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Adaptive Controller Placement for Wireless
Sensor-Actuator Networks with Erasure Channels

Daniel E. Quevedo, Karl H. Johansson, Anders Ahlén, and Isabel Jurado

Abstract—Wireless sensor-actuator networks offer flexibility
for control design. One novel element which may arise in
networks with multiple nodes is that the role of some nodes
does not need to be fixed. In particular, there is no need to
pre-allocate which nodes assume controller functions and which
ones merely relay data. We present a flexible architecture for
networked control using multiple nodes connected in series
over analog erasure channels without acknowledgments. The
control architecture proposed adapts to changes in network
conditions, by allowing the role played by individual nodes to
depend upon transmission outcomes. We adopt stochastic models
for transmission outcomes and characterize the distribution of
controller location and the covariance of system states. Simulation
results illustrate that the proposed architecture has the potential
to give better performance than limiting control calculations to
be carried out at a fixed node.

I. INTRODUCTION

In a Networked Control System (NCS), sensor, controller
and actuator links are not transparent, but are affected by bit-
rate limitations, packet dropouts and/or delays. This leads to
performance degradation and makes the design of NCSs often
a challenging task [2], [3]. An interesting aspect is that, when
compared to traditional hard-wired control loops, wireless
NCSs offer architectural flexibility and additional degrees
of freedom. Whilst sensor and actuator functionalities will
generally be pre-allocated, often there is no need to pre-assign
in a static fashion which nodes carry out control calculations,
and which nodes merely relay data. Intuitively, the roles of
individual nodes should depend on the information available
at each time instant. In the present work, we examine this
question for the case of NCSs with random packet dropouts.
Our motivating application is real-time control in the process
industry. Several new standards have recently been introduced
for multi-hop wireless sensor and actuator networks, e.g.,
WirelessHART, ISA-100, and this paper proposes a new
adaptive controller placement suitable to be implemented over
these standards. Note that the plant time constants in process
industry are often of the order of seconds or minutes (or
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even higher), so we make the reasonable assumption that
network-induced delays can be neglected. As background to
our current work, [4] studies performance of three static
NCS architectures by adopting an additive signal-to-noise
ratio constrained channel model. The results in [4] suggest
that, in the absence of coding, placing the controller at the
actuator node will give better performance than placing it at
the sensor node. The work [5] examines NCSs with stochastic
packet dropouts using optimal control techniques. Inter-alia,
the work shows that optimal performance can be achieved
if all nodes aggregate their entire history of received data
and relay it to the controller-actuator. Depending upon the
information available at each node, various optimal control
problems can be analyzed. More recently, [6] investigates a
distributed control strategy wherein the network itself acts
as a controller for a MIMO plant. All nodes (including the
actuator nodes) perform linear combinations of internal state
variables of neighboring nodes. In the case of analog erasure
channels with i.i.d. dropouts (without acknowledgments), in
[6] the resulting NCS is then cast, analyzed and designed as
a jump-linear system.

The present work studies a single-loop NCS topology which
uses a series connection of analog erasure channels. We focus
on situations where the wireless nodes have only limited
energy and processing power, precluding long data packets.
Further, the nodes do not provide local transmission acknowl-
edgments. Feedback (or acknowledgment) is only provided
by the actuator node, which broadcasts the applied plant input
value over parallel unreliable links to the intermediate nodes.
This strategy is plausible as the actuator node is powered,
which is a reasonable assumption for most actuators in process
industry. Due to random dropouts, the actuator node does not
have full information on plant outputs. This constitutes one
of the major difficulties when implementing a controller in
such a NCS. We address this issue by using an estimation
and control structure which is distributed across the network.
Instead of tackling optimal control formulations (which de-
pend upon network parameters and may therefore be difficult
to implement in practice), we adopt a so-called emulation-
based approach, where the controller has been pre-designed;
see, e.g., [7], [8], [9]. To be more specific, we assume that
the control policy consists of a pre-designed state feedback-
gain combined with a state observer, which, in the absence of
network effects, would lead to the desired performance. Within
this context, we present a flexible NCS architecture where the
role played by individual nodes depends upon transmission
outcomes. While all nodes calculate local state estimates at
all times, with the algorithm proposed, transmission outcomes
determine, at each instant, whether the control input will be
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Fig. 1. Single-loop control over a wireless sensor-actuator network: forward-
and feedback-links are unreliable.

calculated at the actuator node, at the sensor node or at one of
the intermediate nodes. It turns out that, if individual dropout
processes are i.i.d., then the controller location has a stationary
distribution, which can be easily characterized. To analyze the
performance of the dynamic NCS architecture in the presence
of correlated dropouts, we derive a jump-linear system model
and adopt the network model recently introduced in [10].
This model encompasses temporal and spatial correlations of
packet dropouts and is therefore of more practical importance
than more traditional i.i.d. models. The present paper goes
beyond our recent conference contribution [11], by presenting
a closed loop model and considering networks with correlated
dropouts. Our approach complements [11] by focusing on a
nominal linear estimator, as opposed to a time-varying Kalman
filter. This opens the possibility to analyze NCS performance
with correlated dropouts using techniques from jump-linear
systems.

This paper is organized as follows. Section II describes
the NCS topology of interest. In Section III we present
the dynamic NCS architecture. For the case of independent
dropouts, Section IV provides the distribution of the controller
location. Section V derives an overall closed loop model.
Performance issues are studied in Section VI. Section VII
documents simulation studies. Section VIII draws conclusions.

Notation: We write N0 for {0, 1, 2, . . .}; R are the
real numbers, whereas R≥0 , [0,∞). The `-th unit row-
vector in Euclidean space is denoted e`, for example, e2 =
[0 1 0 . . . 0]; In is the n×n unit matrix, 0n , 0 ·In; ⊗
refers to the Kronecker product. For any set of column vectors,
{u1, . . . , un}, col(u1, . . . , un) = [uT1 , . . . , u

T
n ]T . We adopt the

convention
∑0

j=1 aj = 0, for all a0, a1 ∈ R. A real random
variable µ, which is zero-mean Gaussian with covariance Γ is
denoted by µ ∼ N (0,Γ).

II. WIRELESS SENSOR-ACTUATOR NETWORK SETUP

We consider MIMO LTI plant models of the form

xk+1 = Axk +Buk + wk

yk = Cxk + vk, k ∈ N0

(1)

where x0 ∼ N (x̄0, P0), P0 � 0. In (1), uk ∈ Rm is the
plant input, xk ∈ Rn is the state, yk ∈ Rp is the output, and
wk ∼ N (0, Q), Q � 0 and vk ∼ N (0, R), R � 0, are driving
noise and measurement noise, respectively. As foreshadowed
in the introduction, we focus on a situation where suitable

feedback and estimator gains L ∈ Rm×n and K ∈ Rn×p have
been pre-designed for a situation where the controller (K,L)
has perfect access to plant outputs and inputs. Consequently,
we assume that if the control inputs

uk = Lx̂nom
k , k ∈ N0, with (2)

x̂nom
k = Ax̂nom

k−1+Buk−1+K
(
yk−C(Ax̂nom

k−1+Buk−1)
)
, (3)

where x̂nom
k denotes an estimate of the state xk, were imple-

mented at the plant, then satisfactory performance would be
attained. The main theme of the present work is to investigate
how to implement the above nominal controller, when using
a wireless sensor-actuator network with dropouts.

The sensor node measures the plant output yk, whereas the
actuator node manipulates the plant input uk. The loop is
closed over a wireless network, characterised via a (directed)
line-graph having M nodes, see Fig. 1. Transmissions are
in sequential Round-Robin fashion {1, 2, . . . ,M, 1, 2, . . . } as
depicted in Fig. 2. More precisely, the packet s(i)k is transmitted
from node i to node i+ 1 at times kT + iτ , where T is the
sampling period of (1) and τ � T/(M + 1) refers to the
times between transmissions of packets s(i)k . The input uk is
applied at time kT + (M + 1)τ . We thus assume that in-
network processing is much faster than the plant dynamics (1)
and neglect delays introduced by the network.

The network introduces stochastic packet dropouts. To study
the situation, we adopt an analog erasure channel model and
introduce the binary success processes

γ
(i)
k ∈ {0, 1}, k ∈ N0, i ∈ {1, 2, . . . ,M − 1},

where γ(i)k = 1 indicates that transmission of the packet s(i)k

from node i to node i+ 1 at time kT + iτ , is successful, i.e.,
error-free; γ(i)k = 0 refers to a packet-dropout. Throughout
this work, we assume that transmission outcomes are known
at the corresponding receiver sides and that the sensor node
i = 1 has direct access to plant output measurements. For
notational convenience, we write γ

(0)
k = 1, for all k ∈ N0.

To save energy, the wireless nodes i ∈ {1, 2, . . . ,M − 1} do
not provide acknowledgments of receipt of the packets. The
actuator node M provides a feedback mechanism: At time
(k + 1)T − τ , it broadcasts the control value uk to nodes
i ∈ {1, . . . ,M − 1}, see Fig. 1. Due to channel fading, the
feedback links between actuator and sensors are also affected
by dropouts. We denote the associated success processes via

δ
(i)
k ∈ {0, 1}, k ∈ N0, i ∈ {1, 2, . . . ,M − 1}.

More precisely, if uk is successfully received at node i, then
we set δ(i)k = 1; see also [12] for studies on the importance of
acknowledgments in closed loop control. We assume that the
actuator node has perfect knowledge of plant inputs, and thus,
write δ

(M)
k = 1, ∀k ∈ N0. Since the actuator node will, in

general, have less stringent energy constraints than the other
nodes, we focus our attention on situations where the feedback
links are more reliable than the forward links moving data
from the sensor to the actuator.

Due to packet dropouts, plant output measurements are not
always available at the actuator node. On the other hand, the
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Fig. 2. TDMA Transmission Schedule. The plant input uk is applied at time
kT +Mτ and broadcast at time (k + 1)T − τ .

sensor node will, in general, not have perfect information of
previous plant inputs. This makes the implementation of the
nominal controller (2)–(3) a challenging task. In the sequel, we
will present an adaptive controller placement algorithm where
the computations leading to the plant inputs are distributed
across the network. We foresee that our approach will lead
to a dynamic assignment of the role played by the individual
network nodes. As will become apparent in the sequel, which
tasks are carried out by individual nodes at each time instant,
will depend upon transmission outcomes.

III. FLEXIBLE CONTROLLER PLACEMENT

To keep communication overheads low, the packets trans-
mitted by each node i have only two fields, namely, output
measurements and tentative plant inputs (if available):

s
(i)
k =

(
yk, u

(i)
k

)
. (4)

Plant outputs are transmitted in order to pass on information
on the plant state to the nodes {i + 1, i + 2, . . . ,M}, see
Fig. 1. On the other hand, u(i)k in (4) is the plant input which
is applied at the plant provided the packet s(i)k is delivered at
the actuator node. If s(i)k is lost, then following the algorithm
described below, the plant input will be provided by one of
the later nodes ` > i, which thereby takes on the controller
role at time k. In the sequel, we will refer to the node which
calculates the plant input at time k as ck ∈ {1, 2, . . . ,M}:

uk = Lx̂
(ck)
k , k ∈ N0, (5)

where x̂(ck)k is the local plant state estimate computed at node
ck. Intuitively, good control performance will be achieved if
the estimate used in (5) is accurate. Clearly, due to the multi-
hop nature of the network, nodes which are closer to the
sensor will have access to more output measurements, see
Fig. 1. On the other hand, one can expect that nodes which are
physically located closer to the actuator node will on average
receive more plant input acknowledgments, thus, have better
knowledge of plant inputs.

While only the node ck will provide uk, in our formulation
all nodes compute local state estimates, x̂(i)k , by using the
data received from the actuator node and the preceding node.
This serves as safeguard for instances when the loop is
broken due to dropouts. Motivated by the fact that often
feedback links from the actuator to the intermediate sensors
are “quite reliable”, we adopt the following simple procedure:
If plant output measurements are available at node i, then state
estimators are of the form (3); at instances when the plant input

is not available, an open loop estimate is used, thus:

x̂
(i)
k = Ax̂

(i)
k−1 +Bû

(i)
k−1 +K

(i)
k

(
yk − C(Ax̂

(i)
k−1 +Bû

(i)
k−1)

)
,

(6)
where

K
(i)
k , Γ

(i)
k K, and Γ

(i)
k ,

∏
j∈{0,1,...,i−1}

γ
(j)
k (7)

is equal to 1 if and only if yk is available at node i at time
kT + (i − 1)τ . In (6), û(i)k−1 is a local plant input estimate.
In particular, if δ(i)k−1 = 1, then û

(i)
k−1 = uk−1. At instances

where δ(i)k−1 = 0, node i uses u(i)k−1, the tentative plant input
value transmitted in the second field of the previous packet
s
(i)
k−1 (if non-empty), or otherwise sets û(i)k−1 = Lx̂

(i)
k−1. More

details on the estimator are given in Section V.
Remark 1: Of course, the above transmission and control

strategy will in general not be optimal. In particular, nodes do
not transmit local state estimates and the control law does not
depend upon network parameters, e.g., dropout probabilities;
cf., [13]. The aim of the present work is to develop a
simple and practical method, which uses an existing control
and estimation policy for implementation over an unreliable
network and only requires little communication. �

Remark 2: In [11], instead of using (7), the gains K(i)
k were

taken as the Kalman filter gains for a system with intermit-
tent observations, see, e.g., [14], [15], [16]. Our subsequent
analysis up to (22) can be applied to this structure as well.
However, the jump-linear model derived in Section V requires
a jump-linear estimation model, such as (7). �

Algorithm 1, run at every node i ∈ {1, 2, . . . ,M}, em-
bodies the adaptive controller allocation method described in
the preceding section. Which calculations are carried out at
each node, depends upon transmission outcomes involving
the current node (see lines 6, 8, 14, 24 and 37) and also
transmission outcomes at previous nodes (see lines 16, 19 and
24). In particular, node i only calculates a tentative plant input
when no tentative plant input is received from node i− 1 and
node i has successfully received uk−1 (see lines 9 and 25).
Therefore, preference is given to relay incoming tentative plant
input values. The reason for adopting this decision procedure
lies in that we assume that data sent from the actuator node to
intermediate nodes is often available, whereas transmissions of
packets s(i)k are less reliable. Thus, nodes closer to the sensor
node can be expected to have better state estimates than nodes
located further down the line. In particular, the sensor node
i = 1 uses as input

s
(0)
k = (yk, ∅), γ

(0)
k = 1. (8)

If δ(1)k−1 = 1, then the sensor node calculates a tentative control
value and transmits s(1)k = (yk, Lx̂

(1)
k ) to node 2. Subsequent

nodes relay this packet towards the actuator node. If the packet
is dropped along the way, then the next node i where δ(i)k−1 = 1,
calculates a tentative control u(i)k = Lx̂

(i)
k and transmits s(i)k =

(∅, u(i)k ) to node i+1, etc. On the other hand, if δ(1)k−1 = 0, then
s
(0)
k is relayed to subsequent nodes until arriving at some node
i where uk−1 was successfully received. Control calculations
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Algorithm 1 Adaptive Controller Placement

1: k ← 0, x̂(i)0 ← 0, j ← 0

2: while t ≥ 0 do . t ∈ R≥0 is actual time
3: while t ≤ kT + (i− 1)τ do . wait-loop
4: j ← j + 1

5: end while
6: if γ(i−1)k = 0 then . s

(i−1)
k is dropped

7: û
(i)
k ← Lx̂

(i)
k

8: if δ(i)k−1 = 1 then
9: s

(i)
k ←

(
∅, û(i)k

)
. a tentative input

10: else
11: s

(i)
k ←

(
∅, ∅
)

12: end if
13: end if
14: if γ(i−1)k = 1 then . s

(i−1)
k is received

15: (y, u)← s
(i−1)
k

16: if y 6= ∅ then . yk is available
17: x̂

(i)
k ← x̂

(i)
k +K

(
y − Cx̂(i)k

)
18: end if
19: if u 6= ∅ then
20: u

(i)
k = u

21: else
22: u

(i)
k ← Lx̂

(i)
k

23: end if
24: if u = ∅ ∧ δ(i)k−1 = 1 then
25: s

(i)
k ←

(
y, u

(i)
k

)
. a tentative input

26: else
27: s

(i)
k ← (y, u) . s

(i−1)
k is forwarded

28: end if
29: end if
30: while t < kT + iτ do . wait-loop
31: j ← j + 1

32: end while
33: transmit s(i)k

34: while t ≤ (k + 1)T − τ do . wait-loop
35: j ← j + 1

36: end while
37: if δ(i)k = 1 then . uk is available
38: x̂

(i)
k+1 ← Ax̂

(i)
k +Buk

39: else . the value in s(i)k is used
40: x̂

(i)
k+1 ← Ax̂

(i)
k +Bu

(i)
k

41: end if
42: k ← k + 1

43: end while

are then carried out and the packet s(i)k obtained is relayed
towards the actuator node, etc. The actuator node implements
uk = u

(M)
k , the value contained in the second field of s(M)

k .

Remark 3: An advantage of allowing the control calcula-
tions to be located arbitrarily and in a time-varying fashion, is
that it makes more difficult for someone to attack the NCS. The
development of secure control strategies based on Algorithm
1 presented remains a topic of future research. �

IV. DYNAMIC CONTROLLER LOCATION

With Algorithm 1, which of the nodes calculates the plant
input uk, depends upon the transmission outcomes. For further
reference, we shall denote the set of nodes which calculate a
tentative control input (see lines 9 and 25 of Algorithm 1)
via Ck ⊂ {1, 2, . . . ,M}. It is convenient to introduce the
processes

{
µ
(i)
k

}
, and

{
c
(i)
k

}
, where i ∈ {0, 1, . . . ,M} and

µ
(i)
k ,

{
0 if the second field of s(i)k is empty,
1 otherwise,

c
(i)
k , µ

(i)
k max(Ck ∩ {1, 2, . . . , i}).

(9)

Note that µ(1)
k = δ

(1)
k−1,∀k ∈ N. If c(i)k > 0, then c(i)k denotes

the node where the second field of s(i)k was calculated. It is
easy to see that, with the algorithm proposed and since the
packets s(i)k are communicated sequentially, see Fig. 2, we
have c(1)k = δ

(1)
k−1, for all k ∈ N0, whereas

c
(i)
k =

{
iδ

(i)
k−1 if c(i−1)k = 0 ∨ γ(i−1)k = 0,

c
(i−1)
k if c(i−1)k > 0 ∧ γ(i−1)k = 1,

(10)

for i ∈ {2, . . . ,M}, k ∈ N0. The “controller node at time k”,
i.e., the node where uk was calculated is given by

ck , c
(M)
k = max(Ck), ∀k ∈ N0, (11)

see (5). To derive our results, we introduce the aggregated
transmission outcome process {βk}, k ∈ N0, where

βk ,
M−1∑
i=1

(
2M−1γ

(i)
k+1 + δ

(i)
k

)
2i−1, k ∈ N0. (12)

Note that βk−1 ∈ I , {0, 1, . . . , 22M−2 − 1} collects the
outcomes of all transmissions which occur during the time-
interval [kT −τ, kT +Mτ ], see Fig. 2. Thus, βk−1 determines
Ck and ck, i.e., the controller location will dynamically adapt
to the network conditions. To further elucidate the situation,
in the sequel we will regard {βk}, k ∈ N0 as a stochastic
process. We will first assume that the transmission processes
are Bernoulli distributed.

Assumption 1: The link transmission processes are inde-
pendent and identically distributed (i.i.d.) with a common
success probability p ∈ [0, 1]:

Pr
{
γ
(i)
k = 1

}
= p, ∀i ∈ {1, 2, . . . ,M − 1}. (13)

The feedback link success processes are i.i.d., with

Pr
{
δ
(i)
k = 1

}
= qi, ∀i ∈ {1, 2, . . . ,M − 1}, (14)

for given success probabilities q1, q2, . . . , qM−1 ∈ [0, 1]. �
Note that while the above assumption imposes that trans-
mission processes are i.i.d., it does take into account the
fact that radio connectivity from the actuator node to the
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other nodes will be distance dependent. It also does not
impose that the processes

{
µ
(i)
k

}
, k ∈ N0 for different nodes

i are independent. However, the assumption made does imply
stationarity, as apparent from Proposition 1 given below.

Proposition 1: Suppose that Assumption 1 holds. Then

Pr
{
µ
(i)
k = 1

}
= qi +

i−1∑
j=1

pjqi−j

j−1∏
`=0

(1− qi−`) (15)

Pr{i ∈ Ck} = qi
(
1− pPr

{
µ
(i−1)
k = 1

})
(16)

Pr{ck = i} = pM−iPr{i ∈ Ck}, (17)

for all k ∈ N0 and i ∈ {1, 2, . . . ,M}, and where qM = 1.
The above result shows how the distributions of µ(i)

k , Ck, and
of ck depend upon the communication success probabilities;
i.e., the distribution of βk, here modeled as i.i.d.

Example 1: Suppose that Assumption 1 holds and that the
feedback links are always available, that is, qi = 1, for all
i ∈ {1, . . . ,M}. Expression (15) then provides that Pr{µ(i)

k =

1} = 1, for all i ∈ {1, . . . ,M}. Since, by (8), Pr{µ(0)
k =

1} = 0, Proposition 1 gives that

Pr
{
i ∈ Ck

}
=

{
1 if i = 1

1− p if i ∈ {2, . . . ,M}

and the controller location sequence has the following
geometric-like distribution

Pr{ck = i} =

{
pM−1 if i = 1

(1− p)pM−i if i ∈ {2, 3, . . . ,M}.
(18)

On the other hand, if the actuator does not broadcast the plant
input values at all (qi = 0, ∀i 6= M ), then, ∀k ∈ N0

Pr{µ(i)
k = 1} = 0, ∀i ∈ {1, . . . ,M − 1},

Pr{ck = M} = Pr{M ∈ Ck} = 1,

and the controller is collocated with the actuator (with prob-
ability one). This essentially corresponds to the conclusions
made by the previous works [4], [5] for alternative NCS
configurations without feedback of plant inputs. �

Example 2: Consider M = 3 and suppose that Assump-
tion 1 holds. In this case, Proposition 1 establishes that

Pr{ck = i} =


q1p

2 if i = 1,
pq2(1− pq1) if i = 2,
1− pq2 − p2q1 + p2q1q2 if i = 3.

Note that, since M is small, this result can alternatively
be obtained by examining the probabilities of all possible
transmission outcomes. This is illustrated in Table I. Of course,
for a large number of nodes, such a procedure is non-practical
and use of Proposition 1 is preferable. �

V. CLOSED LOOP MODEL

The algorithm proposed embodies a network driven dis-
tributed state estimation and control architecture. Closed
loop dynamics depend upon transmission outcomes, the
plant model (1) and nominal controller/estimator dynamics,

TABLE I
SET Ck (WITH LOCATION ck IN BOLD-FACE) FOR M = 3, SEE EXAMPLE 2

δ
(1)
k−1 γ

(1)
k δ

(2)
k−1 γ

(2)
k Ck , ck Pr

1 1 any 1 {1} q1p2

1 1 any 0 {1,3} q1p(1− p)
1 0 1 1 {1,2} q1(1− p)q2p
1 0 1 0 {1, 2,3} q1(1− p)q2(1− p)
1 0 0 any {1,3} q1(1− p)(1− q2)
0 any 1 1 {2} (1− q1)q2p
0 any 1 0 {2,3} (1− q1)q2(1− p)
0 any 0 any {3} (1− q1)(1− q2)

see (2)–(3). To derive a compact model, it is convenient
to introduce the aggregated state estimation vector x̂k ,
col
(
x̂
(1)
k , x̂

(2)
k , . . . x̂

(M)
k

)
∈ RMn. We also denote the “backup

value” for uk used at node i as

ν
(i)
k =

{
Lx̂

(i)
k if µ(i)

k = 0,
Lx̂

(j)
k , j = c

(i)
k if µ(i)

k = 1,

see (9) and note that ν(1)k = Lx̂
(1)
k , for all k ∈ N0. In view

of (10), we have
ν
(i)
k = b

(i)
k x̂k, (19)

where b(1)k , e1 ⊗ L ∈ Rm×Mn, whereas for i ≥ 2,

b
(i)
k , e` ⊗ L ∈ Rm×Mn

` =

{
i if c(i−1)k = 0 ∨ γ(i−1)k = 0,
c
(i−1)
k if c(i−1)k > 0 ∧ γ(i−1)k = 1,

(20)

depends on the realization of βk−1, see (12).
Since the algorithm gives uk = ν

(M)
k , the plant input

estimates used by the state estimators satisfy:

û
(i)
k =

{
ν
(M)
k if δ(i)k = 1,
ν
(i)
k if δ(i)k = 0

=
(
δ
(i)
k (eM ⊗ Im) +

(
1− δ(i)k

)
(ei ⊗ Im)

)
νk,

(21)

where νk , col
(
ν
(1)
k , ν

(2)
k , . . . , ν

(M)
k

)
∈ RMm forms part of

the internal variables used by the M state estimators.
Now, the plant model can be written as

xk+1 = Axk +Bν
(M)
k + wk (22)

and (22), (6) and (21) then provide:

x̂
(i)
k+1 =

(
In −K(i)

k+1C
)(
Ax̂

(i)
k +Bû

(i)
k

)
+K

(i)
k+1

(
CAxk + CBν

(M)
k + Cwk + vk+1

)
= K

(i)
k+1CAxk +

(
In −K(i)

k+1C
)
(ei ⊗A)x̂k

+ d
(i)
k νk +K

(i)
k+1

(
Cwk + vk+1

)
,

d
(i)
k ,

(
1− δ(i)k

)(
In −K(i)

k+1C
)
(ei ⊗B)

+
((

1− δ(i)k

)
K

(i)
k+1C + δ

(i)
k In

)
(eM ⊗B).

(23)

If we now introduce

Θk , col
(
xk, x̂k, νk

)
, nk , col(wk, vk+1), (24)
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and use (7), then (23) becomes

x̂
(i)
k+1 = D(i)(βk)Θk + E(i)(βk)nk,

D(i)(βk) ,
[
Γ
(i)
k+1KCA

(
In − Γ

(i)
k+1KC

)
(ei ⊗A) d

(i)
k

]
E(i)(βk) , Γ

(i)
k+1K

[
C Ip

]
.

State estimators, thus, follow the dynamic relation

x̂k+1 = D(βk)Θk + E(βk)nk (25)

D(βk) ,

D
(1)(βk)

...
D(M)(βk)

 , E(βk) ,

 E
(1)(βk)

...
E(M)(βk)

 .
On the other hand, (19) provides

νk+1 = F(βk)Θk + G(βk)nk, (26)

F(βk) ,


b
(1)
k+1D(βk)

...
b
(M)
k+1D(βk)

 , G(βk) ,


b
(1)
k+1E(βk)

...
b
(M)
k+1E(βk)

 .
Expressions (22), (25) and (26) lead to the jump-linear model

Θk+1 = A(βk)Θk + B(βk)nk, (27)

A(βk) ,

[A 0Mn eM ⊗B
]

D(βk)
F(βk)

 , B(βk) ,

[In 0
]

E(βk)
G(βk)

 .
Example 3: Consider M = 2, in which case βk = 2γ

(1)
k+1 +

δ
(1)
k and I = {0, 1, 2, 3}, see (12). Since c(1)k = δ

(1)
k−1, δ(2)k−1 = 1

and b(1)k+1 = e1 ⊗ L for all k ∈ N0, (20) yields:

b
(2)
k+1 =

{
e2 ⊗ L if βk < 3,
e1 ⊗ L if βk = 3.

In this case, the matrices in (25) are given by

D(βk) =

[
KCA

(
In −KC

)
(e1 ⊗A) d

(1)
k

γ
(1)
k+1KCA

(
In − γ(1)k+1KC

)
(e2 ⊗A) e2 ⊗B

]

E(βk) =

[
KC K

γ
(1)
k+1KC γ

(1)
k+1K

]
,

d
(1)
k =

{[(
In −KC

)
B KCB

]
if βk ∈ {0, 2},

e2 ⊗B if βk ∈ {1, 3}

thereby, characterizing the model (27). �

VI. PERFORMANCE ANALYSIS

To analyze the NCS via (27), we will adopt the stochastic
modeling framework of [10]. Transmission outcome distribu-
tions depend upon the fading radio environment. To allow
for temporal and spatial correlations of the radio environment
(and possibly also for power and bit-rate control), in [10] we
used a Markovian network state, {Ξk}, k ∈ N0, which takes
values in a finite set, say B. Each element of B corresponds
to a possible configuration of the physical environment, e.g.,
position of mobile objects. Dropout probabilities of individual
channels, when conditioned on the network state, are consid-
ered independent. In the particular instance where B has only

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

ck

p = 0.9
q1= ... = q4 = 0.88
q5 = ... = q9= 0.9

Fig. 3. Histogram of ck for an i.i.d. network with success probabilities
p = 0.9, q1 = · · · = q4 = 0.88, and q5 = · · · = q9 = 0.9.

one element, the model describes a situation with independent
Bernoulli channels. For the present purposes, the model can
be summarized via:

Assumption 2: The process {Ξk}, k ∈ N0 is an aperi-
odic homogeneous Markov Chain with transition probabilities
pij = Pr{Ξk+1 = j |Ξk = i}, i, j ∈ B and stationary
distribution πi = limk→∞Pr{Ξk = i}, i ∈ B. The
aggregated transmission outcome process {βk} in (12) is
conditionally independent given the network state {Ξk}, i.e.,
φij , Pr{βk = i |Ξk = j}, for all (i, j) ∈ I× B. �
It is worth noting that, with the above model, the process
βk is correlated, but not necessarily Markovian. However, the
augmented jump process (βk,Ξk), k ∈ N0 forms a finite
Markov Chain. Thus, under Assumption 2, (27) belongs to the
class of Markov jump-linear systems, as studied for example
in [17], [18]. In particular, Theorems 3.9 and 3.33 of [17]
establish necessary and sufficient conditions for mean-square
stability (MSS) which can be stated in terms of feasibility of
a linear-matrix inequality. The following result characterizes
closed loop performance of the flexible networked control
systems architecture of interest in the present work. It is
tailored directly to the model in Assumption 2 without needing
to resort to the augmented jump process (βk,Ξk).

Theorem 1: Suppose that Assumption 2 holds, that the
system (27) is MSS and define W , diag(Q,R),

Aj , E
{
A(βk)

∣∣Ξk = j
}

=
∑
i∈I

φijA(i), j ∈ B,

Bj , E
{
B(βk)

∣∣Ξk = j
}

=
∑
i∈I

φijB(i), j ∈ B.
(28)

Then

lim
k→∞

E{ΘkΘT
k } =

∑
i∈B

Hi, (29)

where Hi, i ∈ B satisfy the linear system of equations:

Hi =
∑
j∈B

pjiAiHj(Ai)
T + πiBiW (Bi)T . (30)

In view of (24) and the fact that uk = ν
(M)
k , our result can be

used to evaluate the plant state and input covariances.
Remark 4: By using [19, Sec.5], Hi in (30) can be written

in terms of the solution to a system of linear equations. �
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Fig. 4. Output trajectory of the plant model (33) for an i.i.d. network with
success probabilities p = 0.9, q1 = · · · = q9 = 1.

VII. SIMULATION STUDIES

We consider an NCS with M = 10 nodes. In addition to
the implementation of the controller via Algorithm 1, we also
examine two baseline NCS architectures. In the first one, the
controller and estimator are fixed at the actuator node:

xk+1 = Axk +BLx̂ak + wk,

x̂ak = Ax̂ak−1 +Buk−1

+ Γ
(10)
k K

(
yk − C(Ax̂ak−1 +Buk−1)

)
,

(31)

where Γ
(10)
k is as in (7). In the second scheme, controller and

estimator are implemented at the sensor node. If the controller
output is lost, then the previous plant input is held:

xk+1 = Axk + Γ
(10)
k BLx̂sk + (1− Γ

(10)
k )Buk−1 + wk,

x̂sk = Ax̂sk−1 +Bûsk−1 (32)

+K
(
yk − C(Ax̂sk−1 +Bûsk−1)

)
,

where Γ
(10)
k is as in (7) and

ûsk−1 =

{
uk−1 if δ(1)k−1 = 1,
Lx̂sk−1 if δ(1)k−1 = 0.

Independent and identically distributed dropouts: We
first consider i.i.d. transmission processes as per Assumption 1.
Fig. 3 illustrates a histogram of ck, obtained by running the al-
gorithm for 1000 steps with dropout probabilities as indicated.
Whilst (18) shows that for small p, control calculations are at
most times, carried out at the actuator node, Fig. 3 illustrates
that if links are more reliable, then the controller will be placed
at the sensor node at most time steps.

We first consider a noiseless unstable plant model (1), where

A =

[
1.87 −0.86

1 0

]
, B =

[
1
0

]
, C =

[
0.048 0.045

]
(33)

with Gaussian initial state having mean x̄0 = [5 5]T and
covariance P0 = 0.1 × I2. Controller and estimator gains L
and K correspond to the steady state LQG/LQR controller
with stage cost ‖xk‖2 + ‖uk‖2/10. All nodes use as initial

TABLE II
PERFORMANCE INDICES J WHEN CONTROLLING THE SYSTEM (35) OVER

AN I.I.D. NETWORK WITH q1 = · · · = q4 = 0.99, q5 = · · · = q9 = 0.995.

p NCS (5)–(6) NCS (31) NCS (32)
0.95 33.5 38.5 (unstable)
0.97 33.2 37.6 56.1
0.99 33.1 34.7 34.1

state estimates, x̂(i)0 = [0 0]T . The network has i.i.d. dropouts
with success probabilities p = 0.9 and q1 = · · · = q9 = 1.

The baseline NCS (32) failed to stabilize the present system.
Fig. 4 compares a typical plant output trajectory obtained by
using the proposed algorithm (solid line) with that provided by
the baseline NCS (31) (dashed line). As can be appreciated, the
adaptive controller allocation algorithm presented reacts more
quickly to plant outputs. It thereby recovers more quickly from
the very bad local initial state estimates and provides control
actions leading to faster convergence to the origin. If we adopt
the empirical performance measure

J ,
1000∑
k=1

y2k, (34)

then, with the dynamic architecture, we obtain J ≈ 3, whereas
for the baseline NCS described by (31), J ≈ 11.

We next consider a plant model with an integrator, where

A =

[
1.8 −0.8
1 0

]
, Q = 0.01× I2, R = 0.01 (35)

and B and C as in (33). The initial state has mean x̄0 =
[10 10]T . Table II illustrates how the performance gained by
using the proposed method depends upon the network reliabil-
ity. For the situation examined, larger performance gains are
obtained with smaller p. For larger p, the performance gains
become less relevant. This finding is intuitive, since for p ≈ 1
the network becomes transparent and overall performance is
dominated by the nominal design (1)–(3).

Network with moving obstacle: We now focus on a
network with an obstacle (e.g., a robot or crane) moving
between four different positions, see Fig. 5. We model this
as in Section VI, using the network state process Ξk ∈ B =
{1, 2, 3, 4}. The transition probabilities for Ξk are given by:

[pij ] =


0.99 0.01 0 0
0.003 0.99 0.007 0

0 0.003 0.99 0.007
0.007 0 0.003 0.99

 .
The individual link reliabilities depend on the position of
the obstacle. Nodes which are not blocked benefit from high
success probabilities r ∈ [0.88, 1]. Due to the obstacle, some
of the success probabilities will, at times, be lowered to 60%:
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Fig. 5. Sensor-actuator network with moving obstacle.
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Fig. 6. Network state trajectory, Ξk .

Pr{γ(i)k = 1 |Ξk = j} =

{
0.6 if i ∈ {2j − 1, 2j, 2j + 1}
r in all other cases

Pr{δ(i)k−1 = 1 |Ξk = j} =

{
0.6 if i ∈ {2j, 2j + 1}
r in all other cases.

(36)

For r = 0.99, Figs. 6 and 7 illustrate how using Algorithm 1
the controller location depends upon the network state Ξk. It
turns out that, in the present case, the plant input is always
provided by one of the nodes located between the sensor node
and the node immediately following the blocked ones. This
behaviour can be explained by noting that, in absence of the
obstacle, the network is very reliable. In fact, if none of the
nodes were blocked, then the algorithm would (almost) always
locate the controller at the sensor node.

For (35) and with r = 0.99, use of the dynamic architecture
proposed, gave J = 51.6. In contrast, if the controller is fixed
at the actuator node, see (31), then J = 68.5 was obtained.
This amounts to a performance loss of 33%. In the situations
examined, positioning the baseline NCS (32) failed to stabilize
the plant model. Fig. 8, obtained using Theorem 1, illustrates
how the trace of the covariance of the plant state (35) depends
on the network parameter r in (36). In this figure, the solid
line corresponds to the dynamic controller placement method,
whereas the dashed line refers to the baseline controller (31).
Our results clearly indicate that, without the need for controller

0 200 400 600 800 1000
1
2
3
4
5
6
7
8
9
10

k

ck

Fig. 7. Controller location ck for the network in Fig. 5.
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Fig. 8. Trace of the stationary covariance of the plant state xk in (35) as a
function of the success probability r, see (36).

re-design, the algorithm proposed in the present work has the
potential to give significant performance gains when compared
to earlier NCS configurations where node functionalities are
fixed.

VIII. CONCLUSIONS

We have presented a flexible architecture for the implemen-
tation of a linear control law over a wireless sensor-actuator
network using analog erasure channels without acknowledg-
ments. With the algorithm provided, the role played by indi-
vidual nodes depends on transmission outcomes. In particular,
the controller location is adapted to the availability of past
plant input values and transmission outcomes. By deriving a
Markovian jump-linear system model, we established a closed
form expression for the stationary covariance of the system
state in the presence of correlated dropout processes. Future
work may include extending the ideas to multiple-loops, to
general network topologies, and to controller design.
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APPENDIX

With Assumption 1, Pr{µ(1)
k = 1} = Pr{δ(1)k−1 = 1} = q1.

It is easy to see from lines 11 and 27 of Algorithm 1 that

i ∈ Ck ⇐⇒ δ
(i)
k−1 = 1

∧
(
γ
(i−1)
k = 0 ∨

(
γ
(i−1)
k = 1 ∧ µ(i−1)

k = 0
))

⇐⇒ δ
(i)
k−1 = 1 ∧

(
γ
(i−1)
k = 0 ∨ µ(i−1)

k = 0
) (37)

and that, similarly

µ
(i)
k = 0⇐⇒

(
γ
(i−1)
k = 0 ∧ δ(i)k−1 = 0

)
∨
(
γ
(i−1)
k = 1 ∧ µ(i−1)

k = 0 ∧ δ(i)k−1 = 0
)

⇐⇒ δ
(i)
k−1 = 0

∧
(
γ
(i−1)
k = 0 ∨

(
γ
(i−1)
k = 1 ∧ µ(i−1)

k = 0
))

⇐⇒ δ
(i)
k−1 = 0 ∧

(
γ
(i−1)
k = 0 ∨ µ(i−1)

k = 0
)

(38)

for all i ∈ {1, 2, . . . ,M}. (38) provides the recursion

Pr
{
µ
(i)
k = 1

}
= 1−Pr

{
δ
(i)
k−1 = 0

}
×Pr

{
µ
(i−1)
k = 0 ∨ γ(i−1)k = 0

}
= 1− (1− qi)

(
1−Pr

{
µ
(i−1)
k = 1 ∧ γ(i−1)k = 1

})
= 1− (1− qi)

(
1− pPr

{
µ
(i−1)
k = 1

})
= qi + p(1− qi)Pr

{
µ
(i−1)
k = 1

}
,

having explicit solution (15). On the other hand, (37) gives

Pr{i ∈ Ck}
= Pr

{
δ
(i)
k−1 = 1

}(
1−Pr

{
γ
(i−1)
k = 1

}
Pr
{
µ
(i−1)
k = 1

})
,

thus establishing (16). By (11) we obtain

Pr{ck = i} = Pr{max(Ck) = i}
= Pr{i ∈ Ck ∧ γik = γi+1

k = · · · = γM−1 = 1}

for i ∈ {1, . . . ,M − 1}, whereas for the actuator node, we
have Pr{ck = M} = Pr{M ∈ Ck}. This proves (17). �

By the law of total expectation, we have

E{Θk+1ΘT
k+1} =

∑
i∈B

Hk+1,i, (39)

where

Hk+1,i , E{Θk+1ΘT
k+1 |Ξk = i}Pr{Ξk = i}. (40)

Now, the system equation (27) together with the network
fading model in Assumption 2 allow one to write

E{Θk+1ΘT
k+1 |Ξk = i} = E

{(
A(βk)Θk + B(βk)nk

)
×
(
A(βk)Θk + B(βk)nk

)T ∣∣Ξk = i
}

= E
{
A(βk)ΘkΘT

kA(βk)T
∣∣Ξk = i

}
(41)

+ E
{
B(βk)nkn

T
k B(βk)T

∣∣Ξk = i
}

= E
{
A(βk)ΘkΘT

kA(βk)T
∣∣Ξk = i

}
+ BiW (Bi)T

since {nk} is zero-mean i.i.d. The rule of total expectation,
Bayes’ rule and the Markovian property of (27) give that

E
{
A(βk)ΘkΘT

kA(βk)T
∣∣Ξk = i

}
=
∑
j∈B

E
{
A(βk)ΘkΘT

kA(βk)T
∣∣Ξk = i,Ξk−1 = j

}
×Pr{Ξk−1 = j |Ξk = i} (42)

=
∑
j∈B

E
{
A(βk)ΘkΘT

kA(βk)T
∣∣Ξk = i,Ξk−1 = j

}
×Pr{Ξk = i |Ξk−1 = j}Pr{Ξk−1 = j}/Pr{Ξk = i}

=
∑
j∈B

pjiAiE
{

ΘkΘT
k

∣∣Ξk−1 = j
}

(Ai)
T Pr{Ξk−1 = j}

Pr{Ξk = i}
.

Substitution of (42) into (41) and then into (40) provides

Hk+1,i =
∑
j∈B

pjiAiE
{

ΘkΘT
k

∣∣Ξk−1 = j
}

(Ai)
T (43)

×Pr{Ξk−1 = j}+ BiW (Bi)TPr{Ξk = i}

=
∑
j∈B

pjiAiHk,j(Ai)
T + BiW (Bi)TPr{Ξk = i}
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Since the NCS is assumed MSS, it is asymptotically wide-
sense stationary [17, Thm. 3.33]. If we define Hi ,
limk→∞Hk,i, i ∈ B, and recall that {Ξk} is aperiodic,
then (43) becomes (30), and (39) establishes (29). �


	I Introduction
	II Wireless Sensor-Actuator Network Setup
	III Flexible Controller Placement
	IV Dynamic Controller Location
	V Closed Loop Model
	VI Performance Analysis
	VII Simulation Studies
	VIII Conclusions
	References
	Appendix

