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Abstract

This paper considers the structure of uncertain linear systems building on concepts of robust unobservability and possible
controllability which were introduced in previous papers. The paper presents a new geometric characterization of the possibly
controllable states. When combined with previous geometric results on robust unobservability, the results of this paper lead to
a general Kalman type decomposition for uncertain linear systems which can be applied to the problem of obtaining reduced
order uncertain system models.

1 Introduction

Controllability and observability are fundamental prop-
erties of a linear system; e.g., see [1]. This paper is con-
cerned with extending these notions to the case of un-
certain linear systems with the aim of gaining greater
understanding of the structure of uncertain linear sys-
tems when applied to problems of reduced order mod-
elling and minimal realization.

One reason for considering the issue of controllability
for uncertain systems might be to determine if a robust
state feedback controller can be constructed for the sys-
tem; e.g., see [2]. In this case, one would be interested in
the question of whether the system is “controllable” for
all possible values of the uncertainty; e.g., see [3–8]. Sim-
ilarly, one reason for considering observability for uncer-
tain systems might be to determine if a robust state es-
timator can be constructed for the system; e.g., see [9].
In this case, one would be interested in the question of
whether the system is “observable” for all possible values
of the uncertainty; e.g., see [10]. However, these ques-
tions of robust controllability and robust observability
are not the questions being addressed in this paper.

For the case of linear systems, the notions of controlla-
bility and observability are central to realization theory;
e.g., see [1]. For example, it is known that if a linear

⋆ This work was supported by the Australian Research
Council. Preliminary versions of some of the results of this
paper appeared in the 46th IEEEConference on Decision and
Control, New Orleans and the 2008 IFAC World Congress,
Seoul.

system contains unobservable or uncontrollable states,
those states can be removed in order to obtain a reduced
dimension realization of the system’s transfer function.
From this point of view, a natural extension of the no-
tion of controllability to the case of uncertain systems,
would be to consider “possibly controllable” states which
are controllable for some possible values of the uncer-
tainty. This idea was developed in the paper [11] for the
case of uncertain linear systems with structured uncer-
tainty subject to averaged integral quadratic constraints
(IQCs). Similarly, a natural extension of the notion of
observability to uncertain systems is to consider robustly
unobservable states which are “unobservable” for all pos-
sible values of the uncertainty. This idea was developed
in the papers [12, 13].

This paper builds on concepts of “robust unobservabil-
ity and “possible controllability” developed in the pa-
pers [11, 12]. The results presented in the paper aim to
provide insight into the structure of uncertain systems
as it relates to questions of realization theory and re-
duced dimension modelling for uncertain systems; e.g.,
see [14–16].

We formally define notions of robust unobservability and
possible controllability in terms of certain constrained
optimization problems. The notion of robust unobserv-
ability used in this paper involves extending the standard
linear systems definition of the observability Gramian to
the case of uncertain systems; see also [17]. Also, the no-
tion of possible controllability used in this paper involves
extending the standard linear systems definition of the
controllability Gramian to the case of uncertain systems;
see also [18].We then apply the S-procedure (e.g., see [2])
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to obtain conditions for robust unobservability and pos-
sible controllability in terms of unconstrained LQ opti-
mal control problems dependent on Lagrange multiplier
parameters as in [11, 12]. From this, we develop a geo-
metric characterization for the set of robustly unobserv-
able states (as in [13]) and the set of possibly controllable
states. These characterizations imply that the set of ro-
bustly unobservable states is in fact a linear subspace.
Similarly, we show that the set of possibly controllable
states is a linear subspace; see also [3,6,7]. These charac-
terizations lead to a Kalman type decomposition for the
uncertain systems under consideration; see also [19], [20]
and Theorem 4.3 in Chapter 3 of [1]. This decomposition
is described in the four possible cases for which an uncer-
tain systemmodel can have robustly unobservable states
or states which are not possibly controllable. These are
the cases in which a reduced dimension uncertain sys-
tem model can be obtained which retains the same set
of input-output behaviours as the original model. As
compared to the previous papers [11–13], the results of
this paper enable a complete geometrical picture to be
obtained which can be applied to problems of reduced
dimension modelling of uncertain linear systems. Also,
the results of this paper are much more computation-
ally tractable than the results of the papers [11,12]. The
main assumption required in this paper as compared to
the previous papers [11, 12] is the assumption that the
uncertainty is unstructured and described by a single
averaged uncertainty constraint.

The remainder of the paper proceeds as follows. In Sec-
tion 2, the class of uncertain systems under considera-
tion is introduced and definitions of robust unobserv-
ability and possible controllability are given. In Section
3, the existing geometrical results on robust observabil-
ity are summarized. In Sections 4, 5, 6, our main results
on possible controllability are given. In Section 7, the re-
sults are combined to obtain complete Kalman decom-
position results and in Section 8, an illustrative example
is given. The paper is concluded in Section 9.

2 Problem Formulation

We consider the following linear time invariant uncertain
system:

ẋ(t) =Ax(t) +B1u(t) +B2ξ(t);

z(t) =C1x(t) +D1u(t);

y(t) =C2x(t) +D2ξ(t) (1)

where x ∈ Rn is the state, y ∈ Rl is themeasured output,
z ∈ Rh is the uncertainty output, u ∈ Rm is the control
input, and ξ ∈ Rr is the uncertainty input.

For the system (1), we define the transfer function G(s)
to be the transfer function from the input ξ(t) to the

output y(t); i.e.,

G(s) = C2(sI −A)−1B2 +D2.

Also, we define the transfer function H(s) to be the
transfer function from the input u(t) to the output z(t);
i.e.,

H(s) = C1(sI −A)−1B1 +D1.

System Uncertainty. The uncertainty in the uncertain
system (1) is required to satisfy a certain “Averaged
Integral Quadratic Constraint”.

Averaged Integral Quadratic Constraint. Let the time in-
terval [0, T ], T > 0 be given and let d > 0 be a given
positive constant associated with the system (1); see also
[11,12,21]. We will consider sequences of uncertainty in-
puts S = {ξ1(·), ξ2(·), . . . ξq(·)}. The number of elements
q in any such sequence is arbitrary. A sequence of uncer-
tainty functions of the form S = {ξ1(·), ξ2(·), . . . ξq(·)}
is an admissible uncertainty sequence for the system (1)
if the following conditions hold: Given any ξi(·) ∈ S and
any corresponding solution {xi(·), ξi(·)} to (1) defined
on [0, T ], then ξi(·) ∈ L2[0, T ], and

1

q

q
∑

i=1

∫ T

0

(

‖ξi(t)‖2 − ‖zi(t)‖2
)

dt≤ d. (2)

The class of all such admissible uncertainty sequences
is denoted Ξ. One way in which such uncertainty could
be generated is via unstructured feedback uncertainty
as shown in the block diagram in Fig. 1.

The averaged IQC uncertainty description was intro-
duced in [21] as an approach to uncertainty modelling
which gives tight results in the case of structured uncer-
tainty. The paper [11] gives a more detailed explanation
concerning the use of the averaged IQC uncertainty de-
scription. This paper continues to use the averaged IQC
uncertainty description even though it does not consider
structured uncertainties since it builds on the results
of [11,12] which were derived using the averaged IQC un-
certainty description. It should be possible to re-derive
the results of [11,12] using the standard rather than av-
eraged IQC uncertainty description such as considered
in [22]. These results could then be used to obtain results
corresponding to the results of this paper in the case of
a standard IQC uncertainty description rather than an
averaged IQC uncertainty description.

Definition 1 The robust unobservability function for
the uncertain system (1), (2) defined on the time interval
[0, T ] is defined as

Lo(x0, T )
∆
= sup

S∈Ξ

1

q

q
∑

i=1

∫ T

0

‖y(t)‖2dt (3)
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Fig. 1. Uncertain system block diagram’.

where x(0) = x0 in (1).

This definition extends the standard definition of the
observability Gramian for linear systems.

Notation.
D

∆
= {d : d > 0}.

Definition 2 A non-zero state x0 ∈ Rn is said to be
robustly unobservable for the uncertain system (1), (2)
defined on the time interval [0, T ] if

inf
d∈D

Lo(x0, T ) = 0.

The set of all robustly unobservable states for the uncer-
tain system (1), (2) defined on the time interval [0, T ] is
referred to as the robustly unobservable set U ; i.e.,

U
∆
=

{

x ∈ Rn : inf
d∈D

Lo(x, T ) = 0

}

.

Definition 3 The possible controllability function for
the uncertain system (1), (2) defined on the time interval
[0, T ] is defined as

Lc(x0, T )
∆
=

sup
ǫ>0

inf
S∈Ξ

inf
U∈L

q

2
[0,T ]

1

q

q
∑

i=1

[

‖xi(T )‖2

ǫ

+
∫ T

0 ‖ui(t)‖2dt

]

(4)

where x(0) = x0 in (1).

This definition extends the standard definition of the
controllability Gramian for linear systems. In particular,
in the special case of systems without uncertainty, this
quantity will be infinite for uncontrollable states x0.

Definition 4 A non-zero state x0 ∈ Rn is said to be
possibly controllable on [0, T ] for the uncertain system
(1), (2) if

sup
d∈D

Lc(x0, T ) < ∞.

This definition reduces to the definition of controllable
states for the special case of systems without uncer-
tainty; e.g., see [1].

Definition 5 A non-zero state x0 ∈ Rn is said to be
(differentially) possibly controllable for the uncertain
system (1), (2) if it is possibly controllable on [0, T ] for
all T > 0 sufficiently small.

The set of all differentially possibly controllable states for
the uncertain system (1), (2) is referred to as the possibly
controllable set C.

Remark 1 It is emphasized in [11] that the notion of
possibly controllability for uncertain systems is an exten-
sion of the standard notion of controllability in its appli-
cation to problems of minimal realization. In particular,
in the sequel it will be shown that the existence of states
which are not possibly controllable in an uncertain system
model means that a reduced dimension uncertain system
model can be obtained with the same input-output be-
haviour as the original model. In this sense, states which
are not possibly controllable controllable correspond to
uncontrollable states in standard linear systems theory;
e.g., see [1].

3 Existing Results on Robust Unobservability

In this section, we recall some existing results from [13]
giving a geometrical characterization of robust unob-
servability.

For the uncertain system (1), (2) defined on the time
interval [0, T ], we define a function Vτ (x0, T ) as follows:

Vτ (x0, T )
∆
=

inf
ξ(·)∈L2[0,T ]

∫ T

0

(

−‖y‖2 + τ‖ξ‖2 − τ‖z‖2
)

dt.

(5)

Here τ ≥ 0 is a given constant.

Γ̄(x0, T )
∆
=
{

τ : τ ≥ 0 and Vτ (x0, T ) > −∞
}

.

Assumption 1 For all x0 ∈ Rn, there exists a constant
τ ≥ 0 such that Vτ (x0, T ) > −∞.

Remark: The above assumption is a technical assump-
tion required to establish the results of [13]. It represents
an assumption on the size of the uncertainty in the sys-
tem relative to the time interval [0, T ] under considera-
tion. In general, this assumption can always be satisfied
by choosing a sufficiently small T > 0.

3



Theorem 1 (See [13] for proof). Consider the uncer-
tain system (1), (2) and suppose that Assumption 1 is
satisfied. Also, suppose that G(s) ≡ 0. Then a state x0 is
robustly unobservable if and only if it is an unobservable
state for the pair (C2, A).

Remark: From the above theorem and the fact that
G(s) ≡ 0, it follows that we can apply the standard
Kalman decomposition to represent the uncertain sys-
tem as shown in Fig. 2.

u
Observable

Unobservable +

y

z

z

z

ξ

1

2

∆

Fig. 2. Observable-Unobservable decomposition for the un-
certain system when G(s) ≡ 0.

Note that in this case, all of the uncertainty is in the
unobservable subsystem and the coupling between the
two subsystems.

Theorem 2 (See [13] for proof). Consider the uncer-
tain system (1), (2) and suppose that Assumption 1 is
satisfied. Also, suppose that G(s) 6≡ 0. Then a state x0 is
robustly unobservable if and only if it is an unobservable

state for the pair (

[

C1

C2

]

, A).

Remark: The above theorem implies that when G(s) 6≡
0, the robustly unobservable set is a linear space equal to

the unobservable subspace of the pair (

[

C1

C2

]

, A). From

this theorem, it follows that we can apply the standard
Kalman decomposition to represent the uncertain sys-
tem as shown in Fig. 3.

In this case, all of the uncertainty is in the observable
subsystem or in the coupling between the two subsys-
tems.

u

Unobservable

Observable y

z

∆

ξ

Fig. 3. Observable-Unobservable decomposition for the un-
certain system when G(s) 6≡ 0.

4 Preliminary Results on Possible Controlla-
bility

In this section, we will recall the main results of [11] spe-
cialized to the class of uncertain systems with unstruc-
tured uncertainty considered in this paper.

4.1 A Family of UnconstrainedOptimization Problems.

For the uncertain system (1), (2) defined on the
time interval [0, T ], we define functions W ǫ

τ (x0, λ, T ),
W ǫ

τ (x0, T ) and Wτ (x0, T ) as follows:

W ǫ
τ (x0, λ, T )

∆
= inf

[ξ(·),u(·)]∈L2[λ,T ]

‖x(T )‖2

ǫ

+

∫ T

λ

(

‖u‖2 + τ‖ξ‖2 − τ‖z‖2
)

dt

(6)

subject to x(λ) = x0;

W ǫ
τ (x0, T )

∆
=W ǫ

τ (x0, 0, T );

Wτ (x0, T )
∆
= sup

ǫ>0
W ǫ

τ (x0, T ).

Here τ ≥ 0 is a given constant.

4.2 A Formula for the Possible Controllability Func-
tion.

Theorem 3 (See [11] for proof). Consider the uncertain
system (1), (2) defined on the time interval [0, T ] and
corresponding possible controllability function (4). Then
for any x0 ∈ Rn,

Lc(x0, T ) = sup
ǫ>0

sup
τ≥0

{W ǫ
τ (x0, T )− τd} ;

= sup
τ≥0

{Wτ (x0, T )− τd} . (7)

4



Corollary 1 (See [11] for proof). If we define

L̃c(x0, T )
∆
= sup

d∈D
Lc(x0, T )

then

L̃c(x0, T ) = sup
ǫ>0

sup
τ≥0

W ǫ
τ (x0, T ) = sup

τ≥0
Wτ (x0, T ).

Observation 1 From the above corollary, it follows im-
mediately that a non-zero state x0 ∈ Rn is (differen-
tially) possibly controllable for the uncertain system (1),
(2) if and only if

sup
ǫ>0

sup
τ≥0

W ǫ
τ (x0, T ) = sup

τ≥0
Wτ (x0, T ) < ∞ (8)

for all T > 0 sufficiently small.

5 Riccati Equation Solution to the Uncon-
strained Optimization Problems

In order to calculateW ǫ
τ (x0, λ, T ), we note that if τ > 0,

and the optimization problem (6) has a finite solution
for all initial conditions, then it can be solved in terms
of the following Riccati differential equation (RDE):

−Ṗ ǫ =

A′P ǫ + P ǫA

−(P ǫB1 − τC′
1D1) (I − τD′

1D1)
−1

(P ǫB1 − τC′
1D1)

′

−
P ǫB2B

′
2P

ǫ

τ
− τC1C

′
1; P ǫ(T ) = I/ǫ (9)

which is solved backwards in time.

Lemma 1 Let τ > 0 be such that

I − τD′
1D1 > 0. (10)

Consider the system (1) defined on [0, T ] and cost func-
tional (6) with λ ∈ [0, T ). Then

W ǫ
τ (x0, λ, T ) > −∞ ∀x0 ∈ Rn

if and only if the RDE (9) has a solution P ǫ
τ (t) defined

on [λ, T ]. In this case,

W ǫ
τ (x0, λ, T ) = x′

0P
ǫ
τ (λ)x0. (11)

Proof. This lemma follows directly from a standard LQR
optimal control result; e.g., see page 55 of [23]. ✷

In order to calculate Wτ (x0, T ) using the Riccati equa-
tion approach of [11], we will consider the following

RDEs:

Ṡǫ =

ASǫ + SǫA′

−(B1 − τSǫC′
1D1) (I − τD′

1D1)
−1

(B1 − τSǫC′
1D1)

′

−
B2B

′
2

τ
− τSǫC1C

′
1S

ǫ; Sǫ(T ) = ǫI; (12)

Ṡ =

AS + SA′

−(B1 − τSC′
1D1) (I − τD′

1D1)
−1

(B1 − τSC′
1D1)

′

−
B2B

′
2

τ
− τSC1C

′
1S; S(T ) = 0 (13)

which are solved backwards in time.

Theorem 4 (see [11] for proof.) Let τ > 0 be such that
I − τD′

1D1 > 0. Also suppose there exists an ǫ0 > 0
such that for all ǫ ∈ (0, ǫ0), all non-zero x0 ∈ Rn and
all λ ∈ [0, T ], then W ǫ

τ (x0, λ, T ) > 0. Then for any ǫ ∈
(0, ǫ0), the Riccati equations (12) and (13) have solutions
Sǫ
τ (t) > 0 and Sτ (t) ≥ 0 defined on [0, T ] and for any

x0 6= 0

W ǫ
τ (x0, T ) = x′

0 [S
ǫ
τ (0)]

−1
x0 > 0.

Also, if Sτ (0) > 0 then

Wτ (x0, T ) = x′
0 [Sτ (0)]

−1
x0 > 0.

Furthermore, if the matrix Sτ (0) ≥ 0 is singular and x0

is not contained within the range space of Sτ (0), then

Wτ (x0, T ) = ∞.

The following lemma shows that the time interval [0, T ]
can always be chosen short enough to guarantee that
solutions to the RDEs exist.

Lemma 2 Let ǫ∗ > 0 and τ∗ > 0 be given. Then there
exists a sufficiently small T̃ > 0 such that the RDEs (12)

and (13) both have solutions on [0, T̃ ] and Sǫ∗

τ∗(t) > 0.

Proof. This result follows from standard results on dif-
ferential equations and the fact that Sǫ∗(T ) = ǫ∗I > 0.
✷

Lemma 3 Corresponding to the system (1), we consider
the dual system:

ẋ(t) =−A′x(t) + C′
1ξ(t);

y(t) =B′
1x(t)−D′

1ξ(t);

z(t) =B′
2x(t) (14)

5



defined on the time interval [0, T ], with initial condition
x(λ) = x̃0 where λ ∈ [0, T ). Also, suppose ǫ > 0 and
τ > 0 are such that the RDEs (12) and (13) both have
solutions on [0, T ]. Then, we can write

x̃′
0S

ǫ
τ (λ)x̃0 =

sup
ξ(·)∈L2[λ,T ]

{

ǫ‖x(T )‖2+
∫ T

λ

(

‖y‖2 + 1
τ
‖z‖2 − 1

τ
‖ξ‖2

)

dt

}

(15)

and

x̃′
0Sτ (λ)x̃0 =

sup
ξ(·)∈L2[λ,T ]

∫ T

λ

(

‖y‖2 +
1

τ
‖z‖2 −

1

τ
‖ξ‖2

)

dt.

(16)

Furthermore, for any λ ∈ [0, T ), we have

Sǫ
τ (λ) ≥ Sτ (λ) ≥ 0. (17)

Proof. It follows via some straightforward algebraic ma-
nipulations that the RDE (12) can be re-written as

Ṡǫ =

ASǫ + SǫA′

−(SǫC′
1 −B1D

′
1)

(

I

τ
−D1D

′
1

)−1

(SǫC′
1 −B1D

′
1)

′

−
B2B

′
2

τ
−B1B

′
1; Sǫ(T ) = ǫI. (18)

Similarly, the RDE (13) can be re-written as

Ṡ =

AS + SA′

−(SC′
1 −B1D

′
1)

(

I

τ
−D1D

′
1

)−1

(SC′
1 −B1D

′
1)

′

−
B2B

′
2

τ
−B1B

′
1; S(T ) = 0. (19)

Then, the formulas (15), (16) follow directly from a stan-
dard result on the linear quadratic regulator problem;
e.g., see page 55 of [23]. Also, the first inequality in (17)
follows by comparing (15) and (16), and the second in-
equality in (17 follows by setting ξ(·) ≡ 0 in (16). ✷

The following simple linear algebra result will also be
useful in the proof of our main results.

Lemma 4 Let N be a given matrix and let M > 0 and
M̃ > 0 be given positive definite matrices such that

M̃ = NN ′ +M

If the vector x0 can be written as x0 = Ny0, we have

x0M̃
−1x0 ≤ y′0y0.

Proof. It follows from the Matrix Inversion Lemma that
we can write

I −N ′ (M +NN ′)
−1

N =
(

I +N ′M−1N
)−1

.

Hence,

N ′ (M +NN ′)
−1

N = I −
(

I +N ′M−1N
)−1

≤ I.

Therefore,

y′0N
′ (M +NN ′)

−1
Ny0 = x′

0M̃
−1x0 ≤ y′0y0.

This completes the proof of the lemma. ✷

6 Main Results on Possible Controllability

In this section, we present results which provide a geo-
metric characterization of the differentially possibly con-
trollable states of the uncertain system (1), (2). We first
consider the case in which H(s) ≡ 0.

Theorem 5 Consider the uncertain system (1), (2).
Also, suppose that H(s) ≡ 0. Then a state x0 is dif-
ferentially possibly controllable if and only if it is a
controllable state for the pair (A,B1).

Proof.We first suppose x0 is a differentially possibly con-
trollable state for the uncertain system (1), (2). Hence,
using Observation 1 it follows that

sup
ǫ>0

sup
τ≥0

W ǫ
τ (x0, T ) < ∞ (20)

for all T > 0 sufficiently small. Now let ǫ∗ > 0 and
τ∗ > 0 be given and choose T̃ > 0 sufficiently small as
in Lemma 2. Now since H(s) ≡ 0, we must have D1 = 0
and it follows from Lemma 3 that we can write

x̃′
0Sτ∗(λ)x̃0 = sup

ξ(·)∈L2[λ,T̃ ]

∫ T̃

λ

(

‖y‖2 + 1
τ∗
‖z‖2

− 1
τ∗
‖ξ‖2

)

dt

=

∫ T̃

λ

∥

∥

∥
B′

1e
−A′tx̃0

∥

∥

∥

2

dt

+
1

τ∗
sup

ξ(·)∈L2[λ,T̃ ]

∫ T̃

λ

(

‖z‖2 − ‖ξ‖2
)

dt

= x̃′
0Wc(λ, T̃ )x̃0 +

1

τ∗
x̃′
0Q(λ, T̃ )x̃0

6



where

x̃′
0Q(λ, T̃ )x̃0 = sup

ξ(·)∈L2[λ,T̃ ]

∫ T̃

λ

(

‖z‖2 − ‖ξ‖2
)

dt ≥ 0

(21)
and

Wc(λ, T̃ ) =

∫ T̃

λ

e−AtB1B
′
1e

−A′tdt

is the controllability Gramian for the pair (A,B1); e.g.,
see [1]. From this, we can conclude that

Sτ (λ) = Wc(λ, T̃ ) +
1

τ
Q(λ, T̃ ) (22)

is monotone decreasing as τ increases and hence, the
RDE (13) does not have a finite escape time on [0, T̃ ] for
all τ ≥ τ∗. Furthermore, it follows from the continuity of
solutions to the RDEs (13) and (12) that for all τ ≥ τ∗,
there exists a ǫ ∈ (0, ǫ∗) sufficiently small such that the

RDE (12) has a solution Sǫ
τ (t) on [0, T̃ ]. We now observe

that Sǫ
τ (λ) > Sτ (λ) ≥ 0 for all λ ∈ [0, T̃ ]. Indeed, given

any non-zero x̃0 ∈ Rn, it follows from (15) and (16) that

x̃′
0S

ǫ
τ (λ)x̃0 ≥ x̃′

0Sτ (λ)x̃0 + ǫ‖x∗(T )‖2 (23)

where x∗(t) is the solution to (14) with initial condition
x(λ) = x̃0 and input ξ∗(·) which achieves the supremum
in (16). Furthermore, since Sτ (t) the solution to RDE

(13) exists on [0, T̃ ], it follows by a standard result on
linear quadratic optimal control (e.g., see [23]) that ξ∗(·)
is defined by the following state feedback control law for
(14)

ξ∗(t) = −τC1Sτ (t)x
∗(t).

Then, we can write x∗(T ) = Φ(T̃ , λ)x̃0 where Φ(T̃ , λ) is
the state transition matrix for the closed loop system

ẋ = (−A′ − τC′
1C1Sτ (t)) x.

Hence, it follows from (23) that

x̃′
0S

ǫ
τ (λ)x̃0 ≥ x̃′

0Sτ (λ)x̃0 + ǫ‖Φ(T̃ , λ)x̃0‖
2 > x̃′

0Sτ (λ)x̃0.

Thus, we can conclude that Sǫ
τ (λ) > Sτ (λ) ≥ 0 for all

λ ∈ [0, T̃ ]. Also, it follows from Lemma 3, that for any

λ ∈ [0, T̃ ) that Sǫ
τ (λ) is monotone decreasing as ǫ → 0.

We have now established that given any τ ≥ τ∗, there
exists an ǫ ∈ (0, ǫ∗) such that Sǫ

τ (t) the solution to (12)

exists on [0, T̃ ] and Sǫ
τ (t) > 0 for all t ∈ [0, T̃ ]. From this,

it follows that P ǫ
τ (t) = [Sǫ

τ (t)]
−1

> 0 is the solution to

(9) on [0, T̃ ]. Therefore, it follows from Theorem 4 that
given any x0 ∈ Rn, then we can write

W ǫ
τ (x0, T̃ ) = x′

0 [S
ǫ
τ (0)]

−1
x0.

Nowwe return to the inequality (29) for our differentially
possibly controllable state x0 and conclude that there
exists a constant M ≥ 0 such that given any integer
k ≥ k0 ≥ τ∗, there exists an ǫk ∈ (0, ǫ∗) such that

W ǫ
k(x0, T̃ ) = x′

0 [S
ǫk
k (0)]

−1
x0 ≤ M. (24)

Also, we can assume without loss of generality that ǫk →
0 as k → ∞. We now define a sequence {yk0}

∞
k=k0

as

yk0 = [Sǫk
k (0)]

− 1

2 x0.

Hence, we have

x0 = [Sǫk
k (0)]

1

2 yk0 ∀ k ≥ k0 (25)

and therefore it follows from (24) that

‖yk0‖
2 ≤ M ∀ k ≥ k0.

From this, we can conclude that the sequence {yk0}
∞
k=k0

has a convergence subsequence {ỹk0}
∞
k=k0

:

ỹk0 → ȳ0.

Now, using the fact that for any τ ≥ τ∗, then Sǫ
τ (0) →

Sτ (0) as ǫ → 0, combined with (22), it follows from (25)
that we can write

x0 =
[

Wc(0, T̃ )
]

1

2

ȳ0.

That is, x0 is in the range space of the controllability
Gramian and hence, x0 is a controllable state for the pair
(A,B1).

Conversely, suppose x0 is a controllable state for the
pair (A,B1). Let ǫ∗ > 0 and τ∗ > 0 be any positive

constants. Also let T̃ > 0 be any sufficiently small time
horizon chosen as in Lemma 2. Then as above, given any
τ ≥ τ∗, Sτ (t) the solution to (13) exists and is positive

semidefinite on [0, T̃ ] and satisfies (22). Also, it follows
from (22) that for all τ > 0, the solution to (13) exists

and is positive semidefinite on [0, T̃ ]. Furthermore also
as above, given any τ > 0, there exists a sufficiently
small ǫ ∈ (0, ǫ∗) such that Sǫ

τ (t) the solution to (12)

exists and is positive definite on [0, T̃ ]. Moreover,we have
Sǫ
τ (λ) > Sτ (λ) ≥ 0 and Sǫ

τ (λ) → Sτ (λ) as ǫ → 0 for all

λ ∈ [0, T̃ ]. Hence, using (22), we can write

Sǫ
τ (0) = Wc(0, T̃ ) + Φǫ (26)

where Φǫ = Sǫ
τ (0)−Sτ (0)+

1
τ
Q(0, T̃ ) > 0 andQ(0, T̃ ) ≥

0 is defined as in (21).
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Now using the fact that x0 is a controllable state for the
pair (A,B1), it follows that we can write

x0 =
[

Wc(0, T̃ )
]

1

2

y0

for some vector y0 where Wc(0, T̃ ) is the controllabil-
ity Gramian for the pair (A,B1). Thus, using (26) and
Lemma 4, we conclude that

W ǫ
τ (x0, T̃ ) = x′

0 [S
ǫ
τ (0)]

−1 x0 ≤ y′0y0. (27)

Now for fixed τ > 0, it follows from the definition that
W ǫ

τ (x0, T̃ ) is monotonically increasing as ǫ → 0. Also,
(27) holds for all sufficiently small ǫ > 0. Thus, we must
have

Wτ (x0, T̃ ) = sup
ǫ>0

W ǫ
τ (x0, T̃ ) ≤ y′0y0 (28)

for all τ > 0.

We now consider the case of τ = 0. In this case,

W ǫ
0 (x0, 0, T̃ ) = inf

[ξ(·),u(·)]∈L2[0,T ]

‖x(T )‖2

ǫ

+

∫ T

0

(

‖u‖2
)

dt.

Now since x0 is a controllable state for the pair (A,B1), it

follows that there exists a control u∗(·) defined on [0, T̃ ]
such that with ξ(·) ≡ 0, then x(T ) = 0. Hence,

W ǫ
0 (x0, 0, T̃ ) ≤

∫ T

0

(

‖u∗‖2
)

dt

for all ǫ > 0. Therefore, we have

W0(x0, T̃ ) = sup
ǫ>0

W ǫ
0 (x0, T̃ ) ≤

∫ T

0

(

‖u∗‖2
)

dt.

We have now shown that

Wτ (x0, T̃ ) < ∞

for all τ ≥ 0 and for all T̃ > 0 sufficiently small. Thus,
using Observation 1, we can conclude that x0 is a differ-
entially possibly controllable state. This completes the
proof. ✷

Remark:The above theorem implies that whenH(s) ≡ 0
the possibly controllable set is a linear space equal to
the controllable subspace of the pair (A,B1). From the
above theorem and the fact that H(s) ≡ 0, it follows
that we can apply the standard Kalman decomposition
to represent the uncertain system as shown in Fig. 4.

+Controllable

Uncontrollable

y

z

ξ

∆

u

Fig. 4. Control-Uncontrollable decomposition for the uncer-
tain system when H(s) ≡ 0.

In this case, we only have uncertainty in the uncontrol-
lable subsystem or in the coupling between the two sub-
systems.

We now consider the case in which H(s) 6≡ 0.

Theorem 6 Consider the uncertain system (1), (2) and
suppose that H(s) 6≡ 0. Then, a state x0 is differentially
possibly controllable if and only if x0 is a controllable
state for the pair (A, [B1 B2]).

Proof. Suppose x0 is a differentially possibly controllable
state for the uncertain system (1), (2). Hence, using Ob-
servation 1 it follows that

sup
ǫ>0

sup
τ≥0

W ǫ
τ (x0, T ) < ∞ (29)

for T > 0 sufficiently small. Setting τ = 0, it follows that
there exists a constant M > 0 such that

inf
[ξ(·),u(·)]∈L2[0,T ]

‖x(T )‖2

ǫ
+

∫ T

0

‖u‖2dt ≤ M ∀ǫ > 0

where the inf is defined for the system (1) with initial
condition x(0) = x0. From this it follows that

inf
[ξ(·),u(·)]∈L2[0,T ]

‖x(T )‖2 ≤ ǫM ∀ǫ > 0

and hence,

inf
[ξ(·),u(·)]∈L2[0,T ]

‖x(T )‖2 = 0.

Therefore, the state x0 must be a controllable state for
the pair (A, [B1 B2]).

We now suppose the state x0 is a controllable state for
the pair (A, [B1 B2]) and show that x0 is a differentially

8



possibly controllable state for the uncertain system (1),
(2). In order to prove that the state x0 is possibly con-
trollable, we must show that for all T > 0 sufficiently
small supτ≥0 Wτ (x0, T ) < ∞. In order to show this, we
let T > 0 be given and establish the following claim:

Claim. For the system (1), there exists an input pair
{u∗(·), ξ∗(·)} defined on [0, T ] such that x(0) = x0,
x(T ) = 0 and

∫ T

0

(

‖ξ∗‖2 − ‖z∗‖2
)

dt ≤ 0.

To establish this claim, we first suppose that the stan-
dard Kalman decomposition is applied to the pair
(A,B1) to decompose it into controllable and uncon-
trollable subsystems. That is, we can assume without
loss of generality that the system (1) is such that the
matrices A, B1, B2, C1 and the vector x are of the form

A=

[

A11 A12

0 A22

]

; B1 =

[

B11

0

]

;

B2 =

[

B21

B22

]

; C1 =
[

C11 C12

]

;

x=

[

x1

x2

]

(30)

where the pair (A11, B11) is controllable.

Now consider an input pair {ū(·), ξ̄(·)} defined on [0, T3 ]

such that x(0) = x0 and x(T3 ) = 0. Such an input pair
exists due to our assumption that x0 is a controllable
state for the pair (A, [B1 B2]). Then, we can write

J1 =

∫ T
3

0

(

‖ξ̄‖2 − ‖z̄‖2
)

dt < ∞.

Now for t ∈ (T3 ,
2T
3 ], consider the input pair {û(·), ξ̂(·)}

defined so that ξ̂(·) ≡ 0 and so that û(·) is such that
the corresponding uncertainty output ẑ(·) 6≡ 0. Such an
input û(·) exists since we have assumed that H(s) 6≡ 0.
Then, we let

γ =

∫ 2T
3

T
3

‖ẑ‖2dt > 0.

Also, since x(T3 ) = 0 and ξ̂(t) = 0 for t ∈ (T3 ,
2T
3 ], it

follows from (30) that x2(t) = 0 for t ∈ (T3 ,
2T
3 ].

Now for t ∈ (2T3 , T ], consider the input pair {ǔ(·), ξ̌(·)}

defined so that ξ̌(·) ≡ 0 and so that û(·) is such that

x1(T ) = 0. Such an input ǔ(·) exists since we have as-
sumed that the pair (A11, B11) is controllable. Also, since
x2(

2T
3 ) = 0 and ξ̌(t) = 0 for t ∈ (2T3 , T ], it follows from

(30) that x2(t) = 0 for t ∈ (2T3 , T ]. We let ž(t) denote

the corresponding uncertainty output for t ∈ (2T3 , T ].

We now consider an input pair {u∗(·), ξ∗(·)} defined as
follows:

u∗(t) =















ū(t) for t ∈ [0, T3 ];

û(t) for t ∈ (T3 ,
2T
3 ];

ǔ(t) for t ∈ (2T3 , T ];

ξ∗(t) =

{

ξ̄(t) for t ∈ [0, T3 ];

0 for t ∈ (T3 , T ].

It follows from this construction that the pair {u∗(·), ξ∗(·)}
gives x(T ) = 0 and

∫ T

0

(

‖ξ∗‖2 − ‖z∗‖2
)

dt

=

∫ T
3

0

(

‖ξ̄‖2 − ‖z̄‖2
)

dt−

∫ 2T
3

T
3

‖ẑ‖2dt

−

∫ T

2T
3

‖ž‖2dt

≤ J1 − γ.

We now let µ > 0 be a scaling parameter and introduce
a modified input pair {u∗(·), ξ∗(·)} defined as follows:

u∗(t) =















ū(t) for t ∈ [0, T3 ];

µû(t) for t ∈ (T3 ,
2T
3 ];

µǔ(t) for t ∈ (2T3 , T ];

ξ∗(t) =

{

ξ̄(t) for t ∈ [0, T3 ];

0 for t ∈ (T3 , T ].

It is straightforward to verify that this input pair also
leads to x(T ) = 0 and

∫ T

0

(

‖ξ∗‖2 − ‖z∗‖2
)

dt ≤ J1 − µ2γ.

Letting,

µ =

√

J1
γ

it follows that

∫ T

0

(

‖ξ∗‖2 − ‖z∗‖2
)

dt ≤ 0

9



and hence, the conditions of the claim are satisfied. This
completes the proof of the claim.

We now use this claim to complete the proof. Indeed, for
any τ ≥ 0 and ǫ > 0, we have

W ǫ
τ (x0, T ) = inf

[ξ(·),u(·)]∈L2[0,T ]

‖x(T )‖2

ǫ

+

∫ T

0

(

‖u‖2 + τ‖ξ‖2 − τ‖z‖2
)

dt

≤

∫ T

0

(

‖u∗‖2 + τ‖ξ∗‖2 − τ‖z∗‖2
)

dt

(31)

where the input pair {u∗(·), ξ∗(·)} is constructed using
the above claim such that x(0) = x0 and x(T ) = 0 and

∫ T

0

(

‖ξ∗‖2 − ‖z∗‖2
)

dt ≤ 0.

Also, z∗(·) is the corresponding uncertainty output for
the system (1). Since ǫ > 0 was arbitrary, it follows from
(31) that

Wτ (x0, T ) = sup
ǫ>0

W ǫ
τ (x0, T )

≤

∫ T

0

‖u∗‖2dt+ τ

∫ T

0

(

‖ξ∗‖2 − ‖z∗‖2
)

dt

≤

∫ T

0

‖u∗‖2dt (32)

for all τ ≥ 0. Thus, we can conclude that

sup
τ≥0

Wτ (x0, T ) < ∞.

Since, T > 0 was arbitrary, it follows from Observation 1
that x0 is differentially possibly controllable. This com-
pletes the proof of the theorem. ✷

Remark: The above theorem implies that when H(s) 6≡
0 the possibly controllable set is a linear space equal
to the controllable subspace of the pair (A, [B1 B2]).
From the above theorem, it follows that we can apply
the standard Kalman decomposition to represent the
uncertain system as shown in Fig. 5.

In this case, we only have uncertainty in the controllable
subsystem or in the coupling between the two subsys-
tems.

7 Kalman Decompositions

We can now combine the results of Theorems 1, 2, 5,
and 6 to obtain a complete Kalman decomposition for
the uncertain system in the following cases:

Uncontrollable

Controllable

∆

ξ

u

+

y+

z

Fig. 5. Control-Uncontrollable decomposition for the uncer-
tain system when H(s) 6≡ 0.

Case 1 G(s) ≡ 0, H(s) ≡ 0. In this case, we ap-
ply the standard Kalman decomposition to the triple
(C2, A,B1) to obtain the situation as illustrated in the
block diagram shown in Fig. 6.

z

Controllable

Observable

Uncontrollable

Observable

Controllable

Unobservable

Uncontrollable
Unobservable

u
+

y

∆

+
ξ

Fig. 6. Kalman decomposition for the uncertain system when
G(s) ≡ 0, H(s) ≡ 0.

This situation corresponds to uncertainty only in
the uncontrollable-unobservable block. Also there is
uncertainty in the coupling between uncontrollable-
observable block and the uncontrollable-unobservable
block. Furthermore, there is uncertainty in the coupling
between the uncontrollable-unobservable block and the
controllable-unobservable block.

Case 2 G(s) 6≡ 0, H(s) ≡ 0. In this case, we apply the
standard Kalman decomposition to the triple

(

[

C1

C2

]

, A,B1)

to obtain the situation as illustrated in the block diagram
shown in Fig. 7.
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Controllable

Observable

Uncontrollable

Observable

Controllable

Unobservable

Uncontrollable
Unobservable

u
+

∆

zξ

y

Fig. 7. Kalman decomposition for the uncertain system when
G(s) 6≡ 0, H(s) ≡ 0.

This situation corresponds to uncertainty only in the
uncontrollable-observable block. Also there is uncer-
tainty in the coupling between uncontrollable-observable
block and the uncontrollable-unobservable block. Fur-
thermore, there is uncertainty in the coupling between
the uncontrollable observable block and the controllable-
unobservable block. As well, there is uncertainty in the
coupling between the uncontrollable-observable block
and the controllable-observable block.

Note that in order to guarantee that the condition
H(s) ≡ 0 we needed to make a further restriction on
the controllable observable block in the above diagram
so that in fact it only has an output y.

Case 3 G(s) ≡ 0, H(s) 6≡ 0. In this case, we apply the
standard Kalman decomposition to the triple

(C1, A, [B1 B2])

to obtain the situation as illustrated in the block diagram
shown in Fig. 8.

This situation corresponds to uncertainty only in the
controllable-unobservable block. Also there is uncer-
tainty in the coupling between controllable-observable
block and each of the other blocks.

Case 4 G(s) 6≡ 0, H(s) 6≡ 0. In this case, we apply the
standard Kalman decomposition to the triple

(

[

C1

C2

]

, A, [B1 B2])

to obtain the situation as illustrated in the block diagram
shown in Fig. 9.

This situation corresponds to uncertainty only in the
controllable-observable block. Also there is uncer-
tainty in the coupling between controllable-observable

Controllable

Observable

Uncontrollable

Observable

Controllable

Unobservable

Uncontrollable
Unobservable

u

∆

zξ

y

+

+

+

+

Fig. 8. Kalman decomposition for the uncertain system when
G(s) ≡ 0, H(s) 6≡ 0.

Controllable

Observable

Uncontrollable

Observable

Controllable

Unobservable

Uncontrollable
Unobservable

u

∆

zξ

y

+

+

Fig. 9. Kalman decomposition for the uncertain system when
G(s) 6≡ 0, H(s) 6≡ 0.

block and the uncontrollable-observable block. Fur-
thermore, there is uncertainty in the coupling between
the controllable-observable block and the controllable-
unobservable block. As well, there is uncertainty in the
coupling between the uncontrollable-observable block
and the controllable-unobservable block.

RemarkNote that each of the four cases considered above
corresponds to uncertainty only in one of the four blocks
in the Kalman decomposition. It might be conjectured
that if structured uncertainty was allowed then we could
distribute the uncertainty blocks around the four blocks
in the Kalman decomposition rather than the current re-
quirement that the single uncertainty block corresponds
to uncertainty in one of the four blocks in the Kalman
decomposition.
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8 Illustrative Examples

8.1 Example 1

In this example, we consider an uncertain system of the
form (1), (2) defined by the following matrices:

A=

[

−1.2838 0.3002

−0.7603 −0.2662

]

; B1 =

[

0.3911

0.4348

]

;

B2 =

[

0.7251

0.8062

]

; C1 =
[

0.6534 −0.0908
]

;

D1 = 0; C2 =
[

−0.6190 0.5678
]

; D2 = 0.

This system is a modification of the system considered in
the example of [11] to consider the case of unstructured
uncertainty. We wish to determine if this uncertain sys-
tem contains any states which are not possibly control-
lable in order to see if this uncertain system model can
be replaced by an equivalent reduced dimension uncer-
tain system model. We first calculate the transfer func-
tion H(s) = C1(sI −A)−1B1 +D1 = 0.216s+0.1296

s2+1.55s+0.57 6≡ 0.
Hence, we apply Theorem 6 to this system and con-
sider the uncontrollable states of the pair (A, [B1 B2]);
e.g., see [1]. Indeed, the eigenvalues and corresponding
left eigenvectors of the matrix A are λ1 = −0.9500,

λ2 = −0.6000, x1 =

[

−0.9156

0.4020

]

, and x2 =

[

0.7435

−0.6687

]

.

Also, we have B′
1x2 ≈ B′

2x2 ≈ 0. Hence (to the avail-
able numerical accuracy), x2 is an uncontrollable state
for the pair (A, [B1 B2]). Hence using Theorem 6, we can
conclude that x2 is not a possibly controllable state for
this uncertain system.

We show that x2 is not a possibly controllable state using
Theorem 4. Indeed, we let τ = 1 and solve the Riccati
differential equation (13) for different values of T ∈ [0, 1].
A plot of the resulting eigenvalues of Sτ (0) versus T is
shown in Fig. 10. From this plot, we can see that the
matrix Sτ (0) is singular for all T ∈ [0, 1]. Furthermore,
we find that Sτ (0)x2 = 0 for all T ∈ [0, 1]. Thus, using
Theorem 4, it follows that with τ = 1, Wτ (x2, T ) = ∞
for all T ∈ [0, 1]. Hence, it follows from Definition 5 that
the state x2 is not (differentially) possibly controllable.

We now apply the Kalman decomposition to this un-
certain system; e.g., see [1, 19, 20]. Indeed, if we ap-
ply the state space transformation x̃ = Tx with T =
[

−0.7435 0.6687

0.6687 0.7435

]

to this uncertain system, we obtain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

6

T

λ m
in

[S
τ(0

)]
, λ

m
ax

[S
τ(0

)]

Fig. 10. λmin[Sτ (0)] and λmax[Sτ (0)] versus T with τ = 1.

an uncertain system of the form (1), (2) defined by:

Ã=

[

−0.6000 0.0000

1.0605 −0.9500

]

; B̃1 =

[

0.0000

0.5848

]

;

B̃2 =

[

0.0000

1.0843

]

; C̃1 =
[

−0.5465 0.3694
]

;

D̃1 = 0; C̃2 =
[

0.8399 0.0082
]

; D̃2 = 0.

From this, the control input u and the uncertainty input
ξ do not affect the first state of this system. Thus, we can
remove this state without changing the input-output be-
havior of the system. This leads to a reduced dimension
uncertain system described by the state equations

ẋ=−0.9500x+ 0.5848u+ 1.0843ξ;

z = 0.3694x; y = 0.0082x

and the averaged IQC (2).

8.2 Example 2

This example considers an uncertain system correspond-
ing to the electrical circuit shown in Figure 11. It is
straightforward to derive the following state space model
for this circuit:

[

dV1

dt

dV2

dt

]

=





− 1
C1

(

1
R3

+ 1
R1

)

− 1
R3C1

− 1
R3C2

− 1
C2

(

1
R3

+ 1
R2

)





[

V1

V2

]

+

[

1
C1

1
C2

]

u;

y=
[

0 1
]

[

V1

V2

]

. (33)
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−

+

−

+ −

+

−

PSfrag replacements

u

R1

R2

R3
C1

C2

V1

V2 y

Fig. 11. Electrical circuit corresponding to Example 2.

In this example, we choose the parameter values for the
nominal to be R1 = 0.5Ω, R2 = 1.0Ω, R3 = 0.5Ω, C1 =
2.0F , and C2 = 1.0F . For these parameter values, the
nominal system is not controllable.

We now consider two cases of uncertain parameters for
this system. In the first case, we find that all non-zero
states of the system are possibly controllable and no
reduced dimension model can be constructed using the
Kalman decomposition of Section 7. In the second case,
we find that there exist non-zero states of the system
which are not possibly controllable. Then, we use the
Kalman decomposition of Section 7 to construct a model
of order one which does not change the input-output
behavior of the system.

Case 1. In this case, we suppose that the conductance
of the resistor R1 is uncertain and we write 1

R1

= 2+∆

where |∆| ≤ 1. This leads to an uncertain system of the
form (1) where

A=

[

−2 −1

−2 −3

]

; B1 =

[

0.5

1

]

; B2 =

[

−0.5

0

]

;

C1 =
[

1 0
]

; D1 = 0; C2 =
[

0 1
]

; D2 = 0;

and ξ = ∆z. Since |∆| ≤ 1, it follows that the averaged
IQC (2) will be satisfied. For this uncertain system, we
calculate the transfer functions G(s) and H(s) as

G(s) =
1

s2 + 5s+ 4
6≡ 0; H(s) =

0.5s+ 0.5

s2 + 5s+ 4
6≡ 0.

For this uncertain system, the pair (A,B1) is not con-
trollable. However, the pair (A, [B1 B2]) is controllable.
Thus, it follows from Theorem 6 that the system has no
states which are not differentially possibly controllable.

Also, the pair (

[

C1

C2

]

, A) is observable and hence, us-

ing Case 4 of the Kalman decompositions considered in
Section 7, we cannot construct an equivalent reduced di-

mension uncertain system corresponding to this uncer-
tain system.

Note that the example considered in this case is such that
the nominal system is not controllable, but the uncertain
system becomes controllable for non-zero values of the
uncertain parameter ∆. If we change the parameter C1

to C1 = 1, we obtain an uncertain system for which the
nominal system is controllable but for which the system
becomes uncontrollable for one value of the uncertain
parameter (∆ = −1).

Case 2. In this case, we suppose that the conductance
of the resistor R3 is uncertain and we write 1

R3

= 2+∆

where |∆| ≤ 1. This leads to an uncertain system of the
form (1) where

A=

[

−2 −1

−2 −3

]

; B1 =

[

0.5

1

]

; B2 =

[

−0.5

−1

]

;

C1 =
[

1 1
]

; D1 = 0; C2 =
[

0 1
]

; D2 = 0;

and ξ = ∆z. For this uncertain system, we calculate the
transfer functions G(s) and H(s) as

G(s) =
−s− 1

s2 + 5s+ 4
6≡ 0; H(s) =

1.5s+ 1.5

s2 + 5s+ 4
6≡ 0.

For this uncertain system, the pair (A, [B1 B2]) is not
controllable. Thus, it follows from Theorem 6 that the
system has non-zero states which are not differentially

possibly controllable. Also, the pair (

[

C1

C2

]

, A) is ob-

servable. We now construct the Kalman decomposition
for this system as in Case 4 of Section 7. Indeed, we
apply a state space transformation x̃ = Tx with T =
[

−0.8944 0.4472

−0.4472 −0.8944

]

to this uncertain system to obtain

an uncertain system of the form (1), (2) defined by:

Ã=

[

−1.0000 0.0000

−1.0000 −4.0000

]

; B̃1 =

[

0.0000

−1.1180

]

;

B̃2 =

[

−0.0000

1.1180

]

; C̃1 =
[

−0.4472 −1.3416
]

;

D̃1 = 0; C̃2 =
[

0.4472 −0.8944
]

; D̃2 = 0.

From this, the control input u and the uncertainty input
ξ do not affect the first state of this system. Thus, we can
remove this state without changing the input-output be-
havior of the system. This leads to a reduced dimension
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uncertain system described by the state equations

ẋ=−4.0x− 1.1180u+ 1.1180ξ;

z =−1.3416x; y = −0.8944x

and the averaged IQC (2).

9 Conclusions and Future Research

The results of this paper have led to a geometric char-
acterization of the notion of possible controllability for
a class of uncertain linear systems. These results com-
bined with a corresponding geometric characterization
of the notion of robust unobservability have allowed us
to present a complete Kalman decomposition for uncer-
tain systems.

Possible areas of future researchmotivated by the results
of this paper include extending the results of the paper
to the case of structured uncertainty subject to multiple
IQCs.
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[2] I. R. Petersen, V. A. Ugrinovskii, and A. V. Savkin, Robust
Control Design usingH∞ Methods. Springer-Verlag London,
2000.

[3] S. P. Bhattacharyya, “Generalized controllability, (a, b)-
invariant subspaces and parameter invariant control,” SIAM

J. Algebraic Discrete Methods, vol. 4, no. 4, pp. 52–533, 1983.

[4] I. R. Petersen, “Notions of stabilizability and controllability
for a class of uncertain linear systems,” International Journal

of Control, vol. 46, no. 2, pp. 409–422, 1987.

[5] ——, “The matching condition and feedback controllability
of uncertain linear systems,” in Robust Control of Linear

Systems and Nonlinear Control, M. A. Kaashoek, J. H. van
Schuppen, and A. C. M. Ran, Eds. Boston: Birkhäuser,
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