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a b s t r a c t

State-feedback model predictive control (MPC) of constrained discrete-time periodic affine systems is
considered. The periodic systems’ states and inputs are subject to periodically time-dependent, hard,
polyhedral constraints. Disturbances are additive, bounded and subject to periodically time-dependent
bounds. The objective is to designMPC laws that robustly enforce constraint satisfaction in a manner that
is least-restrictive, i.e., have the largest possible domain. The proposed designmethod is demonstrated on
a building climate control example. The proposed method is directly applicable to time-invariant MPC.
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1. Introduction

In this paper an approach is proposed for performing robust
constrained MPC in a manner that is least-restrictive, i.e., the con-
troller domain is as large as possible. The theory of constrained
MPC tends to focus on enforcing some notion of stability or op-
timality (Mayne, Rawlings, Rao, & Scokaert, 2000), where this may
be achieved at the expense of small controller domains. When the
set-point is far within the constraints there are no consequences
of not being least-restrictive. However, the consideration of least-
restrictive robust control is crucial when the control performance
is heavily influenced by the ability to operate the plant close to the
constraints – MPC’s original motivation – e.g., when the reference
trajectory itself is not admissible (see Section 5). In the proposed
approachmaximumrobust (periodic) controlled invariant sets (see
Definition 3 and Blanchini & Ukovich, 1993) are employed in the
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design of least-restrictive robustly strongly feasible (periodic) MPC
problems, i.e., constrained MPC problems that indefinitely enforce
recursive feasibility for the receding-horizon application of any
feasible solution (see Section 4.2 andKerrigan, 2000). The proposed
control strategy performs so-called zone-MPC (Ferramosca, Limon,
González, Odloak, & Camacho, 2010; Grosman, Dassau, Zisser, Jo-
vanovič, & Doyle, 2010; Maciejowski, 2002) that focuses on con-
tainment of the state in a specified region; a priori guarantees of
stabilization or optimality with respect to a set-point or reference
trajectory are not provided by the proposed method. However,
the MPC problem’s cost function and prediction horizon length,
both crucial handles for tuning the performance and complexity
of an MPC controller, can be adjusted at will in order to achieve
good cost performance and stability with respect to a set-point or
state-reference trajectory, as can be verified a posteriori. Due to the
robust strong feasibility of the MPC problem, this tuning can be
performed freely without jeopardizing robust constraint satisfac-
tion.

Periodic systems are an important extension of time-invariant
systems and provide a natural framework for modeling various
real-world phenomena and control problems (Bittanti & Colaneri,
2009; Gondhalekar & Jones, 2011; Varga, 2007). This paper treats
periodic affine systems; useful generalizations of periodic linear
systems. Conveniently, many tools for rigorously performing con-
strained MPC of periodic affine systems, e.g., invariant set meth-
ods (Blanchini, 1999; Blanchini & Ukovich, 1993) and convex
optimization (Boyd & Vandenberghe, 2004), can be derived from
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thewell-established equivalent tools for linear systems. The equiv-
alent exact tools are not available for general nonlinear systems,
and thus in this paper the conservativeness and complication of
general nonlinear MPC methods are avoided. However, the con-
cepts behind the proposed methods are applicable to general sys-
tems. The class of periodic affine systems subsumes linear periodic
and linear time-invariant (LTI) systems, so the proposed methods
are directly applicable to those, more commonly considered, cases.
It seems that periodic control formulations are on occasion inten-
tionally avoided, because they seemdifficult or not possible. This is
especially so for the unusual case considered in this paper (see also
Gondhalekar & Jones, 2011), where the systems’ state and input di-
mensions are time-dependent. A strong motivation for this paper
was to demonstrate that a robust periodic constrainedMPC formu-
lation is both straightforward and also very useful to consider.

The contribution, and novelty, of this paper is thus twofold.
The primary contribution is to propose a method to perform
least-restrictive robust constrained MPC. The second is to present
the proposed least-restrictive robust constrained MPC approach
in a manner applicable to certain classes of periodic systems.
The proposed strategy is a combination, and extension to robust
control, of the least-restrictive nominal strongly feasible move-
blocking MPC problem design of Gondhalekar and Imura (2010),
and the method proposed in Gondhalekar and Jones (2011) for
nominal linear periodic MPC.

The proposed MPC strategy is demonstrated in Section 5 on a
building climate control problem, where the room temperature
is to be controlled to satisfy comfort constraints. The first im-
portant property of the example is that the room temperature is
constrained to comfort zones, not (always) a specific set-point.
Secondly, the input reference is zero (ideally no heating/cooling
would need to be performed), but may not be indefinitely admissi-
ble. The reason for applying a non-zero control input is only to en-
force the constraints. Thus it is desirable to allow, at each moment
in time, the room to be as cold (warm) as possible, and only heat
(cool) as necessary to avoid constraint violations. The notion of
least-restrictive control is of relevance here. Third, the considera-
tion of periodic control for building climate control is useful despite
the heat-transfer dynamics of a building being time-invariant. This
is because the environmental factors affecting the system, and also
the buildings’ occupancy pattern, are periodically time-dependent.
Notation: The set of reals is denoted by R, the set of non-negative
integers by N (N+ := N \ {0}), the set of non-negative integers
{j, . . . , k} by Nk

j , the n × n identity matrix by In, the zero matrix
with appropriate dimension by 0, and a sequence of elements xi ∈

X ∀i ∈ Nk
j by {xi ∈ X}

k
i=j. For sets A,B ⊆ Rn let A ⊖ B := {x ∈

Rn
| x + b ∈ A ∀b ∈ B}. Let ψ(i,k) denote the future value of ψ at

step i + k, as predicted from step i. Let ψi := ψ(i,0).

2. Problem setting

We consider the discrete-time periodic affine system (1) with
time step i ∈ N, period length p ∈ N+, and intra-period step-
index function σ(·). As the time step i progresses from 0 toward
∞ the subscript σ(i) on the affine dynamics matrices A, B, C and c
(later also other variables) repeatedly cycles through the sequence
0, 1, . . . , p− 1, thereby inducing the periodic time-dependence in
the dynamics. The systemstate is denoted by xi ∈ Rnσ(i) , the control
input by ui ∈ Rmσ(i) , and the additive disturbance by wi ∈ Rvσ(i) .
The dimensions of state, input and disturbance vectors are also
periodically time-dependent and satisfy nj, mj, vj ∈ N+ ∀j ∈ Np−1

0 .
Such periodic systems are unusual but make convenient models
of systems with asynchronous control inputs (Gondhalekar &
Jones, 2011). Furthermore, minimal periodic system realizations
generally require time-dependent dimensions (Varga, 2004). If
mσ(i) = 0 then system (1) is autonomous at step i, and it is useful to
accommodate such cases (Gondhalekar& Jones, 2011). However, to
avoid notational abuses, e.g., Bσ(i) ∈ Rnσ(i+1)×0, the exposition here
is restricted to systems with strictly positive input dimensions.
The application of the proposedmethod to systemswith piecewise
autonomous behavior is immediate and not discussed further:

xi+1 = Aσ(i)xi + Bσ(i)ui + Cσ(i)wi + cσ(i) (1)

σ(i) := i modulo p, σ : N → Np−1
0 .

The states and inputs are required to satisfy the periodically time-
dependent, convex, polyhedral constraints

Eσ(i)xi + Gσ(i)ui ≤ bσ(i). (2)

Assumption 1. Disturbances satisfy wi ∈ Wσ(i), where Wj ⊂

Rvj , 0 ∈ Wj ∀j ∈ Np−1
0 are non-empty polytopes.

The assumption that 0 ∈ Wj is made without loss of generality. If
0 ∉ Wj then one can select any w̄ ∈ Wj and employ affine term
c̄j := cj + w̄ and disturbance set W̄j :=


Wj ⊖ {w̄}


∋ 0.

A periodic state-feedback control law is denoted by the set of
functions {κ0(·), . . . , κp−1(·)}, κj : Rnj → Rmj ∀j ∈ Np−1

0 , such that
ui = κσ(i) (xi).

3. Robust periodic controlled set invariance

In this section (maximum) robust periodic controlled invariant
sets of system (1) subject to (2) are defined for later use. The
definitions are a minor generalization of the (maximum) robust
periodic controlled set invariance notion proposed in Blanchini
and Ukovich (1993), Gondhalekar and Jones (2011). The numerical
characterization of these sets can be performed using the method
described in Blanchini and Ukovich (1993), but for brevity the
algorithm is not described further, as it is not a contribution of this
paper.

Definition 2. A set {C0, . . . ,Cp−1} of sets Cj ⊆ Rnj ∀j ∈ Np−1
0 is

a robust periodic controlled invariant set of (1) subject to (2) if and
only if: ∃κj : Rnj → Rmj s.t. [Ejx+ Gjκj(x) ≤ bj] ∧ [Ajx+ Bjκj(x)+
Cjw + cj ∈ Cσ(j+1)] ∀w ∈ Wj ∀x ∈ Cj ∀j ∈ Np−1

0 .

Definition 3. The maximum robust periodic controlled invariant set
is the set {C∗

0, . . . ,C
∗

p−1} of sets C∗

j :

C∗

j :=

xj ∈ Rnj | ∃κk : Rnk → Rmk ∀k ∈ Np−1

0 s.t.
xi+1 = Aσ(i)xi + Bσ(i)κσ(i)(xi)+ Cσ(i)wi + cσ(i)
∧ Eσ(i)xi + Gσ(i)κσ(i)(xi) ≤ bσ(i)

∀wi ∈ Wσ(i) ∀i ∈ N∞

j


∀j ∈ Np−1

0 .

The above expression states that the sets C∗

j constituting the
maximum robust periodic controlled invariant set are the sets
of all initial states xj such that there exists a periodic control
law {κ0(·), . . . , κp−1(·)}, such that applying it achieves constraint
satisfaction indefinitely.

Assumption 4. C∗

j ≠ ∅ ∀j ∈ Np−1
0 , i.e., the maximum robust

periodic controlled invariant set exists.

There exists no simple test (to the authors’ knowledge) for
verifying Assumption 4. This is a general limitation with robust
invariant sets and is not due to the unusual periodic framework
considered here. The authors’ approach is to run the algorithm of
Blanchini and Ukovich (1993) and check the resulting sets. If the
condition of Assumption 4 is false then any attempt at a robust
control formulation is futile.
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Let C̄∗

σ(j+1) := C∗

σ(j+1)⊖CjWj ∀j ∈ Np−1
0 . For all j ∈ Np−1

0 it holds
that [x + Cjw ∈ C∗

σ(j+1) ∀w ∈ Wj] ⇐⇒ [x ∈ C̄∗

σ(j+1)]. Note that

C̄∗

j ⊆ C∗

j ∀j ∈ Np−1
0 because 0 ∈ Wj ∀j ∈ Np−1

0 by Assumption 1.
Note also that C̄∗

j ≠ ∅ ∀j ∈ Np−1
0 due to Assumption 4. Further let

the sets Xj ⊆ Rnj ∀j ∈ Np−1
0 satisfy Xj ⊇ C∗

j ∀j ∈ Np−1
0 . The C̄∗

j and
Xj sets are employed later in Problem 6.

4. Periodic MPC

In this section the MPC problem is formulated and discussed.
The main design objective is the design of least-restrictive robust
periodic control laws (see Definition 5). The design of least-
restrictive robust periodic control laws was previously considered
in Blanchini and Ukovich (1993), albeit in a slightly different
problem setting, and not in an MPC context.

Definition 5. A periodic state-feedback control law {κ0(·), . . . ,
κp−1(·)} is termed a least-restrictive robust periodic control law if and
only if it renders themaximumrobust periodic controlled invariant
set robustly controlled invariant by an admissible control input,
i.e.: [Ajx + Bjκj(x) + Cjw + cj ∈ C∗

σ(j+1)] ∧ [Ejx + Gjκj(x) ≤ bj]

∀w ∈ Wj ∀x ∈ C∗

j ∀j ∈ Np−1
0 .

4.1. Periodic MPC problem

For a prediction horizon length N ∈ N+, MPC achieves
closed-loop control action of system (1) subject to constraints
(2) by applying at each state xi = x(i,0) the first control input
u(i,0) of the predicted optimal control input trajectory ū∗

i (xi) :=
u⊤

(i,0), . . . , u
⊤

(i,N−1)

⊤
∈ Rm̄j , m̄j :=

j+N−1
i=j mσ(i) ∀j ∈ Np−1

0 .
Note that N can be chosen independently of period length p.
The optimization is performed with respect to the periodic cost
function Jj : Rnj × Rm̄j → R ∀j ∈ Np−1

0 (recall x(i,0) := xi):

Jσ(i) (xi, ūi) :=

N−1
k=0

Rσ(i+k)u(i,k) +
N

k=0


x(i,k) − rσ(i+k)

⊤ Qσ(i+k)

×

x(i,k) − rσ(i+k)


. (3)

The input costs are linear with periodic cost matrices Rj ∈ R1×mj

∀j ∈ Np−1
0 , the state-error cost is quadratic with periodic cost

matrices Qj ∈ Rnj×nj ∀j ∈ Np−1
0 , and the state-reference trajectory

is denoted by rj ∈ Rnj ∀j ∈ Np−1
0 . Note that the above cost function

was chosen because it suits the numerical example of Section 5.
A different cost function could be chosen without affecting the
salient properties of the control law (see Remarks 7 and 8). The
MPC problem is then given by Problem 6.

Problem 6. Determine

ū∗

i (xi) := arg min
ūi∈Rm̄σ(i)

Jσ(i) (xi, ūi)

subject to prediction constraints (recall x(i,0) := xi)

Eσ(i+k)x(i,k) + Gσ(i+k)u(i,k) ≤ bσ(i+k) ∀k ∈ NN−1
0

x(i,1) ∈ C̄∗

σ(i+1) (4)

x(i,k) ∈ Xσ(i+k) ∀k ∈ NN
2 (5)

and the following prediction dynamics for all k ∈ NN−1
0 :

x(i,k+1) = Aσ(i+k)x(i,k) + Bσ(i+k)u(i,k) + cσ(i+k). (6)
It holds that the periodic state-feedback MPC control law based
on Problem 6 is a least-restrictive robust periodic control law ac-
cording to Definition 5. This is because prediction constraint (4) ex-
plicitly constrains the closed-loop state trajectory to remainwithin
themaximumrobust periodic controlled invariant set, and further-
more because choosing the prediction state constraint sets Xj of
(5) larger than C∗

j renders each element of the maximum robust
periodic controlled invariant set feasible. This result is considered
straightforward and thus, for brevity, it is stated without a formal
proof.

4.2. Robustly strongly feasible periodic MPC problem

MPC Problem 6 is a robustly strongly feasible periodic MPC
problem (Kerrigan, 2000). In words, an MPC problem is robustly
strongly feasible if the closed-loop state trajectory {xi}∞i=j from
any feasible initial state xj, due to any sequence {ūi}

∞

i=j of feasible
solutions to the MPC problem, and due to any sequence {wi ∈

Wσ(i)}
∞

i=j of admissible disturbance realizations, remainswithin the
sets of feasible states indefinitely. (See also Kerrigan, 2000.)

Remark 7. MPC problems that are robustly strongly feasible
ensure that recursive feasibility is unrelated to optimality of the
solution. Thus the MPC problem’s objective cost function (3) can
be tuned and changed in order to achieve a desirable response
without risking potential constraint violation. (See also Remark 8.)

Robustly strongly feasible MPC problems are also useful if,
e.g., an interior-point algorithms is terminated prior to natural
termination to satisfy real-time constraints, or when an inaccurate
solver is employed because, e.g., it is fast, memory-efficient, or
requires little power.

4.3. Discussion

Robustness in MPC is usually enforced either by considering
min–max open-loop predictions (Bemporad & Morari, 1999) or by
performing closed-loop predictions (Bemporad & Morari, 1999;
Goulart, Kerrigan, &Maciejowski, 2006; Löfberg, 2003). The former
generally results in very restrictive and conservative control
laws, increasingly so for longer prediction horizons. The latter is
generally less restrictive and conservative than the former, but
results in much larger computational complexity. The approach
proposed here employs themin–max open-loop paradigm over the
first prediction step only and then performs nominal predictions
(open-loop but notmin–max) over the remaining prediction steps.
Thus the (often crippling) conservativeness of min–max open-
loop predictions considered over the entire prediction horizon
is avoided; in the proposed approach least-restrictiveness of the
control law ismaintained for every prediction horizon length. Note
that the proposed approach results in no constraint violations, and
furthermore, no relaxation or softening on the actual constraints is
performed, only predicted. Note further that prediction dynamics
(6) contain no mechanism to take into account, or exploit, the
additive disturbances. Thus the number of decision variables of
periodic MPC Problem 6 grows linearly with horizon length N . In
contrast, the number of decision variables generally grows super-
linearly with N for closed-loop predictions, e.g., quadratically
when employing affine disturbance-feedback (Goulart et al., 2006;
Oldewurtel, Jones, & Morari, 2008).

Any choice Xj ⊇ C∗

j ∀j ∈ Np−1
0 , e.g., Xj = Rnj ∀j ∈ Np−1

0 , results
in periodicMPC Problem6 being robustly strongly feasible, and the
resulting periodic control law least-restrictive. On the other hand a
choice Xj ⊂ C∗

j for some j generally results in a control law that is
not least-restrictive, even if the resulting MPC problem happens
to be robustly strongly feasible. In the example of Section 5 we
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employ periodic MPC Problem 6 with Xj = C∗

j ∀j ∈ Np−1
0 . Thus

the predicted nominal state trajectory is constrained to a path that
is admissible in closed-loop. By constraining the predicted state
trajectory to lie within the maximum robust periodic controlled
invariant set, at each prediction step the predicted state satisfies
a necessary and sufficient condition for the existence of an
admissible control input trajectory of infinite length. The finite-
horizon MPC problem is thus expected to better approximate the
infinite-horizon MPC problem than if Xj ⊃ C∗

j ∀j ∈ Np−1
0 .

However, for reducing the computation-times for solving periodic
MPC Problem 6 it may be desirable to use low-complexity over-
approximations of sets C∗

j as the prediction state constraint sets
Xj. The determination of low-complexity over-approximations is
not discussed in this paper.

Computing maximum controlled invariant sets is challenging,
and the difficulty in determining the maximum robust periodic
controlled invariant set limits the applicability of the proposed
approach. The required computations can generally only be
performed exactly for state dimensions less than about 5,
somewhat higher in simple cases. Furthermore, as the dimension
of the state increases, the solution of Problem 6 may become
sensitive to the quality of the characterization of the invariant
sets. Note that any non-maximum robust periodic controlled
invariant set may be employed in the proposed MPC scheme,
but may result in a control law that is not least-restrictive. The
computation of low-complexity under-approximations of robust
periodic controlled invariant sets is not discussed in this paper.
Note that it is sometimes possible to circumnavigate the use of
explicit characterizations of controlled invariant sets, by employing
implicit equivalent conditions. This comes at the expense of a larger
number of optimization variables in MPC Problem 6 (see Limon
et al., 2012, details omitted for brevity).

5. Building climate control example

5.1. Model of building and environment

The objective is to minimize the energy consumption and/or
cost of heating and cooling a building’s rooms, while satisfying
temperature constraints, imposed for occupants’ comfort. The
simplified plant model employed in Oldewurtel et al. (2008)
(derived from Gwerder & Tödtli, 2005) is depicted in Fig. 1. The
system states are temperatures t1, t2 and t3. The control inputs are
uh anduc. Environmental inputs δ1, δ2 and δ3 are not affected by the
system. The heat capacities of nodes with temperature t1, t2 and
t3 are C1, C2 and C3, respectively. The employed heat capacities Ck
and gains Kk are for the simplified model of a room with 3600 m2

floor area (Gwerder & Tödtli, 2005; Oldewurtel et al., 2008). The
continuous-time dynamics are

ṫ1 =
1
C1


(K1 + K2)(t2 − t1)+ K5(t3 − t1)

+ K3(δ1 − t1)+ uh + uc + δ2 + δ3


ṫ2 =
1
C2


(K1 + K2)(t1 − t2)+ δ2


ṫ3 =

1
C3


K5(t1 − t3)+ K4(δ1 − t3)


.

This is expressed as the LTI system ẋ = Ax + Bu + Cω with
state x := [t1, t2, t3]⊤ ∈ R3, input u := [uh, uc]

⊤
∈ R2, and

environmental input ω := [δ1, δ2, δ3]
⊤

∈ R3. Input constraints (7)
are imposed at all times. State constraints (8) are time-dependent
so that during business hours the controller provides a comfortable
work environment. Outside of business hours rooms are allowed to
cool or warm to reduce energy consumption. Note that a building
Fig. 1. Building climate control problem plant schematic.

controller’s periodic schedule is usually fixed in advance. The
temperature’s comfort constraints are thus presumed fixed and
not adjusted in real-time in response to feedback data on actual
occupancy levels:

0 ≤ uh ≤ 200, −50 ≤ uc ≤ 0 (7)

21
19


≤ t1 ≤


26 from 8 am to 6 pm
0 otherwise. (8)

Environmental input ω consists of two parts such that ω = d+

w, where d is deterministic and periodically time-dependent with
a period length of 24 h, andw is stochastic, bounded, and subject to
periodically time-dependent bounds with a period length of 24 h.
The deterministic input d is employed tomodel known fluctuations
in environmental conditions, for example that the sun rises in
the morning and sets in the evening, and that most internal heat
sources (office workers, equipment, etc.) δ3 are active from 8 am
to 6 pm. The stochastic input w is employed to yield robustness
against unknown environmental conditions, for example because
cloud cover affects the amount of solar radiation δ2 reaching the
building, and because an office worker may either heat her lunch
in the office microwave and continue working (increasing δ3) or
switch off her PC and go to a restaurant (reducing δ3). The bounds
on stochastic input w are assumed known, but the stochastic
properties ofw are unknown.

The LTI dynamics, constraints (7) and (8), deterministic envi-
ronmental inputs d and the bounds on stochastic environmental
inputsw are sampled with a zero-order hold and a sample-period
of 10 min, resulting in the periodic affine system (1) with a pe-
riod length of p = 144. This choice of sample-period length pro-
vides a useful compromise between temporal resolution of control
input updates and computational complexity of the MPC problem
when employing long prediction horizons. Note that this example
uses time-invariant dimensions. The time-discretized determinis-
tic environmental inputs d, bounds on stochastic environmental
inputs w and a realization of environmental inputs ω are plotted
in Fig. 2 for one day. Values for d and bounds on w are based on
real data (Gwerder & Tödtli, 2005), but simplified. Stochastic in-
putsw were randomly generated according to a uniform distribu-
tion. This stochastic disturbance model does not reflect reality and
is employed here for simplicity.
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Fig. 2. Deterministic environmental inputs d (dashed, blue), bounds on stochastic
environmental inputsw (dash-dotted, red), and realization of environmental inputs
δ (solid, black). (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)

Fig. 3. Nominal periodic optimal solution: q = 0 (solid, blue), q = 105 (dashed,
green). Constraint on t1 (dashed, red). (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this article.)

5.2. MPC problem parameters

The state’s set-point is r := [22, 0, 0]⊤. A room temperature
of t1 = 22 °C is considered optimal (in this paper), whereas any
value 21 °C ≤ t1 ≤ 26 °C is considered acceptable, for an office
work environment. The cost matrices of (3) are chosen as follows
with q ∈ {0, 105

}:

Qj :=


diag(q, 0, 0) from 8 am to 6 pm
0 otherwise

Rj :=


[2,−8] from 6 am to 10 pm
[1,−4] otherwise.

When q = 0 the control strategy is similar to zone-MPC (Fer-
ramosca et al., 2010; Grosman et al., 2010;Maciejowski, 2002), and
only input related costs are minimized. When q = 105 the con-
troller strives to maintain a 22 °C room temperature during busi-
ness hours with little consideration for energy consumption. These
two extreme values of q are employed simply to demonstrate be-
havioral differences. The choice of Rj models that energy prices
during the day are twice those during the night; such peak/off-peak
tariffs are common. Furthermore it reflects that cooling is more
expensive (assumed four times) than heating, for the same power
into/out of the room (Gwerder & Tödtli, 2005). This is also reflected
in constraints (7). Recall that uc is negative, hence the minus sign
in Rj.

The maximum robust periodic controlled invariant set was
determined in 45 s on a 3.33 GHz processor using the algorithm
of Blanchini and Ukovich (1993), demonstrating the practicality of
Assumption 4 for this example.

5.3. Optimal nominal periodic control

To obtain a baseline understanding of the form of the MPC
solutions we first consider the solution to the nominal optimal
periodic control problem, over the entire 24 h period, optimizing
over both input trajectory and initial state, with an equality con-
straint between the initial and terminal states. Note that an equal
initial and terminal state signifies that the one period solution is
exactly repeatable, i.e., is equivalent to the multi-period solution.
The solution is plotted in Fig. 3. When q = 0 the controller pre-
heats the room before 6 am to exploit cheaper energy prices and
briefly applies heating before 8 am to achieve the 21 °C constraint
at 8 am.

5.4. Proposed vs. soft-constrained periodic MPC

We first consider the zone-MPC approach with q = 0. Plotted
in Fig. 4(a) is the solution of the proposed MPC scheme with a unit
length prediction horizon (10 min). Despite the short prediction
horizon the controller starts heating the room at 5:40 am, in order
to satisfy the 21 °C constraint at 8 am. This is achieved because
prediction constraints (4) and (5) provide the control law with all
the information required to impose theminimumadmissible room
temperature at all times and indefinitely satisfy the constraints.
Plotted in Fig. 4(b) is the solution of the proposedMPC schemewith
a prediction horizon of 72 steps (12 h). This solution is now more
similar to the periodic optimal solution plotted in Fig. 3.

All simulations’ starting states are tuned such that in the
nominal case the same state is achieved after 24 h. As in Section 5.3,
this implies that the nominal single-period solution is indicative
of the nominal multi-period solution. In the disturbed case the
single-period solution only repeats itself exactly if the disturbance
sequence repeats itself exactly. While this is unlikely, due to the
sluggish dynamics the disturbances do not strongly influence the
closed-loop response, and thus the provided single-period plots do
closely resemble the multi-period solution.

To demonstrate the benefits of the proposed MPC approach
we next consider an MPC approach that does not enforce robust
strong feasibility. It is not clear what the best method to compare
with is, but we proceed as follows.We consider a nominal periodic
MPC controller that, over its prediction horizon, takes into account
only system constraints (2). As there is no provision for enforcing
recursive feasibility the state constraints are considered soft, with
(a) Horizon length: N = 1 (10 min). (b) Horizon length: N = 72 (12 h).

Fig. 4. Hard state constraints. Proposed robustly strongly feasible periodic MPC scheme. Nominal (solid, blue), with stochastic disturbances (dashed, green). q = 0. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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(a) Horizon length: N = 1 (10 min). (b) Horizon length: N = 72 (12 h).

Fig. 5. Soft state constraints. Nominal periodic MPC without guarantees of state constraint satisfaction. Nominal (solid, blue), with stochastic disturbances (dashed, green).
q = 0. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
(a) Horizon length: N = 1 (10 min). (b) Horizon length: N = 72 (12 h).

Fig. 6. Hard state constraints. Proposed robustly strongly feasible periodic MPC scheme. Nominal (solid, blue), with stochastic disturbances (dashed, green). q = 105 . (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
Fig. 7. Soft state constraints. Nominal periodic MPC without guarantees of state
constraint satisfaction. Nominal (solid, blue), with stochastic disturbances (dashed,
green). q = 105 . Plotted result: N = 1 (10 min). Result for N = 72 (12 h)
is practically identical to Fig. 6(b), thus not plotted. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version
of this article.)

a high penalty for violation, while input constraints remain hard.
The result for a unit length prediction horizon (10 min) is plotted
in Fig. 5(a). The controller only ‘‘sees’’ the 8 am 21 °C constraint
at 7:50 am, due to the short horizon. A constraint violation occurs
from 8 am until 9:20. The result for a 72 step (12 h) prediction
horizon is plotted in Fig. 5(b) and looks very similar to the
proposedMPC scheme’s result of Fig. 4(b). In this case no constraint
violations occur in the nominal case. All prediction horizon lengths
N ∈ N72

1 were tested and it was found that the soft constrained
approach leads to constraint violations for N ≤ 11, whereas no
constraint violations occur for N ≥ 12, in the nominal case. The
proposed robustly strongly feasibleMPCapproach requires no such
trial-and-error analysis.

Results analogous to those plotted in Figs. 4 and 5, but for
q = 105, are plotted in Figs. 6 and 7. Again, despite a short predic-
tion horizon the proposed robustly strongly feasible periodic MPC
scheme enforces all constraints, whereas the soft-constrained al-
ternative fails to do so. Note that in Fig. 7 the constraint violation
lasts only until 8:40, shorter than in Fig. 5(a).

Remark 8. It is important to note that in the proposed MPC
scheme the ability to enforce constraints, and the size of the fea-
sible state space, is not related to, or dependent on, the predic-
tion cost function of (3). In contrast, with the soft constrainedMPC
Table 1
Daily energy consumption, energy cost and average room temperature for the eight
MPC control laws contrasted in Figs. 4–7. Consumption and cost normalized by
lowest value.

N Hard q Normalized
consumption

Normalized
cost

Average temp. t1

1 ✓ 0 1.396 1.320 21.012
1 × 0 := 1 := 1 20.735

72 ✓ 0 1.505 1.089 21.088
72 × 0 1.473 1.072 21.066
1 ✓ 105 3.325 3.325 21.376
1 × 105 2.375 2.375 21.304

72 ✓ 105 7.301 6.549 21.576
72 × 105 7.301 6.549 21.576

scheme employed for comparison here the cost function does af-
fect the existence of, and the level of, constraint violations. Thus in
the proposed scheme the control designer is free to tune cost func-
tion (3) to achieve desirable closed-loop behavior, without jeopar-
dizing constraint satisfaction and feasibility.

5.5. Discussion

Performance values are tabulated in Table 1. The proposed
hard-constrained MPC strategy achieves its lowest energy con-
sumption with a short prediction horizon, and its lowest energy
cost with a long prediction horizon, both with q = 0. More com-
fortable room temperatures, at much higher energy consumption
and cost, are achieved with q = 105. The soft-constrainedMPC ap-
proach is able to achieve lower energy consumption and cost, at
the expense of violating constraints.

6. Conclusion

Periodic affine systems provide a powerful modeling frame-
work for a large variety of control problems, yet are straightfor-
ward to deal with. The ability tomodel not only periodic dynamics,
but also periodic constraints, disturbances, disturbance bounds,
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external input variations, etc., is extremely powerful. The exam-
ple of building climate control was used to convey the flexibility
and convenience of the proposed approach. In many applications,
e.g., the problem of room temperature control using a minimum
amount of energy, the control performance is directly related to
the ability to operate the plant close to the constraints, while rigor-
ously enforcing constraint satisfaction. The consideration of least-
restrictive robust control laws is indispensable in these situations.
By suitably tailoring the prediction state constraints for each pre-
diction step, instead of employing usual terminal constraints, in
the proposed periodic MPC problem formulation both the com-
putational complexity of closed-loop predictionMPC, as well as the
conservativeness of traditionalmin–max open-loop predictionMPC,
were straightforwardly circumnavigated.
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