ I2n]z. It is easy to see that 0 is a simple eigenvalue of IN − 1

N
11T

with 1 as a corresponding eigenvector, and 1 is the other eigenvalue with multiplicity N − 1.

Then, it follows that e = 0 if and only if z1 = · · · = zN . Therefore, the consensus problem of
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agents (1) under the protocol (2) is solved if e converges to zero. It is not difficult to obtain

that ei and cij satisfy

ėi = Mei +
N∑

j=1

cijaijH(ei − ej),

ċij = κijaij(ei − ej)
TR(ei − ej), i = 1, · · · , N,

(4)

where

M =

[
A BF

0 A+BF

]
, H =

[
0 0

−LC LC

]
,

R = (I2 ⊗ CT )Γ(I2 ⊗ C).

The following theorem presents a sufficient condition for solving the consensus problem.

Theorem 1. Assume that the communication graph G is undirected and connected. Then,

the N agents in (1) reach consensus under the adaptive protocol (2) with F satisfying that

A + BF is Hurwitz, Γ =

[
Iq −Iq

−Iq Iq

]
, and L = −Q−1CT , where Q > 0 is a solution to the

following linear matrix inequality (LMI):

ATQ+QA− 2CTC < 0. (5)

Moreover, the protocol states vi, i = 1, · · · , N , converge to zero and each coupling weight cij

converges to some finite steady-state value.

Proof. Consider the Lyapunov function candidate

V1(t) =

N∑

i=1

eTi Qei +

N∑

i=1

N∑

j=1,j 6=i

(cij − α)2

2κij
, (6)

where Q =

[
ςP +Q −Q

−Q Q

]
, P > 0 satisfies P (A + BF ) + (A + BF )TP < 0, and α and ς are

positive constants to be determined later. It is easy to verify that Q > 0.

The time derivative of V1(t) along the trajectory of (4) can be obtained as

V̇1 = 2
N∑

i=1

eTi Qėi +
N∑

i=1

N∑

j=1,j 6=i

cij − α

κij
ċij

= 2

N∑

i=1

eTi Q[Mei +

N∑

j=1

cijaijH(ei − ej)]

+
N∑

i=1

N∑

j=1,j 6=i

(cij − α)aij(ei − ej)
TR(ei − ej).

(7)
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Let ẽi = Tei, i = 1, · · · , N , with T =

[
Iq 0

−Iq Iq

]
. Then, (7) can be rewritten as

V̇1 = 2
N∑

i=1

ẽTi Q̃[M̃ẽi +
N∑

i=1

N∑

j=1

cijaijH̃(ẽi − ẽj)]

+

N∑

i=1

N∑

j=1,j 6=i

(cij − α)aij(ẽi − ẽj)
T R̃(ẽi − ẽj),

(8)

where

Q̃ , T−TQT−1 =

[
ςP 0

0 Q

]
, M̃ , TMT−1 =

[
A+BF BF

0 A

]
,

H̃ , THT−1 =

[
0 0

0 LC

]
, R̃ , T−TRT−1 =

[
0 0

0 CTC

]
.

By noting that L = −Q−1CT , we can see that

Q̃H̃ = R̃. (9)

Because κij = κji, cij(0) = cji(0), and Γ is symmetric, it follows from (2) that cij(t) = cji(t),

∀ t ≥ 0. Therefore, we have

N∑

i=1

N∑

j=1,j 6=i

(cij − α)aij(ẽi − ẽj)
T R̃(ẽi − ẽj)

= 2

N∑

i=1

N∑

j=1

(cij − α)aij ẽ
T
i R̃(ẽi − ẽj).

(10)

Let ẽ = [ẽT1 , · · · , ẽ
T
N ]T . Using (10) and (9), it follows from (8) that

V̇1 = 2

N∑

i=1

ẽTi Q̃M̃ẽi − 2

N∑

i=1

N∑

j=1

αaij ẽ
T
i R̃(ẽi − ẽj)

= ẽT [IN ⊗ (Q̃M̃+ M̃T Q̃)− 2αL ⊗ R̃]ẽ,

(11)

where L is the Laplacian matrix associated with G.

By the definitions of e and ẽ, it is easy to see that (1T ⊗ I)ẽ = (1T ⊗ T )e = 0. Because G is

connected, it then follows from Lemma 1 that

ẽT (L ⊗ I)ẽ ≥ λ2(L)ẽ
T ẽ, (12)

where λ2(L) is the smallest nonzero eigenvalue of L. Therefore, we can get from (11) that

V̇1 ≤ ẽT [IN ⊗ (Q̃M̃+ M̃T Q̃ − 2αλ2(L)R̃)]ẽ. (13)

Note that

Q̃M̃+ M̃T Q̃ − 2αλ2(L)R̃

=

[
ς(P (A+BF ) + (A+BF )TP ) ςPBF

ςF TBTP QA+ATQ− 2αλ2(L)C
TC

]
.

(14)
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By choosing α sufficiently large such that αλ2(L) ≥ 1, it follows from (5) that QA + ATQ −

2αλ2(L)C
TC < 0. Then, choosing ς > 0 sufficiently small, and in virtue of Schur Complement

Lemma [25], we can obtain from (14) that

Q̃M̃+ M̃T Q̃ − 2αλ2(L)R̃ < 0.

Therefore, V̇1 ≤ 0.

Since V̇1 ≤ 0, V1(t) is bounded, implying that each cij is also bounded. By noting that R is

positive semi-definite, we can see from (4) that cij is monotonically increasing. Then, it follows

that each coupling weight cij converges to some finite value. Note that V̇1 ≡ 0 implies that ẽ = 0

and e = 0. Hence, by LaSalle’s Invariance principle [26], it follows that e(t) → 0, as t → ∞.

That is, the consensus problem is solved. By (2) and noting the fact that A+ BF is Hurwitz,

it is easy to see that the protocol states vi, i = 1, · · · , N , converge to zero. �

Remark 1. As shown in [14], a necessary and sufficient condition for the existence of a Q > 0

to the LMI (5) is that (A,C) is detectable. Therefore, a sufficient condition for the existence of

a protocol (2) satisfying Theorem 1 is that (A,B,C) is stabilizable and detectable. It is worth

noting that a favorable feature of (2) is that its gain matrices F , L and Γ can be independently

designed.

3.2 Consensus Under Adaptive Protocol (3)

This section considers the consensus problem of the agents in (1) under the adaptive protocol

(3). Let z̃i = [xTi , ṽ
T
i ]

T , ζi = z̃i −
1
N

∑N
j=1 z̃j, and ζ = [ζT1 , · · · , ζ

T
N ]T . As shown in the last

subsection, the consensus problem of agents (1) under the protocol (3) is solved if ζ converges

to zero. We can obtain that ζi and di satisfy the following dynamics:

ζ̇i = Mζi + di

N∑

j=1

aijH(ζi − ζj)−
1

N

N∑

k=1

dk

N∑

j=1

akjH(ζk − ζj),

ḋi = τi[

N∑

j=1

aij(ζi − ζj)
T ]R[

N∑

j=1

aij(ζi − ζj)], i = 1, · · · , N,

(15)

where M, H, R are defined in (4). Let D(t) = diag(d1(t), · · · , dN (t)). Then, the first equation

in (15) can be rewritten into a compact form as

ζ̇ = [IN ⊗M+ ((IN −
1

N
11T )DL)⊗H]ζ, (16)

where L is the Laplacian matrix associated with G.

Theorem 2. Assume that the communication graph G is undirected and connected. Then,

the N agents in (1) reach consensus under the protocol (3) with F , L, and Γ given as in Theorem

1. Moreover, the protocol states ṽi, i = 1, · · · , N , converge to zero and each coupling weight d̃i

converges to some finite steady-state value.

Proof. Consider the Lyapunov function candidate

V2 = ζT (L ⊗Q)ζ +

N∑

i=1

(di − β)2

2τi
, (17)
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where Q is defined in (6), and β is a positive constant to be determined later. For a connected

graph G, it follows from Lemma 1 and the definition of ζ that ζT (L⊗Q)ζ ≥ λ2(L)ζ
T (IN ⊗Q)ζ.

Therefore, it is easy to see that Ωc = {ζ, di|V2 ≤ c} is compact for any positive c.

Following similar steps to those in the proof of Theorem 1, we can obtain the time derivative

of V2 along the trajectory of (16) as

V̇2 = 2ζT (L ⊗Q)ζ +

N∑

i=1

di − β

τi
ḋi

= 2ζT [L ⊗QM+ (LDL − L11TDL)⊗QH]ζ +

N∑

i=1

di − β

τi
ḋi

= 2ζ̃T [L ⊗ Q̃M̃+ (LDL)⊗ R̃]ζ̃ +

N∑

i=1

di − β

τi
ḋi.

(18)

where ζ̃ , [ζ̃T1 , · · · , ζ̃
T
N ]T = (IN ⊗ T )ζ with T =

[
Iq 0

−Iq Iq

]
, and Q̃, M̃, R̃ are the same as in

(8). Observe that

ζ̃T [(LDL)⊗ R̃]ζ̃ =

N∑

i=1

di[

N∑

j=1

aij(ζ̃i − ζ̃j)
T ]R̃[

N∑

j=1

aij(ζ̃i − ζ̃j)]. (19)

Moreover, the second equation in (15) can be rewritten as

ḋi = τi[
N∑

j=1

aij(ζ̃i − ζ̃j)
T ]R̃[

N∑

j=1

aij(ζ̃i − ζ̃j)]. (20)

Substituting (19) and (20) into (18) yields

V̇2 = 2ζ̃T (L ⊗ Q̃M̃)ζ̃ − 2β

N∑

i=1

[

N∑

j=1

aij(ζ̃i − ζ̃j)
T ]R̃[

N∑

j=1

aij(ζ̃i − ζ̃j)]

= ζ̃T [L ⊗ (Q̃M̃+ M̃T Q̃T )− 2βL2 ⊗ R̃]ζ̃.

(21)

Because G is connected, it follows from Lemma 1 that zero is a simple eigenvalue of L and

all the other eigenvalues are positive. Let U = [ 1 Y1 ] and UT =
[

1
T

N

Y2

]
, with Y1 ∈ RN×(N−1),

Y2 ∈ R(N−1)×N , be such unitary matrices that UTLU = Λ , diag(0, λ2, · · · , λN ), where λ2 ≤

· · · ≤ λN are the nonzero eigenvalues of L. Let ζ̄ , [ζ̄T1 , · · · , ζ̄
T
N ]T = (UT⊗I)ζ̃. By the definitions

of ζ and ζ̃, it is easy to see that ζ̄1 = (1T ⊗ T )ζ = 0. Then, it follows from (21) that

V̇2 = ζ̄T [Λ⊗ (Q̃M̃+ M̃T Q̃T )− 2βΛ2 ⊗ R̃]ζ̄

=

N∑

i=2

λiζ̄
T
i (Q̃M̃+ M̃T Q̃T − 2βλiR̃)ζ̄i.

(22)

As shown in the proof of Theorem 1, by choosing β sufficiently large such that βλ2(L) ≥ 1

and ς > 0 sufficiently small, we can obtain from (22) that V̇2 ≤ 0. Note that V̇2 ≡ 0 that ζ̄i = 0,

i = 2, · · · , N , which, together with ζ̄1 = 0, further implies that ζ = 0. Therefore, it follows from
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Lasalle’s Invariance principle that ζ → 0, as t → ∞. The convergence of di and ṽi, i = 1, · · · , N ,

can be shown by following similar steps in the proof of Theorem 1, which is omitted here for

brevity. �

Remark 2. Different from the previous adaptive schemes in [21, 22, 23], which are based on

the relative state information, the proposed adaptive protocols (2) and (3) rely on the relative

outputs of neighboring agents. Contrary to the protocols in [14, 15, 17, 19, 20], the adaptive

protocols (2) and (3) can be computed and implemented by each agent in a fully distributed

fashion without using any global information. It is worth mentioning that the consensus pro-

tocols in [16, 18] do not need any global information either. However, in [16] the protocol is

based on the relative states of neighboring agents and the agent dynamics are restricted to be

neutrally stable. In [18], the eigenvalues of the state matrix of each agent are assumed to lie in

the closed left-half plane. Furthermore, the dimension of the protocol in [18] is higher than that

of the adaptive protocol (3).

Remark 3. Some comparisons between the adaptive consensus protocols (2) and (3) are now

briefly discussed. The dimension of the adaptive protocol (2) is proportional to the number of

edges in the communication graph. Since the number of edges is usually larger than the number

of nodes in a connected graph, the dimension of the protocol (2) are generally higher than that

of (3). On the other hand, the adaptive protocol (2) are applicable to the case with switching

communication graphs, which will be shown in Section 5.

4 Consensus with Leader-Follower Communication Graphs

The section extends to consider the case where the N agents in (1) maintain a leader-follower

communication graph G. Without loss of generality, assume that the agent indexed by 1 is the

leader whose control input u1 = 0 and the agents indexed by 2, · · · , N , are followers. The leader

does not receive any information from the followers, i.e., it has no neighbor, while each follower

can obtain the relative outputs with respect to its neighbors.

In the sequel, the following assumption is needed.

Assumption 1. The subgraph associated with the followers is undirected and the graph G

contains a directed spanning tree with the leader as the root.

Denote by L the Laplacian matrix associated with G. Because the leader has no neighbors,

L can be partitioned as

L =

[
0 01×(N−1)

L2 L1

]
, (23)

where L2 ∈ R(N−1)×1 and L1 ∈ R(N−1)×(N−1) is symmetric.

It is said that the leader-follower consensus problem is solved if the states of the followers

converge to the state of the leader, i.e., limt→∞ ‖xi(t)− x1(t)‖ = 0, ∀ i = 2, · · · , N .

Based on the relative output information of neighboring agents, the first adaptive consensus
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protocol with a dynamic coupling weight for each edge is proposed for the followers as follows:

˙̄vi = (A+BF )v̄i + L

N∑

j=1

dijaij [C(v̄i − v̄j)− (yi − yj)] ,

ḋij = ǫijaij

[
yi − yj

C(v̄i − v̄j)

]T

Γ

[
yi − yj

C(v̄i − v̄j)

]
,

ui = F v̄i, i = 2, · · · , N,

(24)

where v̄i ∈ Rn is the protocol state, i = 2, · · · , N , v̄1 ∈ Rn is generated by ˙̄v1 = (A+BF )v̄1, aij

is the (i, j)-th entry of the adjacency matrix A of G, dij is the coupling weight associated with

the edge (j, i) with dij(0) = dji(0) for i, j = 2, · · · , N , ǫij = ǫji are positive constants, L ∈ Rq×n,

F ∈ Rp×n, and Γ ∈ R2q×2q.

Theorem 3. For any graph G satisfying Assumption 1, the N agents in (1) reach leader-

follower consensus under the protocol (24) with F , L, and Γ given as in Theorem 1. Meanwhile,

the protocol states v̄i, i = 2, · · · , N , converge to zero and the coupling weights dij converge to

finite steady-state values.

Proof. Let ξi =

[
xi − x1

v̄i − v̄1

]
, i = 2, · · · , N . Then, we can get from (1) and (24) that

ξ̇i = Mξi +

N∑

j=2

dijaijH(ξi − ξj) + di1ai1Hξi,

ḋi1 = ǫi1ai1ξ
T
i Rξi,

ḋij = ǫijaij(ξi − ξj)
TR(ξi − ξj), i = 2, · · · , N,

(25)

where M, H and R are the same as in (4). Clearly, the leader-follower consensus problem of

(1) is solved by (24) if the states ξi of (25) converge to zero.

Consider the Lyapunov function candidate

V3 =

N∑

i=2

ξTi Qξi +

N∑

i=2

N∑

j=2,j 6=i

(dij − γ)2

2ǫij
+

N∑

i=2

(di1 − γ)2

ǫi1
, (26)

where γ is a positive constant and Q is defined in (6). Following similar steps to those in the

proof of Theorem 1, the time derivative of V2 along the trajectory of (25) can be obtained as

V̇3 = 2

N∑

i=2

ξTi Qξ̇i +

N∑

i=2

N∑

j=2,j 6=i

dij − β

ǫij
ḋij +

N∑

i=2

2(di1 − γ)

ǫi1
ḋi1

= 2

N∑

i=2

ξ̃Ti Q̃[M̃ξ̃i +

N∑

j=2

dijaijH̃(ξ̃i − ξ̃j) + di1ai1H̃ξ̃i]

+

N∑

i=2

N∑

j=2,j 6=i

(dij − γ)aij(ξ̃i − ξ̃j)
T R̃(ξ̃i − ξ̃j) + 2

N∑

i=2

(di1 − γ)ai1ξ̃
T
i R̃ξ̃i,

(27)

where ξ̃i = Tξi with T =

[
Iq 0

−Iq Iq

]
, and Q̃, M̃, H̃, R̃ are defined in (8).
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Since the subgraph associated with the N − 1 followers is undirected, we have

N∑

i=2

N∑

j=2,j 6=i

(dij − γ)aij(ξ̃i − ξ̃j)
T R̃(ξ̃i − ξ̃j)

= 2

N∑

i=2

N∑

j=2

(dij − γ)aij ξ̃
T
i R̃(ξ̃i − ξ̃j).

Letting ξ̃ = [ξ̃T2 , · · · , ξ̃
T
N ]T , it then follows from (27) that

V̇3 = 2
N∑

i=2

ξ̃Ti Q̃M̃ξ̃i − 2γ
N∑

i=2

N∑

j=2

aij ξ̃
T
i R̃(ξ̃i − ξ̃j)− 2γ

N∑

i=2

ai1ξ̃
T
i R̃ξ̃i

= ξ̃T [IN−1 ⊗ (Q̃M̃+ M̃T Q̃)− 2γL1 ⊗ R̃]ξ̃,

(28)

where L1 is defined in (23).

For any graph G satisfying Assumption 1, it follows from Lemma 1 and (23) that L1 is positive

definite. Thus,

ξ̃T (L1 ⊗ R̃)ξ̃ ≥ λ2(L)ξ̃
T (IN−1 ⊗ R̃)ξ̃,

where λ2(L) is the smallest eigenvalue of L1. Then, we have

V̇3 ≤ ξ̃T [IN−1 ⊗ (Q̃M̃+ M̃T Q̃ − 2γλ2(L)R̃)]ξ̃. (29)

The rest of the proof is similar to that of Theorem 1, which is omitted for brevity. �

Corresponding to (3), the second adaptive consensus protocol with a time-varying coupling

weight for each follower is proposed as

˙̂vi = (A+BF )v̂i + d̂iL

N∑

j=1

aij [C(v̂i − v̂j)− (yi − yj)] ,

˙̂
di = ǫi




N∑

j=1

aij

[
yi − yj

C(v̂i − v̂j)

]T

Γ




N∑

j=1

aij

[
yi − yj

C(v̂i − v̂j)

]
 ,

ui = F v̂i, i = 2, · · · , N,

(30)

where v̂i ∈ Rn is the protocol state, i = 2, · · · , N , v̂1 ∈ Rn is generated by ˙̂v1 = (A+BF )v̂1, d̂i

denotes the coupling weight associated with follower i, and ǫi are positive constants.

Theorem 4. For any graph G satisfying Assumption 1, the N agents in (1) reach leader-

follower consensus under the protocol (30) with with F , L, and Γ given as in Theorem 1.

Meanwhile, the protocol states v̂i, i = 2, · · · , N , converge to zero and each coupling weight d̂i

converges to some finite steady-state value.

Proof. Let ̺i =

[
xi − x1

v̂i − v̂1

]
, i = 2, · · · , N . Clearly, the leader-follower consensus problem of

(1) under (30) is solved if ̺i, i = 2, · · · , N , converge to zero. It is easy to see that ̺i and d̂i
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satisfy

˙̺i = M̺i + d̂iH[
N∑

j=2

aij(̺i − ̺j) + ai1̺i],

˙̂
di = ǫi[

N∑

j=2

aij(̺i − ̺j) + ai1̺i]
TR[

N∑

j=2

aij(̺i − ̺j) + ai1̺i], i = 2, · · · , N.

(31)

Consider the Lyapunov function candidate

V4 =
N∑

i=2

̺Ti Q̺i +
N∑

i=2

(d̂i − σ)2

2ǫi
, (32)

where σ is a positive constant and Q is defined in (6). The rest of the proof can be completed

by following similar steps in proving Theorems 2 and 3. �

5 Extensions to Switching Communication Graphs

In the last sections, the communication graph is assumed to be fixed throughout the whole

process. However, the communication graph may change with time in many practical situations

due to various reasons, such as communication constraints, link variations, etc. In this section,

the consensus problem under the adaptive protocol (2) with switching communication graphs

will be considered.

Denote by GN the set of all possible undirected connected graphs with N nodes. Let σ(t) :

[0,∞) → P be a piecewise constant switching signal with switching times t0, t1, · · · , and P be

the index set associated with the elements of GN , which is clearly finite. The communication

graph at time t is denoted by Gσ(t). Accordingly, (2) becomes

v̇i = (A+BF )vi + L

N∑

j=1

cijaij(t) [C(vi − vj)− (yi − yj)] ,

ċij = κijaij(t)

[
yi − yj

C(vi − vj)

]T

Γ

[
yi − yj

C(vi − vj)

]
,

ui = Fvi, i = 1, · · · , N,

(33)

where aij(t) is the (i, j)-th entry of the adjacency matrix associated with Gσ(t) and the rest of

the variables are the same as in (2).

Theorem 5. For arbitrary switching communication graphs Gσ(t) belonging to GN , the N

agents in (1) reach consensus under the protocol (33) with F , L and Γ given as in Theorem

1. Besides, the protocol states vi, i = 1, · · · , N , converge to zero and the coupling weights cij

converge to some finite values.

Proof. Let ei = xi −
1
N

∑N
j=1 xj , i = 1, · · · , N , and e = [eT1 , · · · , e

T
N ]T . By following similar

steps to those in the proof of Theorem 1, the consensus problem of the agents (1) under the
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protocol (33) is solved if e converges to zero. Clearly ei and c̃ij satisfy

ėi = Mei +
N∑

j=1

(c̃ij + δ)aij(t)H(ei − ej),

˙̃cij = κijaij(t)(ei − ej)
TR(ei − ej), i = 1, · · · , N,

(34)

where cij = c̃ij + δ, δ is a positive scalar, and M, H and R are defined as in (4).

Take a common Lyapunov function candidate as

V5(t) =

N∑

i=1

eTi Qei +

N∑

i=1

N∑

j=1,j 6=i

c̃2ij

2κij
, (35)

where Q is defined in (6). The time derivative of V5 along the trajectory of (34) can be obtained

as

V̇5 = 2

N∑

i=1

eTi Qėi +

N∑

i=1

N∑

j=1,j 6=i

c̃ij

κij
˙̃cij

= 2
N∑

i=1

eTi Q̃[M̃ei +
N∑

j=1

(c̃ij + δ)aij(t)H̃(ei − ej)]

+

N∑

i=1

N∑

j=1,j 6=i

cijaij(t)(ei − ej)
T R̃(ei − ej)

= ẽT [IN ⊗ (Q̃M̃+ M̃T Q̃)− 2δLσ(t) ⊗ R̃]ẽ,

(36)

where (10) has been used to obtain the last equality, Lσ(t) is the Laplacian matrix associated

with Gσ(t), and the rest of the variables are the same as in (8).

Since Gσ(t) is connected and (1T ⊗ I)ẽ = 0, it is easy to see that

ẽT (Lσ(t) ⊗ I)ẽ ≥ λmin
2 ẽT ẽ, (37)

where λmin
2 , minGσ(t)∈GN

{λ2(Lσ(t))} denotes the minimum of the smallest nonzero eigenvalues

of Lσ(t) for all Gσ(t) ∈ GN . Therefore, we can get from (36) that

V̇5 ≤ ẽT [IN ⊗ (Q̃M̃+ M̃T Q̃ − 2δλmin
2 R̃)]ẽ

, W (ẽ).
(38)

As shown in the proof of Theorem 1, by choosing δ sufficiently large such that δλmin
2 ≥ 1 and

γ > 0 sufficiently small, we have Q̃M̃ + M̃T Q̃ − 2δλmin
2 R̃ < 0. Therefore, V̇5 ≤ 0, implying

that V5 is bounded. Consequently, cij , i, j = 1, · · · , N , are bounded. By noting (34), each c̃ij

is monotonically increasing. It then follows that each c̃ij converges to some finite value. Thus,

the coupling weights cij converge to finite steady-state values. Note that V5 is positive definite

and radically unbounded. By LaSalle-Yoshizawa theorem [26], it follows that limt→∞W (ẽ) = 0,

implying that ẽ(t) → 0, as t → ∞, which further implies that e(t) → 0, as t → ∞. This

completes the proof. �

Remark 4. Theorem 5 shows that the adaptive consensus protocol (2) given by Theorem 1 is

applicable to arbitrary switching communication graphs which are connected at any time instant.
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The case with switching leader-follower graphs can be discussed similarly, thus is omitted here for

brevity. Because the Lyapunov function in (17) for the adaptive protocol (3) is explicitly related

with the communication graph, it cannot be taken as a feasible common Lyapunov function.

6 Simulation Examples

In this section, a simulation example is provided to validate the effectiveness of the theoretical

results.

1 6

2 5

3 4

(a) G1

1 6

2 5

3 4

(b) G2

Figure 1: Undirected communication graphs G1 and G2.

Consider a network of third-order integrators, described by (1) with

A =




0 1 0

0 0 1

0 0 0


 , B =




0

0

1


 , C =

[
1 0 0

]
.

Choose F = − [ 3 6.5 4.5 ] such that A+BF is Hurwitz. Solving the LMI (5) by using the LMI

toolbox of Matlab gives the gain matrix L in (33) and (3) as L = − [ 2.5039 1.9056 0.9194 ]T . To

illustrate Theorem 5, let Gσ(t) switch randomly every 0.1 second between G1 and G2 as shown

in Figure 1. Note that both G1 and G2 are connected. Let κij = 1, i, j = 1, · · · , 6, in (33), and

cij(0) = cji(0) be randomly chosen. The consensus errors xi−x1, i = 2, · · · , 5, of the third-order

integrators under the protocol (2) with F , L as above and Γ =
[

1 −1
−1 1

]
are depicted in Figure

2. The coupling weights cij associated with the edges in this case are shown in Figure 3. To

illustrate Theorem 2, let the communication graph be G1 in Figure 1(a) and τi = 1, i = 1, · · · , 6,

in (3). The consensus errors xi − x1, i = 2, · · · , 5, of the third-order integrators under the

protocol (3) with F , L, and Γ as above are depicted in Figure 4. The coupling weights di

associated with the nodes are drawn in Figure 5. Figures 2 and 4 state that consensus is indeed

achieved in both cases. From Figures 3 and 5, it can be observed that the coupling weights

converge to finite steady-state values.
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Figure 2: The consensus errors xi − x1 of third-order integrators under (33).
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Figure 3: The coupling weights cij associated with the edges in (33).
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Figure 4: The consensus errors xi − x1 of third-order integrators under (3).
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Figure 5: The coupling weights di associated with the nodes in (3).
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7 Conclusion

In this paper, the consensus problem of multi-agent systems with identical general linear dy-

namics has been considered. Based on the relative output information of neighboring agents,

two distributed adaptive dynamic consensus protocols have been proposed, namely, one pro-

tocol assigns an adaptive coupling weight to each edge in the communication graph while the

other uses an adaptive coupling weight for each node. These two adaptive protocols have been

designed to ensure that consensus is reached in a fully distributed fashion for any undirected

connected communication graphs without using any global information.
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