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Abstract

In any real system, changing the control signal from one value to another will usually cause wear and tear on the system’s
actuators. Thus, when designing a control law, it is important to consider not just predicted system performance, but also the
cost associated with changing the control action. This latter cost is almost always ignored in the optimal control literature. In
this paper, we consider a class of optimal control problems in which the variation of the control signal is explicitly penalized
in the cost function. We develop an effective computational method, based on the control parameterization approach and a
novel transformation procedure, for solving this class of optimal control problems. We then apply our method to three example
problems in fisheries, train control, and chemical engineering.
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1 Introduction

The optimal control literature is replete with standard
problems in which the system cost function is expressed
solely in terms of the final state reached by the system
and/or an integral term involving the state and control
values at each time. The cost of changing the control sig-
nal is rarely considered. Thus, two different control laws
that result in the same cost value are deemed to perform
equally—even if one of them is constant while the other
fluctuates wildly. Obviously, in engineering applications,
the constant control law would be preferred.

Results pertaining to optimal control problems with
costs on control signal changes are scarce in the liter-
ature. Blatt (1976) derived necessary optimality con-
ditions for an optimal control problem in which the
control signal can assume two possible values and there
is a cost associated with changing from one value to
another. Subsequently, Stewart (1992) developed a
computational algorithm for solving Blatt’s problem
numerically, and Matula (1987) derived further opti-
mality conditions for solving similar (but more general)
problems in which the total variation of the control
signal is incorporated as a penalty in the cost function.

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author Q. Lin. Tel. +61-8-92664962. Fax +61-8-
92663197.
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State constraints are not considered in any of the early
references mentioned above. This is obviously a serious
limitation, as most optimal control problems arising in
real-world applications involve state constraints (see, for
example, the spacecraft control problems in Açikmeşe
and Blackmore (2011); the underwater vehicle problems
in Büskens and Maurer (2000); and the zinc sulphate
purification problems in Wang, Gui, Teo, Loxton, and
Yang (2009)). In recent years, several algorithms for
solving optimal control problems with state constraints
have been proposed. These include the non-smooth
Newton’s method (Gerdts (2008); Gerdts and Kunkel
(2008)), the constraint transcription method (Loxton,
Teo, Rehbock, and Yiu (2009); Wang et al. (2009)), the
exact penalty method (Jiang, Lin, Yu, Teo, and Duan
(2012); Yu, Li, Loxton, and Teo (2013)), the lossless con-
vexification method (Açikmeşe and Blackmore (2010);
Açikmeşe and Blackmore (2011)), and a new global op-
timization approach based on interval analysis (Zhao
and Stadtherr (2011)). None of these methods, however,
consider the cost of changing the control signal.

One method that does take this cost into account is the
control parameterizationmethod introduced by Teo and
Jennings (1991). This method, which is implemented in
the MISER optimal control software (Jennings, Fisher,
Teo, and Goh (2004)), is applicable to a general class
of optimal control problems in which the cost function
includes the total variation of the control signal and the
state variables are subject to inequality path constraints.

Out of the few optimal control methods that explicitly
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consider the cost of control changes, the control param-
eterization method by Teo and Jennings (1991) is appli-
cable to the widest class of problems. However, one dis-
advantage of this method is that it approximate the con-
trol by a piecewise-constant function with fixed switch-
ing times. More modern discretization schemes are now
available in which both the control values and the con-
trol switching times are decision variables to be chosen
optimally—see, for example, Loxton, Teo, and Rehbock
(2008); Loxton et al. (2009); Lin, Loxton, Teo, and Wu
(2011); and Yu et al. (2013). These new discretization
methods are known to produce results of much higher
accuracy.

Another major limitation of Teo and Jennings’s method
is that it is only guaranteed to converge when the path
constraints are pure state constraints (i.e. constraints
that do not depend on the control explicitly). The con-
vergence results in Teo and Jennings (1991) are actually
invalid if the path constraints include the control explic-
itly, which is the case in container crane control prob-
lems (Sakawa and Shindo (1982)) and soft-landing con-
trol problems for autonomous spacecraft (Açikmeşe and
Blackmore (2011)).

The computational method in Teo and Jennings (1991)
involves three levels of approximation: first the time hori-
zon is partitioned into a set of subintervals and the con-
trol is approximated by a piecewise-constant function
consistent with this partition; then the non-smooth to-
tal variation term in the cost function is approximated
by a smooth function; then finally the path constraints
are approximated by a set of conventional constraints.
There are four adjustable parameters—one governing
the number of subintervals, one governing the approx-
imation of the total variation term, and two governing
the approximation of the path constraints. These pa-
rameters must be updated appropriately to ensure con-
vergence. Since each level of approximation reduces ac-
curacy, having three levels is clearly not ideal.

The aim of this paper is to introduce a superior approach
that only involves two levels of approximation. This new
approach is applicable to general optimal control prob-
lems with the following characteristics:

(i) The cost function contains a total variation term
measuring changes in the control signal;

(ii) The state and control variables are subject to path
constraints;

(iii) The state variables are subject to terminal equality
constraints.

In our recent work (see Loxton, Lin, Rehbock, and Teo
(2012)), we have introduced a discretization strategy for
approximating problems of this type by a non-smooth
optimization problem. We have already discussed the
convergence properties of this discretization strategy,
but we have yet to investigate the practically significant

issue of actually computing an optimal control law. The
purpose of this current paper is to address this issue.

2 Problem formulation

Consider the following nonlinear control system:

ẋ(t) = f(x(t),u(t)), t ∈ [0, T ], (1)

x(0) = x0, (2)

wherex(t) ∈ R
n is the system’s state at time t,u(t) ∈ R

r

is the control signal at time t, x0 ∈ R
n is the initial state,

T > 0 is a given terminal time, and f : Rn × R
r → R

n

is a given continuously differentiable function.

Let ui : [0, T ] → R denote the ith component of the
control signal u : [0, T ] → R

r. Then the total variation
of ui (see Royden and Fitzpatrick (2010)) is defined by

T
∨

0

ui = sup
m
∑

j=1

∣

∣ui(tj)− ui(tj−1)
∣

∣,

where the supremum is taken over all finite partitions
{tj}mj=0 ⊂ [0, T ] satisfying

0 = t0 < t1 < · · · < tm−1 < tm = T.

The total variation of the vector-valued control signal
u : [0, T ] → R

r is defined by

T
∨

0

u =

r
∑

i=1

T
∨

0

ui. (3)

If the total variation of u : [0, T ] → R
r is finite, then

we say that u is of bounded variation. Let U denote the
class of all such functions of bounded variation mapping
[0, T ] into R

r. Any u ∈ U is called an admissible control
for system (1)-(2).

The total variation defined by (3) measures the extent
to which the control signal changes during the time
horizon—the more change, the larger the total varia-
tion. Note that if the control signal is constant, then the
total variation is zero.

It is easy to show that for each admissible control u ∈ U ,
there exists a corresponding real numberK := K(u) > 0
such that

|u(t)| ≤ K, t ∈ [0, T ], (4)

where | · | denotes the Euclidean norm. Thus, bounded
variation implies boundedness.

We assume that f : Rn×R
r → R

n in system (1)-(2) sat-
isfies the following linear growth condition: there exists
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a real number L > 0 such that

|f(ξ,ω)| ≤ L(1 + |ξ|+ |ω|), (ξ,ω) ∈ R
n × R

r. (5)

This assumption is standard in control theory (see, for
example, Ahmed (1988, 2006) and Lin et al. (2011)).
Inequalities (4) and (5) ensure that there exists a unique
solution of (1)-(2) corresponding to each u ∈ U (see
Theorem 3.3.3 of Ahmed (2006)). Let x(·|u) denote this
solution.

Now, suppose that system (1)-(2) is subject to the fol-
lowing terminal state constraints :

Φj(x(T |u)) = 0, j = 1, . . . , q1, (6)

where each Φj : Rn → R is a given continuously differ-
entiable function.

Suppose also that system (1)-(2) is subject to continuous
inequality constraints of the following form:

hj(x(t|u),u(t)) ≤ 0, t ∈ [0, T ], j = 1, . . . , q2, (7)

where each hj : Rn × R
r → R is a given continuously

differentiable function. Note that control bounds can be
easily incorporated into (7).

Let F denote the set of all u ∈ U satisfying constraints
(6) and (7). Controls in F are called feasible controls.
Our goal is to determine a feasible control that results in
minimal system cost. In the classical optimal control lit-
erature, system cost is measured by a function of the final
state reached by the system (a so-called Mayer term),
and/or an integral term involving the state and control
variables at each time (a so-called Lagrange term). The
cost of changing the control signal is almost always ne-
glected. Thus, there is nothing to discourage volatile con-
trol strategies that would be difficult—and potentially
dangerous—to implement in practice.

In this paper, we propose a different approach in which
the system cost function depends on both the final state
reached by the system and the total variation of the
control signal. Thus, large fluctuations in the control
signal (which will likely result in excessive wear and tear
on the system) are discouraged.

Our optimal control problem is defined formally below.

Problem 1. Choose a feasible control u ∈ F to mini-
mize the cost functional

J1(u) = Ψ(x(T |u)) + α

T
∨

0

u, (8)

where α ≥ 0 is a given weight and Ψ : Rn → R is a given
continuously differentiable function.

Note that any cost function containing a Lagrange inte-
gral term can be easily transformed into the form of (8)
by introducing a dummy state variable. See Chapter 6
of Ahmed (1988) for details.

3 Numerical discretization

Problem 1 presents two major difficulties:

(i) The continuous inequality constraints (7) must be
satisfied at an infinite number of time points (every
point in [0, T ]).

(ii) There is no closed-form analytical formula for the
total variation term in (8).

Regarding the first difficulty, Hartl, Sethi, and Vickson
(1995) survey the various theoretical results available
for dealing with continuous inequality constraints in op-
timal control. Several effective computational methods
have also been developed; see Gerdts and Kunkel (2008),
Loxton et al. (2009), Wang et al. (2009), Açikmeşe and
Blackmore (2011), Zhao and Stadtherr (2011), and Yu
et al. (2013) for details. However, none of these compu-
tational methods are applicable to Problem 1 because of
the non-standard total variation term in (8).

In this section, we will introduce a piecewise-constant
approximation scheme for the control function in Prob-
lem 1. Under this approximation scheme, the total vari-
ation term is dramatically simplified and can be com-
puted easily via a simple formula.We direct the reader to
Loxton et al. (2012) for a thorough discussion of the con-
vergence properties of this piecewise-constant approxi-
mation scheme. In this current paper, we are concerned
with the practical issue of actually computing a control
policy, rather than convergence issues.

Let p ≥ 2 be a given integer. Furthermore, let T denote
the set of all τ ∈ R

p−1 such that

0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τp−1 ≤ τp = T. (9)

Elements of T are called switching time vectors.

For given vectors σk ∈ R
r, k = 1, . . . , p, define

(σ1, . . . ,σp) =
[

(σ1)⊤, . . . , (σp)⊤
]⊤

∈ R
pr. (10)

Let S denote the set of all such σ = (σ1, . . . ,σp) ∈ R
pr.

Elements of S are called control value vectors.

We approximate the control u by the following
piecewise-constant function:

up(t|τ ,σ) =

p
∑

k=1

σkχ[τk−1,τk)(t), t ∈ [0, T ), (11)
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where τ ∈ T is a given switching time vector, σ ∈ S is
a given control value vector, and χ[τk−1,τk) : R → R is
the characteristic function defined by

χ[τk−1,τk)(t) =

{

1, if t ∈ [τk−1, τk),

0, otherwise.

Throughout this paper, we use the convention that
[τk−1, τk) = ∅ if τk−1 = τk.

Notice that equation (11) does not specify a value for up

at t = T . By convention, we define

up(T |τ ,σ) = up(T−|τ ,σ) = lim
t→T−

up(t|τ ,σ).

Let σk
i denote the ith component of σk. Then it can be

shown that

T
∨

0

up(·|τ ,σ) ≤
r

∑

i=1

p−1
∑

k=1

∣

∣σk+1
i − σk

i

∣

∣. (12)

Thus,up is of bounded variation—i.e.up is an admissible
control for Problem 1.

At first glance, it may appear that inequality (12) should
be an equality. However, this is only true if the knot
points τk, k = 0, . . . , p, are distinct. If two or more of the
knot points coincide, then the inequality in (12) may be
strict. For example, suppose that

r = 1, p = 3, T = 5, τ0 = 0, τ1 = 2,

τ2 = 2, τ3 = 5, σ1 = 0, σ2 = 2, σ3 = 1.

Then, noting that τ1 and τ2 coincide at t = 2, we see that

5
∨

0

up = 1 < 3 = |σ2 − σ1|+ |σ3 − σ2|.

Thus, inequality (12) is strict in this case. A formal proof
of inequality (12) is given in Loxton et al. (2012).

Substituting the piecewise-constant control (11) into the
dynamic system (1)-(2) yields

ẋ(t) =

p
∑

k=1

f(x(t),σk)χ[τk−1,τk)(t), t ∈ [0, T ], (13)

x(0) = x0. (14)

Let xp(·|τ ,σ) denote the solution of (13)-(14) corre-
sponding to τ ∈ T and σ ∈ S. Then clearly,

xp(t|τ ,σ) = x(t|up(·|τ ,σ)), t ∈ [0, T ]. (15)

Constraints (6) and (7) become

Φj(x
p(T |τ ,σ)) = 0, j = 1, . . . , q1, (16)

and

p
∑

k=1

hj(x
p(t|τ ,σ),σk)χ[τk−1,τk)(t) ≤ 0,

t ∈ [0, T ], j = 1, . . . , q2.

(17)

Let Γ denote the set of all pairs (τ ,σ) ∈ T ×S such that
(16) and (17) are satisfied. Then

(τ ,σ) ∈ Γ ⇐⇒ up(·|τ ,σ) ∈ F .

Define

J2(τ ,σ) = Ψ(xp(T |τ ,σ))+α
r

∑

i=1

p−1
∑

k=1

∣

∣σk+1
i −σk

i

∣

∣. (18)

Then it follows from (12) and (15) that

J1(u
p) = Ψ(x(T |up)) + α

T
∨

0

up ≤ J2(τ ,σ). (19)

By following the arguments in Loxton et al. (2012), it
can be shown that (19) holds with equality whenever
(τ ,σ) is a minimizer of J2. On this basis, Problem 1
can be approximated by the following finite-dimensional
optimization problem.

Problem 2. Choose a pair (τ ,σ) ∈ Γ to minimize the
cost function J2.

Notice that the total variation term in J1 has been trans-
formed into a non-smooth absolute value term in J2.
This new term can be computed easily.

Let (τ ∗,σ∗) ∈ Γ be an optimal solution of Problem 2,
where

τ ∗ = [τ∗1 , . . . , τ
∗
p−1]

⊤ ∈ T

and
σ∗ = (σ1,∗, . . . ,σp,∗) ∈ S.

Then the corresponding piecewise-constant control for
Problem 1 is defined as follows:

up,∗(t) =











p
∑

k=1

σk,∗χ[τ∗

k−1
,τ∗

k
)(t), if t ∈ [0, T ),

up,∗(T−), if t = T ,

(20)

where τ∗0 = 0 and τ∗p = T . It can be shown thatup,∗ min-
imizes J1 over the space of feasible piecewise-constant
controls (Loxton et al. (2012)). Thus, a suboptimal con-
trol for Problem 1 can be obtained by solving Problem 2.
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Unfortunately, standard gradient-based optimization al-
gorithms cannot be applied to Problem 2 because the
cost function (18) is non-smooth. Furthermore, it is well
known that variable switching times causemajor compu-
tational difficulties for gradient-based optimization al-
gorithms (Xu and Antsaklis (2004); Loxton et al. (2008);
Loxton et al. (2009)). In the next section, we will present
a novel transformation procedure for converting Prob-
lem 2 into a smooth optimization problem with fixed
switching times. This new problem can be solved readily
using existing optimization techniques.

4 Problem transformation

4.1 A new optimization problem

Let O denote the set of all θ ∈ R
p such that

θk ≥ 0, k = 1, . . . , p,

and
p

∑

k=1

θk = T.

Define

ζ = (γ,v1, . . . ,vp−1,w1, . . . ,wp−1) ∈ R
(2p−1)r, (21)

where γ ∈ R
r, vk ∈ R

r,wk ∈ R
r, and the round bracket

notation has the same meaning as in (10). Let Z denote
the set of all ζ ∈ R

(2p−1)r in the form of (21) such that vk

and wk satisfy the following non-negativity constraints:

vki ≥ 0, wk
i ≥ 0, i = 1, . . . , r, k = 1, . . . , p− 1.

Now, define functions ψk : Z → R
r, k = 1, . . . , p, as

follows:

ψk(ζ) = γ +

p−1
∑

l=k

(vl −wl), k = 1, . . . , p.

We consider the following dynamic system on the new
time horizon [0, p]:

ẏ(s) =

p
∑

k=1

θkf(y(s),ψ
k(ζ))χ[k−1,k)(s), (22)

y(0) = x0, (23)

where (θ, ζ) ∈ O × Z is a given pair, x0 ∈ R
n and

f : R
n × R

r → R
n are as defined in Section 2, and

χ[k−1,k) : R → R is the characteristic function defined
in Section 3.

Let y(·|θ, ζ) denote the solution of (22)-(23) correspond-
ing to (θ, ζ) ∈ O×Z. Furthermore, let Ξ denote the set

of all (θ, ζ) ∈ O×Z satisfying the following constraints:

Φj(y(p|θ, ζ)) = 0, j = 1, . . . , q1,

and

p
∑

k=1

θkhj(y(s|θ, ζ),ψ
k(ζ))χ[k−1,k)(s) ≤ 0,

s ∈ [0, p], j = 1, . . . , q2.

We now define a new optimization problem as follows.

Problem 3. Choose (θ, ζ) ∈ Ξ to minimize the cost
function

J3(θ, ζ) = Ψ(y(p|θ, ζ)) + α

r
∑

i=1

p−1
∑

k=1

(vki + wk
i ).

We will show in the next subsection that Problem 3 is
equivalent to Problem 2. This means that a solution of
Problem 3 can be used to generate a solution of Prob-
lem 2, and vice versa. Note that Problem 3 has a smooth
cost function and fixed switching times at the integers
s = 1, . . . , p − 1. Thus, from a computational point of
view, Problem 3 is much easier than Problem 2.

4.2 Main results

Our aim in this subsection is to prove that Problems 2
and 3 are equivalent.

First, for each θ ∈ O, define a corresponding time-
scaling function as follows:

µ(s|θ) =











⌊s⌋
∑

l=1

θl + θ⌊s⌋+1(s− ⌊s⌋), if s ∈ [0, p),

T, if s = p.

Clearly,

µ(k|θ) =
k
∑

l=1

θl, k = 0, . . . , p.

For each θ ∈ O, define

τ̃ (θ) =
[

µ(1|θ), . . . , µ(p− 1|θ)
]⊤

∈ R
p−1.

Since each component of θ ∈ O is non-negative,

0 ≤ µ(k|θ) ≤

p
∑

l=1

θl = T, k = 1, . . . , p− 1, (24)
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and

µ(k − 1|θ) ≤ µ(k|θ), k = 2, . . . , p− 1. (25)

It follows from (24) and (25) that τ̃ (θ) satisfies (9). Thus,
τ̃ (θ) ∈ T is a valid switching time vector for Problem 2.

Now, for each ζ ∈ Z defined by (21), let

σ̃(ζ) = (ψ1(ζ), . . . ,ψp(ζ)) ∈ R
pr.

We immediately see that σ̃(ζ) ∈ S. Thus, each pair in
O×Z generates a corresponding pair in T ×S through
the relation (θ, ζ) 7→ (τ̃ (θ), σ̃(ζ)). Solving the dynamic
system (13)-(14) with τ = τ̃ (θ) and σ = σ̃(ζ) yields
the state trajectory xp(·|τ̃ (θ), σ̃(ζ)). Our next result re-
veals the relationship between xp(·|τ̃ (θ), σ̃(ζ)) and the
solution of the new system (22)-(23).

Theorem 4.1. For each (θ, ζ) ∈ O × Z,

y(s|θ, ζ) = xp(t|τ̃ (θ), σ̃(ζ))
∣

∣

∣

t=µ(s|θ)
. (26)

Proof. For notational simplicity, let

x̃(s) = xp(t|τ̃ (θ), σ̃(ζ))
∣

∣

∣

t=µ(s|θ)
.

We will prove (26) by showing that x̃ is the unique so-
lution of (22)-(23).

Since µ(0|θ) = 0 and xp(0|τ̃ (θ), σ̃(ζ)) = x0,

x̃(0) = xp(t|τ̃ (θ), σ̃(ζ))
∣

∣

∣

t=µ(0|θ)

= xp(0|τ̃ (θ), σ̃(ζ))

= x0.

Hence, x̃ satisfies the initial condition (23).

Let E ′ denote the set of all k ∈ {1, . . . , p} such that
θk = 0, and let E ′′ = {1, . . . , p} \ E ′. If k ∈ E ′, then
µ(s|θ) = µ(k − 1|θ) for all s ∈ (k − 1, k). Thus,

x̃(s) = xp(t|τ̃ (θ), σ̃(ζ))
∣

∣

∣

t=µ(s|θ)

= xp(t|τ̃ (θ), σ̃(ζ))
∣

∣

∣

t=µ(k−1|θ)

= x̃(k − 1).

This implies that for each k ∈ E ′,

˙̃x(s) = 0 = θkf(x̃(s),ψ
k(ζ)), s ∈ (k − 1, k). (27)

Now, if k ∈ E ′′, then µ(k − 1|θ) < µ(s|θ) < µ(k|θ) and
µ̇(s|θ) = θk for all s ∈ (k−1, k). Thus, by differentiating

x̃ using the chain rule and then applying equation (13)
with τ = τ̃ (θ) and σ = σ̃(ζ), we obtain

˙̃x(s) = θkf(x̃(s),ψ
k(ζ)), s ∈ (k − 1, k). (28)

Equations (27) and (28) imply that x̃ satisfies the fol-
lowing differential equation almost everywhere on [0, p]:

˙̃x(s) =

p
∑

k=1

θkf(x̃(s),ψ
k(ζ))χ[k−1,k)(s), s ∈ [0, p].

It follows that x̃ is the unique solution of (22)-(23), as
required.

Theorem 4.1 shows how the time-scaling function µ(·|θ)
links the dynamic system in Problem 2 with the dynamic
system in Problem 3. The next result links the feasible
regions of these two problems.

Theorem 4.2. Let (θ, ζ) ∈ O×Z be a given pair. Then
(θ, ζ) ∈ Ξ if and only if (τ̃ (θ), σ̃(ζ)) ∈ Γ. That is, (θ, ζ)
is feasible for Problem 3 if and only if (τ̃ (θ), σ̃(ζ)) is
feasible for Problem 2.

Proof. For notational simplicity, we write xp(·) instead
of xp(·|τ̃ (θ), σ̃(ζ)), and y(·) instead of y(·|θ, ζ). Since
(θ, ζ) ∈ O × Z is fixed, this notation will not cause
confusion.

Suppose that (θ, ζ) is feasible for Problem 3. Then

Φj(y(p)) = 0, j = 1, . . . , q1, (29)

and

θkhj(y(s),ψ
k(ζ)) ≤ 0, s ∈ [k − 1, k),

k = 1, . . . , p, j = 1, . . . , q2.
(30)

Recall that µ(p|θ) = T . Thus, it follows from (29) and
Theorem 4.1 that for each j = 1, . . . , q1,

Φj(x
p(T )) = Φj(x

p(t))
∣

∣

∣

t=µ(p|θ)
= Φj(y(p)) = 0.

This shows that (τ̃ (θ), σ̃(ζ)) satisfies the terminal con-
straints (16) in Problem 2.

Now, let t′ ∈ [0, T ]. If t′ = T , then the continuous
inequality constraints (17) are automatically satisfied.
Thus, we assume that t′ ∈ [0, T ). Then we can find an
integer ς such that θς > 0 and µ(ς − 1|θ) ≤ t′ < µ(ς |θ).
Thus, by considering (30) for k = ς and dividing both
sides by θς , we obtain, for each j = 1, . . . , q2,

hj(y(s),ψ
ς(ζ)) ≤ 0, s ∈ [ς − 1, ς). (31)
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The time-scaling function µ(·|θ) is clearly a non-
decreasing surjection from [0, p] to [0, T ]. Hence, there
exists a s′ ∈ [ς − 1, ς) such that µ(s′|θ) = t′. By Theo-
rem 4.1 and inequality (31), for each j = 1, . . . , q2,

hj(x
p(t′),ψς(ζ)) = hj(x

p(t),ψς(ζ))
∣

∣

∣

t=µ(s′|θ)

= hj(y(s
′),ψς(ζ)) ≤ 0.

Thus, for each j = 1, . . . , q2,

p
∑

k=1

hj(x
p(t′),ψk(ζ))χ[τ̃k−1(θ),τ̃k(θ))(t

′)

= hj(x
p(t′),ψς(ζ)) ≤ 0,

where τ̃k(θ) = µ(k|θ). Since t′ ∈ [0, T ) was chosen arbi-
trarily, this shows that (τ̃ (θ), σ̃(ζ)) satisfies the contin-
uous inequality constraints (17) in Problem 2. It follows
that (τ̃ (θ), σ̃(ζ)) is feasible for Problem 2. The reverse
implication is proved in a similar manner.

We now characterize the optimal solution of Problem 3.

Theorem 4.3. Let (θ∗, ζ∗) ∈ Ξ be an optimal solution
of Problem 3, where

ζ∗ = (γ∗,v1,∗, . . . ,vp−1,∗,w1,∗, . . . ,wp−1,∗). (32)

Then

v
k,∗
i w

k,∗
i = 0, i = 1, . . . , r, k = 1, . . . , p− 1. (33)

Proof. Suppose that (33) is violated for some i and k.
Let J1 denote the set of index pairs (i, k) such that

v
k,∗
i w

k,∗
i > 0, and let J2 denote the set of index pairs

(i, k) such that vk,∗i w
k,∗
i = 0. Since vk,∗i and w

k,∗
i are

non-negative, J1 ∪ J2 = {1, . . . , r} × {1, . . . , p− 1}.

Define

v̂ki =

{

max{vk,∗i − w
k,∗
i , 0}, if (i, k) ∈ J1,

v
k,∗
i , if (i, k) ∈ J2,

and

ŵk
i =

{

max{wk,∗
i − v

k,∗
i , 0}, if (i, k) ∈ J1,

w
k,∗
i , if (i, k) ∈ J2.

Furthermore, define

ζ̂ = (γ∗, v̂1, . . . , v̂p−1, ŵ1, . . . , ŵp−1),

where v̂k = [v̂k1 , . . . , v̂
k
r ]

⊤ and ŵk = [ŵk
1 , . . . , ŵ

k
r ]

⊤. We

immediately see that ζ̂ ∈ Z. Furthermore,

v̂ki − ŵk
i = v

k,∗
i − w

k,∗
i , i = 1, . . . , r, k = 1, . . . , p− 1.

Hence, for each k = 1, . . . , p,

ψk(ζ̂) = γ∗ +

p−1
∑

l=k

(v̂l − ŵl)

= γ∗ +

p−1
∑

l=k

(vl,∗ −wl,∗) = ψk(ζ∗).

This implies that y(s|θ∗, ζ̂) = y(s|θ∗, ζ∗) for all
s ∈ [0, p]. Thus, since (θ∗, ζ∗) is feasible for Problem 3,

(θ∗, ζ̂) is also feasible for Problem 3. Furthermore,

J3(θ
∗, ζ̂) = Ψ(y(p|θ∗, ζ̂)) + α

r
∑

i=1

p−1
∑

k=1

(v̂ki + ŵk
i )

= Ψ(y(p|θ∗, ζ∗)) + α

r
∑

i=1

p−1
∑

k=1

(v̂ki + ŵk
i ). (34)

Now, recall that vk,∗i and w
k,∗
i are both non-negative.

Hence, if (i, k) ∈ J1, then v
k,∗
i > 0 and wk,∗

i > 0. This
implies that

v̂ki + ŵk
i = max{vk,∗i − w

k,∗
i , 0}+max{wk,∗

i − v
k,∗
i , 0}

=
∣

∣v
k,∗
i − w

k,∗
i

∣

∣ < v
k,∗
i + w

k,∗
i .

Consequently, we have the following implication:

(i, k) ∈ J1 =⇒ v̂ki + ŵk
i < v

k,∗
i + w

k,∗
i .

Thus, from (34) and our assumption that J1 6= ∅,

J3(θ
∗, ζ̂) < Ψ(y(p|θ∗, ζ∗)) + α

r
∑

i=1

p−1
∑

k=1

(vk,∗i + w
k,∗
i )

= J3(θ
∗, ζ∗).

But since (θ∗, ζ̂) is feasible for Problem 3, this contra-
dicts the optimality of (θ∗, ζ∗). Thus, our assumption
that J1 6= ∅ is false. It follows that equation (33) must
hold for all i and k.

We are now ready to show that a solution of Problem 3
can be used to generate a solution of Problem 2.

Theorem 4.4. Let (θ∗, ζ∗) ∈ Ξ be an optimal solution
of Problem 3, where ζ∗ is as defined in equation (32).
Then (τ̃ (θ∗), σ̃(ζ∗)) is an optimal solution of Problem 2.
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Proof. By Theorem 4.1,

xp(T |τ̃ (θ∗), σ̃(ζ∗)) = xp(t|τ̃ (θ∗), σ̃(ζ∗))

∣

∣

∣

∣

t=µ(p|θ∗)

= y(p|θ∗, ζ∗). (35)

Theorem 4.3 implies that for each index pair (i, k), either

v
k,∗
i = 0 or wk,∗

i = 0. If vk,∗i = 0, then since wk,∗
i ≥ 0,

∣

∣w
k,∗
i − v

k,∗
i

∣

∣ =
∣

∣w
k,∗
i

∣

∣ = w
k,∗
i = v

k,∗
i + w

k,∗
i .

Similarly, if wk,∗
i = 0, then

∣

∣w
k,∗
i − v

k,∗
i

∣

∣ =
∣

∣− v
k,∗
i

∣

∣ = v
k,∗
i = v

k,∗
i + w

k,∗
i .

Thus, for each i = 1, . . . , r and k = 1, . . . , p− 1,

∣

∣ψk+1
i (ζ∗)−ψk

i (ζ
∗)
∣

∣ =
∣

∣w
k,∗
i −vk,∗i

∣

∣ = v
k,∗
i +wk,∗

i , (36)

where ψk
i (ζ

∗) denotes the ith component of ψk(ζ∗).
From (35) and (36),

J2(τ̃ (θ
∗), σ̃(ζ∗)) = Ψ(xp(T |τ̃ (θ∗), σ̃(ζ∗)))

+ α

r
∑

i=1

p−1
∑

k=1

∣

∣ψk+1
i (ζ∗)− ψk

i (ζ
∗)
∣

∣

= Ψ(y(p|θ∗, ζ∗)) + α

r
∑

i=1

p−1
∑

k=1

(vk,∗i + w
k,∗
i ). (37)

Now, let (τ̄ , σ̄) ∈ Γ be an arbitrary feasible pair for
Problem 2, where τ̄ = [τ̄1, . . . , τ̄p−1]

⊤ and

σ̄ = (σ̄1, . . . , σ̄p).

Define θ̄ = [θ̄1, . . . , θ̄p]
⊤ ∈ R

p as follows:

θ̄k = τ̄k − τ̄k−1, k = 1, . . . , p,

where τ̄0 = 0 and τ̄p = T . Then clearly, θ̄ ∈ O and
τ̃ (θ̄) = τ̄ . For each k, define v̄k = [v̄k1 , . . . , v̄

k
r ]

⊤ and
w̄k = [w̄k

1 , . . . , w̄
k
r ]

⊤ as follows:

v̄ki = max{σ̄k
i − σ̄k+1

i , 0}, i = 1, . . . , r,

w̄k
i = max{σ̄k+1

i − σ̄k
i , 0}, i = 1, . . . , r.

Furthermore, define

ζ̄ = (σ̄p, v̄1, . . . , v̄p−1, w̄1, . . . , w̄p−1) ∈ R
(2p−1)r.

Then ζ̄ ∈ Z. For each i = 1, . . . , r and k = 1, . . . , p− 1,

v̄ki − w̄k
i = max{σ̄k

i − σ̄k+1
i , 0} −max{σ̄k+1

i − σ̄k
i , 0}

= σ̄k
i − σ̄k+1

i (38)

and

v̄ki + w̄k
i = max{σ̄k

i − σ̄k+1
i , 0}+max{σ̄k+1

i − σ̄k
i , 0}

=
∣

∣σ̄k
i − σ̄k+1

i

∣

∣ =
∣

∣σ̄k+1
i − σ̄k

i

∣

∣. (39)

Using (38), we obtain, for k = 1, . . . , p,

ψk(ζ̄) = σ̄p +

p−1
∑

l=k

(v̄l − w̄l)

= σ̄p +

p−1
∑

l=k

(σ̄l − σ̄l+1) = σ̄k.

This shows that σ̃(ζ̄) = σ̄.

Since (τ̄ , σ̄) = (τ̃ (θ̄), σ̃(ζ̄)) is feasible for Problem 2, it
follows from Theorem 4.2 that (θ̄, ζ̄) is feasible for Prob-
lem 3. Also, from Theorem 4.1, y(p|θ̄, ζ̄) = xp(T |τ̄ , σ̄).
Thus, (39) implies

J3(θ̄, ζ̄) = Ψ(y(p|θ̄, ζ̄)) + α

r
∑

i=1

p−1
∑

k=1

(v̄ki + w̄k
i )

= Ψ(xp(T |τ̄ , σ̄)) + α

r
∑

i=1

p−1
∑

k=1

∣

∣σ̄k+1
i − σ̄k

i

∣

∣

= J2(τ̄ , σ̄). (40)

By combining (40) and (37), and recalling that (θ̄, ζ̄) is
feasible for Problem 3, we obtain

J2(τ̃ (θ
∗), σ̃(ζ∗)) = J3(θ

∗, ζ∗) ≤ J3(θ̄, ζ̄) = J2(τ̄ , σ̄).

Since (τ̄ , σ̄) was chosen arbitrarily, this shows that
(τ̃ (θ∗), σ̃(ζ∗)) is optimal for Problem 2.

We now prove the converse of Theorem 4.4.

Theorem 4.5. Let (τ ∗,σ∗) ∈ Γ be an optimal solution
of Problem 2, where

τ ∗ = [τ∗1 , . . . , τ
∗
p−1]

⊤, σ∗ = (σ1,∗, . . . ,σp,∗).

Define

θ∗k = τ∗k − τ∗k−1,

v
k,∗
i = max{σk,∗

i − σ
k+1,∗
i , 0},

w
k,∗
i = max{σk+1,∗

i − σ
k,∗
i , 0},

and

θ∗ = [θ∗1 , . . . , θ
∗
p]

⊤,

ζ∗ = (σp,∗,v1,∗, . . . ,vp−1,∗,w1,∗, . . . ,wp−1,∗).

Then (θ∗, ζ∗) is an optimal solution of Problem 3.
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Proof. It is clear that (θ∗, ζ∗) ∈ O×Z. By following sim-
ilar arguments to those used in the proof of Theorem 4.4,
it is possible to show that τ ∗ = τ̃ (θ∗) and σ∗ = σ̃(ζ∗).
Thus, it follows from Theorem 4.2 that (θ∗, ζ∗) is feasi-
ble for Problem 3.

Now, by Theorem 4.1,

Ψ(xp(T |τ ∗,σ∗)) = Ψ(xp(t|τ̃ (θ∗), σ̃(ζ∗)))
∣

∣

∣

t=µ(p|θ∗)

= Ψ(y(p|θ∗, ζ∗)). (41)

It is easy to see from the definitions of vk,∗i and wk,∗
i that

either vk,∗i = 0 or wk,∗
i = 0. Thus, for each i = 1, . . . , r

and k = 1, . . . , p− 1,

∣

∣σ
k+1,∗
i − σ

k,∗
i

∣

∣ =
∣

∣ψk+1
i (ζ∗)− ψk

i (ζ
∗)
∣

∣

=
∣

∣v
k,∗
i − w

k,∗
i

∣

∣ = v
k,∗
i + w

k,∗
i . (42)

Combining (41) and (42) gives

J2(τ
∗,σ∗) = Ψ(xp(T |τ ∗,σ∗)) + α

r
∑

i=1

p−1
∑

k=1

∣

∣σ
k+1,∗
i − σ

k,∗
i

∣

∣

= Ψ(y(p|θ∗, ζ∗)) + α

r
∑

i=1

p−1
∑

k=1

(vk,∗i + w
k,∗
i )

= J3(θ
∗, ζ∗). (43)

Now, suppose that (θ∗, ζ∗) is not an optimal solution for
Problem 3. Then there exists a pair (θ̄, ζ̄) ∈ Ξ such that
J3(θ̄, ζ̄) < J3(θ

∗, ζ∗), where

ζ̄ = (γ̄, v̄1, . . . , v̄p−1, w̄1, . . . , w̄p−1) ∈ Z.

It follows from Theorem 4.2 that (τ̃ (θ̄), σ̃(ζ̄)) is feasible
for Problem 2. Furthermore, from Theorem 4.1,

Ψ(y(p|θ̄, ζ̄)) = Ψ(xp(t|τ̃ (θ̄), σ̃(ζ̄)))
∣

∣

∣

t=µ(p|θ̄)

= Ψ(xp(T |τ̃ (θ̄), σ̃(ζ̄))). (44)

Since v̄ki and w̄k
i are non-negative,

∣

∣ψk+1
i (ζ̄)− ψk

i (ζ̄)
∣

∣ =
∣

∣v̄ki − w̄k
i

∣

∣ ≤ v̄ki + w̄k
i . (45)

By using equations (44) and (45), we obtain inequality
J2(τ̃ (θ̄), σ̃(ζ̄)) ≤ J3(θ̄, ζ̄). Hence, from (43),

J2(τ̃ (θ̄), σ̃(ζ̄)) ≤ J3(θ̄, ζ̄) < J3(θ
∗, ζ∗) = J2(τ

∗,σ∗).

But this contradicts the optimality of (τ ∗,σ∗). Thus,
(θ∗, ζ∗) must be an optimal solution of Problem 3. This
completes the proof.

The equivalence of Problems 2 and 3 now follows imme-
diately from Theorems 4.4 and 4.5.

Corollary 4.1. Problems 2 and 3 are equivalent.

According to Theorem 4.4, Problem 2 can be solved
indirectly by first solving Problem 3, and then using the
solution of Problem 3 to “backtrack” and generate a cor-
responding solution of Problem 2. Problem 3, a smooth
optimization problem with fixed switching times, is
clearly much easier to solve than Problem 2, which has a
non-smooth cost function and variable switching times.
In the next section, we will show that Problem 3 can
be solved efficiently using a recently-developed exact
penalty method (Yu et al. (2013)).

We emphasize that the transformation procedure de-
scribed in this section yields an equivalent problem, not
an approximation. Thus, our approach has obvious ad-
vantages over the existing approach proposed by Teo and
Jennings (1991), which involves approximating the total
variation term by a smooth function, and then solving a
sequence of approximate problems. Using our approach,
only one problem (Problem 3) needs to be solved.

Finally, we note that the idea of transforming the vari-
able switching times in Problem 2 into fixed switch-
ing times in Problem 3 is motivated by the so-called
time-scaling transformation, a popular tool for solving
switched system optimal control problems (see Xu and
Antsaklis (2004); Loxton et al. (2009); Yu et al. (2013)).

5 A computational algorithm for Problem 3

Problem 3 is a smooth dynamic optimization problem
subject to continuous inequality constraints. Each con-
tinuous inequality constraint can be viewed as an infi-
nite number of interior-point constraints—one for each
point in [0, p]. Unfortunately, standard optimization al-
gorithms can only handle a finite number of constraints,
and thus such algorithms are not directly applicable to
Problem 3. In this section, we will develop a computa-
tional algorithm for solving Problem 3 based on the exact
penaltymethod introduced byYu et al. (2013). Themain
idea is to approximate Problem 3 by a penalty problem
in which constraint violations are penalized in the cost
function. This penalty problem can be solved readily us-
ing standard optimization techniques such as sequential
quadratic programming or interior-point methods (No-
cedal and Wright (2006); Luenberger and Ye (2008)).

5.1 The penalty problem

Let V denote the set of all θ ∈ R
p such that

0 ≤ θk ≤ T, k = 1, . . . , p.
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Note that O ⊂ V . Define a constraint violation function
on V × Z as follows:

∆(θ, ζ) =

{ p
∑

k=1

θk − T

}2

+

q1
∑

j=1

Φj(y(p|θ, ζ))
2

+

q2
∑

j=1

p
∑

k=1

∫ k

k−1

max{gkj (s|θ, ζ), 0}
2ds,

where

gkj (s|θ, ζ) = θkhj(y(s|θ, ζ),ψ
k(ζ)),

s ∈ [k − 1, k], j = 1, . . . , q2.

Then for each (θ, ζ) ∈ O × Z, we have ∆(θ, ζ) = 0 if
and only if (θ, ζ) is feasible for Problem 3.

Now, define a penalty function Gρ as follows:

Gρ(θ, ζ, ǫ) = J3(θ, ζ) + ǫ−δ1∆(θ, ζ) + ρǫδ2 , (46)

where ǫ > 0 is a new decision variable, ρ > 0 is the
penalty parameter, and δ1 and δ2 are fixed parameters
satisfying 1 ≤ δ2 ≤ δ1.

The second term in equation (46) is designed to penal-
ize constraint violations, while the third term penalizes
non-zero values of ǫ. When ǫ is small, the coefficient ǫ−δ1

in the second term is large, thus causing constraint vio-
lations to be penalized very severely. Consequently, min-
imizing the penalty function for large values of ρ will
likely lead to feasible points of Problem 3. With this in
mind, we define the following penalty problem.

Problem4. Choose (θ, ζ, ǫ) ∈ V×Z×(0, ǭ] to minimize
the penalty functionGρ, where ǭ > 0 is a given constant.

The following convergence results are based on the re-
sults in Yu et al. (2013).

Theorem 5.1. Let (θ∗, ζ∗, ǫ∗) be a local solution of
Problem 4. Then (θ∗, ζ∗) is a local solution of Problem 3
if and only if ǫ∗ = 0.

Theorem 5.2. Let {ρk}∞k=1 be an increasing sequence
of penalty parameters such that ρk → ∞ as k → ∞.
Furthermore, let (θk,∗, ζk,∗, ǫk,∗) be a solution of Prob-
lem 4 with ρ = ρk. Then any limit point of the sequence
{(θk,∗, ζk,∗)}∞k=1 is a solution of Problem 3.

Theorems 5.1 and 5.2 suggest that Problem 4 is a good
approximation of Problem 3 when ρ is large. Since Prob-
lem 4 only involves bound constraints, it is clearly much
easier to solve than Problem 3.

In the next subsection, we will derive formulae for the
partial derivatives of Gρ in Problem 4. These formu-

lae can be integrated with a gradient-based optimiza-
tion method (e.g. sequential quadratic programming) to
solve Problem 4 efficiently (Nocedal and Wright (2006);
Luenberger and Ye (2008)). On this basis, we present
the following algorithm for solving Problem 3:

1. Choose (θ0, ζ0) ∈ V × Z (initial guess), ρ0 > 0
(initial penalty parameter), ǫmin > 0 (tolerance),
δ1 ≥ 1 (fixed parameter), and δ2 ≥ δ1 (another
fixed parameter).

2. Set ǭ→ ǫ0 and ρ0 → ρ.
3. Starting with (θ0, ζ0, ǫ0) as the initial guess, use

a gradient-based optimization algorithm to solve
Problem 4. Let (θ∗, ζ∗, ǫ∗) denote the solution ob-
tained.

4. If ǫ∗ < ǫmin, then stop: take (θ∗, ζ∗) as the solution
of Problem 3. Otherwise, set 10ρ → ρ and go to
Step 5.

5. Set (θ∗, ζ∗, ǫ∗) → (θ0, ζ0, ǫ0) and return to Step 3.

This algorithm returns an optimal pair (θ∗, ζ∗) for Prob-
lem 3. The corresponding suboptimal control for Prob-
lem 1 is up(·|τ̃ (θ∗), σ̃(ζ∗)), which is defined by equa-
tion (11) with τ = τ̃ (θ∗) and σ = σ̃(ζ∗).

5.2 Gradient formulae

To solve Problem 4 using a gradient-based optimization
method (as required in the above algorithm), we must
be able to compute the partial derivatives of the penalty
function Gρ. These partial derivatives cannot be deter-
mined using elementary differentiation rules because the
decision vectors θ and ζ influence the penalty function
implicitly through the dynamic system (22)-(23). To de-
rive the partial derivatives ofGρ, we follow the approach
described in Teo, Goh, and Wong (1991).

Define the Hamiltonian function as follows:

Hk(ǫ, θk, ζ,x,λ) = ǫ−δ1

q2
∑

j=1

max{θkhj(x,ψ
k(ζ)), 0}2

+ θkλ
⊤f(x,ψk(ζ)),

where λ ∈ R
n is called the costate vector. Consider the

following costate system:

λ̇(s) = −

[

∂Hk(ǫ, θk, ζ,y(s),λ(s))

∂x

]⊤

,

s ∈ [k − 1, k), k = 1, . . . , p,

(47)

and

λ(p) =

[

∂Ψ(y(p))

∂x

]⊤

+ 2ǫ−δ1

q1
∑

j=1

Φj(y(p))

[

∂Φj(y(p))

∂x

]⊤

,

(48)
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where y(s) = y(s|θ, ζ). Let λ(·|θ, ζ) denote the solution
of (47)-(48). Then based on the results in Chapter 5 of
Teo et al. (1991), we have the following formulae for the
partial derivatives of Gρ:

∂Gρ

∂θk
= 2ǫ−δ1

{ p
∑

l=1

θl − T

}

+

∫ k

k−1

∂Hk(ǫ, θk, ζ,y(s),λ(s))

∂θk
ds,

(49)

∂Gρ

∂γi
=

p
∑

l=1

∫ l

l−1

∂Hl(ǫ, θl, ζ,y(s),λ(s))

∂γi
ds, (50)

∂Gρ

∂vki
= α+

k
∑

l=1

∫ l

l−1

∂Hl(ǫ, θl, ζ,y(s),λ(s))

∂vki
ds, (51)

∂Gρ

∂wk
i

= α+

k
∑

l=1

∫ l

l−1

∂Hl(ǫ, θl, ζ,y(s),λ(s))

∂wk
i

ds, (52)

∂Gρ

∂ǫ
= −δ1ǫ

−δ1−1

{ p
∑

l=1

θl − T

}2

+ δ2ρǫ
δ2−1

− δ1ǫ
−δ1−1

q1
∑

j=1

Φj(y(p))
2

+

p
∑

l=1

∫ l

l−1

∂Hl(ǫ, θl, ζ,y(s),λ(s))

∂ǫ
ds.

(53)

Equations (49)-(53) can be combined with existing non-
linear programming software to solve Problem 4 numer-
ically. To evaluate (49)-(53), it is necessary to first solve
the state system (22)-(23) forward in time, and then
solve the costate system (47)-(48) backwards in time.
An alternative gradient computation scheme in which
all integration proceeds in the forward direction can also
be derived; see Vincent and Grantham (1981), Kaya and
Noakes (2003), Loxton et al. (2008), and Lin et al. (2011)
for details.

Gradient-based optimization methods such as sequen-
tial quadratic programming are designed to find local
(rather than global) solutions. The quality of the local
solution obtained depends on the initial guess used to
start the optimization process. Thus, to ensure global
or near-global optimality, the algorithm presented above
for solving Problem 3 should be used with several differ-
ent initial guesses. Alternatively, this algorithm can be
combined with a global optimization method such as the
filled function method (Wu, Bai, Lee, and Yang (2007))
or the particle swarm method (Chen, Zhang, Chung,
Zhong, Wu, and Shi (2010)).

6 Numerical simulations

For numerical testing, we wrote a Fortran program to
implement the computational approach described in the

previous sections. This program uses the optimization
software NLPQLP (Schittkowski (2007)) to solve Prob-
lem 4 as a nonlinear optimization problem, with the
cost function’s gradient calculated using the formulae in
equations (49)-(53). The state and costate systems are
solved using the Runge-Kutta method of order 6. The
parameters δ1 and δ2 in the exact penalty function (46)
are set equal to δ1 = 2 and δ2 = 1.

6.1 Optimal fishery harvesting

For our first example, we consider the fishery harvesting
problem described in Teo and Jennings (1991) and Teo et
al. (1991). This problem involves determining an optimal
fishing policy that maximizes total revenue, while at the
same time ensuring long-term sustainability of the fish
population. The problem dynamics are given below:

ẋ(t) = a0{(1− u(t))x(t)− x(t)2}, t ∈ [0, 1], (54)

x(0) = x0, (55)

where x(t) denotes the fish population at time t (as a
fraction of the carrying capacity of the environment),
u(t) denotes the harvesting effort at time t, x0 > 0 de-
notes the initial population level, and a0 is a constant.

The harvesting effort (the control function for this prob-
lem) is subject to the following bound constraint:

0 ≤ u(t) ≤ 1, t ∈ [0, 1]. (56)

In addition, the following state constraint is imposed to
prevent overfishing:

x(t) ≥ xmin, t ∈ [0, 1], (57)

where xmin > 0 is a constant. Since xmin is strictly pos-
itive, constraint (57) ensures that the fish population
does not become extinct.

The total revenue obtained from harvesting is given by

R =

∫ 1

0

e−ς1t
{

b1(1 + b2(1− e−ς2t))u(t)x(t)

− c1u(t)− c2u(t)
2
}

dt,

(58)

where ς1, ς2, b1, b2, c1, and c2 are constants.

We choose the following values for the model constants:

a0 = 0.5, x0 = 0.45, xmin = 0.4, ς1 = 1, ς2 = 5,

b1 = 1.4, b2 = 0.25, c1 = 0.2, c2 = 0.1.

Our primary goal is to maximize total revenue. However,
we are also interested in minimizing control changes, as
it is obviously impractical to make frequent changes to
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the fishing effort. Thus, we consider a cost function J
that is the sum of negative revenue and total variation
of the harvesting function:

J = −R+ α

1
∨

0

u, (59)

where R is defined by (58). Our optimal control problem
is defined as follows: Choose the harvesting function u to
minimize (59) subject to the dynamic system (54)-(55)
and the constraints (56) and (57).

We first solved this problem for α = 0 (i.e. no penalty
on control changes). Using our program with p = 10,
ρ0 = 1, and ǫmin = 10−7, we obtained an optimal rev-
enue of R = 0.22076. For comparison, we also solved the
problem using the optimal control software MISER 3.3
(Jennings et al. (2004)). MISER 3.3 returned an opti-
mal revenue ofR = 0.22051, slightly less than our result.
This is expected, as MISER 3.3 uses a coarse discretiza-
tion procedure in which the switching times are fixed
constants, not decision variables. In contrast, our pro-
gram optimizes the switching times—it can even com-
bine two or more consecutive switching times into a sin-
gle point if it is optimal to do so. MISER 3.3 does not
provide this level of flexibility.

The optimal control produced by our program has a to-
tal variation of 0.68188, whereas the optimal control pro-
duced by MISER 3.3 has a total variation of 0.71169.
These optimal controls, and the corresponding state tra-
jectories, are shown in Figure 1.

To illustrate the effect of α on the optimal control policy,
we now consider the fishery problem with an additional
non-zero lower bound on the subinterval durations θk.
Thus, in the corresponding Problem 3 (the transformed
problem), we impose the constraint θk ≥ 0.05.

We used our program (with the same parameters as be-
fore) to solve the fishery problem for α = 0, α = 0.001,
α = 0.005, and α = 0.01. Our numerical results are
summarized in Table 1. The optimal fishing policies and
corresponding state trajectories are shown in Figure 2.
Figure 2(a) clearly shows how increasing α “smooths”
the optimal control. MISER 3.3, which implements the
method by Jennings and Teo (1991), produces similar
results: for α = 0.01, MISER 3.3 gives an optimal rev-
enue of R = 0.21912.

6.2 Optimal train control

Consider a train travelling along an uneven track. Let
x1 denote the train’s position along the track and let x2
denote the train’s velocity. Then according to Vander-
bei (2001), the train’s motion can be described by the
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Fig. 1. Numerical results for Example 6.1 with α = 0.

α Revenue Total Variation

0 0.22055 0.60319

0.001 0.22029 0.28304

0.005 0.21982 0.10088

0.010 0.21918 0

Table 1
Numerical results for Example 6.1 with a non-zero lower
bound on the subinterval duration.

following differential equations:

ẋ1(t) = x2(t), (60)

and

ẋ2(t) = h(x1(t)) − (a1 + a2x2(t) + a3x2(t)
2)

+ u1(t)− u2(t),
(61)

where u1(t) is the acceleration supplied by the engine at
time t, u2(t) is the deceleration supplied by the brakes
at time t, h(x1(t)) models the acceleration/deceleration
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Fig. 2. Numerical results for Example 6.1 with a non-zero
lower bound on the subinterval duration.

caused by elevation changes, and a1, a2, and a3 are con-
stants related to the friction force.

Let x01 denote the train’s initial position and let x02 de-
note the train’s initial velocity. Then

x1(0) = x01, x2(0) = x02. (62)

The control variables u1 and u2 are subject to the fol-
lowing bound constraints:

0 ≤ u1(t) ≤ 10, 0 ≤ u2(t) ≤ 2, t ∈ [0, T ]. (63)

At the final time t = T , the train is required to be in

position xf1 with velocity xf2 . Thus, we impose the fol-
lowing terminal state constraints:

x1(T ) = x
f
1 , x2(T ) = x

f
2 . (64)

Since the train cannot travel backwards, we also impose
the following continuous inequality constraint:

x2(t) ≥ 0, t ∈ [0, T ]. (65)

We consider the following cost function:

J =

∫ T

0

u1(t)x2(t)dt+ α

T
∨

0

u1 + α

T
∨

0

u2. (66)

The first term in (66) measures fuel costs (as a function
of the total work performed), while the last two terms
penalize changes in the control action.

The optimal train control problem is defined as follows:
Choose u1 and u2 to minimize (66) subject to the dynamic
system (60)-(62) and the constraints (63)-(65).

As in Vanderbei (2001), we choose the h function to be

h(x1(t)) =
b1 − b2

π
tan−1 x1(t)− c1

ǫ

+
b2 − b3

π
tan−1 x1(t)− c2

ǫ
.

This choice for h corresponds to the following sequence
of elevation changes: an initial uphill climb, followed by
a level track, then finishing with a downhill run.

We suppose that the train’s initial position is x01 = 0,

the final position is xf1 = 6, the initial and final velocities

are x02 = x
f
2 = 0, and the journey time is T = 4.8. For

the other constants in the train model, we use the same
values as Vanderbei (2001):

a1 = 0.3, a2 = 0.14, a3 = 0.16, ǫ = 0.05,

b1 = 2, b2 = 0, b3 = −2, c1 = 2, c2 = 4.

Using our program with parameters p = 6, ρ0 = 100,
and ǫmin = 10−7, we solved the train control problem
for α = 0 to obtain an optimal cost of J = 12.31826.
The optimal control and optimal state trajectories are
shown in Figure 3. Notice that the control and accelera-
tion functions have large “spikes” near t = 0.5. This phe-
nomenon, which was also observed in Vanderbei (2001),
is caused by numerical error. We now show that, by im-
posing a small cost on control changes, these numerical
errors can be eliminated.

Using our program (this time with p = 6, ρ0 = 10,
and ǫmin = 10−7) to solve the train control problem for
α = 0.001, we obtained an optimal fuel cost of 12.31195.
The optimal controls and corresponding optimal state
trajectories are shown in Figure 4. Note that the large
spikes have disappeared. Thus, including a total varia-
tion term in the cost function can help to regularize the
optimal control computation.

Note that the optimal fuel cost for α = 0.001 is actually
slightly less than the optimal fuel cost for α = 0. This
indicates that our previous solution for α = 0 is a non-
global local solution. Re-starting our program for α = 0

13
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Fig. 3. Numerical results for Example 6.2 with α = 0.

using the solution for α = 0.001 as the initial guess, we
obtained an improved solution with an optimal fuel cost
of 12.31182.

Our program achieved much better results than MISER
for this example. For α = 0, MISER gives an optimal
cost of 13.04940. This is worse than our result, even with
a penalty on control changes. For α = 0.1, MISER gives
an optimal cost of 13.05253.

6.3 Optimal control of an exothermic chemical reaction

Our final example comes from Zhao and Stadtherr
(2011). Consider the reaction A+B → C occuring in an
isothermal semibatch reactor operating at temperature
T = 343.15 Kelvin. The problem dynamics are

ẋ1(t) = −kx1(t)x2(t)−
u(t)x1(t)

x3(t)
, (67)

ẋ2(t) = −kx1(t)x2(t) +
u(t)(cB − x2(t))

x3(t)
, (68)

ẋ3(t) = u(t), (69)

-2

 0

 2

 4

 6

 8

 10

 12

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

A
cc

el
er

at
io

n/
D

ec
el

er
at

io
n

t

u1
u2

(a) Optimal control functions.

-4

-2

 0

 2

 4

 6

 8

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

St
at

e 
V

al
ue

s

t

Position
Velocity

Acceleration

(b) Optimal state trajectories.

Fig. 4. Numerical results for Example 6.2 with α = 0.001.

where x1(t) denotes the concentration of A at time t,
x2(t) denotes the concentration of B at time t, x3(t)
denotes the volume at time t, u(t) denotes the volumetric
flow rate of the feed stream at time t, cB = 2 is the
concentration of B in the feed stream, and k = 0.0482
is a reaction rate constant.

The objective is to maximize the amount of product C
at the final time t = 20 hours. The initial conditions are

x1(0) = 2, x2(0) = 0.5, x3(0) = 0.7. (70)

The volumetric flow rate is subject to the following
bounds:

0 ≤ u(t) ≤ 0.03, t ∈ [0, 20]. (71)

In addition, there are two continuous inequality con-
straints: a maximum volume constraint and a cooling-
failure safety constraint. These constraints are formu-
lated as follows:

x3(t) ≤ Vmax, t ∈ [0, 20], (72)

and
T +mx2(t) ≤ Tmax, t ∈ [0, 20], (73)
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Fig. 5. Numerical results for Example 6.3 with α = 0.

where Vmax = 1.1, T = 343.15, Tmax = 353.15, and
m = 15.8730. Our aim is to minimize the following cost
function:

J = x1(20)x3(20)− x1(0)x3(0) + α

20
∨

0

u. (74)

The optimal control problem is defined as: Choose the
volumetric flow rate u to minimize (74) subject to the
dynamic system (67)-(70) and the constraints (71)-(73).

We first considered this problem for α = 0. Using our
program with p = 7, ρ0 = 0.1, and ǫmin = 10−8, we
obtained an optimal cost of −0.59666, which is slightly
better than the results in Zhao and Stadtherr (2011).
Table 5 in Zhao and Stadtherr (2011) reports compu-
tation times of up to 11 hours. Our program took less
than one minute. The optimal control and corresponding
state trajectories produced by our program are shown in
Figure 5. Note that the optimal control only involves 2
switches, even though p− 1 = 6 switches are available.

We now consider the case when α = 2. Using our pro-
gram with p = 7, ρ0 = 0.1, and ǫmin = 10−8, we ob-
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Fig. 6. Numerical results for Example 6.3 with α = 2.

tained an optimal cost of −0.56116 (minus the bounded
variation term). The optimal control and optimal state
trajectories are shown in Figure 6. Note that the new
optimal control only involves 1 switch. Thus, imposing
a cost on control changes results in a simpler control, at
the expense of slightly increased cost.

7 Conclusion

This paper introduces a novel optimal control problem
in which control changes are penalized in the cost func-
tion via a total variation term. In general, this total vari-
ation term cannot be computed analytically. We devel-
oped a numerical discretization procedure that involves
approximating the control signal by a piecewise-constant
function. After applying this discretization procedure,
the total variation term can be evaluated easily. We then
developed a transformation procedure for transforming
the non-smooth approximate problem into an equivalent
problem that can be solved readily using existing tech-
niques. Numerical results indicate that this approach is
effective for a range of practical problems.
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[1] B. Açikmeşe and L. Blackmore, “Lossless convexification of
a class of non-convex optimal control problems for linear
systems,” in Proceedings of the 2010 American Control

Conference, Baltimore, USA, 2010.
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