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a b s t r a c t

This paper studies consensus among identical agents that are at most critically unstable and coupled
through networks with uniform constant communication delay. An upper bound for delay tolerance is
obtainedwhich explicitly depends on agent dynamics and network topology. The dependence on network
topology disappears in the case of undirected networks. For any delay satisfying this upper bound, a
controller design methodology without exact knowledge of the network topology is proposed so that
multi-agent consensus in a set of unknown networks can be achieved. Moreover, when the network
topology is known, a larger delay tolerance is possible via a topology-dependent consensus controller.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The consensus problem in a network has received substantial
attention in recent years, partly due to the wide applications in
areas such as sensor networks and autonomous vehicle control. A
relatively complete coverage of earlier work can be found in the
survey paper of Olfati-Saber, Fax, and Murray (2007), the recent
books by Ren and Cao (2011), Wu (2007) and references therein.

Consensus in a network with time delay has been extensively
studied in the literature. Most results consider the agent model as
described by single-integrator dynamics (Bliman& Ferrari-Trecate,
2008; Olfati-Saber & Murray, 2004; Tian & Liu, 2008), or double-
integrator dynamics (Lin, Jia, Du, & Yuan, 2007; Tian & Liu, 2009;
Yu, Chen, & Cao, 2010). Specifically, it is shown by Olfati-Saber and
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Murray (2004) that a network of single-integrator agents subject
to uniform constant communication delay can achieve consensus
with a particular linear local control protocol if and only if the
delay is bounded by a maximum that is inversely proportional to
the largest eigenvalue of the graph Laplacian associated with the
network. This result was later generalized in Bliman and Ferrari-
Trecate (2008) to non-uniform constant or time-varying delays.
Sufficient conditions for consensus among agents with first order
dynamics were also obtained in Tian and Liu (2008). The results
in Olfati-Saber and Murray (2004) were extended in Lin et al.
(2007) andYu et al. (2010) to double integrator dynamics. Anupper
bound on the maximum network delay tolerance for second-order
consensus of multi-agent systems with any given linear control
protocol was obtained.

In this paper,we study themulti-agent consensus problemwith
uniform constant communication delay. The agents are assumed
to be multi-input andmulti-output and at most critically unstable,
i.e. each agent has all its eigenvalues in the closed left half plane.
In other words, we allow the agents to have eigenvalues on the
imaginary axis. The contribution of this paper with respect to the
aforementioned literature is twofold: first, we find a sufficient con-
dition on the tolerable communication delay for agents with high-
order dynamics, which has an explicit dependence on the agent
dynamics and network topology. For undirected networks, this up-
per bound can be independent of network topology provided that
the network is connected. Moreover, in a special case where the
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agents only have zero eigenvalues, such as single- and double-
integrator dynamics, arbitrarily large but bounded delay can be
tolerated. Another layer of contribution is that for delays satis-
fying the proposed upper bound, we present a controller design
methodology without precise knowledge of network topology so
that the multi-agent consensus in a set of unknown networks can
be achieved. When the network topology is accurately known, the
controller design can bemodified to be topology-dependent so that
a larger delay tolerance is attainable.

Münz, Papachristodoulou, and Allgöwer (2010, 2012) have re-
cently presented interesting results on robust consensus of linear
multi-agent systems (MAS) subject to heterogeneous feedback de-
lays. These works are more general and realistic in respect of di-
verse delays. However, this paper extendsMünz et al. (2010, 2012)
in the following ways. First of all, Münz et al. (2010, 2012) study
the consensus problem in undirected networks. With the design
proposed in this paper, we are able to achieve consensus in a set
of directed networks. Secondly, Münz et al. (2010, 2012) only con-
sider single-input and single-output agents whose eigenvalues are
in the open left half plane, except for those at the origin. We con-
sidermulti-input andmulti-output agents that have eigenvalues in
the closed left half plane. In other words, eigenvalues on the imag-
inary axis are also permitted.

The rest of the paper is organized as follows: notations and
some preliminary results are presented in the remainder of Sec-
tion 1. System and network configuration and consensus problem
formulations are given in Section 2. The consensus problem with
full-state coupling is solved in Section 3. The corresponding prob-
lem with partial-state coupling is dealt with in Section 4. In Sec-
tion 5,we discuss the special case of neutrally stable systems. Some
technical lemmas are appended at the end of this paper.

The following notations will be used in this paper. For a vector
d, we denote a diagonal matrix by D = diag{d} whose diagonal is
specified by d. For column vectors x1, . . . , xn, the stacking column
vector of x1, . . . , xn is denoted by [x1; . . . ; xn].

A weighted graph G defined by a pair (N , E) contains a directed
spanning tree if there is a node r ∈ N such that a directed
path exists between r and any other node. For a weighted graph
G(N ,A)with A = {aij}N×N , a matrix L = {ℓij}N×N with

ℓij =


N
j=1

aij, i = j

−aij, i ≠ j,

is called the Laplacian matrix associated with graph G. In the case
where G has non-negative weights, L has all its eigenvalues in
the closed right half plane and at least one eigenvalue at zero
associated with right eigenvector 1 (see Godsil & Royle, 2001). If
G has a directed spanning tree, L has a simple eigenvalue at zero
and all the other eigenvalues have strictly positive real parts (see
e.g. Ren & Beard, 2005).

2. Problem formulation

Consider a network of N identical agents
ẋi(t) = Axi(t)+ Bui(t), i = 1, . . . ,N,

z i(t) =

N
j=1

ℓijxj(t − τ)
(1)

where xi ∈ Rn, ui
∈ Rm and z i ∈ Rn, τ is an unknown constant sat-

isfying τ ∈ [0, τ̄ ]. The coefficients ℓij are such that ℓij ≤ 0 for i ≠ j
and ℓii = −

N
j≠i ℓij. In (1), each agent collects a delayed measure-

ment z i of the state of neighboring agents through the network,
which we refer to as full-state coupling.

It is also common that z i may consist of the outputs of neighbor-
ing agents instead of the complete states which can be formulated
as follows:
ẋi(t) = Axi(t)+ Bui(t),
yi(t) = Cxi(t), i = 1, . . . ,N,

z i(t) =

N
j=1

ℓijyj(t − τ),

(2)

where xi ∈ Rn, ui
∈ Rm and yi, z i ∈ Rp. We refer to the agents in

this case as having partial-state coupling.
The matrix L = {ℓij} ∈ RN×N defines a communication topology

that can be captured by a weighted graph G = (N , E)where (j, i)
∈ E ⇐ ℓij < 0. The graph G is, in general, directed. However, in
a special case where L is symmetric, G is undirected. This L is the
Laplacian matrix associated with G.

Assumption 1. The following assumptions are made throughout
the paper:

(1) The agents are at most critically unstable, that is, A has all its
eigenvalues in the closed left half plane;

(2) (A, B) is stabilizable and (A, C) is detectable;
(3) The communication topology described by the graph G con-

tains a directed spanning tree.

Under item 3 of Assumption 1, L has one simple eigenvalue at
zero and the others lie in the open right half plane. Let λ1, . . . , λN
denote the eigenvalues of L and assume λ1 = 0. We have that
Re(λi) > 0, or equivalently arg(λi) ∈ (−π

2 ,
π
2 ), for i = 2, . . . ,N .

It should be noted that in practice, perfect information of the
communication topology is usually not available for controller
design and that only some rough characterization of the network
can be obtained. Using the non-zero eigenvalues of L as a
‘‘measure’’ for the graph, we can introduce the following definition
to characterize a set of unknown communication topologies.

Definition 1. For any γ ≥ β ≥ 0 and π
2 > ϕ ≥ 0,Gβ,γ ,ϕ is the set

of graphs satisfying Assumption 1 and whose associated Laplacian
matrix satisfies

|λi| ∈ (β, γ ) and arg λi ∈ [−ϕ, ϕ]

for i = 2, . . . ,N .

Remark 1. In the literature, only the real part of the Laplacian
eigenvalues is typically of concernwhen studying synchronization.
The smallest non-zero real part is the algebraic connectivity of the
graph, which plays an important role in most work on network
synchronization (e.g. Li, Duan, Chen, & Huang, 2010). The largest
magnitude depends on the topology of the graph and thenumerical
edge weights, and plays a role in some synchronization problems
(see, for instance, Mesbahi & Egerstedt, 2010; Olfati-Saber &
Murray, 2004; Seo, Shim, & Back, 2009). For undirected graphs,
all the eigenvalues of the Laplacian are real. In this case, ϕ in
Definition 1 can be taken as zero, and β and γ become traditional
bounds on the non-zero real parts. For directed graphs, however,
the argument of the Laplacian eigenvalues can vary in the range
(−π/2, π/2). An interesting insight offered by this paper is that
themagnitude of this argument plays a crucial role in the presence
of communication delay. Consequently, Definition 1 delineates
sets of graphs based both on the magnitude and argument of the
Laplacian eigenvalues.

Definition 2. The agents in the network achieve consensus if

lim
t→∞

(xi(t)− xj(t)) = 0, ∀i, j ∈ {1, . . . ,N}.

Two consensus problems for agents with full-state coupling (1)
and partial-state coupling (2) can be formulated for this set of
networks respectively as follows.
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Problem 1. Consider a network of agents (1) with full state cou-
pling. The consensus problem, given a set of possible communica-
tion topologiesGβ,γ ,ϕ and a delay upper bound τ̄ , is to design linear
static controllers ui

= Fz i for i = 1, . . . ,N such that the agents (1)
with ui

= Fz i achieve consensus with any communication topol-
ogy belonging to Gβ,γ ,ϕ and for any τ ≤ τ̄ .

Problem 2. Consider a network of agents (2) with partial state
coupling. The consensus problem with a set of possible commu-
nication topologies Gβ,γ ,ϕ and a delay upper bound τ̄ is to design
linear dynamic control protocols of the form:
χ̇ i

= Acχ
i
+ Bcz i

ui
= Ccχ

i,
(3)

for i = 1, . . . ,N such that the agents (2)with controller (3) achieve
consensus with any communication topology belonging to Gβ,γ ,ϕ
and for any τ ≤ τ̄ .

3. Consensus with full-state coupling

In this section, we consider agents with full-state coupling as
given in (1) and solve Problem 1.

For a given set of networks Gβ,γ ,ϕ , we design a decentralized
local consensus controller for any network in Gβ,γ ,ϕ as follows:

ui
= −αB′Pεz i. (4)

Here Pε is the positive definite solution of the Algebraic Riccati
Equation (ARE)

A′Pε + PεA − PεBB′Pε + εI = 0 (5)
and ε, as well as α, are design parameters which will be chosen
according to β, γ and ϕ so that the multi-agent consensus can be
achieved with any communication topology belonging to Gβ,γ ,ϕ .
Let

ωmax =


0, A is Hurwitz.
max{ω ∈ R | det(jωI − A) = 0}, otherwise.

Theorem 1. For a given set Gβ,γ ,ϕ with β > 0 and τ̄ > 0, consider
the agents (1) and any communication topology belonging to the set
Gβ,γ ,ϕ . In that case Problem 1 is solvable if,

τ̄ωmax <
π
2 − ϕ. (6)

Moreover, it can be solved by the consensus controller (4) if (6) holds.
Specifically, for given Gβ,γ ,ϕ and given τ̄ satisfying (6), there exist
α > 0 and ε∗ > 0 such that for this α and any ε ∈ (0, ε∗

], the
agents (1) with controller (4) achieve consensus for any communica-
tion topologies in Gβ,γ ,ϕ and τ ∈ [0, τ̄ ].

Remark 2. The philosophy underlying the proof can be briefed
as follows: First, the consensus problem can be converted to a
robust stabilization problem with both input delay and another
layer of input uncertainty introduced by the unknown complex
eigenvalues of the Laplacian matrix. Then we show that the low-
gain feedback can accommodate these uncertainties if (6) is sat-
isfied, by providing an infinite gain margin and a phase margin
that can be made arbitrarily close to π/2. In fact, we can see in
condition (6) that τ̄ωmax characterize the delay effect and ϕ rep-
resents the topology uncertainty. Together they should not exceed
π/2.
Proof. The proof proceeds in two steps. Step 1: it follows from
Lemma A.1 in the Appendix that Theorem 1 holds if for any γ ≥

β > 0, τ̄ > 0 and ϕ satisfying (6), there exist α > 0 and ε∗ such
that for ε ∈ (0, ε∗

], the system

ẋ = Ax − λαejψBB′Pεx(t − τ) (7)

is asymptotically stable for all τ ∈ [0, τ̄ ], λ ∈ (β, γ ) and ψ ∈

[−ϕ, ϕ].
Fig. 1. Note that given the condition in Theorem 1, αλejψ is originally located
in ABCD and αλej(ψ−ωτ̄) will be located in EFGH . It is easy to verify that if (10)
holds, EFGH will not cross the vertical line z = 1 for |ω| < ωmax + δ. Therefore,
Re(αλejψ−ωτ̄ ) > 1.

Since τ̄ and ϕ satisfy condition (6), this implies τ̄ωmax +ϕ < π
2 .

Choose α such that

α >
1

β cos(ϕ + ωmaxτ̄ )
. (8)

Let this α be fixed. (8) implies that αλ cos(ϕ) > 1 and hence, by
LemmaC.1,A−αλejψBB′Pε is Hurwitz stable forψ ∈ [−ϕ, ϕ]. Then
it follows from Lemma B.1 that system (7) is asymptotically stable
if

det

jωI − A + αλej(ψ−ωτ)BB′Pε


≠ 0, (9)

for ω ∈ R, τ ∈ [0, τ̄ ] and ψ ∈ [−ϕ, ϕ].
Step 2.Weneed to prove (9).We note that given (8), there exists

a δ > 0 such that

α >
1

β cos(ϕ + ωτ̄)
, ∀|ω| < ωmax + δ. (10)

Next we will split the proof of (9) into two cases where |ω| <
ωmax + δ and |ω| ≥ ωmax + δ respectively.

If |ω| ≥ ωmax + δ, we have det(jωI − A) ≠ 0, which yields
σ(jωI − A) > 0. Hence, there exists µ > 0 such that

σ(jωI − A) > µ, ∀ω, s.t. |ω| ≥ ωmax + δ.

To see this, note that for ω satisfying |ω| > ω̄ := max{∥A∥ +

1, ωmax + δ}, we have σ(jωI − A) > |ω| − ∥A∥ > 1. But for ωwith
|ω| ∈ [ωmax + δ, ω̄], there existsµ ∈ (0, 1] such that σ(jωI −A) ≥

µ, which is due to the fact that σ(jωI − A) depends continuously
on ω.

Given α and λ ∈ (β, γ ), there exists ε∗ > 0 such that
∥λαBB′Pε∥ ≤ µ/2 for ε < ε∗. Then

σ(jωI − A − αλej(ψ−ωτ)BB′Pε) ≥ µ− µ/2 ≥ µ/2.

Therefore, condition (9) holds for |ω| ≥ ωmax + δ.
It remains to verify (9) with |ω| < ωmax + δ. By the definition

of δ, we find that

αλ cos(ψ − ωτ) > αβ cos(ϕ + |ω|τ̄ ) > 1,

and hence by Lemma C.1, A − αλej(ψ−ωτ)BB′Pε is Hurwitz stable,
for ω ∈ (−ωmax − δ, ωmax + δ), λ ∈ (β, γ ), ψ ∈ [−ϕ, ϕ] and τ ∈

[0, τ̄ ] (see Fig. 1). Therefore, (9) also holdswith |ω| < ωmax+δ. �
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Remark 3. Some comments on implementation of the consensus
controller (4) are worthwhile. Four parameters are chosen
sequentially in the consensus controller design and analysis,
namely α, δ, µ and ε. First, we select the scaling parameter α in
(8) using the given data β, ϕ and ωmax. Then, δ is chosen based
on network data and the choice of α and such a δ will yield the
corresponding value of µ. Eventually, ε is determined by µ and γ .

Remark 4. The consensus controller design depends only on the
agent model and parameters τ̄ , β, γ and ϕ and is independent
of specific network topology provided that the network satisfies
Assumption 1.

In the special case where ωmax = 0, i.e. the eigenvalues of A
are either zero or in the open left half plane, then an arbitrarily
bounded communication delay can be tolerated as formulated in
the following corollary:

Corollary 1. For a given set Gβ,γ ,ϕ with β > 0 and τ̄ > 0, consider
the agents (1) and any communication topology belonging to the set
Gβ,γ ,ϕ . Suppose the eigenvalues of A are either zero or in the open
left half plane. In that case, Problem 1 is always solvable via the
consensus controller (4). Specifically, for given Gβ,γ ,ϕ and τ̄ > 0,
there exist α and ε∗ such that for any ε ∈ (0, ε∗

], the agents (1)with
controller (4) achieve consensus for any communication topologies in
Gβ,γ ,ϕ and any τ ∈ [0, τ̄ ].

Remark 5. In previous studies of network consensus problem,
agents are normally assumed to have single- or double-integrator
type dynamics. Based on Corollary 1, we find that the delay
tolerance in such cases is independent of network topology and
can bemade arbitrarily large. This result in noway contradicts that
in Lin et al. (2007), Olfati-Saber and Murray (2004) and Yu et al.
(2010) since the goal here is to find the maximal achievable delay
tolerance by controller design whereas the mentioned papers
present conditions such that the delay does not affect consensus
for a certain given controller.

4. Consensus with partial-state coupling

Next, we consider the case of partial-state coupling and design
a controller of the form (3) which solves Problem 2.

For ε > 0, let Pε be the positive definite solution of the ARE (5).
A dynamic low-gain consensus controller, which is a special form
of (3), can be constructed as
χ̇ i

= (A + KC)χ i
− Kz i

ui
= −αB′Pεχ i,

(11)

where K is such that A + KC is Hurwitz stable. α and ε are design
parameters to be chosen later. We shall prove that this consensus
controller solves Problem 2.

Theorem 2. For a given set Gβ,γ ,ϕ with β > 0 and τ̄ > 0, consider
the agents (2)with any communication topology belonging to Gβ,γ ,ϕ .
In that case, Problem 2 is solvable if,

τ̄ωmax <
π
2 − ϕ. (12)

Moreover, it can be solved by the consensus controller (11) if (12)
holds. Specifically, for givenβ and γ and givenϕ and τ̄ satisfying (12),
there exist α > 0 and ε∗ such that for any ε ∈ (0, ε∗

], the agents
(2) with controller (11) achieve consensus for any communication
topology in Gβ,γ ,ϕ and τ ∈ [0, τ̄ ].

Proof. It follows from Lemma A.2 in the Appendix that Theorem 2
holds if there exist α > 0 and ε∗ > 0 such that for ε ∈ (0, ε∗

], the
system
ẋ(t) = Ax(t)− αλejψBB′Pεχ(t − τ)
χ̇(t) = (A + KC)χ(t)− KCx(t) (13)

is asymptotically stable for any λ ∈ (β, γ ), ψ ∈ [−ϕ, ϕ] and τ ∈

[0, τ̄ ].
Define

Ā =


A 0

−KC A + KC


, B̄ =


B
0


, F̄ε =


0 −B′Pε


.

First of all, for givenβ, γ andψ ∈ (−ϕ, ϕ), there existsα such that

α >
1

β cos(ϕ + ωmaxτ̄ )
. (14)

Let this α be fixed. By Lemma C.2 in the Appendix, there exists
ε1 such that for ε ∈ (0, ε1], Ā + αλejψ B̄F̄ε is Hurwitz stable for
λ ∈ (β, γ ) and ψ ∈ (−ϕ, ϕ). It follows from Lemma B.1 that (13)
is asymptotically stable if

det

jωI − Ā − αλej(ψ−ωτ)B̄F̄ε


≠ 0, ∀ω ∈ R,

∀λ ∈ (β, γ ), ∀ψ ∈ (−ϕ, ϕ), ∀τ ∈ [0, τ̄ ]. (15)

Given (14), there exists δ > 0 such that

λα cos(ϕ + ωτ̄) > 1, ∀|ω| < ωmax + δ. (16)

We can show, as in the proof of Theorem1, that there exists ε2 ≤ ε1
such that for ε ∈ (0, ε2], condition (15) holds for |ω| ≥ ωmax + δ.

For |ω| < ωmax + δ, it follows from (16) and Lemma C.2 that
Ā + αλej(ψ−ωτ)B̄F̄ε is Hurwitz stable. Therefore, condition (15)
also holds with |ω| < ωmax + δ. �

Remark 6. The low-gain compensator (11) is constructed based
on the agent model and the network characteristics β, γ and ϕ.
The four parameters α, δ, µ and ε used in the design of controller
(11) are chosen with the same order and relation as in the proof of
Theorem 1.

Corollary 2. For a given set Gβ,γ ,ϕ with β > 0 and τ̄ > 0, con-
sider the agents (2) with any communication topology belonging to
Gβ,γ ,π . Suppose the eigenvalues of A are either zero or in the open
left half plane. In that case, Problem 2 is solvable by the consensus
controller (11). Specifically, for given β, γ , ϕ and τ̄ > 0, there exist
α > 0 and ε∗ > 0 such that for any ε ∈ (0, ε∗

], the agents (2) with
controller (11) achieve consensus for any communication topology in
Gβ,γ ,ϕ and τ ∈ [0, τ̄ ].

5. Special case: neutrally stable agents

We observe that the consensus controller design in Theorems 1
and 2 for general critically unstable agents depends on β which is
related to the algebraic connectivity of the graph.We next consider
a special case where the agent dynamics are neutrally stable, that
is, the eigenvalues of A on the imaginary axis, if any, are semi-
simple. Without loss of generality, we assume that A′

+ A ≤ 0
which can be obtained after a suitable basis transformation. In
this case, we shall show that the consensus controller design no
longer requires the knowledge of β and hence allows us to deal
with a larger set of unknown communication topologies that can
be denoted as G0,γ ,ϕ .

Consider the agents (1). Assume A′
+ A ≤ 0. A local consensus

controller can be constructed as

ui
= εB′z i. (17)

We have the following theorem:

Theorem 3. For a given set G0,γ ,ϕ and τ̄ > 0, consider the agents
(1) and any communication topology belonging to the set G0,γ ,ϕ .
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Suppose A′
+ A ≤ 0. In that case, Problem 1 is solvable if,

τ̄ωmax <
π
2 − ϕ. (18)

Moreover, it can be solved by the consensus controller (17) if (18)
holds. Specifically, for given γ and given ϕ and τ̄ satisfying (18),
there exists an ε∗ such that for any ε ∈ (0, ε∗

], the agents (1) with
controller (17) achieve consensus for any communication topology in
G0,γ ,ϕ and τ ∈ [0, τ̄ ].

Proof. It follows from Lemma A.1 that Theorem 3 holds if the
system

ẋ = Ax − λεejψBB′x(t − τ) (19)

is asymptotically stable for λ ∈ (0, γ ), ψ ∈ [−ϕ, ϕ] and τ ∈

[0, τ̄ ], which, by Lemma B.1, is true if and only if

det

jωI − A + ελejψ−jωτBB′


≠ 0, ∀ω ∈ R,

λ ∈ (0, γ ), ψ ∈ [−ϕ, ϕ], τ ∈ [0, τ̄ ]. (20)

There exists δ > 0 such that ωτ̄ + ϕ < π
2 ,∀ω s.t. |ω| < ωmax + δ.

For given λ ∈ (0, γ ), we can show with a similar argument as
in the proof of Theorem 1 that there exists a µ > 0 and a ε1 such
that for ε ∈ (0, ε1] and λ ∈ (0, γ )

σ (jωI − A + ελejψ−jωτBB′) > µ, ∀ω s.t. |ω| ≥ ωmax + δ.

Hence, (20) is satisfied with |ω| ≥ ωmax + δ.
It remains to show (20) for |ω| < ωmax + δ. Note thatψ−ωτ ∈

(−π
2 ,

π
2 ) by the definition of δ and hence cos(ψ − ωτ) > 0. Then

[A − ελejψ−jωτBB′
]
∗
+ [A − λεejψ−jωτBB′

]

= −2λε cos(ψ − ωτ)BB′
≤ 0.

Since (A, B) is controllable, we conclude that A − λεejψ−jωτBB′ is
Hurwitz, and hence (20) also holds, with |ω| < ωmax + δ. �

The next theorem addresses the consensus problem for
networks with partial state coupling. In this case, a low-gain
consensus controller can be designed as
χ̇ i

= (A + KC)χ i
− Kz i

ui
= εB′χ i,

(21)

where K is such that A + KC is Hurwitz.

Theorem 4. For a given set G0,γ ,ϕ and τ̄ > 0, consider the agents
(2) with any communication topology belonging to G0,γ ,ϕ . Suppose
A + A′

≤ 0. In that case, Problem 2 is solvable if,

τ̄ωmax <
π
2 − ϕ. (22)

Moreover, it can be solved by the consensus controller (21) if (22)
holds. Specifically, for given γ and given ϕ and τ̄ satisfying (22), there
exists an ε∗ > 0 such that for any ε ∈ (0, ε∗

], the agents (2) with
controller (21) achieve consensus for any communication topology in
G0,γ ,ϕ and τ ∈ [0, τ̄ ].

Proof. It follows from Lemma A.2 in the Appendix that Theorem 2
holds if there exist α > 0 and ε∗ > 0 such that for ε ∈ (0, ε∗

], the
system
ẋ(t) = Ax(t)− ελejψBB′χ(t − τ)
χ̇(t) = (A + KC)χ(t)− KCx(t) (23)

is asymptotically stable for any λ ∈ (0, γ ), ψ ∈ [−ϕ, ϕ] and
τ ∈ [0, τ̄ ].

Define

Ā =


A 0

−KC A + KC


, B̄ =


B
0


, F̄ε =


0 −εB′


.

By Lemma C.3 in the Appendix, there exists ε1 such that for ε ∈

(0, ε1], Ā+αλejψ B̄F̄ε is Hurwitz stable. It follows fromLemmaB.1
that (23) is asymptotically stable if

det

jωI − Ā − αλej(ψ−ωτ)B̄F̄ε


≠ 0, ∀ω ∈ R,

∀λ ∈ (β, γ ), ∀ψ ∈ (−ϕ, ϕ), ∀τ ∈ [0, τ̄ ]. (24)

Similarly as before, there exist δ > 0 and ε2 ≤ ε1 such that for
ε ∈ (0, ε2], condition (24) holds for |ω| ≥ ωmax + δ. On the other
hand, |ω| < ωmax + δ, it follows from Lemma C.3 that Ā + αλ
ej(ψ−ωτ)F̄ε is Hurwitz stable. Therefore, condition (24) also holds
with |ω| < ωmax + δ. �

6. Concluding remarks

In this paper, we study the multi-agent consensus with
uniform constant communication delay for agents with high-order
dynamics. A sufficient bound on the delay is derived under which
the multi-agent consensus is attainable. Whenever this condition
is satisfied, a controller without the exact knowledge of network
topology can be constructed such that consensus can be achieved
in a set of networks.

Although this paper focuses on unknown communication
topologies, when the perfect information about the topology is
in fact available, the design procedure can be easily modified to
achieve a stronger result. In this case, input ui to each agent can be
first scaled as ui = diūi where these di are such that diag{di}L has a
simple eigenvalue at zero and the rest are real and strictly positive.
The existence of such dis is proved by Fisher and Fuller (1958). Then
we can design ūi following the procedure proposed in this paper.

Appendix A. Connection of network consensus to robust stabi-
lization

The following lemmas are classical results in the study ofmulti-
agent consensus problem (see Seo et al., 2009, for instance).

Lemma A.1. Problem 1 is solvable via consensus controller ui
= Fz i

if the following N − 1 systems

ξ̇ i(t) = Aξ i(t)+ λiBFξ i(t − τ) (A.1)

are asymptotically stable where λi, i = 2, . . . ,N are the non-
zero eigenvalues of the Laplacian associated with the communication
topology.

Lemma A.2. Problem 2 is solvable via consensus controller (3) if the
following N − 1 systems
ẋi(t) = Axi(t)+ λiBCcχ

i(t − τ)

χ̇ i(t) = Acχ
i(t)+ Bcz i(t)

(A.2)

are asymptotically stable where λi for i = 2, . . . ,N are the non-zero
eigenvalues of the Laplacian matrix L.

Appendix B. Stability of linear time-delay system

The following lemma is adapted from Zhang, Knospe, and
Tsiotras (2003).

Lemma B.1. Consider a linear time-delay system

ẋ = Ax + Adx(t − τ). (B.1)

Assume A + Ad is Hurwitz. We have that (B.1) is globally asymptoti-
cally stable for τ ∈ [0, τ̄ ] if

det

jωI − A − e−jωτAd


≠ 0, ∀ω ∈ R, ∀τ ∈ [0, τ̄ ],

for all ω ∈ R and τ ∈ [0, τ̄ ].
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Appendix C. Robustness of low-gain state feedback and com-
pensator

In this subsection, we recall some classical robust properties of
low-gain feedback and compensator. Consider an uncertain system
ẋ = Ax + µBu
y = Cx, (C.1)

where (A, B) is stabilizable, (A, C) is detectable and A has all its
eigenvalues in the closed left half plane. The µ ∈ C is input
uncertainty. For ε > 0, let Pε be the positive definite solution of
ARE

A′Pε + APε − PεB′BPε + εI = 0.

The robustness of a low-gain state feedback u = −B′Pεx is inher-
ited from that of a classical LQR.

Lemma C.1. A − µBB′Pε is Hurwitz stable for any µ ∈ {s ∈ C |

Re(s) ≥
1
2 }.

Proof. We observe that for µ ∈ {s ∈ C | Re(s) ≥
1
2 },

(A − µBB′Pε)∗Pε + Pε(A − µBB′Pε)
= −εI − (2Re(µ)− 1)PεBB′Pε < 0,

and hence, A − µBB′Pε is Hurwitz stable. �

The next lemma proves a similar property of a low-gain com-
pensator.

Lemma C.2. For any a priori given bounded set

W ⊆ {s ∈ C | Re(s) ≥ 1},

there exists ε∗ such that for any ε ∈ (0, ε∗
], the closed-loop system

of (C.1) and the low-gain compensator
χ̇ = (A + KC)χ − Ky,
u = −B′Pεχ

(C.2)

is asymptotically stable for any µ ∈ W .

Proof. Define e = x − χ . The closed-loop of (C.1) and (C.2) can be
rewritten in terms of x and e as
ẋ = (A − µBB′Pε)x + µBB′Pεe
ė = (A + KC + µBB′Pε)e − µBB′Pεx.

(C.3)

Since Re(µ) ≥ 1, we have

(A − µBB′Pε)∗Pε + Pε(A − µBB′Pε) ≤ −εI − PεBB′Pε.

Define V1 = x∗Pεx and u = −B′Pεx. We can derive that

V̇1 ≤ −ε∥x∥2
− ∥u∥2

+ θ(ε)∥e∥ ∥u∥,

where θ(ε) = ∥µB′Pε∥. Clearly, θ(ε) → 0 as ε → 0.
Let Q be the positive definite solution of Lyapunov equation

(A + KC)′Q + Q (A + KC) = −2I.

Since Fε → 0 and µ is bounded in W , there exists ε1 such that for
ε ∈ (0, ε1],

(A + KC + µBB′Pε)′Q + Q (A + KC + µBB′Pε) ≤ −I.

Define V2 = e∗Qe. We get V̇2 ≤ −∥e∥2
+ M∥e∥ ∥u∥ where M =

maxµ∈W {2∥µQB∥}.
Define V = 4M2V1 + 2V2. Then

V̇ ≤ −4M2ε∥x∥22 − 2∥e∥2
− 4M2

∥u∥2

+ (4M2θ(ε)+ 2M)∥e∥ ∥u∥.
There exist ε∗
≤ ε1 such that 4M2θ(ε) ≤ 2M for ε ∈ (0, ε∗

]. Hence
for ε ∈ (0, ε∗

],

V̇ ≤ −4M2ε∥x∥2
− ∥e∥2

− (∥e∥ − 2M∥u∥)2.

We conclude that (C.2) is asymptotically stable for anyµ ∈ W . �

Lemma C.3. Consider system (C.1). Suppose A′
+ A ≤ 0. For any

a priori given ϕ ∈ (0, π2 ) and a bounded set

W ⊆ {s ∈ C | s ≠ 0, arg(s) ∈ [−ϕ, ϕ]},

there exists ε∗ such that for any ε ∈ (0, ε∗
], the closed-loop system

of (C.1) and the low-gain compensator
χ̇ = (A + KC)χ − Ky,
u = −εB′χ

(C.4)

is asymptotically stable for any µ ∈ W .

Proof. Define e = x − χ . The closed-loop of (C.1) and (C.4) can be
rewritten in terms of x and e as
ẋ = (A − εµBB′)x + εµBB′e
ė = (A + KC + εµBB′)e − εµBB′x. (C.5)

Define V1 = x∗x and u = −B′x. It is easy to get

V̇1 ≤ −εRe(µ)∥u∥2
+ ε|µ|θ1∥e∥ ∥u∥,

where θ1 = 2∥B∥.
Let Q be the positive definite solution of Lyapunov equation

(A + KC)′Q + Q (A + KC) = −2I.

Since µ is bounded in W , there exists ε1 such that for ε ∈ (0, ε1],

(A + KC + εµBB′)∗Q + Q (A + KC + εµBB′) ≤ −I.

Define V2 = e∗Qe. We get V̇2 ≤ −∥e∥2
+ ε|µ|θ2∥e∥ ∥u∥ where

θ2 = 2∥QB∥.
Define V = V1 + V2. Then with θ3 = θ1 + θ2, we can derive

V̇ ≤ − [1 − ε|µ| sec(ϕ)] ∥e∥2
−

3
4
εRe(µ)∥u∥2

− εRe(µ)
 1
2∥u∥ − sec(ϕ)θ3∥e∥

2
.

Since W is bounded and ϕ is given, there exists ε∗
≤ ε1 such that

for ε ∈ (0, ε∗
], ε|µ| sec(ϕ) ≤

1
2 ,∀µ ∈ W . Hence for ε ∈ (0, ε∗

],

V̇ ≤ −
1
2
∥e∥2

−
3
4
εRe(µ)∥u∥2.

Since (A, B) is stabilizable, we conclude that (C.2) is asymptotically
stable for any µ ∈ W . �
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