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a b s t r a c t

In this paper,we study the stabilization of linear critically unstable systems subject to input saturation and
multiple unknown input delays.We find tight upper bounds for delayswhich are inversely proportional to
themaximalmagnitude of open-loop eigenvalues on the imaginary axis. For delays satisfying these upper
bounds, linear low-gain state and finite dimensional dynamic measurement feedbacks are constructed to
solve the semi-global stabilization problem. The effectiveness of the proposed design is illustrated by an
example.
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1. Introduction

In the last few decades, time-delayed systems have been
greeted with great enthusiasm from researchers in recognition of
its theoretical and applied importance (see Richard, 2003). Many
control problems have been extensively studied, among which
stability and stabilization are of particular interest (see for in-
stances Choi & Lim, 2006; Fridman, 2001; Gu, Kharitonov & Chen,
2003; Kharitonov, Niculescu, Moreno & Michiels, 2005; Niculescu,
2001; Niculescu & Michiels, 2004, and references therein). Like
time delay, actuator saturation is also ubiquitous in control appli-
cation and is well known as the bane of closed-loop performance
and stability. The study on stabilization subject to actuator satura-
tion has a long history and still receives renewed attention. Numer-
ous results have been reported in the literature. Some earlier work
is surveyed in Bernstein and Michel (1995), Hu and Lin (2001),
Kapila andGrigoriadis (2002), Saberi and Stoorvogel (1999), Saberi,
Stoorvogel and Sannuti (2000), Tarbouriech and Garcia (1997).
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When both actuator saturation and input time-delay are
present, controller design can be challenging. What is worse, pre-
cise knowledge of delay in most circumstances is not available and
only an approximation, usually an upper bound, is known.Mazenc,
Mondie and Niculescu (2003) studied the global asymptotic stabi-
lization for chains of integrators using nested-saturation type con-
troller originally developed by Teel (1992). This result was later
extended to a class of nonlinear feedforward systems by Mazenc,
Mondie and Francisco (2004). Chains of integrators were also stud-
ied by Michiels and Roose (2001). A linear low-gain state feedback
was constructed to achieve the semi-global stabilization for inte-
grator chains with input saturation and unknown input delay that
has a known upper bound which can be arbitrarily large. A differ-
ent low-gain design based on the parametric Lyapunov equation
was used by Zhou, Lin and Duan (2010) to prove a similar result for
a broader class critically unstable systems with eigenvalues on the
imaginary axis being zero. Both state and measurement feedbacks
were developed. However, in the measurement feedback case, de-
lays have to be known by the observer.

In this paper, we investigate the stabilization of general linear
critically unstable system subject to input saturation and multiple
unknown constant input delays. We give upper bounds on the
delayswhich are inversely proportional to themaximalmagnitude
of the open-loop eigenvalues on the imaginary axis. This makes
sense because when the delay is unknown, a system with highly
oscillatory behavior is obviously more difficult to stabilize than
a system with dynamics that do not change ‘‘direction’’ so
frequently. As the eigenvalues on the imaginary axismove towards
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the origin, the upper bounds on delay turn to infinity. For unknown
input delays satisfying these bounds, a linear time invariant low-
gain state or finite-dimensional measurement feedback controller
can be designed to achieve semi-global stabilization. The design in
this paper only relies on the upper bounds. This paper recovers and
expands upon the results in Michiels and Roose (2001) and Zhou
et al. (2010).

There is another line of research in the literature which studies
the maximal input delay that a feedback controlled linear system
can handle (see Middleton & Miller, 2007, and references therein).
It is shown that there has to be an upper bound only for linear
time invariant controller. A time varying controller may tolerate
arbitrarily large delay. For LTI feedback controlled system, similar
upper bounds on delay are also proposed in some cases, which
are inversely proportional to the eigenvalues on the imaginary
axis (Middleton & Miller, 2007). However, this is an inherently
different problem from the one that is studied in this paper. Mid-
dleton andMiller (2007) studied the largest delay at which the sta-
bility of the feedback controlled system can be spoiled and there is
no synthesis, while this paper focuses on a systematic controller de-
sign to achieve certain delay robustness.

The rest of the paper is organized as follows. In Section 2,we for-
mulate the stabilization problems studied in this paper and make
necessary assumptions.Main results are presented in Section 3.We
illustrate our designs with a numerical example in Section 4. Sec-
tion 5 is the conclusion. Proofs of some auxiliary lemmas are given
in the Appendix.

The following notations will be used. Let Cn
τ := C([−τ , 0],Rn)

denote the Banach space of all continuous functions from [−τ , 0]
→ Rn with norm

∥x∥C = sup
t∈[−τ ,0]

∥x(t)∥.

We will denote by diag{Ai}
m
i=1, the block-diagonal matrix with

A1, . . . , Am on the diagonal. A standard saturation function σ(·) :

R → R is defined as

σ(s) =

1, s ≥ 1;
s, −1 < s < 1;
−1, s ≤ −1.

2. Problem formulation

Consider the following system:
ẋ = Ax +

m
i=1

Biσ [ui(t − τi)],

y = Cx,
x(θ) = φ(θ), θ ∈ [−τ̄ , 0]

(1)

where x ∈ Rn, ui ∈ R, y ∈ Rp, φ ∈ Cn
τ̄ . Each input ui has a delay

τi ∈ [0, τ̄i] and τ̄ = max τ̄i.
We formulate two semi-global stabilization problems as fol-

lows.

Problem 1. The semi-global asymptotic stabilization via state
feedback problem for system (1) is to find, if possible, for any a
priori given bounded set of initial conditions W ⊂ Cn

τ̄ with τ̄ =

max{τ̄i}, a linear state feedback controller u = Fx independent of
the specific delay such that the zero solution of the closed-loop sys-
tem is locally asymptotically stable for any τi ∈ [0, τ̄i]withW con-
tained in its domain of attraction, i.e. the following properties hold
for all τi ∈ [0, τ̄i], i = 1, . . . ,m:

(1) ∀ν > 0, ∃ η such that if ∥φ∥C ≤ η then we have ∥x(t)∥ ≤ ν for
all t ≥ 0;

(2) ∀φ ∈ W , x(t) → 0 as t → ∞.
Problem 2. The semi-global asymptotic stabilization viameasure-
ment feedback problem for system (1) is to find, if possible, a pos-
itive integer q > 0 such that for any a priori given bounded set
W ⊂ C

n+q
τ̄ with τ̄ = max{τ̄i}, there exists a linear finite dimen-

sional measurement feedback controller independent of the delay
χ̇ = Acχ + Bcy, χ ∈ Rq

u = Ccχ + Dcy,
(2)

for which the zero solution of the closed-loop system is locally
asymptotically stable for all τi ∈ [0, τ̄i] with W contained in its
domain of attraction, i.e. the following properties hold for all τi ∈

[0, τ̄i]:
(1) ∀ν > 0, ∃ η such that if ∥(φ;ψ)∥C ≤ η then we have ∥x(t)∥ ≤

ν for all t ≥ 0;
(2) ∀(φ;ψ) ∈ W , (x(t), χ(t)) → 0 as t → ∞.

If τi = 0, i = 1, . . . ,m, it iswell known that the semi-global sta-
bilization problem is solvable only if system (1) is asymptotically
null controllable with bounded control, i.e. the following assump-
tion holds.

Assumption 1. (A, B) is stabilizable with B = (B1 · · · Bm) and
A has all its eigenvalues in the closed left half plane.

Moreover, for stabilization via measurement feedback, the next
assumption is also necessary.

Assumption 2. (A, C) is detectable.

3. Main result

We start by designing the state and measurement feedback
controllers thatwill solve the stabilization problems studied in this
paper. Themethodologywe use here is the classicalH2−ARE based
low-gain feedback design (see Wang, Stoorvogel, Saberi, Grip &
Sannuti, 2011) which was originally developed by Lin, Stoorvogel
and Saberi (1996) in the context of semi-global stabilization of
linear systems subject to input saturation.

Assume (A, B) is stabilizable and A has all its eigenvalues in
the closed left half plane. For ε ∈ (0, 1], let Pε be the solution of
Algebraic Riccati Equation

A′Pε + PεA − PεBB′Pε + εI = 0. (3)
The low-gain state feedback can be constructed as

u = αFεx = −αB′Pεx (4)
for suitably chosen α and ε. For the system (1) we denote:

u =

u1 · · · um

′

and hence ui = αFixwhere Fi = B′

iPε for i = 1, . . . ,m.
The low-gain state feedback (4) can be implemented as a dy-

namic compensator, which we refer to as a low-gain compensator
χ̇ = Aχ + BFεχ − K(y − Cχ)
u = αFεχ,

(5)

where K is chosen such that A + KC is Hurwitz stable.
In the design of (4) and (5), ε is called a low-gain parameter.

The role of α and ε is reminiscent of the low-and-high-gain design.
However, in our case α can be chosen independent of ε and
independent of the set of initial conditions but only dependent on
the delay bounds. Note that αFε will still be arbitrarily small as
ε → 0 and hence we still have a low-gain design.

With a properly chosen ε, the low-gain feedback (4) and low-
gain compensator (5) solve Problems 1 and 2 respectively for suit-
ably chosen τ̄i. To prove this, wewill proceed in two steps: first, we
will show that our controllers globally asymptotically stabilize (1)
without saturation and provide us with the required input-delay
tolerance. Then, we will extend the result to the case where satu-
ration is present by selecting the low-gain parameter differently.
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3.1. Global stabilization of linear systems with input delay

Ignoring saturation, we can write (1) as follows:
ẋ = Ax +

m
i=1

Biui(t − τi)

y = Cx
x(θ) = φ(θ), ∀θ ∈ [−τ̄ , 0].

(6)

Since the system is linear, it is possible to solve the global asymp-
totic stabilization problems for (6) using the low-gain feedback (4)
and compensator (5), which means in Problems 1 and 2, that the
bounded set of initial condition W is actually the entire Banach
space Cn

τ̄ and C
n+q
τ̄ , respectively.

In order to present our result, we need the following notation.
For each input ui, i = 1, . . . ,m, define the maximal controllable
frequency as

ωi
max := max{ω ∈ R | ∃v ∈ Cn, s.t. A′v = jωv and B′

iv ≠ 0}. (7)

Note that we set ωi
max equal to zero if there exist no ω ∈ R and

v ∈ Cn for which A′v = jωv and B′

iv ≠ 0. We state that an
eigenvalue jωk of thematrixA is controllable via the inputui if there
exists a v ∈ Cn for which A′v = jωv and B′

iv ≠ 0.
It is clear that jωi

max is the eigenvalue of A on the imaginary axis
with the maximal magnitude which is (at least partially) control-
lable via input channel ui. Now, we are ready to present the follow-
ing theorem.

Theorem 1. If

ωi
maxτ̄i <

π

2
, i = 1, . . . ,m, (8)

then with any α > max


1
2 cos(ωi

max τ̄i)
, 1


, there exists an ε∗ such

that for any ε ∈ (0, ε∗
], the closed-loop of (6) and the low-gain

feedback (4) is globally asymptotically stable for any τi ∈ [0, τ̄i],
i = 1, . . . ,m.

In order to prove the above theorem we need two lemmas. The
first one is adapted from Zhang, Knospe and Tsiotras (2000).

Lemma 1. Consider a linear time-delay system

ẋ = Ax +

m
i=1

Aix(t − τi). (9)

Assume

A +

m
i=1

Ai

is Hurwitz. In that case, (9) is globally asymptotically stable for any
τi ∈ [0, τ̄i] where i = 1, . . . ,m if

det


jωI − A −

m
i=1

e−jωτiAi


≠ 0

for all ω ∈ R and τi ∈ [0, τ̄i].

Assume A has r eigenvalues on the imaginary axis which are
denoted by jωk, k = 1, . . . , r . Suppose ωi

maxτ̄i <
π
2 for i =

1, . . . ,m and we choose α > max


1
2 cos(ωi

max τ̄i)
, 1


. There exists

a ζ > 0 such that

(1) The neighborhoods Ek := [ωk−ζ , ωk+ζ ], k = 1, . . . , r around
these eigenfrequencies, are mutually disjoint;

(2) If jωk is controllable via input ui for some i then ωτ̄i < π
2 for

ω ∈ Ek.
(3) We have

2α cos(ωτ̄i) > 1, ∀i, (10)

for all ω ∈ Ek and those k ∈ {1, . . . ,m} for which jωk is
controllable via input i.

Lemma 2. The following properties hold:

(1) If jωk is not controllable via input ui for some i, then

lim
ε↓0

Fε(jωI − A − BFε)−1Bi = 0,

uniformly in ω for ω ∈ Ek where Fε is given by (4).
(2) For any ρ > 0, there exists ε∗ such that for ε ∈ (0, ε∗

],

∥Fε(jωI − A − BFε)−1B∥ ≤ ρ, ∀ω ∈ Ω := R \ ∪
r
k=1 Ek.

Proof. See Appendix �

With the help of the above two lemmas we can prove Theo-
rem 1.

Proof of Theorem 1. Consider the closed-loop system

ẋ = Ax +

m
i=1

αBiFix(t − τi), (11)

where τ̄i satisfies condition (8) and we choose some α > max
1

2 cos(ωi
max)τ̄i

, 1

. Let α be fixed and let sets Ek be as defined before

Lemma 2.
Since

A +

m
i=1

αBiFi = A − αBB′Pε

is Hurwitz stable for α > 1, it follows from Lemma 1 that system
(11) is asymptotically stable if

det


jωI − A −

m
i=1

αe−jωτiBiFi


≠ 0, (12)

for all ω ∈ R and all τi ∈ [0, τ̄i] where i = 1, . . . ,m. We define:

Gε(s) = Fε(sI − A − BFε)−1B (13)

∆(s) = diag

αe−τis − 1

m
i=1 . (14)

We have:

det


jωI − A −

m
i=1

αe−jωτiBiFi


= det


jωI − A + BB′Pε


det [I − Gε(jω)∆(jω)] .

Since A − BB′Pε is Hurwitz we know that the first determinant on
the right is nonzero. Therefore we only need to show that

det [I − Gε(jω)∆(jω)] ≠ 0 (15)

for all ω ∈ R and all τi ∈ [0, τ̄i] where i = 1, . . . ,m.
We check (15) first for ω ∈ R \ ∩

r
k=1 Ek. By Lemma 2 there

exists for ρ = (1 + α)−1 an ε1 such that for ε < ε1 we have that
∥Gε(jω)∥ < (1 + α)−1 while ∥∆(jω)∥ < 1 + α. This implies (15)
is satisfied.

Next, we need to consider ω ∈ Ek. By Lemma 2, there exists ε2
such that

∥Fε(sI − A − BFε)−1Bi∥ ≤ µ

for ε < ε2 for all i for which jωk is not controllable via input ui.
We first establish that

det

I − Gε(jω)∆̃k(jω)


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is bounded away from zerowhere ∆̃k is obtained from∆ by setting
τi = 0 for any i for which jωk is not controllable via input ui.

We have:

I − Gε(jω)∆̃k(jω) = I + ∆̃k(jω)− (I + Gε(jω))∆̃k(jω). (16)

Note that

I + ∆̃k(s) = diag

αe−τis

m
i=1

is invertible and

∆̃k(jω)(I + ∆̃k(jω))−1
= diag


1 − α−1ejωτi

m
i=1 .

Note that for any i for which jωk is not controllable via input ui, we
have set τi = 0 and hence

|1 − α−1ejωτi | = |1 − α−1
| < 1.

Otherwise,

|1 − α−1ejωτi |2 = 1 − 2α−1 cos(ωτi)+ α−2 < 1

since 2α cos(ωτi) > 1. The above implies there exists β > 0 such
that

∥∆̃k(jω)(I + ∆̃k(jω))−1
∥ < 1 − β. (17)

Next, we know that for all ε > 0

σ [I − Fε(jωI − A)−1B] ≥ 1, ∀ω (18)

(see Anderson &Moore, 1971, Section 7.1, p.122), and this implies
that

∥I + Gε(jω)∥ ≤ 1, ∀ω. (19)

But (16) together with (17) and (19) imply that

det(I − Gε(jω)∆̃k(jω))

is bounded away fromzero. Using item (1) of Lemma2we conclude
that for ε small enough

det(I − Gε(jω)∆(jω))

is bounded away from zero. Since this is valid for ω ∈ Ek for any
k ∈ {1, . . . ,m}, it shows that there exists an ε3 such that (15) is
satisfied for ε < ε3, which completes the proof of Theorem 1. �

In the special case where A has all its eigenvalues at the origin,
the low-gain feedback can tolerate arbitrary large but bounded
delays.

Corollary 1. Suppose A has only zero eigenvalues. For any τ̄i > 0,
i = 1, . . . ,m, there exists an ε∗ such that for ε ∈ (0, ε∗

], the closed-
loop system of (6) and (4) is asymptotically stable for any τi ∈ [0, τ̄i],
i = 1, . . . ,m.

Remark 1. We feel the following comments would be helpful to
the readers. Essentially, Theorem 1 is built upon two fundamental
results.

The first result is the robustness of LQR. As we know from the
Nyquist criterion, the stabilizability of a single input linear system
with time delay is closely related to the notion of phase margin.
It is also known that LQR has a guaranteed phase margin of π

3 .
In this paper, we actually prove that for critically unstable linear
systems, a special class of LQR which is the low-gain feedback has
a guaranteed phase margin of π2 which gives the right hand side
of (8).

The second result is the low-gain properties. It should be noted
that the π

2 phase margin only provides an upper bound on the
phase uncertainty and does not say how much delay can be tol-
erated. It is the properties of low-gain feedback that translate the
‘‘phase margin’’ to the amount of tolerable delay in each channel,
which is explicitly related to the maximal magnitude of eigenval-
ues on the imaginary axis.

This is more transparent for single input systems, in which
case according to Nyquist, we are mainly concerned with ‘‘gain
crossover frequencies’’. It can be immediately seen from the trans-
fer function Fε(jωI − A)−1B that as the low-gain parameter ap-
proaches zero, the ‘‘gain crossover frequencies’’ converge to those
that correspond to some open loop eigenvalues on imaginary axis.
Then condition (8) is natural given a π

2 phase margin.
For multi-input systems, the problem is not so obvious. We use

a simple frequency domain stability criterion (Lemma 1) and the
proof is quite involved. However the thoughts behind our proof are
similar to the single input case, that is, in concerning with stabil-
ity in the frequency domain (Lemma 1), not all ω matter but only
those close to the eigenfrequencies (this is proved in Lemma 2).

The next theoremconcerns stabilization of (6) viameasurement
feedback.

Theorem 2. If

ωi
maxτ̄i <

π

2
, (20)

then with any α > max


1
2 cos(ωi

max τ̄i)
, 1


, there exists an ε∗ such

that for ε ∈ (0, ε∗
], the closed-loop system of (6) and low-gain

compensator (5) is asymptotically stable for τi ∈ [0, τ̄i].

We first present a lemma needed in the proof.

Lemma 3. Let Gε(s) be given by (13). Then

lim
ε↓0

Gm
ε (jω) = Gε(jω)

uniformly in ω, where

Gm
ε (s) = −Fε(sI − A − BFε)−1KC(sI − A − KC)−1B. (21)

Proof. See Appendix. �

Proof of Theorem 2. The closed-loop system is given by
ẋ = Ax +

m
i=1

αBiFiχ(t − τi)

χ̇ = (A + BFε + KC)χ − KCx
x(θ) = φ(θ), ∀θ ∈ [−τ̄ , 0]
χ(θ) = ψ(θ), ∀θ ∈ [−τ̄ , 0].

(22)

It follows from Lemma 1 that (22) is globally asymptotically stable
if and only if

det

jωI −


A 0

−KC A + BFε + KC


−

m
i=1


0 αBiFi
0 0


e−jωτi


≠ 0

for all ω ∈ R and for all τi ∈ [0, τ̄i]. This is equivalent to:

det[I − Gm
ε (jω)∆(jω)] ≠ 0, ∀ω ∈ R,∀τi ∈ [0, τ̄i], (23)

since A + BFε and A + KC are Hurwitz where Gm
ε (s) and ∆(s) are

defined by (21) and (14).
From the proof of Theorem 1, we note that there exists an ε3

such that for all ε ∈ (0, ε3] we have that (15) is satisfied. It is then
easily checked using Lemma 3 that we can find an ε4 ≤ ε3 such
that (23) holds for all ε ∈ (0, ε4]. �
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3.2. Semi-global stabilization subject to input saturation

In this subsection, we shall extend the results for linear systems
to the case where input saturation is considered and solve the
semi-global stabilization problems as formulated in Problems 1
and 2.

Theorem 3. Consider the system (1). The semi-global asymptotic
stabilization via state feedback problem can be solved by the low-gain
feedback (4). Specifically, for a set of positive real numbers τ̄i < π

2ωi
max

,
i = 1, . . . ,m and any a priori given compact set of initial conditions
W ⊂ Cn

τ̄ , there exists an ε∗ such that for any ε ∈ (0, ε∗
], the low-

gain feedback (4) achieves local asymptotic stability of the closed-
loop system with the domain of attraction containing W for any τi ∈

[0, τ̄i], i = 1, . . . ,m.

Proof. The closed-loop system can be written asẋ = Ax +

m
i=1

Biσ(αFix(t − τi))

x(θ) = φ(θ), ∀θ ∈ [−τ̄ , 0].
(24)

Suppose τ̄i’s satisfy the bound ωi
maxτ̄i <

π
2 . Let ε1 be such that the

closed-loop system (11) in the absence of saturation, is asymptot-
ically stable for ε ≤ ε1. Then the local stability of (24) as required
in part (1) of Problem 1 follows with ε ≤ ε1.

It remains to show the attractivity. It is sufficient to prove that
for system (24), given W , there exists an ε2 ≤ ε1 such that for
ε ∈ (0, ε2], we have

∥αFix(t − τi)∥ ≤ 1, ∀t ≥ 0, (25)

for all τi ≤ τ̄i and for i = 1, . . . ,m. Then we can avoid saturation
for all t ≥ 0. The closed-loop system becomes linear and the at-
tractivity of the zero solution is therefore guaranteed with ε ≤ ε2.

We define the linear time-invariant operator gε : vε → wε with
state space representation:
ξ̇ = (A + BFε)ξ + Bvε, ξ(0) = 0
wε = Fεξ .

(26)

Next, we define the linear time-invariant operator δ by:

g(t) = δ(f )(t)

with g(t), f (t) ∈ Rm where g is defined componentwise by:

gi(t) =


αfi(t − τi)− fi(t) if t > τi
−fi(t) otherwise

for t > 0. The Laplace transform of these two operators is given by
the transfer matrices (13) and (14). From the proof of Theorem 1,
we know there exists ε3 such that for all ε < ε3 we have that (15)
is satisfied which guarantees that there exists a µ such that

σ(I − Gε(jω)∆(jω)) > µ,∀ω ∈ R, ∀τi ∈ [0, τ̄i]

for all ε ≤ ε3 and this µ only depends on τ̄i provided that ε ≤ ε3.
This implies that

∥(I − Gε(s)∆(s))−1
∥∞ ≤

1
µ
.

Moreover, we already have in (19)

σ̄ (I + Gε(jω)) ≤ I, ∀ω ∈ R

which implies ∥Gε(s)∥∞ ≤ 2.
Note that for t ≥ 0, (24) implies that

ẋ = (A + BFε)x + Bδ(Fεx)+ Bvε,
where

vε(t) =

v1(t)...
vm(t)

 , vi(t) =


αFiφ(t − τi), t < τi,
0, t ≥ τi.

Since vε(t) vanishes for t ≥ τ̄ , φ ∈ W and Fε → 0, we have for
any φ ∈ W , ∥vε∥∞ → 0 and ∥vε∥2 → 0 as ε → 0.

We have

Fεx(t) = Fεe(A+BFε)tx(0)+ (gε ◦ δ)(Fεx)(t)+ gε(vε)(t)

and hence

Fεx(t) = (1 − gε ◦ δ)−1 
Fεe(A+BFε)tx(0)+ gε(vε)(t)


. (27)

Letwε(t) = gε(vε)(t). By the definition of gε , we have (26). Clearly,
∥wε∥2 ≤ ∥Gε(s)∥∞∥vε∥2 ≤ 2∥vε∥2. Hence for any given initial
condition φ, ∥wε∥2 → 0 as ε → 0. For t ∈ [0, τ̄ ],

ẇε(t) = Fε(A + BFε)ξ(t)+ FεBvε(t)

= Fε(A + BFε)
 t

0
e(A+BFε)(t−r)Bvε(s)dr + FεBvε(t).

Since A + BFε is bounded for all ε ∈ [0, 1] and ∥vε∥∞ → 0 as
ε → 0, we will have

sup
t∈[0,τ̄ ]

∥ẇε(t)∥ → 0 as ε → 0. (28)

This also implies τ̄

0
∥ẇ(t)∥2dt → 0 as ε → 0. (29)

From τ̄ onward, vε(t) vanishes and

ẇ(t) = Fεe(A+BFε)t(A + BFε)ξ(τ̄ ).

It is shown by Wang et al. (2011) that
∞

τ̄

∥ẇ(t)∥2dt → 0 as ε → 0, (30)

provided that ξ(τ̄ ) is bounded which is obvious by noticing that

ξ(τ̄ ) =

 τ̄

0
e(A+BF)(τ̄−t)Bvε(t)dt

and ∥vε∥∞ → 0 as ε → 0. Combining (29) and (30), we have
shown that for any given φ ∈ W , ∥ẇ∥2 → 0 as ε → 0.

Now let us go back to (27). We get

∥Fεx∥2 ≤ ∥(1 − Gε(s)∆(s))−1
∥∞∥Fεe(A+BFε)tx(0)∥2

+ ∥(1 − Gε(s)∆(s))−1
∥∞∥wε∥2

≤
1
µ

∥Fεe(A+BFε)tx(0)∥2 +
1
µ

∥wε∥2.

Since for any φ, ∥Fεe(A+BFε)tx(0)∥2 → 0 (seeWang et al., 2011) and
vε → 0 as ε → 0 and µ is independent of ε (provided ε is smaller
than ε3), there exists an ε4 such that for ε ∈ (0, ε4], we get

∥Fεx∥2 ≤
1
2α
, ∀φ ∈ W . (31)

Note that (27) also yields

F ẋ(t) = (1 − gε ◦ δ)−1 
Fεe(A+BFε)t(A + BFε)x(0)+ ẇε(t)


,

and thus

∥Fε ẋ∥2 ≤ ∥(1 − Gε(s)∆(s))−1
∥∞∥Fεe(A+BFε)t x̃∥2

+ ∥(1 − Gε(s)∆(s))−1
∥∞∥ẇε∥2

≤
1
µ

∥Fεe(A+BFε)t x̃∥ +
1
µ

∥ẇε∥2
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with x̃ = (A+BFε)x(0). There exists an ε5 such that for ε ∈ (0, ε5],
we have

∥Fε ẋ∥2 ≤
1
2α
, ∀φ ∈ W . (32)

Applying the Cauchy–Schwarz inequality, we can prove that for
any t ≥ 0,∥Fεx(t)∥2

− ∥Fεx(0)∥2
 ≤ 2∥Fε ẋ∥2∥Fεx∥2 ,

and

∥Fεx(t)∥2
≤ ∥Fεx(0)∥2

+ 2∥Fε ẋ∥2∥Fεx∥2 . (33)

Next, we note that there exists an ε6 such that for ε ∈ (0, ε6]

∥Fεx(0)∥2
≤ ∥Fεφ∥

2
C ≤

1
2α
, φ ∈ W . (34)

Finally, there exists ε7 such that for ε < ε7 we have:

∥αFix(t − τi)∥ ≤ ∥αFεx(t − τi)∥

≤ ∥αFεφ∥C ≤ 1, ∀t ∈ [0, τi]. (35)

Let ε∗
= min{ε1, . . . , ε7}. We conclude from (31)–(34) that for

ε ∈ (0, ε∗
],

∥αFix(t − τi)∥ ≤ ∥αFεx(t − τi)∥ ≤ 1, ∀t ≥ τi.

Together with (35), this implies (25) is satisfied. Hence the system
avoids saturation which implies the required attractivity. �

The next theorem solves Problem 2.

Theorem 4. Consider the system (1). The semi-global asymptotic
stabilization via measurement feedback problem can be solved by the
low-gain compensator (5). Specifically, for any a priori given compact
set of initial conditions W ⊂ C2n

τ̄ and a set of positive real numbers
ωi

maxτ̄i <
π
2 , i = 1, . . . ,m, there exists an ε∗ such that for any

ε ∈ (0, ε∗
], the low-gain feedback (5) achieves local asymptotic

stability of the closed-loop system for any τi ∈ [0, τ̄i], i = 1, . . . ,m
with the domain of attraction containing W .

In order to derive our main result for Problem 2 we need a
preliminary lemma.

Lemma 4. For any ξ ∈ R2n,

lim
ε↓0


∞

0
∥Fεe(A+BFε)tξ∥2dt = 0,

where

A =


A BFε

−KC A + BFε + KC


, B =


B
0


, F =


0 Fε


.

Proof. See Appendix. �

Proof of Theorem 4. The closed-loop system can be written as
ẋ = Ax +

m
i=1

Biσ(αFiχ(t − τi))

χ̇ = (A + BFε + KC)χ − KCx
x(θ) = φ(θ), ∀θ ∈ [−τ̄ , 0]
χ(θ) = ψ(θ), ∀θ ∈ [−τ̄ , 0].

(36)

Suppose τ̄i’s satisfy the bound ωi
maxτ̄i <

π
2 . Let ε

∗ be given by
Theorem 2 such that the closed-loop system without saturation is
asymptotically stable. Then the local stability of (36) as required in
part (1) of Problem 2 follows with ε ≤ ε∗.

Define two linear time invariant operators gm
ε and δ with

Laplace transform

Gm
ε (s) = −Fε(sI − A − BFε)−1KC(sI − A − KC)−1B

∆(s) = diag{αe−τis − 1}mi=1.

From the proof of Theorem 2, we know that there exists ε4 such
that (23) holds for ε ≤ ε4. There exists a µ > 0 such that

σ(I − Gm
ε (jω)∆(jω)) > µ, ∀ω ∈ R,∀τi ∈ [0, τ̄i], (37)

where µ is independent of ε provided that ε ≤ ε4. It follows from
Lemma 3 that Gm

ε (jω) → Gε(jω) uniformly in ω where Gε(s) =

Fε(sI − A− BFε)−1B. Hence given σ̄ (Gε(jω)) ≤ 2 for any ε > 0 and
ω ∈ R, there exists an ε5 such that

σ̄ (Gm
ε (jω)) ≤ 3, ∀ω ∈ R. (38)

Given (37), (38) and Lemma 4 hold, we can use exactly the same
argument as in the proof of Theorem 3 to prove that there exists
an ε6 ≤ min{ε∗, ε4, ε5} such that for ε ∈ (0, ε6],

∥αFεχ(t − τ̄ )∥ ≤ 1, ∀t ≥ 0, (φ, ψ) ∈ W . �

4. Example

Let us consider the following system
ẋ1
ẋ2


=


0 1

−1 0

 
x1
x2


+


0
1


u(t − τ)

where τ ∈ [0, τ̄ ].
First, in this example we have ωmax = 1. According to

Theorem 1, the maximal tolerable delay is τ̄ < π
2 .

Second, we shall examine four delay bounds: τ̄ = 0.5, τ̄ = 1,
τ̄ = 1.3 and τ̄ = 1.4. For each delay, we perform a simulation
with four different initial conditions: [2; 2], [−2; −2], [2; −2] and
[−2; 2].

4.1. Parameters

In our simulation, we choose

α = 1 +
1

cos(ωmaxτ̄ )
,

which obviously satisfies Theorem 1.
The resulting ε∗ (and approximate settling time) are shown in

the following table.

τ̄ α ε∗ Settling time (s)

0.5 2.1395 0.7 50
1.0 2.8508 0.04 150
1.3 4.7383 0.002 400
1.4 6.8835 0.0002 1000

To save space, we only show the simulation data for two cases (see
Figs. 1 and 2).

Remark 2. Though the dependence of ε∗ on τ̄ is implicit and the
way we choose ε∗ is through experiments, it appears that as the
maximal delay τ̄ approaches the bound in Theorem 1, i.e. π2 in
this case, the ε∗ shrinks to zero with an increasing rate. Also, the
performance deteriorates with larger delay and smaller ε∗.
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Fig. 1. τ̄ = 0.5 and ε∗
= 1. The system is unstable.
Fig. 2. τ̄ = 0.5 and ε∗
= 0.7. It takes about 50 s to stabilize the system.
5. Conclusion

In this paper, the semi-global stabilization problems for general
uncritically unstable systems subject to input saturation and mul-
tiple unknown input delays are solved. Upper bounds on delays are
found for which a low-gain state feedback or a low-gain compen-
sator can be constructed to achieve the semi-global stabilization.
Appendix

Proof of Lemma 2. To prove item (1), we first note that

Fε(jωI − A − BFε)−1Bei
= Fε(I − (jωI − A)−1BFε)−1(jωI − A)−1Bei
= (I − Fε(jωI − A)−1B)−1Fε(jωI − A)−1Bei,
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where ei is the standard basis (indicator vector) inRm. Nextwenote
that:

σ̄ (I − Fε(jωI − A)−1B)−1
≤ 1, ∀ω ∈ R

(see Anderson &Moore, 1971). Moreover, ∀ω ∈ Ek, (jωI −A)−1Bei
has no pole and therefore

∥(jωI − A)−1Bei∥ ≤ M, ∀ω ∈ Ek,

forM > 0 independent of ω. But then

∥Fε(jωI − A − BFε)−1Bei∥ ≤ M∥Fε∥, ∀ω ∈ Ek,

and since Fε converges to zero we get

∥Fε(jωI − A − BFε)−1Bei∥ → 0

as ε → 0 uniformly in Ek.
It remains to show item (2). By definition, det(jωI − A) ≠ 0 for

all ω ∈ Ω . There exists a µ such that

σ(jωI − A) > µ, ∀ω ∈ Ω.

After all assume this is not the case. Then there exists a sequence
ωi

∈ Ω such that

σ(jωiI − A) → 0

as i → ∞. We can ensure that this sequence ωi is bounded since
for ω satisfying |ω| > ∥A∥ + 1 we have:

σ(jωI − A) > |ω| − ∥A∥ > 1.

But a bounded sequence ωi has a convergent subsequence whose
limit, denoted by ω̄, is inΩ (sinceΩ is closed). The limit ω̄ would
have the property

σ(jω̄I − A) = 0.

This implies ω̄ is an eigenvalue of A which is in contradiction with
the definition ofΩ .

Choose ε∗ such that ∥Fε∥ ≤ ρ
µ

2 ∥B∥−1 for ε ≤ ε∗. In that case:

σ(jωI − A − BF) > µ− ∥B∥∥Fε∥ >
µ

2
, ∀ω ∈ Ω,

where we assume, without loss of generality that ρ < 1. Hence

∥(jωI − A − BFε)−1
∥ <

2
µ
, ∀ω ∈ Ω,

but then

∥Fε(jωI − A − BFε)−1B∥ ≤ ∥Fε∥∥(jωI − A − BFε)−1
∥∥B∥ ≤ ρ

for all ω ∈ Ω . �

Proof of Lemma 3. The error between Gm
ε (s), given by (13), and

Gε(s), given by (21), is

Gε(s)− Gm
ε (s) =


I + Fε(sI − A − BFε)−1B


Fε(sI − A − KC)−1B

= [I + Gε(s)] Fε(sI − A − KC)−1B.

From (19) we obtain

σ̄ (I + Gε(jω)) ≤ 1, ∀ε > 0, ω ∈ R.

Moreover,

∥Fε(sI − A − KC)−1B∥∞ ≤ ∥Fε∥∥(sI − A − KC)−1B∥∞.

Since Fε → 0 as ε → 0, we immediately have that

lim
ε↓0

Gm
ε (jω)− Gε(jω) = 0,

uniformly in ω. �
Proof of Lemma 4. Define a system as
ẋ1 = Ax1 + BFεx2
ẋ2 = (A + BFε + KC)x2 − KCx1
z = Fεx2.

,


x1(0)
x2(0)


= ξ .

It is obvious that for any ξ

∥z∥2 =


∞

0
∥Fεe(A+BF )tξ∥2dt.

Let e = x1 − x2. In the new coordinates of (x1, e), the above system
can be written as
ẋ1 = (A + BFε)x1 − BFεe
ė = (A + KC)e
ż = Fε(x1 − e),

with e1(0) = x1(0)− x2(0). We get ∥z∥2 ≤ ∥Fεe∥2 + ∥Fεx1∥2.
Since A + KC is Hurwitz, there exists a γ such that ∥e∥2 ≤

γ ∥e(0)∥ for any e(0) ∈ Rn. Then

∥Fεe∥2 ≤ γ ∥Fε∥∥e(0)∥ → 0 as ε → 0.

But for x1, we have

∥Fεx1∥2 ≤ ∥Gε(s)∥∞∥Fεe∥2 +


∞

0
∥Fεe(A+BFε)tx1(0)∥2dt

≤ 2γ ∥Fε∥∥e(0)∥ +


∞

0
∥Fεe(A+BFε)tx1(0)∥2dt

where Gε(s) = Fε(sI − A − BFε)−1B. It was shown in Wang et al.
(2011) that

lim
ε↓0

∥Fεx1∥2 = lim
ε↓0


∞

0
∥Fεe(A+BFε)tx1(0)∥2dt = 0,

and thus

lim
ε↓0

∥z∥2 = 0. �
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