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Realization theory of discrete-time linear
switched systems

Mihaly PetreczkylLaurent Bako and Jan H. van Schuppén

Abstract

The paper presents realization theory of discrete-timealirswitched systems
(abbreviated by DTLSSs). We present necessary and suffimewlitions for an
input-output map to admit a discrete-time linear switchieedesspace realization.
In addition, we present a characterization of minimalitydigcrete-time linear
switched systems in terms of reachability and observgbHitrther, we prove that
minimal realizations are unique up to isomorphism. We alsouss algorithms
for converting a linear switched system to a minimal one amwdcbnstructing a
state-space representation from input-output data. Therpases the theory of
rational formal power series in non-commutative variables

Keywords: hybrid systems, switched systems, realization theoryjmah
realization.

1 Introduction

In this paper we develop realization theory of discreteetimear switched systems
(abbreviated by DTLSSs). DTLSSs are one of the simplest astl siudied classes
of hybrid systems/[30]. A DTLSS is a discrete-time switclsgdtem, such that the
continuous sub-system associated with each discrete istéiteear. The switching
signal is viewed as an external input, and all linear systlivason the same input-
output- and state-space.

Realization theory. Realization theorys one of the central topics of system theory.
For DTLSSs, the subject of realization theory is to answeifdfiowing questions.

e When is it possible to construct a (preferably minimal) DB_Sate-space rep-
resentation of the specified input/output behavior ?

e How to characterize minimal DTLSSs which generate the §gednput/output
behavior ?
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Motivation. While there is a substantial literature on linear switchgstems,
realization theory was addressed only for the continuous-tase[[20, 19]. The mo-
tivation for devoting a separate paper to realization thebdiscrete-time DTLSSs is
the following.

1. Realization theory for DTLSSs is substantially diffarom realization theory
for linear systems.

2. Realization theory for DTLSSs is substantially differénom the continuous-
time case. More precisely, the realization problem botrc@mtinuous-time lin-
ear switched systems and for DTLSSs can be transformed sathe realization
problem for formal power series. The difference lies in thedific transforma-
tion.

3. Formulating realization theory explicitly for discretiene DTLSSs will be useful
the identification of these systems. In fact, the resultbigfpaper were already
used in[[21] for analyzing identifiability of DTLSSs .

Intuitively, the main difference between linear realipatitheory and that of linear
switched systems is the following. For linear switched eyst, the realization prob-
lem is equivalent to the problem of representing a sequeherimbers (Markov-
parameters) as products of several non-commuting maifices and post-multiplied
by fixed matrices). For linear case, the corresponding prabhvolves not products
of non-commuting matrices, but powers of one matrix. In &iddj for linear switched
systems we allow arbitrary non-zero initial state. The gneg of a non-zero initial
state means that the input response and initial-state mesgtave to be decoupled. A
similar approach was already described in [31] for lineatems.

Contribution of the paper We prove that span-reachability and observability of
DTLSSs is equivalent to minimality and that minimal reafiaas are isomorphic. We
also show that any DTLSS can be transformed to a minimal orile wheserving its
input-output behavior, by presenting a minimization aithon. In addition, we for-
mulate the concept of Markov-parameters and Hankel-m#drioTLSSs . We show
that an input-output map can be realized by a DTLSS if and bihe Hankel-matrix
is of finite rank. We also present a procedure for constrgciDTLSS state-space
representation from the Hankel-matrix. Our main tool isttieory of rational formal
power series [5, 29].

Related work To the best of our knowledge, the results of this paper are mbe
results on minimality of DTLSSs were already announcedi},[But no detailed proof
was provided. The results on existence of a realization byla3% were not previously
published.

The realization problem for hybrid systems was first forrtedan [11]. In [17/35]
the relationship between input-output equations and Hie-space representations was
studied. In[[18 26, 22] realization theory for various ekes of hybrid systems were
developed. In particular, realization theory for continsdime (bi)linear switched
systems was developed in [20,/] 19]. The approach of the pres@er is similar to
that of [20], however the details of the steps are differéftiere is a vast literature
on topics related to realization theory, such as systentifigtion, observability and
reachability of hybrid systems, see [16] 6| 30,12, 1/ 33,2413 ,27| 4, 8, 15, 35, 17].



Our main tool for developing realization theory of DTLSS#hs theory of rational
formal power series. This theory was already used for ratidim theory of nonlinear
and multi-dimensional systems] [9,112] 29, 3]. State-affiystems from[[29] include
autonomous DTLSSs as a special case. Realization theotatefaffine systems is
equivalentto that of rational formal power series. In traper we reduce the realization
problem for DTLSSs directly to that of rational formal poveeries. Hence, indirectly
we also show that the realization problems for DTLSSs ant-stfine systems are
equivalent. One could probably reduce the realization leratfor DTLSSs to that of
state-affine systems directly, however it is unclear if saakduction would be more
advantageous.

Outline §2 presents a brief overview of realization theory of disestine linear
systems. §3 presents the formal definition of DTLSSs and it formulates major
system-theoretic concepts for this system clgghs- g5 states the main results of the
paper. §8 contains the necessary background on the theory of ratiormaal power
series. The proofs are presentedThand AppendikA.

Notation Denote byN the set of natural numbers including 0. The notation de-
scribed below is standard in automata theory, ise |10, 7sider a seX which will
be called thealphabet Denote byX* the set of finite sequences of elementsxof
Finite sequences of elementsXfare be referred to agdringsor wordsoverX. Each
non-empty wordw is of the formw = aja, - - - ax for someay, ay,...,a € X. The el-
ements; is called theth letter of w fori = 1,... k andk is called thdength w We
denote bye theempty sequence (wordJhe length of wordv is denoted byw|;note
that|e| = 0. We denote byX* the set of non-empty words, i.&X* = X*\ {e}. We
denote bywv the concatenation of worgt € X* with v e X*. We use the notation of
[13] for matrices indexed by sets other than natural numib&rseachj = 1,...,m, g
is the jth unit vector ofR™, i.e. ¢ = (Jy,j,...,n,j), &,j is the Kronecker symbol.

2 Realization theory for linear systems

In this section we present a brief review of realization tlyeaf discrete-time linear
systems, based on [31]. Although the results of this seefemot used in the paper,
they help to get an intuition for the results on realizatioadry of DTLSSs .

The input-output maps of interest are of the foym(R™)™ — RP. For each se-
quencal=Ug--- W, t > 0,y(u) is the output of the underlying system at titpé inputs
Up, - - ., are fed. It is well-known that foy to be realizable by a linear system, it must
be of the form

t-1
Y(Uo--- W) = K+ ) Hej_1uj 1)
2,

for some matrice&y € RP, H, € RP*™M k=0,1,2,..., and for any sequence of inputs
Up,...,Ur € R™M Consider a discrete-time linear system

= Ax + Bu wherexg is fixed
Z{XIH. % + B X0 )

Wyt =Cx



whereA, B andC arenx n, nx mand p x n real matrices andy € R" is the initial
state. Note that the initial statexg, andxy need not be zero. The maps said to be
realized byZ, if the output response &f to any inputu equalsy(u). This is the case if
and only ify is of the form[[1), andk; = CAlxo, H = CA'B,t > 0. We callZ aminimal
realization of y if it has the smallest state-space dimension among allrikard system
realizations ofy.

Theorem 1([31]). Assume thak is a linear system realization of y. Th&ris a mini-
mal realization of y, if and only if it is weak-reachable artsservable. Recall that is
weak-reachable if and only (A, [xo  B|) is a reachable pair. All minimal realizations
of y are isomorphic and any realization of y can be transfaiimea minimal one.

The transformation to a minimal system can be carried outrbytfansforming the
linear system to a weak-reachable one, and then to an ob$eorze, [31].

Next, we formulate conditions for existence of a linear eystrealization ofy.
To this end, we assume thats of the form [1). This assumption is necessary (but
not sufficient) for existence of a realization. We call thetricas M; = [Kt Ht],
t > 0 Markov parameters This terminology is slightly different from the one used
in [31]. Note thaty is completely determined by the Markov-parametgvs};” ;. In
addition, note that we defined the Markov-parameters withesuming the existence
of alinear system realization. In fact, we use the Markoxapeeters for characterizing
the existence of a linear system realization. More pregisa define the infinite block
Hankel-matrix H of y as followsHy = (H ;)i _1, Hi,j = Mij—2, i.e. the entries oy
are formed by the entries of the Markov-parameteng of

Theorem 2([31]). The mapy can be realized by a linear system if and only if th& ra
of Hy is finite. IfrankHy = n < +o0, then a minimal linear system realizatiarof y can
be constructed from the columns of.Hn particular, this means thatankHy equals
the dimension of any minimal linear system which is a reéitimeof y.

Procedure 1. The construction ok from the columns of His as follows. Fix a finite
basis in the column space of,H Then ¥ is formed by the coordinates of the first
column of K in this basis, the rth column of the matrix B represents trwdinates of
the r+ 1th column of H in this basis. The matrix C is the matrix (in the fixed basis)
of the linear map which maps each column to the vector fornyeitstfirst p entries.
Finally, A is the matrix (in the fixed basis) of the linear mapiethh maps the jth column
to the j+ (m+ 1)th column, i.e. it maps the block colunillj_»);> ; to the block
column(Miyj—1)i24.

3 Linear switched systems
In this section we present the formal definition of DTLSSsnglavith a number of
relevant system-theoretic concepts for DTLSSs .

Definition 1. Recall from[[21] that a discrete-time linear switched syst@bbreviated
by DTLSS), is a discrete-time control system of the form

s X1 = Ag X + Bg Ut and x is fixed 3)
Vi = CyX.



Here Q={1,...,D} is the finite set of discrete modes, D is a positive integerebah
te N, q € Qs the discrete mode; & R is the continuous input; ¥ RP is the output
attime t. Moreover, fc R™", By € R™™, Cq € RP*" are the matrices of the linear
system in mode g Q, and X is the initial continuous state. We will use

(p.m,n,Q, {(Aq;Bq.Cq) | d € QLX)
as a short-hand notation for DTLSSs of the folin (3).

Throughout the sectior, denotes a DTLSS of the forfd (Fheinputs ofZ are the
continuous inputgw };> ; and the switching signdla };> ;. The state of the system at
timet is x;. Notethat any switching signal is admissibM/e use the following notation
for the inputs of>.

Notation 1 (Hybrid inputs) DenoteZ = Q x R™.

We denote byZ* (resp. ) the set of all finite (resp. non-empty and finite)
sequences of elements®f. A sequence

W= (G, Up) -~ (0, ) € % ", t >0 )

describes the scenario, when the discrete mgpdad the continuous inpug are fed
to X at timei, fori =0,...,t.
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Definition 2 (State and output)Consider a statej € R". For any we % * of the
form (4), denote bys(xinit,w) the state ok at time t+ 1, and denote bysy{ Xt ,w) the
outputof X at time t, ifX is started from ¥ and the inputsuy; }:0 and the discrete
modes{q;}!_, are fed to the system. For notational purposes, we defifignx, ) =
Xinit -

That is,xs (Xinit, W) is defined recursively as followss (Xinit, €) = Xinit, and ifw =
v(q, u) for some(q,u) € %,v € «*, then

Xz (Xinit , W) = AgXs (Xinit , V) + Bqu.
If we 2+ andw = v(q,u), (q,u) € Z,ve %*, then
Yz (Xinit , W) = CqXs (Xinit , V).
Definition 3 (Input-output map) The map y : Z* — RP, defined byvw € ' :
ys (W) = y(xo, W), is called the input-output map &f
That is, the input-output map & maps each sequenaec % * to the output gen-
erated by> under the hybrid inputy, if started from the initial statgy. The definition
above implies that the input-output behavior of a DTLSS caufobmalized as a map
f:%" —RP. (5)

The valuef (w) for w of the form [4) represents the output of the underlying blaok
system at time, if the continuous input§u; }!_, and the switching sequende;}!_,
are fed to the system. This black-box system may or may nottaddescription by a
DTLSS.

Next, we define when a general mamf the form [3) is adequately described by
the DTLSSZ, i.e. when is a realization off.



Definition 4 (Realization) The DTLSS is arealizationof an input-output map f of
the form(@), if f equals the input-output map af i.e. f=ys.

Thereachable set Rea¢h) of X is the set of all states which can be reached from
the initial statexg of 2, i.e.

ReachiZ) = {xs(xo,w) € R" |we % *}

Definition 5 ((Span-)Reachability))The DTLSS isreachableif Reacl{Z) = R", and
Y is span-reachabié R" is the smallest vector space containing Re&gh

Reachability implies span-reachability but in generaythee not equivalent.

Definition 6 (Observability) The DTLSS is calledobservabléf for any two states
X1, X2 € R" of 2,

(YWe T 1ys(x,W) =ys(X2,W)) = X1 =X

That is, observability means that if we pick any two statethefsystem, then for
somecontinuous input and switching signal, the resulting otgpuill be different.

Definition 7 (Dimension) The dimension of, denoted byimz, is the dimension n
of its state-space.

Note that the number of discrete states is fixed, and hensenibtiincluded into
the definition of dimension. The reason for this is the follogy We are interested in
realizations of input-output maps, which map continuopsite and switching signals
to continuous outputs. Hence, for all possible DTLSS retdilins, the set of discrete
modes is fixed.

Definition 8 (Minimality). Let f be an input-output map. Théris a minimal realiza-
tion of f, if Z is a realization of f, and for any DTLSSwhich is a realization of f,
dim% < dim2.

Definition 9 (DTLSS morphism) Consider a DTLSS; of the form[(8) and a DTLSS
>, of the form

%> = (p,m,n? Q,{(A],B},C3) | a € Q}, %))
Note thatZ; and =, have the same set of discrete modes. A matfix R™*" is said
to be aDTLSS morphisnfrom >, to 3,, denoted by : 31 — 3, if
X =x3, and Vge Q: ALY = S A Bi= 7By, Ci.¥ =Cq.

The morphisny” is called surjective (injective ) i is surjective ( injective ) as a lin-
ear map. The morphisgy is said to be a DTLSS isomorphism, if it is an isomorphism
as a linear map.



4 Main result on minimality

Below we present the main results of the paper on minimafip TL.SSs. In addition,
we present a minimization procedure and rank tests for ¢hgckinimality. In the
sequel,Z denotes a DTLSS of the fori (3), and f denotes an input-ountapt f:
Ut — RP,

Theorem 3(Minimality). 1. A DTLSS realization of f is minimal, if and only if it
is span-reachable and observable.

2. All minimal DTLSS realizations of f are isomorphic.

3. Every DTLSS realization of f can be converted to a mininELES realization
of f (see Procedulg 4 below).

The proof of Theoreml3 is presenteddii

Remark 1. Note that can be minimal, while none of the linear subsystems is minima
see Examplel1 below. Since all minimal realizations are @pimic, it then follows that
such a DTLSS cannot be transformed to a one where at leasubsgsem is minimal
without loosing input-output behavior.

For analogous theorem for continuous-time linear switchyeslems see [20, 19].
Intuitively, the theorem says the following. First, a mi@hDTLSS should not contain
states which are not linear combination of the reachable @r@nce span-reachability).
Second, a minimal DTLSS should not contain multiple statbkvexhibit the same
input-output behavior (hence observability). Next, weserg rank conditions for ob-
servability and span-reachability. These conditions eanged to test minimality and
to formulate Procedufg 4.

Notation 2. Let X be afinite setZ” be a linear space, f: 2" — 27,0 € X be linear
maps and let v& X*. The linear map 4 on 2" is defined as follows. If w ¢, then A
is the identity map, i.e X =xforallxe 2. If w= 010%---0x € X*, 01,--- Ok € X,
k> 0, then

AW = AGKAO'k,l te AO']_- (6)

If 2" =R"for some n> 0, then A, and each 4, o € X can be identified with anxn
matrix. In this case @ defines a product of matrices.

We denote byQ<" the set{w € Q* | |w| < n} of all wordsw € Q* of length at most
n— 1. We denote b, the cardinality ofQ<" and we fix an enumeration

Q<n = {Vl,...,VMn}.

We will use the notation defined above to define observalgitityreachability matrices
for DTLSSs .

Theorem 4. Span-Reachability. Define thespan-reachability matriR(Z) of =
#(2) = [A,B, A,B,
g: [XOa Bla Ty BD}

Ay, B] € R™(QMDMn yhere

EEN



ThenZ is span-reachable if and onlyiiank % (Z) = n.
Observability. Define theobservability matrixO(Z) € RPIQMixN of 5 as follows.

CA, G

CA, ~ C
o(2) = | whereC=

CAw, Co

ThenZ is observable if and only fankO(X) =

Informally, Z(Z) is formed by horizontal concatenation of blockgBy, for all
we Q<", g€ Q, andO(Z) is the vertical concatenation of blockgAy, g€ Q, w e Q<".
Notice that ifQ = {1}, then#(Z) is the controllability matrix of A1, [xo Bi]) and
O(%) is the observability matrix ofCy,A1). Hence, the linear systefé;,B;,Ci,X%o)
is weak-reachable (observable) if and only if it is sparchedle (observable), if inter-
preted as a DTLSS. Hence, Theolgm 3 implies Thedlem 1.

The result of Theoreil 4 follow froni [30], the detailed proahde found in Ap-
pendiXA. Next, we formulate procedures for reachabilibs@rvability and minimality
reduction of DTLSSs .

Procedure 2 (Reachability reduction)Assumedim#(Z) = n" and choose a basis
b1,...,bn of R" such thatb,... by spanimZ(%). In the new basis, ABgy,Cq, g€ Q
and » become as follows

el e -l

where 4 € R”rx”r,BE1 e R"XM X e R™, ThenZ; = (p,mn",Q,{(Ay,B,Cq) [ €
Q},xp) is span-reachable, and has the same input-output map as

Intuitively, Z, is obtained fronk by restricting the dynamics and the output map of
> to the space IR(X).

Procedure 3(Observability reduction)Assume thaterO(X) =n—n°andleth,...,by
be a basis irR" such that ko1, ..., b, spankerO(Z). In this new basis, By, Cy and
Xo can be rewritten as

Aq= [’25: ,fq] Ca=1[C3. 0].Ba= Eﬂ 0= K‘;ﬂ

where /& € R™*™ B ¢ R”OX”‘, C2 € RP*™ and % € R™. Then the DTLSS, =
(p,m,n°,Q,{( Aq,Bg,CO q € Q},xJ) is observable and its input-output map is the
same as that df. If X is span-reachable, then so3s.

Intuitively, 2, is obtained fron® by merging any two states, X, of Z, for which
O(Z)x1 = O(Z)xz. The latter is equivalent tgs (X1, W) = ys (X2, W), Yw e 2 .



Procedure 4 (Minimization). First transformZ to a span-reachable DTLSS and
then transforn®; to an observable DTLSH;, = (Z;)o. ThenZy, is a minimal realiza-
tion of the input-output map .

The correctness of Procedulréis 2,3[@nd 4 are provid imsing the theory of formal
power series. Note that the correctness of Procddure 3 aRtboéduré]? (in case of
Xo = 0) has already been shown by a direct proofin [30].

Example 1. Let > = (p,m,n,Q,{(A4,By,Cq) | g € Q}, %) with Q= {1,2}, n= 3,
x=[0 1 g,

0 1 0 0]

A= [0 0 1|,B;=[0|,Ci=[1 0 0
0 0 1 0]
0 1 O 0]

A=0 1 1],B=|1],G=[0 0 1
0 0 1 0]

This system is observable, but it is not span-reachable.rderdo see observability,
notice that the sub-matrifC{  (C1A1)" CE]T of O(2) is of rank3. In order to see
that = is not span-reachable, notice that(it,y,z)" is a column of RZ), then z= 0.
HencedimR(Z) < 2.

Using Procedurél4, we can transfoifito the minimal realization

Zm=(p,mn™,Q,{(A7,B.Cq) | a € Q},X3)

ofys: Q={1,2},"m=2,x"=[1, 0]" and

AN [2 8} BN = {8} .Cl=[o, 1]

oot Jor-[feo o

Using [31], it is easy to see that neith¢AT",BY",C",xJ") nor (A7,BY',CJ",xJ") are
minimal.

5 Main results on existence of a realization

We present the necessary and sufficient conditions for tisteece of a DTLSS real-
ization for an input-output map. In the sequéldenotes a map of the forg@). To
this end, we need the notion of the Hankel-matrix and Mankakameters of an input-
output map. More precisely, we proceed as follows. First,defne the notion of
Markov parameters of and use them to define the Hankel-matrixfofWe then use
the Hankel-matrix to formulate conditions for existenceaddTLSS realization of .
To this end, we need the following notation.



Notation 3. In the sequel, we identify any elementwqo, Ug) - - (0, U) € Z T with
the pair of sequencds,u), ve Qt, ue (R™M*, v=qo---g and u=up- - - U.

Notation 4. Consider the input-output map f. For each word Q" of length|v| =
t > Odefine §: (R™! — RP as
fu(u) = F((wu)). ()
Now we are ready to define the Markov-parameters of an inptgut map.

Definition 10 (Markov-parameters)Denote (8 = {w € Q* | |w| > k}. Define the
maps $ : QY — RP and ﬁ 1 Q%** - RP, j=1,...,m as follows; for any \& Q*,
9,00 € Q!

&f)(vq) = fuq(0,...,0) and

¢

SJ (qovq) = fqovq(ej 5 0, e 70) — fqovq(o, e 70),
with g; € R™is the vector withl as its jth entry and zero everywhere else. The collec-
tion of maps{SJ-f ’J-“:O is called theMarkov-parametersf f.

(8)

The functionsg can be viewed as thieitial state-responsand the functionss/,

j=1,...,mcan be viewed asput responsesT he interpretation d’f{, SJ-f will become
more clear after we define the concept ofi@eneralized convolution representation
Note that the values of the Markov-parameters can be oltdioen the values of,
i.e. by means of input-output experiments.

Notation 5 (Sub-word) Consider the sequencexgy--- € Q™, g, ..., €Q,t>0.
Foreach jk € {0,...,t}, define the word y € Q* as follows; if j> k, then v, = ¢, if
j =k, theny; =qj and if j <k, then yx = qjdj;1---dk. Thatis, y is the sub-word
of v formed by the letters from the jth to the kth letter.
Definition 11 (Convolution representation)The input-output map f has general-
ized convolution representation (abbreviatedGGR), if for all w = (v,u) € ™,
V=0(o -G, U= Uy U, Qo,...,0 € Q, Wp,...Uy € R™, f(w) can be expressed via
the Markov-parameters of f as follows.
t-1
F(W) = S5 (Vo 1%) + 5 S"(GhVicr e 10 ) U

where $(w) = [Sl(w), Shw), ..., Shw)] € RP*Mforallwe Q*.
Remark 2. If f has aGCR, then the Markov-parameters of f determine f uniquely.

The motivation for introducingsCRs is that existence of @CR is a necessary
condition for realizability by DTLSSs. More precisely, tfadlowing holds.

Lemma 1. The map f is realized by the DTLSSf and only if f has aGCR and for
allve Q% 0,00 € Q,

S(';(vq) = CqAvxg and

f - ©)
S; (qova) = CqAByeej, j =1,...,m.

10



The proof of Lemmd&ll can be found in Appendix A. From Lenirha Dbikofvs
that if f is realizable by a DTLSS, then the valuesﬁf and Sj-f, j=1....mcan

be expressed as products of matrices. More(ﬁf?lcorresponds to the part of the
response which depends on the initial state, @ﬁ{@?‘zl encodes the response from
the zero initial state.

We can draw the following analogy with the linear c§8 Existence of &CR is
analogous to the requirement that the input-output maptiseoform [1). The Markov-
parametesé(vq) corresponds to the vectds,;, and the vectoISjf (dovq) corresponds
to the jth column of the matrixd. Finally, if f can be realized by a DTLSS, then
the Markov-parameters can be expressed as products otasl#). This is analogous
to the linear case, whet& = CA'xp andH; = CA'B holds fort > 0, if (A,B,C,xo)
is a realization of the input-output map. In facif= {1}, i.e. we are dealing with
linear systems, theE‘\;(vq) =Ky, ij (qova) is the jth column ofH),| and theGCR
is the representation of the forfd (1), and the right-handssiof [9) become§ AV x,
CAVBej, whereC = C;,A=A;,B=B;.

Next, we define the concept of a Hankel-matrix. Similarlyhe tinear case, the
entries of the Hankel-matrix are formed by the Markov par&mse For the definition
of the Hankel-matrix off , we will use lexicographical ordering on the set of sequence
Q.

Remark 3 (Lexicographic ordering)Recall that Q= {1,...,D}. We define a lexico-
graphic ordering< on Q" as follows. For any ys € Q*, v < s if either|v| < || or
0< |v| =ls], v# s and for some E {1,...,|s|}, v < § with the usual ordering of
integersandy= g fori=1,...,1 — 1. Here y and $ denote the ith letter of v and s re-
spectively. Note that is a complete ordering and'Q= {v1,Vo,...} withvy <vp < ...
Note thaty = andforallie N, ge Q, v < viq.

In order to simplify the definition of a Hankel-matrix, weliatluce the notion of a
combined Markov-parameter.

Definition 12 (Combined Markov-parameters) combined Markov-parameterNv)
of f indexed by the word & Q* is the following pDx (Dm+ 1) matrix

S(;(vl), sf(va), -, sf(bva)
M (v) = %(YZ), Sf(}v2>, Sf(?v2) (10)
sg(@, sf(ivD), sf(va)
where for any ve Q*, |w|>2,sf(w):[s{(w), siw), ..., Shw|.

Definition 13 (Hankel-matrix) Consider the lexicographic ordering of Q* from
Remark®B. Define the Hankel-matrix ldf f as the following infinite matrix

Mf(vavi), MT(vavi), -, MT(ven),
M f (V]_VZ), M f (V2V2), sy M f (VkVZ), cey
Hf = Mf(V]_Vg) Mf(V2V3), Tty Mf(VkV3) B
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i.e. the pDx (mD+ 1) block of H in the block row i and block column j equals the
combined Markov-parameter Mvjvi) of f. The rank of K, denoted byankHs, is
the dimension of the linear span of its columns.

The Hankel-matrix off can also be viewed as a matrix rows and columns of which
are indexed by words fro®*.

Remark 4 (Alternative definition of the Hankel-matrix)Notice that every row index
0 < | € N of H can be identified with a tuple,i),i=1,..., pD and ve Q* as follows;
V=V, i.e. vis the rth element of Qfor some0 < r € N such that I= (r —1)Dp+1.
In fact the identification above is a one-to-one mapping.

Similarly, every column index < k € N can be identified with a paifw, j) where
weQ jedi ={0uQx{1,...,m}, where w= v, i.e. wis the rth element of Q
for some re N such that k= (r — 1)(mD+ 1) +i for some integer = 1,...,mD+ 1,
andifi=1then j=0andifi=m(q—1)+z+1forsome e Qandz=1,...,m, then
j = (g,2). This identification is one-to-one.

Using the identification of row and column indices outlindédae, we can view H
as a matrix, rows of which are indexed byi), ve Q*,i=1,..., pD, and columns of
which are indexed byw;, j), we Q*, j € J;. The entry[Hf](v’i)’(Wj) of Hy indexed by

row index(v,i) and column indexw, j) is the ith entry of the rth column of Mwv),
wherer=1,if j =0andr=m(q— 1)+ z+ 1if j = (q,2). In other words,

[He] i) wiaz) = (S (@wai)],,
[Hf}(v,i),(vv,O) = [Sé(WVO’i)L

wherea; = K + 1 with K and | defined from i by the decompositics ipK + 1, K =
0,1,...,D—-1,1=1,...,p. Here,[a], denotes the Ith entry of a vector a.

Itis not difficult to see that fo® = {1}, H; is the same as the Hankel-matrix defined
in §2. The main result on realization theory of DTLSSs can bedtas follows.

Theorem 5. The map f has a realization by a DTLSS if and only if f h&&GR and
rankH; < +o. A minimal realization of f can be constructed from (dee Procedure
[B) and any minimal DTLSS realization of f has dimensamkH;.

Procedure 5. If rankH¢ = n < 4+, then a DTLSS ¢ of the form(@) can be con-
structed from H as follows. Choose a basis in the column spaceof H

In this basis, let ¥ be the coordinates of the first column of .HFor each I=
1,...,m, the Ith column of B q € Q is formed by coordinates of the(q+ 1) + | + 1th
column of H. Let G, g € Q be the matrix of the linear map which maps every column
to the vector formed by its rows indexed bigp 1) + 1, p(g— 1) + 2,...,pg. Define
Aq, g € Q as the matrix of the linear map which maps the rth column eflitock
column(M(vjv))i>; to the rth column of the block columiM(v;qv))? ,, for each
j=12,...,andr=1,2,...,(Dm+1).

Alternatively, using RemafK 4 we can describeas follows. The initial stategx
is formed by the coordinates of the column qf IHdexed by(g,0). The Ith column
of By, g € Q is formed by the coordinates of the column gfiHdexed by(¢, (q,1)),
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I =1,...,m. The matrix G, ¢ € Q is the matrix of the linear map which maps each
column of H to the vector formed by its rows which are indexed(byp(q— 1) +
1),...,(g,pq). Finally, A is the matrix of the map which maps each column indexed
by (w, j) to the column indexed kg, j), we Q*, j € J;.

Notice that forQ = {1}, Theoreni b implies Theorehi 2, and Procedure 5 reduces
to Procedurgll.

Example 2. Consider a SISO input-output map f such that for amy@*, |v| =t,

v=2"211
0 otherwise

1+3' 3y ift>landv=2"110r
fV(Uj_,...,Ut) =

Hence, the Markov-parameters of f are as follows

f(v) — 1 ift>landv=2"11orv=2"211
Sv) = 0 otherwise

f.. [ 1 ift>2andv=2"1lorv=2"211
S (V) _{ 0 otherwise

It is easy to check thaX from Exampldll satisfie®]) from Lemmdll, hencE is a
realization of f.

Consider the Hankel-matrix Hof f. It is easy to see that the set of columns ef H
contains two elements:;land bb. The entries of bequall, if indexed by(v, 1) with
|v| > 0 and v=2M or v = 2V=11 and are zero otherwise. The only non-zero entry of
b, is 1 and it is indexed bye,1). Applying Procedurgl5 to our example, and taking
(by,b2) as a basis ofmH;, we obtain a DTLSS of the for(@) which coincides with
>m from Exampl&L.

Indeed, since the column of;Hndexed by(¢, (1,1)) is zero, and the column in-
dexed by(g,0) and (g, (2,1)) is by, we get B =0, B, = Xp = (1,0). Since the entries
of any column indexed bi, 2) are zero, we get £= 0. Since the entries ofikand
b, indexed by(g,1) are 1, we get G = (1, 1)T. Note that if the column of Hindexed
by (w, j) equals b, then the column indexed lfw1, j) equals b, the column indexed
by (w2, j) equals B + by. If the column indexed bfw, j) equals b, then the column
indexed bywl, j) and (w2, j) are both zero. Hence, iffand A are viewed as linear
maps onmH;, then Ab; = by, Aib, = 0, Asb, = 0, Asb; = by +by. In other words,
the matrices Aand A are precisely the same as the matric§sakd A} from Example
.

Note that once the Markov-parameters are defined, the defiruf Hankel-matrix
presented above coincides with that of the continuous-tiase. As a consequence,
we can repeat the realization algorithm described_in [2§0Athm 1] for DTLSSs .
Moreover, [25, Theorem 4] holds for DTLSSs . For the sake ohgleteness, below
we state the realization algorithm and its correctness@tplfor DTLSSs .

Definition 14 (Hf M sub-matrices oH;). For LM € N define the integers, |=
N(L)pD and 1 = N(M)(mD+-1). Denote by H, u the following upper-left x Ju
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sub-matrix of H,

M (vivy), Mf(vavr), -, M (vymva)
M (viv2), Mf(vavz), -, M (g v2)
Mf(vivie)), Mf(vavnay)s -+, M (Wi i)

Algorithm 1
Inputs: Hankel-matrixHs N N1
Output: DTLSSZy
1: Compute the decompositidiy y n+1 = OR such thaD € R'NMandR € RM™n+1
and rankR = rankO = n.
2: Consider the decomposition

R— [Cvl, Cup ... CVN(NHJ
such thaC,, € R™ (™1 DefineR,Rq € R™N, g € Q as follows

§:|:CV17 CTTIR CVN(N)}
Rq:[Cvlqa Cwas - CVN(N)q}

3: Construczy of the form [3) such that

I:X07Bl""7BD} -

the firstmD+ 1 columns ofR (12)
cl, ¢, ..., CB]T = the firstpD rows of O (12)
VqeQ:Aq=RqR ", (13)

whereR" is the Moore-Penrose pseudoinvers&of
4: ReturnZy

Remark 5 (Implementation) One way to compute the factorization kln+1 = OR
is as follows. If H Ny nt1 =UZV is the SVD decomposition of|§ n+1, then define
O =U3Y2andR =32,

Theorem 6. If rankH¢ n N = rankH¢, then the algorithm returns a minimal realization
of f. The conditiomankH+ n n = rankHs holds for a given N, if there exists an DTLSS
realizationZ of f such thatimz <N+ 1.

The proof of Theoreml6 can be founddd.

Remark 6 (Computation oH¢ n n). Note that H yn can be computed from the re-
sponses of f. However, in principle, the computation pfd requires an exponential

14



number of input/output experiments involving differenitaving sequences. This is
clearly not very practical. It would be more practical to llliH¢ y N based on the re-
sponse of f to a single switching sequence. Preliminaryitesa the latter approach
can be found in[[23]. A detailed discussion of this approackgbeyond the scope of
this paper.

6 Formal Power Series

In this section we present an overview of the necessarytsasniformal power series.
The material of the section is an extension of the classiedry of [5,[29], for the
proofs of the results of this section seel[18, 20].
Let X be a finite set, which we refer to as the alphabetfoAnal power series S
with coefficients inRY is a map
S:X* — R

We denote byRY < X* >> the set of all such maps. Létbe an arbitrary (possibly
infinite) set. Afamily of formal power series iRY < X* >> indexed by Jabbreviated
as FFS is a collection

W={S eRI <X >|jed} (14)

In the sequeW denotes a FFS of the forin{14)otice that we do not requilg, j € J
to be all distinct , i.e§ = S;j for some indiceg,| € J, j # | is allowed.
Let J be an arbitrary set and lek > 0. A d-J rational representation over the
alphabet Xis a tuple
R=(2",{As}oex,B,C) (15)

where 2" is a finite-dimensional vector space owerfor eacho € X, Ag : 4" — 2

is a linear mapC : 2" — RY is a linear map, an@ = {Bj € 2" | j € J} is a family
of elements ofZ" indexed byJ. If d andJ are clear from the context we will refer
to R simply as arational representationWe call 2" the state-space Ay, 0 € X the
state-transition mapsandC thereadout maf R. The familyB is called thefamily of
initial states of R The dimension din®” of the state-space is called tbanensiorof
Rand it is denoted by difR. If 2" = R", then we identify the linear mapy;, o € X
andC with their matrix representations in the standard Euclideases, and we call
them thestate-transition matriceand thereadout matrixrespectively.

Thed — J representatioR from (I3) is said to be eepresentation o, if

Vjedvwe X : S (w) = CAB;, (16)

where Notatiof 2 has been used. We say that the falily rational, if there exists
ad-J representatioR such thatR is a representation ¢f. A representatioiRyi, of

Y is calledminimal if for each representatioR of W, dimRmyin < dimR. Define the
subspaces

Wk = SpafAwBj€ 2" |we X, |wl<n,jel} a7
Or = [) kerCA,. (18)
weX* jw|<n

15



We will say that the representatidhis reachableif dimWg = dim Rivand we will say
thatRis observabléf Or = {0}. LetR=(.2",{As }oex,B,C), R= (2", {As }sex,B,C)

be twod — J rational representations. A linear mafy: 2° — 2" is called arepresen-
tation morphismand is denoted by’ : R— R, if

SPAs=As7 NoeX, Bj=BjVjel, C=C¥ (19)

If .7 is bijective, then it is called a representation isomonphisf . is an isomor-
phism, therR andR are representations of the same FFS , Riglobservable (reach-
able) if and only ifR is observable (reachable).

Remark 7. Let R be a representation &f of the form[[15), and consider a linear iso-
morphism¥ : 2" — R", n=dimR. ThenR= (R", {#As.¥ '} 5ex,.#B,C.¥ 1),
where.¥B = {.¥Bj € R" | j € J} is a representation d¥ and it is isomorphic to R.
The representatiot”R is defined on an Euclidean space and its state-transitiah an
readout maps can be viewed as matrices.

Definition 15 (Hankel-matrix) Define theHankel-matrixHy of W as the infinite ma-
trix, the rows of which are indexed by paifgi) where ve X*, i=1,...,d, and the
columns of which are indexed iy, j) where we X*, j € J. The entryHuy] ) () Of
Hy indexed with the row indefy, i) and the column indefw, j) is defined as

He] wiywj) = [Si(wv)]; (20)

where[Sj(wv)], denotes the ith entry of the vectof(®v) € R%. The rank of i is
the dimension of the linear space spanned by the columng péil it is denoted by
rankHy.

Theorem 7 (Existence and minimality, [18, 2Q]) 1. ThefamilW isrational, if and
only if rankHy < +-co.

2. IfrankHy < 40, then a minimal representation R fcan be constructed from
Hy, see Procedurie 6.

3. Assume that R, is a representation d¥. Then Ry, is a minimal representation
of W, if and only if Ryiy is reachable and observable. IR is minimal, then
rankHy = dimRmin.

4. All minimal representations & are isomorphic.

5. Any representation R & can be transformed to a minimal representatioRR
of W, see Procedurigl9.

We conclude by presenting procedures for reachability &seévability reduction,
minimization of representations and construction of agepntation from the Hankel-
matrix. In the sequeRis a representation & andR is of the form [15).

Procedure 6(Repr. from Hankel-matrix| [18, 2Q])If rankHy < 400, then

Ry = (ImHy, {As}ex,B,C)
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is a representation d¥. Here, for eaclo € X, Ay is the linear map which maps every
column of Hy indexed by(w, j) to the column indexed ko, j). The initial states are
B={Bj | j € 3}, where B is the column of i indexed by(¢, j), j € J. Finally,C is a
linear map which maps every column of kb the vector formed by those rows of this
columns which are indexed I§g,1),...,(g,d). Recall thatRY is set of coefficients of
the formal power series;®f W, j € J,i.e. §: X* — R4

Procedure 7 (Reachability Reduction)Assume R is a representation¥fand it is
of the form(T15). Recall the definition of the reachable subspagediVR from [I7).
Define the representation R (Wk, { A} } sex, B",C"), where for eaclo € X, A; is the
restriction of Ay to Wk, B' = {Bj € 2" | j € J} =B, and C is the restriction of C to
Wk. Then R is a reachable representation Bf.

Procedure 8(Observability Reduction)Assume R is a representationfand it is of
the form(15). Recall from[(1B) the definition of the observability sulsp@k. Define
the representation &= (2" /Or,, {As }oex, B,C). Here 2" /Or is the quotient space
of 2" with respect to Q. Denote byx|, x € 2" the equivalence class of all those
y € 2 such that x-y € Or. ThenAg[X = [AsX], 0 € X, C[x] = Cx for all xe 2,
andB = {Bj € 27/Or| j € J} is such thaBj = [Bj], j € J. Then R is an observable
representation o and if R is reachable, then so ig R

Procedure 9(Minimization). A representation R d¥ can be converted to a minimal
representation as follows. Use Procedlie 7 to obtain a rahéh representation R
Apply Procedur€l8 to Rand obtain the observable representationiiR= (R )o. Then
Rmin IS @ minimal representation &¥.

If J is finite, then Proceduré&s[6,[4, 8, add 9 can be implemente1&¢

More precisely, we can formulate a realization algorithmrfational representa-
tions, [24]. Below we present slight extension of the resoft[28,29/ 12] on real-
ization algorithms for formal power series. The proofs @ thsults can be found in
[18,[24]. We introduce the following notation. LKt M € N.

Iv = {(vi)[veX*|v|<M,i=1,....p}

i) ] 21
Jk={(wj)|jeIweX*|w <K} (21)

Intuitively, the elements offyy (resp. Jk) are those row (column) indices éfy, the
X*-valued component of which is of length at m&&t(resp.K).

Definition 16. Define the matrix ki m k as the matrix, rows of which are indexed by
the elements diy, columns of which are indexed by the elementiofand its entry
(HqJ!M’K)(V’i)’(W’J') indexed by the row indefy,i) € Iy and the column indefw, j) €

Jk is defined ainJ,M,K)(\,,i),(NJ) = (HW)(V,i),(W,j) = (Sj (WV))| The rank of H’,M,Kv
denoted byankHy v k, is the dimension of the linear space spanned by its columns.

That is,Hy m k is the sub-matrix oHy formed by the intersection of the columns
indexed by the elements gk and of the rows indexed by the elementdgf If Jis
finite, thenHy v k is afinite matrix
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Theorem 8(Realization algorithm| [24])If rankHy n n = rankHy, then the represen-
tation Ry, to be defined below, is a minimal representatioffoflf rankHy < N+ 1,
thenrankHy y N = rankHy holds. The representationnRs of the form [(Ib), with
the state-space?” = ImHy n n+1, @and such that if we denote I&,; the column of
ImHy N N indexed by(w, j) € I, then

V(wj) eI 3A0(CW,J') = Cuwo,j

V(W j) € In:C(Cwj) = [Cuj((€,1), -, Cuj((e,p)]"
VjGJZBj:CS,j

Here Gyj((&,1)) is the entry of the colum@y,; indexed by(g,i). i.e. it equals
(Honn) ) wi) =1, P

7 Proof of the main results

The proof of the results on realization theory relies on tHationship between formal
power series representations and DTLSSs state-spaceseepatons. This relation-
ship is completely analogous to the one for linear switclystesns in continuous time,
[20,/19].

Consider an input-output mapand assume thdt has aGCR. Below we define
the FFS W; associated with f We also define theepresentation Rassociated with
a DTLSSZ and aDTLSSXR associated with a rational representation Rhese no-
tions allow us to relate FFS and input-output maps and tae®a LSS with rational
representations. In turn, these correspondences enaldet@slate the realization
problem for DTLSS to the problem of rationality of FFS.

We first define the FFS associated withTo this end, recall the definitionl(8) of
the Markov-parameters df

Definition 17 (FFS associated with). For each ge Q, each index £1,...,m, define
the formal power serieSqj,So € RPP <« Q* >> as follows; for each word v& QF,
discrete mode g Q and index =1,...,m,

Siqn ) = [(Sl @), (S{@w2)T, . (S (quD)T] . o
Sow) = [(ShwD)T, (Sw2)T. -, (shwD)T]'
LetJk = {0}uU{(a,l) |ge€ Q,I =1,...,m} and define th&FS associated with by
Wi ={S; eRPP < Q" >|jec} (23)

Notice that the values d$qj)(w) and S(';(w) are obtained by stacking up the
Markov-parameters oSJf (qwi) and S(';(wi) respectively, fori = 1,...,D. Next, we
define the representatidty associated witfa.

Definition 18. Assume thal is of the form[(B). Define theepresentatioRs associated
with X as a Q| — J representation of the forfI5), where J = {0}UQx {1,...,m}
and the following holds.
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e The alphabet X of Ris the set of discrete modes Q, ane-h|Q)|.

e The state-spacé&” of R; is the same as that &, i.e. 2" = R". For each ge Q,
the state-transition matrix £0f Ry is identical to the matrix fof Z.

e The gQ| x n readout matrix C is obtained by vertically "stacking up”gtmatri-
ces@G,...,Cp, i.e.

C:[C-lrv Cga Tty CB}TERprn'

e B={Bjc 2 | € Ji}, where B =X and By is the Ith column of the matrix
Bg Of Z.

The intuition behind the definition d¥s is that we would likeRs to be a represen-
tation of W¢ if and only if (Z4) holds. Then théq matrices of the representatify
should coincide with théy matrices of. The initial states oRs should be formed by
the vectorBy (in order to generatp), andBqg; (in order to generat g j)). Finally,
the readout ma@ should be formed by "stacking up” the matric&s Next, we define
a DTLSS>R based on a representatiBn

Definition 19. Consider a pQ| — J; representation R of the for{3), over the alpha-
bet X=Q with d= p|Q|. If 2" =R" does not hold, then replace R with the isomorphic
copy-ZR defined in RemafK 7 whose state-spad®isIn the rest of the construction,
we assume tha#” = R" for n=dim 2" holds and that 4, g < Q are nx n matrices,
and C is a pQ| x n matrix. Define th®TLSSZg associated with Rs follows. Lefg

be of the form[{8) such that

e for g c Q, the matrix 4 of Zr is identical to the state-transition matrixAf R.

e For each ge Q, the matrix G is formed by the row$q—1)p+1,(q—1)p+

2,...,qpofC,i.e.
c=[c], ¢, -, CB}T.
e Foreachge Q,By=[Bq1, - Bgm]. Theinitial state ¥ of g is defined
as » = By.

The intuition behind the definition &R is the following. We would likeg to be
such that if we apply Definition 18 to it, then the resultingnesentatiorRs,, should
be close tR.

The relationship between the various concepts introdubedesis as follows.

Theorem 9. 1. The Hankel-matrix i, equals the Hankel-matrix Hof f.
2. The representations R angRare isomorphic, andr; = 2.

3. The DTLSS is a realization of the input-output map f if and only if thesasi-
ated representationRis a representation d¥;.

4. The representation R is a representationVéf if and only if the associated
DTLSS>R is a realization of f.
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5. The DTLSS is a minimal realization of the input-output map f if and oifly
the associated representatiog B a minimal representation .

6. The representation R is a minimal representatiolefif and only if the associ-
ated DTLSSR is a minimal realization of f.

7. The DTLSS is span-reachable (observable) if and only if the assodiatgre-
sentation R is reachable (resp. observable).

8. The representation R is reachable (observable) if ang dinthe associated
DTLSS>R is span-reachable (resp. observable).

9. Assume thaf; and Z, are two DTLSSs with the state-spa@b5andR" re-
spectively. A matrix” € R"™*"is a DTLSS morphisn¥ : £; — X, if and only
if #:Rs; = Rs, is a representation morphism, J¥ is interpreted as a linear
map.

The statements of Theordh 9 above are summarized in Table 1.

Proof of[9. Proof of Part[Il Straightforward.

Proof of Part@l Straightforward.

Proof of Part @ and Part[4. The proof is analogous to the proof of Theorem 10
from [20]. First, note that iRis a representation &+, thenR satisfies the assumptions
of Definition[19. SinceR is isomorphic toRs,, Partl4 follows from Paift]3. P&l 3
follows by noticing that is a realization of , ifand only if forallgp € Q, j =1,...,m,

w e QF,

S =[CI, ¢, -, CJ]" AuBge;j and
SO(W) = [CIa C;v Ty CE;:ITAWXO

The above statement follows from Lemida 1, by taking into aotehe definition of
So andS g, j)- But (24) is equivalent t&s being a representation &f¢. Indeed, the

matrix [C{ CJ, - CE}T in the right-hand side of{24) equals the readout matrix
C of R, and the vectorBg,ej andxp coincide with the initial stateB g, j) andBg of

Rs. Hence,[(2}) in fact says thaj(w) = CA,Bj for all we Q*, j € J, i.e. thatRs is

a representation ¢fs.

Proof of Part Bl and Part[6. Follows from ParfB and Pald 4, by noticing that
dimX = dimRs and dimR = dimZ2R.

Proof of Part[7/land[8. SinceRs, is isomorphic toR, it is enough to prove Part
[1. To that end it is enough to show thak;, = IMR(Z) andOg, = kerO(Z), i.e. the
image of the reachability matrix &f equals the spadak; of Ry, and the kernel of the
observability matrix o& equalsOr; .

Assume thaRs is of the form [I5), with2” =R", d = p|Q| andX = Q. To see that
IMR(X) =Wk,, notice that In¥2(X) is the linear span of the columns of matridgsB,
and vectord\Xo, g € Q, w € Q¥, |w| < n. But the initial state® of Ry consists of the
columns of the matriceBq, g € Q, and of the vectoxy. Hence, In#Z(%) is spanned by
vectorsAyBj, j € Js and hence it equalsk; .

(24)
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Similarly, the kernel ofO(Z) equals the intersection of kegAw, g € Q, w € Q*,
|w| < n. Itis easy to see thfijqcq kerCqAy = kerCAy, hence, keD(Z) is the intersec-
tion of all spaces k&ZAy, w € Q¥, |w| < n. But the latter intersection equali; .

Proof of Part @ The proof is analogous to the proof of Lemma 10[of|[20]. Since
the state-spaces 8%, andZ; are the same, and the state-spacd®spfand3, are the
same,.” can indeed be viewed both as a potential representationhisondromRs,
to Ry, and as a potential DTLSS morphism frdjto Z,. Then it is enough to prove
that.” satisfies[(I9) witlR = Rs, andR = Rs, if and only if . satisfies Definitiof]9.
The latter proof is routine. Indeed, assume thats of the form [8) and tha; is of
the form

2= (N, Q,{(AyBy:Coy) | d € Q},%p).

Assume thaRs, is of the form [I5) an®Rs, = (R”/ , {A;}qu, B',C') whereB = {B'j |
j € Ji}. Note that the matriced, andA'q of Rs,, respectivelyRs,, coincide with the

corresponding matrices @ andX,. Then.# is a DTLSS morphism if and only if
(Vg€ Q: .FAq=Aq¥,Cq=Cy,.7Bq = By)
and.?xg = xé,

Butvq e Q:Cq=C, is equivalent t€ = C.#, since

c=[Cc)T, ., )]
= [(C/ly)-ra Tty (C,Dy)T]T:C,y'

Similarly, .#Bq = B’q is equivalenttovl =1,....m,Bgg = /B = B/(]a = B/(
This, together with?’xo = X,, implies thats’B; = B; for all j € J;.

Hence, we have established ti#tis a DTLSS morphism if and only ifg € Q:
S A= Aily, c=C., andvj € J; : /Bj = B/J-. But this means tha¥’ : Rs;, — Ry,
is a representation morphism. O

al)”

Proof Theorerfil3By Theoreni D, Palfls; is a minimal DTLSS realization of if and
only if R= Ry is minimal. By Theorerh]/Ris minimal if and only ifRis reachable and
observable. By Theorend 9, P&it 7, the latter is equivaledt being span-reachable
and observable. Next, we show that minimal DTLSS realiratiof f are isomorphic.
LetZ ands be two minimal DTLSS realizations df By TheorenfiB, Paff Rs andRs
are minimal representations @f. Then from Theorerl7 it follows that there exists a
isomorphism?” : R — Rs. From ParED of Theorefd 9 is then follows that: PR

is an isomorphism. Finally, the correctness of Procedusestiown in Remairk 10.

Proof of Theorerhl5Necessity

Assume that is a DTLSS which is a realization df. Then by Lemma&llf has a
GCR. Moreover, by Theoreln Ry is a representation 6F¢, i.e. Ws is rational. By
Theoreni®, Paffl1, and Theoréin 7, the latter implies that ikgnk —+oo.
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Sufficiency
Assume thaf has aGCR and rankH; < 4. Then by Theoreml9, Pdrt 1, and Theo-
rem[,Ws is rational, i.e. it has a representati®@nThen by Theore]9 the DTLSE
is a realization off, i.e. f has a realization.

Finally, the correctness of Procedlie 5 follows from RerfidHoelow. O

Now we are ready to analyze Procedufé 213, 4[and 5.

Remark 8 (Correctness of Proceduré. Zprocedurd ® is equivalent to the following
procedure. Apply Procedufé 7 tosRo obtain R. ThenZ, from ProceduréR andg,
are isomorphic. It then follows th&, is span-reachable, since s reachable, and
>, andX have the same input-output map, since bottaRd R are representations of
Wys.

Remark 9 (Correctness of Proceduré. 3Procedure B is equivalent to the following
procedure. Apply Procedufd 8 tosRo obtain an observable representatiog. Rit
follows thatZ, from Procedur¢3 andg, are isomorphic. Since Rs observableZ,

is observable as well. I is span-reachable, thensRs reachable. Hence, then,is
reachable and thug, is span-reachable. Finally, bothsRand R, are representations
of Wy, , from which it follows that the input-output maps®&nd>, coincide.

Remark 10 (Correctness of Proceduré. 4Procedurd ¥ can be restated as follows.
Apply Proceduré19 to Rand denote the resulting minimal representation y R
then follows tha&y, from Proceduré¥ is isomorphic fr,,. Since by Theorem 2z,

is a minimal realization of y, then so i,

Remark 11 (Correctness of Procedure Froceduré® can be reformulated as follows.
Use Procedurtl6, to construct a minimal representation R ofrom Hy = Hy, . Then
by Theorem19zr will be a minimal realization of f. It is easy to see that thel[SB

> ¢ from Proceduréb is isomorphic x.

We will continue with the proof of Theorel 6.

Proof of Theorerhl6 The proof is almost the same as that of the continuous-tise, ca
described in[[25]. From Theorelm 9 it follows thdt | coincides withHy, x|, and
hence, rankds y n = rankHy is equivalent to rankly, nn = rankHy,.

Assume now that ranK¢ y v = rankH¢. Then the representatidy from Theo-
rem[8 is well-defined and it is a minimal representatioffgf Consider Algorithni 1L
and the decomposition defined there. Themkm n1 = IMmO and there exists a left
inverseOt € R™IN of O such thaD* 0 = I,,.

Consider the linear may” : ImH; ynt1 — R", where.”(x) = O x for all x €
ImH¢ N N1 and recall thaHs yny1 = Hy, nngz- It then follows thats is a linear
isomorphism, and its inverse@. Moreover, the isomorphic copy

SRy = (R"{.SAe? M Yqeq {7 (B)) | | € I},C¥ )

of Ry is also a minimal representation 'bf;.

Consider now the DTLSS #r, associated with”’Ry. It is easy to see that the
DTLSSZ yR, satisfies[(I{-13) and hence it coincides with the DTIERSeturned by
Algorithm[dl. Theoreri9 it follows then thai is a minimal realization of.
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Assume that there exists an DTLSS realizattoof f, such that dint <N+ 1.
Then by Theorerfil5, rani; = rankHy, < dimX < N+ 1. Hence, by Theoref 8,
rankHy, = rankHy, N N. O

We conclude this section with the following remark.

Remark 12 (Continuous-time case)f instead of a discrete-time system we consider
a continuous-time systel) then the constructions ofsfRand > are exactly the same.
The construction o differs only in the way the Markov-parameterjé(@;vq) and
S%(vq), ve Q' q,do€Q, j=1,...,m, are derived from the input-output map f. How-
ever, %(vq) = CqAwxg and q‘(qovq) = C4A/Bq,€j also holds for the continuous-time

case, if2 is a realization of f. A detailed description of the contingetime case can
be found in[[20]_10].

Realization off | Representation d¥¢
Z=2R; = Rs
2R — R= RZR
observable, span-reachable—> observable, reachable
minimal — minimal
<, DTLSSmorphism <= .7, representation morphism

Table 1: Correspondence between DTLSSs and represestation

8 Conclusions

We presented realization theory for discrete-time lin@atched systems. The results
and the proof techniques resemble the ones for continumeslinear switched sys-
tems presented in our previous work.
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A Technical proofs

Proof of Lemma&ll.Consider the input-output mag of Z. By induction ont, it fol-
lows thatifw= (vu) e Z*,v=qo--- g, U=Ug--- U, t >0,0o,..., 0 €Q, Ug,...,U €
R™M, then

t-1
Yz (W) = Cq Ay, _;Xo+ Z)thAleltleqj uj. (25)
j=

Consider the Markov-paramete®§ (sq), S*(qosq), 0,00 € Q, s€ Q, j=1,....m,
of ys. It then follows from [25) and the definition of Markov-pararters that for all
se QF,

S (59) = CqAxo andS* (qosa) = CqAsBy€;.- (26)

Notice that[[2b) -[(26) implies that has a generalized convolution representation.
Assume thak is a realization off. Thenys = f. Then from [2b)-£(26) it follows
that f has a generalized convolution representation Bhd (9) hGldsversely, assume
that f has a generalized convolution representation and fhatq@sh From [(®) it
follows that the Markov-parameters gf and f coincide, i.e. §7(sq) = S(';(sq) and
S{z(qosq) = ij (goso) forallse Q*,q,q0 € Q, j =1,...,m. Since bottys and f admit
a generalized convolution representation, by Rernlark 2ahegqual. The latter means
thatX is a realization off . O

Proof of Theorerhl4lt is enough to show that for any family af x n matricesFy,
g e Q and any matrixG € R™! for somel > 0 the following holds. Define the matrix

Ry = [Fle FVMKHG for k € N. That is,% is the span of the column vectors

of RG, ve Q<KL Here we applied Notationl 2 ty,q € Q to obtain the matrices
F/,v € Q*. Define the subspac¢ as the space spanned by the column vectors of the
matricesk,G, v € Q*. If we can show that I#,_; = ., then the statement of the
theorem follows easily.

Indeed, it is easy to see that the linear span of all reaclsthtes of> equals
7, if we setFq = Aq, € Q andG = B. Moreover, in this cas&, 1 = #Z(Z). Hence,
rankZ(Z) = nis equivalentta# = R", which in turn is equivalent to span-reachability
of =. Similarly, if we setFq = Al andG = CT, then@(2)" = #,_1 and .7 is the
orthogonal complement ¢f,co- kerCA,. From [30] it follows thatz is observable if
and only if(\ycq- kerCA, = {0}, which is equivalent to I#,_; = .# = R". The latter
is equivalent to rank' (%) = n.

We proceed to show” = ImZ,,. The proof is the same as the one of an analogous
statement for rational representations or state-affinesys[18[ 29]. We repeat it for
the sake of completeness. It is easy to see thatdm .# for all k e N and ImZy C
ImZx.1. By a dimensionality argument it follows that there exist @. < n—1, such
that Im%y, = ImZ%y, 1. From this, by noticing that Ity 1 = IMG + ¥ 4o IMFq %, it
follows that.# = ImZ, . Since In¥%y, C ImZ%,_1, we then obtain that |#%,,_1 = .7.

O
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