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Abstract

This paper considers nonlinear symmetric control systems. By exploiting the symmetric structure of

the system stability results are derived that are independent of the number of components in the system.

This work contributes to the fields of research directed toward compositionality and composability of

large-scale system in that a system can be “built-up” by adding components while maintaining system

stability. The modeling framework developed in this paper is a generalization of many existing results

which focus on interconnected systems with specific dynamics. The main utility of the stability result is

one of scalability or compositionality. If the system is stable for a given number of components, under

appropriate conditions stability is then guaranteed for a larger system composed of the same type of

components which are interconnected in a manner consistent with the smaller system. The results are

general and applicable to a wide class of problems. The examples in this paper focus on the formation

control problems for multi-agent robotic systems.

Keywords: symmetric systems, multiagent coordination, nonlinear systems, compositionality

1 Introduction

Recent research efforts have been directed toward the analysis of composability and compositionality of
control systems [17, 2]. These concepts are not equivalent, but each do relate to the nature in which system
components affect overall system properties. In this paper conditions are determined under which a stable
symmetric system remains stable if additional components are added in a structured manner, particularly, in
a manner which maintains the symmetric aspects of the system. While the results in this paper are general,
one important application, which is the focus of the examples, is the mobile robot formation control problem.

Control of multi-agent systems is an important area of engineering research that has been the focus
of much research attention for several decades, but most intensively since approximately the mid-1990s.
Formation control for multiple mobile robotic systems is a prototypical application and simiarly has a
long history, with the main focus being on the use of potential functions for coordination (see for example
[15, 3, 13] and the citations therein). The use of potential functions has an obvious appeal in that they
facilitate stability analyses using Lyapunov functions. The drawbacks are well-known also, which include
among other things, the existence of multiple local minima in complex environments, the fact that realistic
potential functions representing the realities of sensor ranges introduce mathematical limitations on the
potential functions which complicate and limit the stability analysis etc. As observed in [12], many of the
prior efforts have assumed specific dynamics with the correct observation that they probably generalize;
however, our approach in this paper is intended to be much more general. Perhaps the work closest to this
present work be that of [12] wherein a control Lyapunov function is assumed to exist for each agent, from
which formation functions and bounds on formation speed can be derived to ensure stability. The added
benefit of the results in this paper is that our formulation provides the type of cases and underlying structure
for systems to which the results in [12] will apply. Furthermore, our results here apply to a broader class of
systems, such as fully distributed ones, to which the previous results do not necessarily apply.

The main contributions of the present paper are:

1. a nonlinear extension of the model and results in [1] and [14] with a simpler representation of system
symmetries than our previous work;

2. the presentation of a theoretical framework that is underlying many of the formation control algorithms
in the literature;
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3. general stability theorems that are applicable to such systems regardless of the number of components
(compositionality); and,

4. robustness results that ensure stability even under certain types of component failures.

These results will allow a control design engineer to focus the analysis on a smaller, more tractable system
with a guarantee that stability will hold for a much larger system. This paper essentially extends the previous
work of one of the authors related to the properties of symmetric systems [9, 7, 8, 10, 11] to consider nonlinear
system stability.

The previous work cited considers system symmetries that are defined by a group action on the configu-
ration manifold for a distributed system that was induced by the action of a permutation group. The main
drawback of such an approach is that, in the general case, identifying such symmetries can be problematic.
However, in the case of most engineering and robotics systems, where the individual robots are the compo-
nents that are symmetric, symmetry identification is much less of a problem. Rather than using this prior
approach, this paper will introduce a more straight-forward approach which is a nonlinear extension of the
approach used in [1] and [14]. However, it is emphasized that the prior approaches [6, 9, 7, 8, 10, 11] and
[5] offer a general approach to the problem that can be used in cases more general than the ones addressed
here.

This rest of this paper is organized as follows. Section 2 defines a symmetric system, equivalence relations
among different symmetric systems and equivalence classes of symmetric systems. Section 3 presents the
nonlinear stability results for symmetric systems. Section 4 presents some examples of the application of
these results. Section 5 presents an extension of the results from Section 3 to the case of robust stability
in the case where an agent or agents in a symmetric system fail. Finally, Section 6 outline conclusions and
future work.

2 Symmetric Systems

This section defines symmetric systems and the relationship among symmetric systems with different numbers
of components. As a motivational example, consider a formation of large number of identical mobile robots
where each robot has a control law that attempts to control it so that it maintains a desired distance from
its neighbors. Intuitively if more of the same type of robots with the same control law are added to the
formation, or some are removed, the properties of the formation as a whole should not drastically change, or
at least sometimes should not drastically change. As a step toward formalizing and determining conditions
when this holds, we must formulate definitions for systems when more agents are added or some are removed
in structured manner. Toward this end, we define symmetric systems and equivalent symmetric systems.

The first step is to extend the basic system component description from the linear case in [1] to the
nonlinear case. The “basic building block” in one spatial dimension (more general interconnection topologies
will be considered subsequently) is illustrated in Figure 1. The outputs from the component are w−(t) and
w+(t), and the inputs are u, v−(t) and v+(t). In this paper the signals v± will represent the effects of
the coupling with the other components and u are the usual control inputs which need to be designed for
stability, performance, robustness, etc. If it is necessary to distinguish between them, the v± signals will
be called coupling inputs, the u will be called control inputs and collectively they will be called the inputs.
When interconnected in one spatial dimension, a system comprised of a collection of these building blocks
is as illustrated in Figure 2.

We wish to express component-by-component, the usual dynamics of a nonlinear control system expressed
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Figure 1: System building block in one spatial dimension.
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Figure 2: System interconnected in one spatial dimension.
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by

ẋ = f(x) +

m
∑

j=1

gj(x)uj .

For the ith component, we write

ẋi = fi(x) +

mi
∑

j=1

gi,j(x)ui,j ,

where x ∈ R
n, the vector fields f(x), gj(x) ∈ TRn and mi is the number of inputs for the ith component.

In order to define a symmetric system that has structure that will prove to be useful, we will consider,
in order, the following aspects of a system comprised of many interacting components:

• the nature of the relationship between the nonlinear dynamics of a component and its coupling inputs;

• the nature of the structure of how the components are interconnected;

• the nature of the dynamics of individual components; and,

• the nature nature of the individual control laws in each component.

In the most general case, the vector fields, fi and gi,j in the equation of motion for the ith component
and the outputs w+

i and w−
i for the component may depend on the state of the component, xi as well as

the coupling inputs, v±i , so the the dynamics of component i are given by

ẋi(t) = fi
(

xi(t), v
+
i (t), v

−
i (t)

)

+

mi
∑

j=1

gi,j
(

xi(t), v
+
i (t), v

−
i (t)

)

ui,j(t)

w−
i (t) = w−

i

(

xi(t), v
+
i (t), v

−
i (t)

)

w+
i (t) = w+

i

(

xi(t), v
+
i (t), v

−
i (t)

)

.

We will consider how the system is interconnected shortly, but for now observe that for a system of intercon-
nected components where the incoming signals, v±(t) are from the outgoing signals from the component’s
neighbors, since the vector fields fi and gi,j arise from the physical dynamics of the component, if these
vector fields can depend on the outputs from the neighbors, this would reflect a change in the physical dy-
namics of the system due to the coupling between components. The class of the types of coupling that could
be represented by this formulation is very broad and could include, for example, when there is a physical
joining of agents, as with reconfigurable, modular robots.

For a very large class of problems, including formation control for mobile robots, there is no physical
contact between the robots and hence the nature of the coupling between the robots is simplified. In
particular, it is only through the control inputs that the output from the other components affects the
dynamics of an agent, which is expressed by

ẋi(t) = fi (xi(t)) +

mi
∑

j=1

gi,j (xi(t))ui,j

(

xi(t), v
+
i (t), v

−
i (t)

)

w−
i (t) = w−

i (xi(t))

w+
i (t) = w+

i (xi(t)) .

(1)
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For the rest of this paper, we will restrict our attention to systems of this type.
Now we consider the nature of the interconnections in the system. For a system with N components,

a subset of the components have periodic interconnections in one dimension if the inputs and outputs of
adjacent components are related by

w+
i (t) = v+i+1(t), w−

i (t) = v−i−1(t), v+i (t) = w+
i−1(t), v−i (t) = w−

i+1(t), (2)

for all i in some subset I ⊂ {1, . . . , N}. A set of components that have periodic interconnections is called a
orbit of periodically interconnected components. The subset of the component index set corresponding to the
orbit is called the orbit index. Of course, a system may have multiple orbits of periodically interconnected
components, and in such a case there will be multiple orbit index sets.

The system illustrated in Figure 2 is of this type for I = {2, 3}. It is possible for the entire system to
have periodic interconnections in one dimension if Equation 2 holds for all i ∈ {1, . . . , N} and for mod(N),
or if the system has an infinite number of components on a one-dimenaional integer lattice. For the system
in Figure 2, if component 4 is connected to component 1 in the same manner that the other components are
connected; namely v+1 = w+

4 and v−4 = w−
1 then the whole system has periodic interconnections.

For the set of components with periodic interconnections if the dynamics of the system are further
resticted in that feedback can be expressed in terms of the outputs from the neighbors then the control
inputs for component i in Equation 1 can be written as

ui,j(t) = ui,j

(

xi(t), w
+
i−1(xi−1(t)), w

−
i+1(xi+1(t)

)

, i ∈ I. (3)

Now we consider the case when the components in an orbit of periodically interconnected components have
identical dynamics. An orbit of symmetric components is an orbit of periodically interconnected components
in one dimension if

fi(x) = fk(x), gi,j(x) = gk,j(x), w−
i (x) = w−

k (x), w+
i (x) = w+

k (x), mi = mk = m

for x ∈ R
n, for all i, k = I and for each j = 1, . . . ,m. Finally, when the components in an orbit of symmetric

components have identical control laws, we have a symmetry orbit which requires

ui,j(x1, w
+
i−1(x2), w

−
i+1(x3)) = uk,j(x1, w

+
k−1(x2), w

−
k+1(x3))

for (x1, x2, x3) ∈ R
n × R

n × R
n, for all i, k = I and for each j = 1, . . . ,m.

The idea behind a symmetry orbit is that the agents in the orbit are identical, have identical control
laws and furthermore are identically interconnected. We observe that, in general, it is only necessary for
the dynamics of each system to be “identical” in the sense that they are diffeomorphically related, in which
case under a coordinate transformation they are identical. Identifying nonlinear coordinate transformations
under which systems are equal is a difficult problem beyond the scope of this paper. In this paper we will
restrict our attention to systems with components with identical dynamics with the recognition that the
results apply to a broader set of problems.

Of course, systems may be spatially interconnected in dimensions greater than one or with a different
type of periodicity, as is illustrated in Figures 3 and 4, respectively. With respect to the latter notion,
interconnetions are not necessarily limited to connections with only two neighbors in each dimension, as is
illustrated for the one-dimensional case in Figure 4. For clarity of presentation, in both figures the control
input is not illustrated. Additionally, in Figure 4 the two directed edges connecting each component are
represented by one arrow, i.e., all four signals are represented by one edge.
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Figure 3: System with periodic interconnections in two dimensions.
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In order to handle these more general cases, we consider the nature of the groups generated by the
manner in which components are interconnected. The types of systems considered in this paper will have
components that either are members of groups, or subsets of groups. Recall that a group is nonempty set,
G with

1. a binary associative operation, σ : G×G → G,

2. an identity element e such that σ(e, g) = σ(g, e) = g for all g ∈ G, and

3. for every g ∈ G there exists an element g−1 ∈ G such that σ(g, g−1) = σ(g−1, g) = e.

We use the notation |G| to denote the number of elements in a set G. The rest of this section will consider
systems defined on groups.

A subgroup is a subset of a group that is itself a group. Of particular importance in this paper are
elements of a group that generate a subgroup. If X is a subset of a group G, then the smallest subgroup of
G containing X is called the subgroup generated by X. The idea is that the (sub)group generated by X can
be “built up” from the elements of S operating on each other until finally the set is closed. We will typically
use a “multiplication” notation instead of σ for the operation, i.e., g1g2 = σ(g1, g2). Constraints among the
generators are given by relations of the form s1s2 . . . sm = e for s1, . . . , sm ∈ S. Finally, we will represent
systems by a Cayley graph, which is a directed graph with vertices that are the elements of a group, G,
generated by the subset X, with directed edges from g1 to g2 only if g2 = sg1 for some s ∈ X. A directed
edge from node g1 to g2 represents that a coupling input to g2 is equal to an output from g1. The edges are
directed, an edge from g1 to g2 does not necessarily imply an edge is directed from g2 to g1. See [16] for a
more extensive exposition.

Example 2.1 Consider the ring of components illustrated in Figure 4. Each vertex has edges connecting
to four other vertices and hence the system is generated by four elements. Let g denote a vertex, i.e.,
g ∈ {−2,−1, 0, 1, . . . , N − 3} = G. Consider the subset of generatorsX = {−2,−1, 1, 2}, the group operation
to be addition and the relation sN = e. This relation makes the group operation of addition to be modN ,
and hence the group is the quotient of Z where elements of Z that differ by a multiple of N are equivalent.
The Cayley graph is illustrated in Figure 4. A vertex is only adajacent to four neighbors because the set of
generators has four elements.

For the system illustrated in Figure 3, let G = Z×Z and for g = (n1, n2) ∈ G, define the group operation
by addition, i.e., for g1 = (n1, n2) and g2 = (m1,m2), g1g2 = (n1 +m1, n2 +m2). For the set of generators
s1,0 = (1, 0) s−1,0 = (−1, 0), s0,1 = (0, 1) and s0,−1 = (0,−1) the Cayley graph is illustrated in Figure 3.
With no relation on the generators, the group would be an infinite integer lattice.

For a system on the group G with the set of generators X =
{

s1, s2, . . . , s|X|

}

, denote the state variable

corresponding to g ∈ G by xg, the set of neighbors for component g ∈ G by Xg =
{

s1g, s2g, . . . , s|X|g
}

and

the states of the neighbors by xXg. For component g, denote the set of outputs to be
{

ws1
g , ws2

g , . . . , w
s|X|
g

}

and similary the set of inputs
{

vs1g , vs2g , . . . , v
s|X|
g

}

. A general system can have any number of coupling inputs
and outputs, but in the present case we will define them in such a way to have the same number of each.
Subsequently when we define periodic interconnections, we will impose the structure that ws

g is the output
from g that is taken as an input to sg.
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The dynamics of a component, g ∈ G are represented by

ẋg(t) = fg (xg(t)) +

mg
∑

j=1

gg,j (xg(t))ug,j

(

xg(t), v
s1
g (t), vs2g (t), . . . , v

s|X|
g (t)

)

ws
g(t) = ws

g (xg(t)) , for all s ∈ X.

(4)

Note that the symbol g will be used in two ways, both as the vector field in ẋ = f(x) + g(x)u and also in
the sense of g ∈ G, where the distinction should be clear from the context.

Periodic interconnections and a symmetry orbit are defined in a manner similar to the case of one spatial
dimension, leading to the following main definition in this paper.

Definition 2.2: (

def:symmetric Let G be a group with a set X of generators. A system with components g ∈ I ⊂ G with
dynamics given by Equation 4 has periodic interconnections on I if

vsg (t) = ws
s−1g

(

xs−1g(t)
)

, ws
g (t) = vssg (xg(t)) (5)

for all g ∈ I and s ∈ X. Furthermore, if

fg1(x) = fg2(x), gg1,j(x) = gg2,j(x), ws
g1
(x) = ws

g2
(x), mg1 = mg2 = m (6)

for all s ∈ X, g1, g2 ∈ I, x ∈ R
n and j ∈ {1, . . . ,m}, then I forms an orbit of symmetric compoments.

Finally, if the control laws also satisfy

ug1,j

(

x1(t), w
s1

s
−1

1
g1
(x2(t)), w

s2

s
−1

2
g1
(x3(t)), . . . , w

s|X|

s
−1

|X|
g1
(x|X|+1(t))

)

=

ug2,j

(

x1(t), w
s1

s
−1

1
g2
(x2(t)), w

s2

s
−1

2
g2
(x3(t)), . . . , w

s|X|

s
−1

|X|
g2
(x|X|+1(t))

)

(7)

for all g1, g2 ∈ I, j ∈ {1, . . . ,m}, s ∈ X and (x1, x2, . . . , x|X|+1) ∈ R
n×R

n×· · ·×R
n then the elements of I

form a symmetry orbit. Such a system with a symmetry orbit is called a symmetric system on I. If I = G

it is a symmetric system on G.

Example 2.3 A recurring example in this paper will be system of N planar agents with second order
dynamics used in [13]. We will first show this specific example fits within the general framework we are
devloping. Each robot has a position and velocity in R

2 × R
2, with equations of motion for the ith robot

given by

d

dt









xi

ẋi

yi
ẏi









=









ẋi

0
ẏi
0









+









0
1
0
0









ui,1 +









0
0
0
1









ui,2. (8)

All computations are mod (N + 1). The goal formation is a regular (N + 1)-polygon centered at the origin,
hence the desired formation distance between components i and j is

dij =







1, |i− j| = 1
sin( 2π

N+1 )
sin( π

N+1 )
, |i− j| = 2
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and the desired distance of robot i to the origin is

ri =
1

2 sin π
N

.

Take the control law to be

[

ui,1

ui,2

]

= −
∑

j









(√
(xi−xj)2+(yi−yj)2−dij

)

√
(xi−xj)2+(yi−yj)2

(xi − xj)
(√

(xi−xj)2+(yi−yj)2−dij

)

√
(xi−xj)2+(yi−yj)2

(yi − yj)









− kd

[

ẋi

ẏi

]

−







√
x2
i
+y2

i
−ri√

x2
i
+y2

i

xi
√

x2
i
+y2

i
−ri√

x2
i
+y2

i

yi






(9)

where kd is a positive constant damping gain and j ∈ {i− 2, i− 1, i+ 1, i+ 2}.
To show that this system has a symmetry orbit where the orbit contains all the robots in the system, we

need to show it satisfies all the elements of Definition ??. First, observe that this system can be represented
by the graph illustrated in Figure 4 with G = {−2,−1, 0, 1, 2, . . . , N − 3}, the group operation to be addition
and let X = {−2,−1, 1, 2} with the relation sN = 0. With these definitions, the Cayley graph for the system
is as illustrated in Figure 4. Also, observe from the control law in Equation 9, the control for robot i depends
on the states for robots i−2, i−1, i+1 and i+2, which are equivalent to the four generators. Hence, define
each of the outputs for robot i to be the vector of the robot’s position, i.e.,

ws
i =

[

xi

yi

]

(10)

where s ∈ X = {−2,−1, 1, 2, }. Define the inputs to component i ∈ {−2,−1, 0, 1, . . . , N − 3} to be

vsi =

[

xi−s

yi−s

]

, s ∈ {−2,−1, 1, 2} ,

which satisfies Equation 5. The dynamics, as given in Equation 8 satisfy Equation 6. Finally, the feedback
law given in Equation 9 satisfies Equation 7. Because these hold for all i ∈ {−2,−1, 0, . . . , N − 3} the system
has an orbit of symmetric components which contains all the components in the system.

The utility of the definition of a symmetric system is that it is possible to “build up” an equivalent system
by adding components to it and requiring that they be interconnected in a manner equivalent to the original
system. We will define two systems to be equivalent if they have symmetry orbits with identical components
which are interconnected in the same manner, but they possibly have a different number of components in
the symmetry orbit. The means by which this can be done is to have the systems related by having the
same generators, but possibly different relations which can result in a different group.

Definition 2.4: (

def:equivalentsystems Two symmetric systems on the finite groups G1 and G2 are equivalent if G1 and G2

are generated by the same set of generators, X,

fg1(x) = fg2(x), gg1,j(x) = gg2,j(x), ws
s−1g1

(x) = ws
s−1g2

(x) (11)
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and

ug1,j

(

x1(t), w
s1

s
−1

1
g1
(x2(t)), w

s2

s
−1

2
g1
(x3(t)), . . . , w

s|X|

s
−1

|X|
g1
(x|X|+1(t))

)

=

ug2,j

(

x1(t), w
s1

s
−1

1
g2
(x2(t)), w

s2

s
−1

2
g2
(x3(t)), . . . , w

s|X|

s
−1

|X|
g2
(x|X|+1(t))

)

for all g1 ∈ G1, g2 ∈ G2, s ∈ X, x ∈ R
n,

(

x1, x2, . . . , x|X|+1

)

∈ R
n ×R

n × · · · ×R
n and j ∈ {1, . . . ,m} where

m = mg1 = mg2 .

Example 2.5 Returning to Example 2.3, consider two systems with components that satisfy Equation 8 and
components belonging to two groups, G1 = {−2,−1, 0, 1, 2, . . . , N − 3} and G2 = {−2,−1, 0, 1, 2, . . . ,M − 3}
where M > N . These systems are equivalent because the dynamics of all the components are identical, the
feedback definitions are identical. Both groups are generated by X = {−2,−1, 1, 2}. The only difference is
the relation for G1 is sN = 0 and the relation for G2 is sM = 0.

For notational convenience, we will concatenate all the states and vector fields from each component into
one system description, ẋ = f(x) + g(x)u(t) where

xG =











xg1

xg2

...
xg|G|











, uG =











ug1

ug2

...
ug|G|











, fG(xG) =











fg1(xg1)
fg2(xg2)

...
fg|G|

(xg|G|
)











, gG(xG) =











gg1(xg1)
gg2(xg2)

...
gg|G|

(xg|G|
)











symmetry orbit with N components. The xgi ∈ R
n are the states of the gith component in the symmetry

orbit.

3 Stability of Symmetric Systems

This section presents the compositionality stability results. The results are directed toward being able to
infer stability of a whole equivalence class of systems based on the stability of one of the members of the class
and exploit the symmetric nature of the systems we are considering. The results are Lyapunov-based and
the first result, Proposition 3.1 concerns negative (semi)definiteness of the derivative of a Lyapunov function
for each member of an equivalence class of symmetric systems. Following it is Proposition 3.3 builds on it
for Lyapunov stability results as does Proposition 3.4 for stability based on LaSalle’s invariance principle.

Proposition 3.1 Given a symmetric system on the finite group G with generators X, assume VG : DG → R

is continuously differentiable on some open domain DG ⊂ R
n×|G| containing the origin and that

VG(xG) =
∑

g∈G

Vg (xg, xXg) =
∑

g∈G

Vg

(

xg, w
s1

s
−1

1
g
(xs

−1

1
g), w

s2

s
−1

2
g
(xs

−1

2
g), . . . , w

s|X|

s
−1

|X|
g
(xs

−1

|X|
g)

)

, (12)

with V̇G < 0 (resp. V̇G ≤ 0) for x ∈ DG. Assume furthermore that the Vg are symmetric in the sense that

Vg1

(

x1, w
s1

s
−1

1
g1
(x2), . . . , w

s|X|

s
−1

|X|
g1
(x|X|+1)

)

= Vg2

(

x1, w
s1

s
−1

1
g2
(x2), . . . , w

s|X|

s
−1

|X|
g2
(x|X|+1)

)

(13)
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for all g1, g2 ∈ G and
(

x1, x2, . . . , x|X|+1

)

∈ R
n × R

n × · · · × R
n.

Then an equivalent system on Ĝ is such that for

V
Ĝ
(x

Ĝ
) =

∑

g∈Ĝ

Vg

(

xg, w
s1

s
−1

1
g
(xs1g), w

s2

s
−1

2
g
(xs2g), . . . , w

s|X|

s
−1

|X|
g
(xs|X|g)

)

, (14)

V̇
Ĝ
< 0 (resp. V̇

Ĝ
≤ 0) for x ∈ D

Ĝ
where D

Ĝ
is a set that is open and contains the origin.

Proof: By direct computation,

V̇G(xG) = V̇G

(

x1, x2, . . . , x|G|

)

=
∑

g∈G

V̇g(xg, xXg)

=
∑

g∈G

∑

s∈X

∂Vg

∂xsg



fsg(xsg) +
m
∑

j=1

gsg,j(xsg)usg,j(xsg, w
s
−1

1
s1sg(xs1sg), . . . , w

s
−1

|X|
s|X|sg(xs|X|sg))



 .

Let DRn be an open subset of R
n containing the origin and consider the subset of R

n×|G|, D̂G =
{(x, x, . . . , x) |x ∈ DRn}. Because DG is open and contains the origin, there exists a DRn such that D̂G ⊂ DG

and thus V̇ (xG) < 0 (resp. V̇ (xG) ≤ 0) for xG ∈ D̂G. Furthermore, due to the symmetry of V required
by Equation 13, the fact that the system is a symmetric system and by the continuity of V̇ , each term in
the series V̇G (xG) =

∑

g∈G V̇g (xg, xXg) is less than zero (resp. less than or equal to zero) in some open set

containing D̂G. By continuity of V̇ , this holds in the union of some neighborhoods of each of those points as
well.

Let D̂
Ĝ
= {(x, x, . . . , x) |x ∈ R

n} ⊂ R
n×|Ĝ|. By the symmetry of the system and definition of equivalent

symmetric systems,

V̇ =
∑

g∈Ĝ

∑

s∈X

∂Vg

∂xsg



fsg(xsg) +

m
∑

j=1

gsg,j(xsg)usg,j(xsg, w
s
−1

1
s1sg(xs1sg), . . . , w

s
−1

|X|
s|X|sg(xs|X|sg))





must be less than zero for x ∈ D̂
Ĝ

because each of the terms in the sum must also be negative. Finally, by

continuity of V̇ , this holds for some open set D
Ĝ

containing D̂
Ĝ

�

Remark 3.2 The utility of this Proposition is that if V̇ ≤ 0 for a symmetric system, then we can conclude
that V̇ ≤ 0 for any equivalent system. This is consistent with the intuitive notion that we should be able to
add or remove identical components as long as they interact similarly with their neighbors. The “similar”
interaction is enforced by the requirement that the group structure of equivalent symmetric systems be
generated by the same set of generators.

Proposition 3.1 only concerns the properties of the function V (x). The following two propositions com-
plete the picture with respect to Lyapunov stability (Proposition 3.3) and LaSalle’s invariance principle
(Proposition 3.4).

Proposition 3.3 Let x = 0 ∈ DG ⊂ R
n×|G| be an equilibrium point for the system on G. Assume VG(0) = 0,

VG(x) > 0 for x ∈ DG − {0} and V̇G(x) ≤ 0 for x ∈ DG. Then the origin is stable for an equivalent system
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on Ĝ. Moreover, if V̇G(x) < 0 for x ∈ DG − {0}, then the origin is asymptotically stable for an equivalent
system on Ĝ.

Proof: Using the notation from the proof to Proposition 3.1, it follows from Equation 11 that if the origin
is an equilibriumm for the system on G, it must be an equilibrium for any equivalent system. Also, if
0 ∈ D̂G ⊂ DG, then 0 ∈ D

Ĝ
because 0 ∈ DRn . If VG(0) = 0, then Vg(0) = 0 by Equation 13. Then by

Equation 14, V
Ĝ
(0) = 0 and by the same reasoning V

Ĝ
(x) > 0 for x ∈ D

Ĝ
− {0}. Also by Equations 13

and 14 V̇ (x) ≤ 0 for x ∈ D
Ĝ
, which implies stability in the sense of Lyapunov for an equivalent system.

Furthermore, if V̇ (x) < 0 for x ∈ D
Ĝ
− {0}, then x = 0 ∈ D

Ĝ
is asymptotically stable. �

The utility of Proposition 3.3 is that if we can prove with a Lyapunov function that the origin of a
symmetric system is stable, then it follows that the origin of any equivalent system is also stable. Furthermore
it is stable in the same sense, i.e., stable or asymptotically stable.

Proposition 3.4 Let VG : Rn×|G| → R be a continuously differentiable radially unbounded function and
suppose that V̇G ≤ 0 for all x ∈

{

x ∈ R
n×|G||VG(x) ≤ c

}

. Then for an equivalent system on Ĝ there exists a

ĉ such that V̇
Ĝ
(x) ≤ 0 for x ∈ Ωĉ

Ĝ
=

{

x ∈ R
n×|Ĝ||V

Ĝ
≤ ĉ

}

and any solution in Ωĉ

Ĝ
will approach the largest

invariant subset contained in the set S
Ĝ
=

{

x ∈ Ωĉ

Ĝ
|V̇ = 0

}

.

Proof: By the same reasoning as in the proof of Proposition 3.1, there exists an open set containing the

origin, D
Ĝ

in which V̇
Ĝ

≤ 0. Let ĉ be such that
{

x ∈ R
n×|Ĝ||V

Ĝ
≤ ĉ

}

⊂ D
Ĝ
. The rest of the propositon

follows from LaSalle’s invariance principle. �

Corollary 3.5 Let x = 0 be an equilibrium point for the system on G. Let VG : DG → R be a continuously
differentiable positive definite function on the domain DG containing the origin such that V̇G(x) ≤ 0 for

x ∈ DG. Suppose no solution can stay in the set
{

x ∈ DG|V̇ (x) = 0
}

other than the trivial solution. Then

the origin is asymptotically stable for the system on Ĝ.

Proposition 3.4 and Corollary 3.5 make use of the usual conditions for LaSalle’s invariance principle, and
extend that to equivalent symmetric systems.

These results allow us to infer stability in various forms for an entire equivalence class of systems based
on the stability of one member of the class. It explicitly makes use of the fact that the system is on a group;
hence, it is limited to systems on groups and does not apply, for example, to systems such as a line formation
of robots with components on the “end.” The strength of the Proposition is that it is not necessary to
check any stability properties of individual elements but rather only the stability of the entire formation
corresponding to one member of the equivalence class must be determined.

4 Examples

This section will complete Example 2.3 and present an additional example.

Example 4.1 Continuing Example 2.3, for a fleet of 5 agents, define a Lyapunov function as

V =
5

∑

i=1

Vi =
5

∑

i=1

1

2





(

ẋ2
i + ẏ2i

)

+

(

√

x2
i + y2i − ri

)2

+
∑

j

(

√

(xi − xj)2 + (yi − yj)2 − dij

)2


 , (15)
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where j ∈ Wi = Vi = {i− 2, i− i, i+ 1, i+ 2}, dij is the desired distance between robots and ri is the

desired distance of robot i from the origin, as defined previously. We will show that V̇ ≤ 0 for a five-robot
system, and hence from Proposition 3.1, V̇ ≤ 0 for any equivalent system. Note that the origin is not an
equilibrium for this system, so we must resort to Proposition 3.4 for a stability-type property.

By construction, this Lyapunov function satisfies the hypothesis of Proposition 3.1. Computing V̇ gives

V̇ = ∇V · (f + gu)

=
5

∑

i=1

















√
x2
i
+y2

i
−ri√

x2
i
+y2

i

xi +
∑

j

(√
(xi−xj)2+(yi−yj)2−dij√

(xi−xj)2+(yi−yj)2
(xi − xj)

)

ẋi√
x2
i
+y2

i
−ri√

x2
i
+y2

i

yi
∑

j

(√
(xi−xj)2+(yi−yj)2−dij√

(xi−xj)2+(yi−yj)2
(yi − yj)

)

ẏi

















·

















ẋi

−
√

x2
i
+y2

i
−ri√

x2
i
+y2

i

xi −
∑

j

(√
(xi−xj)2+(yi−yj)2−dij

)

(xi−xj)√
(xi−xj)2+(yi−yj)2

− kdẋi

ẏi

−
√

x2
i
+y2

i
−ri√

x2
i
+y2

i

xi −
∑

j

(√
(xi−xj)2+(yi−yj)2−dij

)

(yi−yj)√
(xi−xj)2+(yi−yj)2

− kdẏi

















=

5
∑

i=1

−kd
(

ẋ2
i + ẏ2i

)

.

Proposition 3.1 ensures that there will exist a domain in which V̇ ≤ 0 for any equivalent system as well.
Because the origin is not an equilibrium for the system, Proposition 3.3 does not apply. However, LaSalle’s
principle does apply to the five-agent system. Clearly V̇ = 0 when there is no velocity. By construction of
the control inputs given in Equation 9 are only zero when the agents have converged to the desired formation
centered at the origin. Thus, the largest invariant set with V̇ = 0 is the desired formation. However, because
there is a rotational symmetry about the origin, there are an infinite number of configurations satisfying
the formation objective. LaSalle’s principle implys the system will converge to the desired formation. Also,
Proposition 3.4 implys convergence of the formations to the desired configurations for any equivalent system
as well.

Simulation results for a five-agent system are illustrated in Figures 5 and 6 with kd = 0.25. Figure 5
shows the trajectories for the individual agents, and Figure 6 shows the final configuration. Simulation
results for a 17-agent system are illustrated in Figures 7 and 8 with kd = 0.5. Figure 7 shows the trajectories
for the individual agents, and Figure 8 shows the final configuration, illustrating convergence to the desired
formation for the system independent of the number of agents.

Example 4.2 This example considers formation control of a fleet of unicycle-like vehicles. Rather than
being a distributed algorithm, a global formation function is minimized. This example is motivated by the
results in [12] and illustrates the application of Corollary 3.5 because the dynamics are expressed in terms
of an error function, which goes to zero if the robots achieve the desired formation.

Each of the robots has dynamics given by

ẋi = u1,i cos θi, ẏi = u1,i sin θi, θ̇i = u2,i,
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Figure 5: Trajectories for distributed control for a five-vehicle system.
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Figure 6: Final formation for distributed control for a five-vehicle system.
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Figure 7: Trajectories for distributed control for a 17-vehicle system.
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Figure 8: Final formation for distributed control for a 17-vehicle system.

where u1,i and u2,i are the inputs, which are the kinematic linear and angular velocities of the unicycle,
respectively. It is well known that this model is dynamic feedback linearizable [4]. Defining

ξ̇i = v1,i cos θ + v2,i sin θ

u1,i = ξi

u2,i =
−v1,i sin θi + v2,i cos θi

ξi

which gives the system

ẋi = ξi cos θi, θ̇i =
1

ξi
(−v1,i sin θi + v2,i sin θi) ,

ẏi = ξi sin θi, ξ̇i = v1,i cos θi + v2,i sin θi,

which clearly has a singularity at ξi = 0, which corresponds to zero velocity. If the desired trajectory is given
by

(

xd
i (t), y

d
i (t)

)

, then the inputs

u1,i = ẍd
i −

(

xi − xd
i

)

−
(

ẋi − ẋd
i

)

u2,i = ÿdi −
(

yi − ydi
)

−
(

ẏi − ẏdi
)

achieve asymptotic tracking. To see this, define

ex,i = xi − xd
i , ey,i = yi − ydi

from which the error dynamics using those inputs are

d

dt









ex,i
ėx,i
ey,i
ėy,i









=









ėx,i
−ex,i − ėx,i

ėy,i
−ey,i − ėy,i









.
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Figure 9: Trajectories for six unicycle robots.

Defining Vi =
1
2

(

e2x,i + ė2x,i + e2y,i + ė2y,i
)

gives

V̇i =









ex,i
ėx,i
ey,i
ėy,i









·









ėx,i
−ex,i − ėx,i

ėy,i
−ey,i − ėy,i









= −ė2x,i − ė2y,i.

Since V is positive definite, radially unbounded and continuously differentiable, from LaSalle’s invariance
principle we can conclude global asymptotic stability.

So, for this system the Lyapunov function V =
∑N

i=1 Vi can be defined, and by Proposition 3.1, V̇ ≤ 0
for all N since it was true for N = 1. Simulation results are illustrated in Figures 9 and 10 for six and 13
unicycles respectively. In each case the desired trajectory is given by xd

i = t and ydi = sin(t)+ i− N
2 . Each x

mark on the figures represent a specific times, which illustrate that not only do the robots track the desired
trajectories in space, they also are doing so at the desired time. Corollary 3.5 guarantees convergence to
zero error dynamics for any equivalent system.

5 Formation Robustness under Agent Failures

The results in the previous sections may be used to formulate some robustness results. First these results
are motivated by an example which illustrates the type of system behavior we want to prove.

Example 5.1 Consider the system from Examples 2.3 and 4.1 with five agents and assume that agent 5
fails in a manner that it has zero velocity and is completely unresponsive to any control input. One would
hope that the rest of the formation will converge to a formation that accommodates such a failure. In fact,
this does happen, as is illustrated in Figures 11 and 12. Figure 11, illustrates the trajectories of the agents
when agent five fails and remains stationary. Figure 12 illustrates the initial and final configurations for that
system.

Clearly it is not a priori necessary that stability will be preserved when an agent fails. In fact, in general
it would not be expected because the system being controlled is not the same one for which the controller
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Figure 10: Trajectories for 13 unicycle robots.
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Figure 11: Robust formation control for a five-agent system.

was designed. Also, consistent with the theme of this paper, we would like results to apply to an entire
equivalence class of systems as well.

The following corollary to Proposition 3.4 provides the desired result.

Corollary 5.2 If a symmetric distributed system on G satisfies the conditions of Proposition 3.4 on a set
Ωc

G with the origin in the interior of Ωc
G, then if any number of agents fail with zero velocity then there exists

a ĉ such that if the system starts in Ωĉ
G all solutions stay in Ωĉ

G for all time.

Proof: Let DRn be an open subset of Rn containing the origin and consider the subset of Rn×|G|, D̂G =
{(x, x, . . . , x) |x ∈ DRn}. Because the origin is in the interior of Ωc

G, there exists a DRn such that D̂g ⊂ DG

and thus V̇ (xG) ≤ 0 for xG ∈ Ωc
G. Furthermore, due to the symmetry of V required by Equation 12, the fact

that the system is a symmetric system and by the continuity of V̇ , each term in V̇G(xG) =
∑

g∈G V̇g (xg, xXg)
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Figure 12: Robust formation control for a five-agent system. Initial conditions are indicated by a × and
final configurations by a ◦.

is less than or equal to zero in some open set containing D̂G. Because points with zero velocity are contained
in Ωĉ

G the result follows from LaSalle’s Principle. �

6 Conclusions

This paper considers stability of coordinated and distributed systems, with an application focus on coordi-
nated control of systems of mobile robots. The model used is a nonlinear extension of the work in [1, 14],
which was directed toward spatially periodic systems “built-up” from periodically interconnected compo-
nents. Observing that many of the formation control algorithms in the literature are not limited by the
number of components, but often are limited by assuming specific dynamics, the main contribution was to
formulate a theoretical framework in which stability of many distributed systems can be considered. The
result was demonstrated on two systems, one of which was fully distributed and the other of which was no
decentralized.
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