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Abstract

We present an algorithm for constrained network flow control in the presence of an unknown demand. Our algorithm is decentralized in
the sense that it is implemented by a team of agents, each controlling just the flow on a single arc of the network based only on the buffer
levels at the nodes at the extremes of the arc, while ignoring the actions of other agents and the network topology. We prove that our
algorithm is also stabilizing and steady-state optimal. Specifically, we show that it asymptotically produces the minimum–norm flow. We
finally generalize our algorithm to networks with a linear dynamics and we prove that certain least-square optimality properties still hold.

1 Introduction and motivation

Constrained minimum–norm flows play a central role in
flow network optimization and find important applications
in communication [11,22], water distribution control [19],
traffic [12,21], manufacturing [9,27]. In particular, decen-
tralized strategies are appealing in the control of large net-
works [29,2,12–15] in which the existence of a centralized
supervisor implies a cost or it is even unrealistic.

In this paper, we look for a decentralized control capable of
robustly stabilizing the network in the presence of an un-
known demand. Although the literature on flow networks is
quite wide, “robustness” has been brought into the picture
only recently [1,4,7,20,23]. A robust decentralized strategy
has been proposed in [8], where the authors present a Lya-
punov based control that guarantees robustness against un-
certain demand in the presence of both buffer and arc flow
constraints. However, [8] is only concerned with stability
while, here, we are mainly concerned with flow optimality.
Long–term optimality, in flow networks with uncertain de-
mand has been considered in [6], but the provided solutions
are centralized.

A related work is [25] where the authors design the edges
of a graph to optimize the spectrum of the corresponding
weighted adjacency matrix. This paper is also related to the

consensus seeking problem in [24]. There, there the same
type of edge interaction is considered but with a different
goal.

As main contribution of this work, we show that, under some
necessary and sufficient conditions, a simple linear saturated
control has the following properties:

• it assures practical stability, namely it drives the inventory
levels arbitrarily close to an assigned reference, under flow
capacity constraints;

• it is fully decentralized, namely it can be implemented
by a set of agents, each of which controls just the flow
on a single arc of the network based only on the buffer
levels (states) at the nodes at the extremes of the arc while
ignoring the actions of the other agents and the network
topology.

• it is robust with respect to failures;
• it assures minimum–norm steady state flow.

Finally, we extend our results to a class of networks with
natural dynamics. The results in this paper have been pre-
sented in a preliminary form in [3].
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Fig. 1. The flow network with buffers

1.1 Motivating example

Consider the network in Fig. 1 with 16 buffers represented
by nodes and 33 controlled flows represented by plain arcs.
This system has the typical structure of a water distribution
network in which the flow has to compensate the demand
w represented by dashed arcs. The problem is how to sta-
bilize this system assuming that each arc is governed by an
agent who has only information about the source and des-
tination buffers. For instance “agent 17” that governs arc
(7,10) must decide the instantaneous flow u17(t), compatibly
with the constraints, based only on the head and tail nodes:
x7(t) and x10(t). The agent ignores the demand, the other
agents’ controls, the network topology, including possible
failures. Therefore, for agent 17, the cause of a possible de-
creasing/increasing trend of the buffer levels x7(t) or x10(t),
such as a variation of demand w12 compensated by u18, is
unknown. Similarly, agent 17 cannot know how the conse-
quences of its decisions propagate through the network.

2 Problem statement and preliminary results

Consider the system

ẋ(t) = Bu(t)−w(t), ∀t ≥ 0, (1)

where B∈R
n×m, u(t)∈R

m is the controlled flow, henceforth
the control, and w(t) ∈ R

n an uncontrolled flow, henceforth
demand. The state variables xi(t) represent the buffer levels
at the nodes, e.g., the amount of inventory or stored product
at warehouses.

Models like (1) often arise in network flow [1] (as in Fig.
1), inventory [5–7], and supply-chain applications [26] and

traffic [2,14]. In general, matrix B can be any real matrix.
Its generic entry Bi j indicates that the flow u j causes the
instantaneous variation Bi ju j in the state of node i. As we do
not require the flow conservation, the sum of the entries of
each column of B may be different from 0. In the example
in Subsection 1.1, the first column B•1 = [1 0 0 . . . ]T of the
B matrix associated to the network models the dependence
of the state of node 1 on a flow coming from outside.

The control and demand are assumed subject to capacity
constraints

u(t) ∈ U , w(t) ∈ W , (2)

where U
.
= {u ∈R

m,u−i ≤ ui ≤ u+i , ∀i} is a box which con-
straints each component ui of the control between a lower
bound u−i and an upper bound u+i ; differently W is a general
convex and compact set.

The following assumptions are considered.

Assumption 1 Matrix B ∈R
n×m is full row rank and set W

is in the interior of BU , that is,

W ⊂ int{BU }. (3)

Assumption 2 The demand w is constant and not available
for the synthesis of control u(t).

Assumption 1 implies that the network described by B is
connected, and may receive and give flow to the external
world. The whole assumption is required in view of the
following result.

Proposition 1 [8] Condition (3) is necessary and sufficient
for the existence of a stabilizing control under constraints
(2).

Assumption 2 is required to prove flow optimality at steady
state, though it is not necessary for practical stability.

As previously explained, any control component u j affects
only the nodes corresponding to the non–zero entries of the
jth column B• j (arc) of matrix B. Let us call “extremes”
the corresponding nodes. Formally, we say that a control is
decentralized if it satisfies the following definition.

Definition 2.1 Decentralized control. The control strategy
u = Φ(x) is decentralized if the control flow u j(t) ∈ [u−j ,u

+
j ]

of each arc j depends only on the values of the buffer levels
xi(t) of the nodes i at its extremes (i.e., the nodes such that
Bi j 6= 0).

For instance if B•1 = [0 1 1 0 − 1]T , then the control u1

must be function only of the state of nodes 2, 3 and 5.

We are finally in the position of formally stating the problem.
Assume that a reference point x̂ is assigned and assume,
without loss of generality, x̂ = 0.
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Problem 1 Given a tolerance ε > 0, a demand w ∈ W and
a reference value x̂ for the buffer levels, find a decentralized
control law u(t) = Φ(x(t)), not depending on w, ensuring

• Practical stability: x(t) is ultimately bounded in the ε–
ball centered in 0, namely, for all x(0) there exists T such
that ‖x(t)‖ ≤ ε for t ≥ T .

• Optimality at steady–state: the control at the equilibrium,
denoted by ū

.
= limt→∞ u(t) is of minimum–norm 1 , i.e.,

ū = u∗
.
= arg min

u∈U

1

2
uT u : Bu = w. (4)

Remark 2.1 No agent can estimate the demand from its
extreme node inventory levels neither in the case of known
topology nor in the case of constant demand. For instance
agent 17 in the example in Subsection 1.1, controls nodes
7 and 10 and can estimate neither w nor the whole state
x from the outputs y1 = x7 and y2 = x10, because, as it is
easy to verify, the observability matrix would not have full
rank. Unfortunately the control cannot change this situation,
unless we admit, against our assumptions, that an agent can
know exactly both the controls applied by other agents and
their link bounds.

2.1 Towards the optimum of Problem 1

As a preliminary result, we observe that problem (4) has a

strictly convex objective function 1
2
uT u continuous over all

the compact convex domain D = {u ∈ U : Bu = w}, hence
(4) is a convex optimization problem with a unique optimal
solution u∗. Specifically, Problem (4) is a particular quadratic
programming problem [10] pp. 302-304).

A saturation function sat[.] : Rm → R
m is defined compo-

nentwise as follows (see Fig. 2)

ui = sat[yi]
.
=















u−i i f yi < u−i
yi i f u−i ≤ yi ≤ u+i

u+i i f yi > u+i

.

Lemma 2.1 There exists ξ ∗ ∈ IRn such that u∗ = sat[BT ξ ∗].

Proof. Let ∇ be the gradient operator with respect to u. Re-
call that in Problem (4): the objective function is a continu-
ously differentiable convex function over the compact con-
vex domain D and the constraints are continuously differ-
entiable affine functions. Then, the following Karush-Khun-
Tucker conditions are necessary and sufficient to identify

1 Note that we can easily consider a positive definite diagonal

matrix Σ and weighted cost Jweighted = 1
2 uT Σ2u that we can turn

into (4) by rearranging the model in the form ẋ = (BΣ−1)(Σu)−w.

Problem (4) unique optimal solution u∗ (see [10] pp. 243-
246):

∇
1

2
uT u =

∇(Bu−w)T ξ −∇(u−−u)T λ −∇(u−u+)T ν (5a)

Bu = w u− ≤ u ≤ u+ (5b)

λ T (u−−u) = 0, νT (u−u+) = 0 (5c)

λ ,ν ≥ 0 (5d)

u,λ ,ν ∈ IRm, ξ ∈ IRn (5e)

Note that (5a) is equivalent to u = BT ξ + Iλ − Iν .

As an optimal solution u∗ exists for problem (4), then there
also exists a solution (u∗,ξ ∗,λ ∗,ν∗) satisfying the above
conditions. The next step is to note that this solution satisfies

u∗ = sat[BT ξ ∗] (6a)

λ ∗ = max{sat[BT ξ ∗]−BT ξ ∗,0} (6b)

ν∗ = max{BT ξ ∗− sat[BT ξ ∗],0} (6c)

Indeed, conditions (5) trivially imply conditions (6), for all
components u∗i such that u−i < u∗i < u+i . Now assume that

u∗i = u−i and hence λ ∗
i ≥ 0 and ν∗

i = 0. Then, (5a) implies

u−i = (BT ξ ∗)i+λ ∗
i . As λ ∗

i ≥ 0, we have (BT ξ ∗)i ≤ u−i , more

specifically (BT ξ ∗)i ≤ u−i = sat[(BT ξ ∗)i] = u∗i , that is, con-

dition (6a). Condition (6b) holds as λ ∗
i = u−i − (BT ξ ∗)i =

sat[(BT ξ ∗)i]− (BT ξ ∗)i ≥ 0. Finally, condition (6c) holds as
ν∗ = 0 = max{(BT ξ ∗)i − sat[(BT ξ ∗)i],0}.

The proof is completed observing that a symmetrical argu-
ment holds if u∗i = u+i . �

In general, we can state the following theorem.

Theorem 2.1 For all vector ξ ∈ IRn, such that Bsat(BT ξ ) =
w, the control u = sat[BT ξ ] is the optimal solution of (4).

Proof. It follows from Lemma 2.1, because for any vector ξ
satisfying the hypotheses of this theorem, we can take u =
sat[BT ξ ], λ = max{sat[BT ξ ]− BT ξ ,0}, ν = max{BT ξ −
sat[BT ξ ],0}. It is easily verified that (u,ξ ,λ ,ν) satisfy the
necessary and sufficient Karush-Khun-Tucker conditions (5)
introduced in the previous lemma. �

3 Decentralized linear saturated control

We now exploit the structure of the optimum of problem (4)
described in Theorem 2.1 to prove convergence of system (1)
to an equilibrium point x̄ under the linear saturated control

u(t) = sat

[

−BT

γ
x(t)

]

, γ > 0 (7)
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which is decentralized as in Definition 2.1. As a prelude
we analyze the steady–state condition for the system with
control (7). Specifically, we collect all states x satisfying the
steady–state conditions in the set Lγ :

Lγ
.
=

{

x : Bsat

[

−BT

γ
x

]

= w

}

. (8)

We also notice that, under Assumption 1, there exists β > 0
such that the following condition holds for all x ∈ R

n [8]

min
u∈U

xT Bu− xT w ≤−β‖x‖, (9)

The minimizer u(x) = ΦBB(x) = argminu∈U xT Bu has the
expression (B• j is the jth column of B)

u j = ΦBB j(x) =















u+j if −BT
j•x > 0

u−j if −BT
j•x < 0

u j ∈ [u−,u+] otherwise

, (10)

(controllers of this type have been adopted in [2,14,15]).
Control ΦBB(x) can be seen as the limit of (7) for γ → 0.

Remark 3.1 Differently from control (7), control ΦBB(x) is
not continuous, and in general causes chattering, therefore
cannot assure u(t) → u∗ as required. The small price we
pay is that we have to accept practical stability which seems
more than reasonable in the context of networks.

Lemma 3.1 Under Assumption 1, Lγ is bounded and con-
vex for any γ > 0. Moreover, if we denote by L1 the set of
solutions of (8) with γ = 1, the set Lγ is achieved by scaling
L1 as

Lγ = γL1 = {γx : x ∈ L1}.

Proof. We first prove the second part. If y∈L1 then x= γy∈
Lγ . Indeed, as we can write y = x

γ , then Bsat
[

−BT y
]

= w

implies Bsat
[

−BT

γ x
]

= w. Symmetrically, if x ∈ Lγ , then

y = x
γ ∈L1. As we can write x = γy, then Bsat

[

−BT

γ x
]

= w

implies Bsat
[

−BT y
]

= w.

Now we prove that L1 is convex (which proves that Lγ is
such). To this end, we recall that (4) has a unique optimal
solution and that u = sat

[

−BT x
]

satisfies the hypotheses of

Theorem 2.1, for all x ∈ L1. Then, for all x1 and x2 ∈ L1,
we have

sat
[

−BT x1
]

= sat
[

−BT x2
]

.

As a consequence, for all unsaturated components i
for which u−i < −BT

i•x1 = −BT
i•x2 < u+i holds, also

u−i <−BT
i•(λx1+(1−λ )x2)< u+i holds, for any 0 ≤ λ ≤ 1.

On the other hand, the saturated components i, which are
characterized by −BT

i•xk ≥ u+i , respectively −BT
i•xk ≤ u−i , for

k = 1,2, satisfy the condition −BT
i•(λx1 +(1−λ )x2)≥ u+i ,

respectively −BT
i•(λx1+(1−λ )x2)≤ u−i , for any 0≤ λ ≤ 1.

Therefore, L1 is convex as for all x1 and x2 ∈ L1, also
x = λx1 +(1−λ )x2 is in L1 for any 0 ≤ λ ≤ 1.

To prove boundedness of L1 (and then of Lγ ) we take an
arbitrary x̂ and x 6= 0 both in L1, and we define

σ
.
= sup {λ ≥ 0 such that x̂+λx ∈ Lγ}.

Note that boundedness of L1 is ensured if σ is finite.

By contradiction assume σ =+∞. By the definition of L1,
condition (9) and the properties of ΦBB(x) to write

0 = xT B sat[−BT (x̂+λx)]− xT w =

xT B ΦBB(x)− xT w+ xT B sat[−BT (x̂+λx)]

−xT B ΦBB(x)≤−β‖x‖+φ(x̂,x,λ ) (11)

where

φ(x̂,x,λ ) = xT B sat[−BT (x̂+λx)]− xT B ΦBB(x).

The first equality in (11) must hold for all λ ≥ 0. In addition,
we get

φ(x̂,x,λ ) =
m

∑
j=1

xT B• j(sat[−BT
j•(x̂+λx)]−ΦBB j(x)),

where each of the terms in the sum is null for λ large.
Therefore, the sequence of (in)equalities (11) returns the
contradiction 0 ≤−β‖x‖ for x 6= 0 for λ large enough. �

The previous lemma leads to the following convergence re-
sult.

Theorem 3.1 Under Assumption 1, the control (7), with ar-
bitrary γ > 0, is such that:

• x(t) is bounded,
• x(t)→ Lγ ,

• u(t)→ ū = sat
[

−BT

γ x̄
]

= u∗ the optimal solution of (4).

Proof. Denote by x̄ ∈ Lγ any solution of (8). Consider the
Lyapunov function

Ψ(x− x̄) = (x− x̄)T (x− x̄)/2 = ‖x− x̄‖2/2.

If we take for x̄ the barycenter of Lγ , then Ψ(·) can be seen

as a distance of x from Lγ . Denoting by v
.
= −BT x/γ and
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v̄ =−BT x̄/γ , the derivative of Ψ(·) takes the form

Ψ̇(x− x̄) = (x− x̄)T

(

Bsat

[

−BT

γ
x

]

−w

)

=

−γ

(

(x− x̄)T

(

−B

γ

))(

sat

[

−BT

γ
x

]

− sat

[

−BT

γ
x̄

])

=−γ(v− v̄)T [sat[v]− sat[v̄]]

=−γ
m

∑
i=1

(vi − v̄i) [sat[vi]− sat[v̄i]] .

It is easy to see that each function (vi − v̄i) [sat[vi]− sat[v̄i]]
is non negative, and it is positive for vi 6= v̄i if v̄i is an interior
point of the interval [u−i ,u

+
i ](see Fig. 2). Then ‖x(t)− x̄‖ ≤

‖x(0)− x̄‖ so that x(t) is bounded.

vv

sat[v]

sat[v] sat[v]

Fig. 2. The sat–function and its translation

Now note that the condition Ψ̇(x− x̄) = 0 holds either when
(

Bsat
[

−BT

γ x
]

−w
)

= 0 or x = x̄. Therefore, since x̄ ∈ Lγ ,

Lγ is the set of all x for which Ψ̇(x− x̄) = 0. By the LaSalle
Theorem (see [16], Th. 3.4) x(t) converges to the largest

invariant subset of Lγ
2 , and then x(t)→ Lγ .

From Theorem 2.1, and the continuity of the adopted control,
we can immediately conclude that u(t)→ u∗. �

The following corollary proves that the linear saturated con-
trol (7) guarantees practical stability of system (1) even un-
der time–varying w(t) ∈ W .

Corollary 3.1 Given any arbitrary small neighborhood of
the origin, the linear saturated control (7), makes the state x
of system (1) converge to such neighborhood provided that
γ > 0 is small enough. Moreover, convergence is assured
even for time–varying w(t) ∈ W .

Proof. If w is constant, the proof immediately follows from
the fact that Lγ is arbitrarily small and x(t)→Lγ . In the case
of time–varying w(t), control (10) assures convergence to the
origin with Lyapunov function V (x) = xT x [8]. On the other
hand, control (7) converges to control (10) and therefore, by

2 in our case we have a stronger condition since ẋ = 0 for x ∈Lγ ,
so Lγ is invariant

invoking [17] Section 11.2.4, the former assures convergence
to an arbitrarily small neighborhood of the origin for γ > 0
small. �

Under the uniqueness of x̄ we have the following.

Corollary 3.2 If the equilibrium state x̄ is the unique solu-
tion of (8) it is globally uniformly asymptotically stable.

If Lγ is not as singleton, then the system converge to an
equilibrium state, because any point of Lγ is a possible
steady state. Consider for instance ẋ = u1 +u2 −w, and 0 ≤
u1 ≤ 1, 2 ≤ u1 ≤ 3, 1 ≤ w ≤ 4. It is easy to see that for γ = 1
and w = 3 we have the interval Lγ = [1,2]. Then the state
x(t) will converge to the upper bound x = 2 for x(0)> 2 and
to the lower bound x = 1 for x(0) < 1. It will be constant
for 1 < x(0)< 2.

Remark 3.2 (Unbounded control) In the case U = R
m,

the control (7) collapses to the linear feedback control u(t)=

−BT

γ x(t). At the equilibrium the control is ū=BT (BBT )−1w,

which corresponds to the minimum 2-norm solution of Bu =
w, and does not depend on γ . As a possible physical interpre-
tation, we can see the buffers as capacitors and the links as
identical resistors. In this framework, the equilibrium con-
trol correspond to the minimal–dissipation solution. We skip
the details for brevity.

Remark 3.3 (Failures) The control is robust against fail-
ures as long as the necessary and sufficient condition (3)
remains satisfied. Indeed, assume that the link must work
at a reduced capacity. This corresponds to changing arc j
bounds from u−j ,u

+
j to ũ−j ≥ u−j or ũ+j ≤ u+j . Complete flow

interruptions on the arc are captured by setting ũ−j = ũ+j = 0.

Even if the occurrence of a failure on arc j is sensed only
by the agent acting on the arc (information on failures is
local), the decentralized strategy assures steady-state opti-
mality (though the minimum-norm flow may have changed
in consequence of the failures).

Finally we notice that dealing with bounds of the form

x− ≤ x ≤ x+

(where x− is a negative vector since 0 is the reference) is
quite easy in this context. First of all the considered Lya-
punov function V (x) = (x − x̄)T (x − x̄) assures a domain
of attraction (a sphere) internal to such bounds Sκ = {x :
V (x) ≤ κ} for a proper κ . For any initial condition inside
this set, the bounds are not violated. It is also possible to
“enlarge” such a domain of attraction by adopting the Lya-
punov function proposed in [8].

3.1 Ultimate bounds for the solution

In the view of Theorem 3.1 and of Corollary 3.1, and given
a tolerance ε > 0, we here face the problem of selecting a

5



value γ ensuring ||Lγ || < ε without an a-priori knowledge
of w, that is knowing only W (or, even, only knowing U ).
To this end, we initially study the set L1(w) = {x ∈ R

n :
Bsat[−BT x] = w} for a generic w ∈W . In view of Theorem
2.1 we have that

L1(w) = {x : sat[−BT x] = u∗}

where u∗ is the optimal solution. Then L1(w) is a polyhe-
dron defined by the following equalities and inequalities

(−BT x) j = u∗j ∀ j ∈ IU , (12)

(−BT x) j ≥ u+j ∀ j ∈ I+, (−BT x) j ≤ u−j ∀ j ∈ I− (13)

where IU , I+ I− denote the subset of indexes where the
components u∗ are, respectively unconstrained, are at the
upper bound u j = u+j or are at the lower bound u j = u−j .

The above argument and Theorem 3.1 imply that L1(w) is
a bounded polyhedron and that we can determine a bound
for such a set in each principal direction xi by solving an
linear programming problem

µ+
i (resp. µ−

i )
.
= max (resp. min)xi : x ∈ L1(w) (14)

Then we have ‖x‖∞ ≤ maxi{max{|µ+
i |, |µ−

i |}} for all x ∈
L1(w). In view of Lemma 3.1, the condition ‖Lγ(w)‖< ε
is assured if

γ ≤ ε
√

nmax
i
{max{|µ+

i |, |µ−
i |}} (15)

To get some bounds µ̂+
i , µ̂−

i which are valid for all w we

relax the equality (12) to achieve a superset L̂1(w)⊇L1(w)

L̂1(w)=
{

x ∈ R
n : u−j ≤ (−BT x) j ≤ u+j ,∀ j ∈ IU , and (13)

}

Note that the boundedness of L1(w) implies the bound-

edness of L̂1(w)
3 . Note also that the superset L̂1(w) de-

pends only on the partition {IU , I+, I−} of the index set as-
sociated with u∗(w), so there is a finite number of possi-

ble supersets L̂1(w). This immediately implies that we can
evaluate the bounds µ̂+

i , µ̂−
i and hence achieving an ex-

pression of the form (15) by enumerating all the possible
partitions {IU , I+, I−} of the index set and then solving lin-
ear programming problems similar to (14) for the associated

sets L̂1, paying attention to disregard the problems with un-
bounded solutions.

4 Networks with natural dynamics

The results of the previous sections can be extended to more
general systems. In particular, consider linear systems evolv-

3 since a linear equality px = q has been replaced by two inequal-
ities q− ≤ px ≤ q−, with q− ≤ q ≤ q+

ing according to the equation

ẋ =−Lx+Bu−w (16)

where L is a n× n symmetric positive semidefinite matrix
and B is, again, the n×m network matrix. The term −Lx
describes “the natural system dynamics”, whereas Bu is the
“forced flow”. For example, in water distribution networks,
the natural system flows are induced by the potentials due
to the differences among buffer levels. In this cases, L is the
graph Laplacian matrix. Due to the presence of L, we can
relax Assumption 1 as follows.

Assumption 3 W ⊂ int {Ra[L]+BU } where Ra[L] is the
range of matrix L.

The structural interpretation of the assumption is basically
that if we decompose L = ∑

M
1 l jl

T
j , with li non–zero vectors,

we may consider these vectors as inducing corresponding
columns of B: [B l1 . . . lM] with infinite capacity in which
“nature” has already placed the controls u j = −lT

i x, j =
m+1, . . . ,m+M.

Theorem 4.1 Assumption 3 is necessary and sufficient for
the existence of a strategy which keeps the state bounded.

Proof. We prove necessity, since sufficiency will be proved
constructively later on. If the assumption fails there exists a
vector w not included in Ra[L]+BU . Consider the following
square matrix, whose columns form a basis of the vector
space, [T L T⊥] in which T L represents the components along

Ra[L] and T⊥ the orthogonal to T L . Let [R S]T be its inverse
and write

[

xL

x⊥

]

=

[

RT

ST

]

x

so that we get

ẋL =−RT Lx+RT Bu−RT w, ẋ⊥ = ST Bu−ST w.

Now, note that Assumption 3 is equivalent to Assumption
1 applied to the second subsystem, namely ST W ⊂ ST BU

which is necessary to keep x⊥ bounded. �

We seek a stabilizing control law u ∈ U which is optimal
at steady–state, precisely which minimizes

JL =
1

2
xT Lx+

1

2
uT u, s.t. −Lx+Bu = w, (17)

where the term xT Lx represents the energy of the natural
flow and the term uT u is the energy of the forced flow. For
instance, in the case of water distribution, xT Lx represents
the sum of the squares of the difference of potentials at the
nodes.

Theorem 4.2 The decentralized control u = sat[−BT x]
asymptotically minimizes (17).
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Proof. Given any factorization of L, L =CCT , consider the
auxiliary system

ẋ =Cv+Bu−w (18)

whose control components are u and ν . Despite the usual as-
sumption on u being bounded in U , we let v be unbounded.
Now, we reformulate Problem 1 in terms of the controls u
and ν

J̃L =
1

2
vT v+

1

2
uT u, s.t. Cv+Bu = w. (19)

According to the derivations obtained in Section 3, and
specifically reported in Theorem 3.1, the optimum for prob-
lem (19) takes on the form

[

v

u

]

=

[

sat[−CT x]

sat[−BT x]

]

=

[

−CT x

sat[−BT x]

]

, (20)

where the first equality holds because v is unbounded. The
minimum v = −CT x is a feasible solution, and hence an
optimal one, for the original problem (17). Indeed, if we
replace control (20) in (18), we get the stable closed–loop
system achieved by (16) when u = sat[−BT x]. This last sys-
tem asymptotically reaches the equilibrium condition −Lx+
Bu−w = 0 with x and u optimal in the sense of (17). �

5 Example

Let us reconsider the network proposed in Subsection 1.1,
with the following data:

u+ = [ 4 4 4 2 2 2 1 2 3 2 1 1 1 2 2 2 1

2 2 2 1 1 2 2 2 1 1 1 1 3 1 1 1 ]T

u− = [ 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]T .

We assumed for simulation purposes the following demand:

w = [ 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 ]T

In Fig. 3 we plot the buffer evolution from the initial con-
dition

x(0) = [ 10 −10 10 20 −10 10 −10 20 0

10 10 −10 −20 10 −20 −10]T

converging to x̄ whose norm is ‖x̄‖= 0.2210.

The minimal norm solution computed by a standard convex
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Fig. 3. The buffer transient which converges to uopt
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Fig. 4. The flow transient

optimization routine is

umin = [ 3.098 2.344 2.557 2.000 1.721 1.378 1.000

1.770 2.132 2.000 0.343 0.000 1.000 1.064

1.407 1.760 0.477 0.338 1.185 1.7700.707

0.353 0.261 1.108 1.118 0.631 0.882 0.118

0.000 0.369 0.000 0.213 0.000 ]

In Fig. 4 it is shown the flow transient evolving to such value
numerically checked with a tolerance of 10−14.

6 Conclusions

We have considered a decentralized linear–saturated control
for constrained network flow. The main result of the paper
shows that such a control is optimal at steady state, in the
sense that it returns the minimum–norm flow that satisfies
the demand. Finally we have proved optimality at steady
state even in those cases in which the network has a natural
dynamics induced from node potentials.
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