
arXiv:1203.1745v1 [cs.SY] 8 Mar 2012

,
,

http://arxiv.org/abs/1203.1745v1

Bisimilarity Enforcing Supervisory Control for
Deterministic Specifications✩

Yajuan Suna, Hai Linb, Ben M. Chena

aDept. of Electrical and Computer Engineering, National University of Singapore, Singapore
bDept. of Electrical Engineering, University of Notre Dame,USA

Abstract

This paper investigates the supervisory control of nondeterministic discrete
event systems to enforce bisimilarity with respect to deterministic specifications.
A notion of synchronous simulation-based controllabilityis introduced as a neces-
sary and sufficient condition for the existence of a bisimilarity enforcing supervi-
sor, and a polynomial algorithm is developed to verify such acondition. When the
existence condition holds, a supervisor achieving bisimulation equivalence is con-
structed. Furthermore, when the existence condition does not hold, two different
methods are provided for synthesizing maximal permissive sub-specifications.

Keywords: Supervisory control, bisimulation, discrete event systems

1. INTRODUCTION

The notion of bisimulation introduced by Milner (1989) has been successfully
used as a behavior equivalence in model checking (Clarke, 1997), software verifi-
cation (Chaki et al., 2004) and formal analysis of continuous (Tabuada & Pappas,
2004), hybrid (Tabuada et al., 2004) and discrete event systems (DESs). What
makes bisimulation appealing is its capability in complexity mitigation and branch-
ing behavior preservation, specially when we deal with large scale distributed and
concurrent systems such as multi-robot cooperative tasking, networked embedded
systems, and traffic management.

Therefore, recent years have seen increasing research activities in employing
bisimulation to DESs. References (Barrett & Lafortune, 1998), (Komenda & van Schuppen,

Email addresses:sunyajuan@nus.edu.sg (Yajuan Sun),hlin1@nd.edu (Hai Lin),
bmchen@nus.edu.sg (Ben M. Chen)

Preprint submitted to Automatica November 17, 2018

2005) and (Su et al., 2010) used bisimulation for the controlof deterministic sys-
tems subject to language equivalence. Madhusudan & Thiagarajan (2002) inves-
tigated the control for bisimulation equivalence with respect to a partial specifi-
cation, in which the plant is taken to be deterministic and all events are treated
to be controllable. Tabuada (2008) solved the controller synthesis problem for
bisimulation equivalence in a wide variety of scenarios including continuous sys-
tem, hybrid system and DESs, in which the bisimilarity controller is given as a
morphism in the framework of category theory. Zhou et al. (2006) investigated
the bisimilarity control for nondeterministic plants and nondeterministic specifi-
cations. A small model theorem was provided to show that a supervisor enforcing
the bisimulation equivalence between the supervised system and the specifica-
tion exists if and only if a state controllable automaton exists over the Cartesian
product of the system and specification state spaces. This small model theorem
was also extended for partial observation in (Zhou & Kumar, 2007). In both these
works, the existence of a bisimilarity supervisor depends on the existence of a state
controllable automaton, which is hard to calculate in a systematic way, and the
complexity of checking the existence condition is doubly exponential. To reduce
the computational complexity, Zhou & Kumar (2011) specialized to determinis-
tic supervisors. The existence condition for a deterministic bisimilarity supervi-
sor considering nondeterministic plants and nondeterministic specifications was
identified. Moreover, the synthesis of deterministic supervisors, feasible supspec-
ifications and infimal subspecifications were developed as well. Liu et al. (2011)
introduced a simulation-based framework upon which the bisimilarity control for
nondeterministic plants and nondeterministic specifications was studied. In par-
ticular, a new scheme based on the simulation relation was proposed for synchro-
nization which is different from those commonly used synchronization operators
such as parallel composition and product in the supervisorycontrol literature.

This paper studies the supervisory control of nondeterministic plants for bisim-
ulation equivalence with respect to deterministic specifications. Compared to
the existing literature, the contributions of this paper mainly lie on the follow-
ing aspects. First, a novel notion of synchronous simulation-based controllabil-
ity is introduced as a necessary and sufficient condition for the existence of a
bisimilarity enforcing supervisor. Although it is equivalent to the conditions in
(Zhou & Kumar, 2011) specialized to deterministic specifications, it provides a
great insight into what characters should a deterministic specification possesses
for bisimilarity control. Second, a test algorithm is proposed to verify the exis-
tence condition, which is shown to be polynomial complexity(less than the com-
plexity of the conditions in (Zhou & Kumar, 2011)). When the existence condi-

2

tion holds, we further present a systematic way to constructbisimilarity enforcing
supervisors. Third, since a given specification does alwaysguarantee the exis-
tence of a bisimilarity enforcing supervisor, a key question arises is how to find a
maximal permissive specification which enables the synthesis of bisimilarity en-
forcing supervisors. To answer this question, we investigate the calculation of
supremal synchronously simulation-based controllable sub-specifications by us-
ing two different methods. One is based on a recursive algorithm and the other
directly computes such a sub-specification based on formulas.

The rest of this paper is organized as follows. Section 2 gives the preliminary
and problem formulation. Section 3 presents the synthesis of bisimilarity enforc-
ing supervisors. Section 4 investigates the test algorithmfor the existence of a
bisimilarity enforcing supervisor. Section 5 explores thecalculation of maximal
permissive sub-specifications. This paper concludes with section 6.

2. Preliminary and Problem Formulation

2.1. Preliminary Results

A DES is modeled as a nondeterministic automatonG = (X,Σ, x0, α,Xm),
whereX is the set of states,Σ is the set of events,α : X × Σ→2X is the transi-
tion function,x0 is the initial state andXm ⊆ X is the set of marked states. The
event setΣ can be partitioned intoΣ = Σuc ∪ Σc, whereΣuc is the set of uncon-
trollable events andΣc is the set of controllable events. LetΣ∗ be the set of all
finite strings overΣ including the empty stringǫ. The transition functionα can be
extended from events to traces,α : X × Σ∗→2X, which is defined inductively as:
for any x ∈ X, α(x, ǫ) = x; for any s ∈ Σ∗ andσ ∈ Σ, α(x, sσ) = α(α(x, s), σ).
If the transition function is a partial mapα : X × Σ→X, G is said to be a de-
terministic automaton. ForX1 ⊆ X, the notationα|X1×Σ meansα is restricted
from a smaller domainX1×Σ to 2X1. GivenX1 ⊆ X, the subautomaton ofG with
respect toX1, denoted byFG(X1), is defined as:FG(X1) = (X1,Σ, x0, α1,Xm1),
whereα1=α|X1×Σ

andXm1 = X1∩Xm. The active event set at statex is defined as
EG(x) = {σ ∈ Σ | α(x, σ) is defined}. Given a strings ∈ Σ∗, the length of the
string s, denoted as|s|, is the total numbers of events, ands(i) is thei-th event of
this string, where 1≤ i ≤ |s|. GivenΣ1 ⊆ Σ, a projectionPΣ→Σ1: Σ

∗→Σ∗1 is used
to filter a string of events fromΣ to Σ1, and it is defined inductively as follows:
PΣ→Σ1(ǫ) = ǫ; for anyσ ∈ Σ ands ∈ Σ∗, PΣ→Σ1(sσ) = PΣ→Σ1(s)σ if σ ∈ Σ1, other-
wise,PΣ→Σ1(sσ) = PΣ→Σ1(s). The language generated byG is defined asL(G) =
{s ∈ Σ∗ | α(x0, s) is defined}, and the marked language generated byG is defined
asLm(G) = {s ∈ Σ∗ | α(x0, s) ∩ Xm , ∅}. Consider three languagesK,K1,K2 ⊆ Σ

∗.

3

The Kleene closure ofK, denoted asK∗, is the languageK∗ = ∪n∈NKn, where
K0
= {ǫ} and for anyn ≥ 0, Kn+1

= KnK. The prefix closure ofK, denoted asK,
is the languageK = {s ∈ Σ∗ | (∃t ∈ Σ∗) st ∈ K}. The quotient ofK1 with respect to
K2, denoted asK1/K2, is the languageK1/K2 = {s ∈ Σ∗ | (∃t ∈ K2) st ∈ K1}. For
two languagesK1,K2 ∈ Σ

∗ with K2 ⊆ K1 , ∅, let G(K1,K2) be a deterministic au-
tomaton such thatL(G(K1,K2)) = K1 andLm(G(K1,K2)) = K2. For a nondeterministic
G, let det(G) be a minimal deterministic automaton such thatL(det(G)) = L(G)
andLm(det(G)) = Lm(G).

To model the interaction between automata, we introduce parallel composition
as below (Cassandras & Lafortune, 2008).

Definition 1. GivenG1 = (X1,Σ1, x01, α1,Xm1) andG2 = (X2,Σ2, x02, α2,Xm2), the
parallel composition ofG1 andG2 is an automaton

G1||G2 = (X1 × X2,Σ1 ∪ Σ2, α1||2, (x01, x02),Xm1 × Xm2),

where for anyx1 ∈ X1, x2 ∈ X2 andσ ∈ Σ, the transition function is defined as:

α1||2((x1, x2), σ) =

α1(x1, σ) × α2(x2, σ) σ ∈ EG1(x1) ∩ EG2(x2);
α1(x1, σ) × {x2} σ ∈ EG1(x1) ∩ σ ∈ E1\E2;
{x1} × α2(x2, σ) σ ∈ EG2(x2) ∩ σ ∈ E2\E1;

∅ otherwise.

WhenΣ1 = Σ2, parallel composition can be understood as a form of control,
where a supervisor is designed to restrict the behavior of the plant.

Next we present the synchronized state map, which is used to find the syn-
chronized state pairs of two automata (Zhou et al., 2006).

Definition 2. GivenG1 = (X1,Σ1, x01, α1,Xm1) andG2 = (X2,Σ2, x02, α2,Xm2), the
synchronized state mapXsynG1G2: X1→ 2X2 from G1 to G2 is defined as

XsynG1G2(x1) = {x2 ∈ X2 | (∃s ∈ Σ∗) x1 ∈ α1(x01, s) ∧ x2 ∈ α2(x01, s)}.

Most literature on supervisory control aims to achieve language equivalence
between the supervised system and the specification. The necessary and sufficient
condition for the existence of a language enforcing supervisor is captured by the
notion of language controllability as below (Ramadge & Wonham, 1987).

4

Definition 3. Given G = (X,Σ, x0, α,Xm), a languageK ⊆ L(G) is said to be
language controllable with respect toL(G) andΣuc if

KΣuc∩ L(G) ⊆ K.

As a stronger behavior equivalence than language equivalence, bisimulation is
stated as follows (Milner, 1989). It is known that bisimulation implies language
equivalence and marked language equivalence, but the converse does not hold.

Definition 4. Given G1 = (X1,Σ, x01, α1,Xm1) andG2 = (X2,Σ, x02, α2,Xm2), a
simulation relationφ is a binary relationφ ⊆ X1×X2 such that (x1, x2) ∈ φ implies:

(1) (∀σ ∈ Σ)[∀x
′

1 ∈ α1(x1, σ)⇒ ∃x
′

2 ∈ α2(x2, σ) such that (x
′

1, x
′

2) ∈ φ];
(2) x1 ∈ Xm1⇒ x2 ∈ Xm2.

If there is a simulation relationφ ⊆ X1 × X2 such that (x01, x02) ∈ φ, G1 is said
to be simulated byG2, denoted byG1 ≺φ G2. Forφ ⊆ (X1 ∪ X2)2, if G1 ≺φ G2,
G2 ≺φ G1 andφ is symmetric,φ is called a bisimulation relation betweenG1 and
G2, denoted byG1 �φ G2. We sometimes omit the subscriptφ from≺φ or�φ when
it is clear from the context. Then we present a motivating example of this paper.

2.2. A Motivating Example

Figure 1: multi-robot system (MRS) (Left),G1 (Middle) andG2(Right)

Consider a cooperative multi-robot system (MRS) configuredin Fig. 1 (Left).
The MRS consists of two robotsR1 andR2. Both of them have the same com-
munication, position, pushing, scent-sensing and frequency-sensing capabilities.

5

Furthermore,R1 has color-sensing capabilities, whileR2 has shape-sensing capa-
bility. R1 andR2 can cooperatively search and clear a dangerous object (the white
cube) in the workspace. Initially,R1 andR2 are positioned outside the workspace.
Let i = 1, 2. When the work request announces (eventwi), Ri is required to enter
the workspace. Due to actuator limitations, it nondeterministically goes along one
of two pre-defined paths (eventg). In the first path,R1 activates color-sensing
(eventc) and scent-sensing (evento) capabilities to detect the dangerous object;
whereas in the second path, besides color-sensing and scent-sensing capabilities,
R1 also activates frequency-sensing (eventf) for detection. Similarly,R2 activates
shape-sensing (events), scent-sensing and frequency-sensing capabilities in the
first path, while in the second path it activates shape-sensing and scent-sensing
capabilities. After detecting the dangerous object,Ri pushes the dangerous object
outward the workspace (eventp), and then returns to the initial position (eventr)
for the next implementation.

Figure 2:G1||G2 (First Left),R (Second Left),S1 (Second Right) andS2 (First Right)

The automaton modelGi of Ri with alphabetΣi is shown in Fig. 1, where
Σ1 = {w1, g, c, o, f , p, r} andΣ2 = {w2, g, s, o, f , p, r}. SinceRi can not disable
the host computer to broadcast the work announcement, the event wi is deemed
uncontrollable, that iswi ∈ Σuci. The rest events are controllable. The cooperative
behavior ofR1 andR2 can be represented asG1||G2 (Fig. 2 (First Left)). The
specificationR, configured in Fig. 2, is given in order to restrict the cooperative
behaviorG1||G2. According to the specification, after bothR1 andR2 receive the
work command and go to the workspace, two possible states maybe reached
by the MRS nondeterministically. In the first state, the color sensor, the shape
sensor and the scent sensors can be adopted to confirm an objective is dangerous.

6

However, to save the energy, in the second state only the color sensor and the
shape sensor can be adopted for dangerous object detection.After the detection,
the dangerous object is cleared from the workspace.

Figure 3:||i∈{1,2}Gi ||Si (Left), Rs1 (Middle) andRs2 (Right)

For such a MRS, if we use language equivalence as behavior equivalence,
the control target is to design supervisorsS1 andS2 such thatL(‖i∈{1,2} Gi ||Si) =
L(R). According to the results in (Willner & Heymann, 1991), this problem can be
solved by designingSi such thatL(Gi ||Si) = PΣ1∪Σ2→Σi (L(R)). SincePΣ1∪Σ2→Σi(L(R))
is language controllable with respect toL(Gi) andΣuci, we can constructSi as
shown in Fig. 2. So the supervised system||i∈{1,2}Gi ||Si (Fig. 3 (Left)) is lan-
guage equivalent toL(R). However, it can be seen that||i∈{1,2}Gi ||Si enables all
the color sensor, the shape sensor and the scent sensors for dangerous object de-
tection, which violates the energy saving requirement in the specification. Hence
langauge equivalence is not adequate for this case, which calls for the use of bisim-
ulation as behavior equivalence. That is, we need design supervisorS′i such that
||i∈{1,2}Gi ||S′i � R. For such a bisimilarity control problem, a promising method
(Karimadini & Lin, 2011) is to decompose the global specification R into sub-
specificationsRsi with alphabetΣi for Ri (Fig. 3) such that||i∈{1,2}Rsi � R . If we
can designS′i such thatGi ||S′i � Rsi , then ||i∈{1,2}Gi ||S′i � R. In particular,Rs2 is
deterministic, which motivates us to consider the bisimilarity control for deter-
ministic specifications in this paper.

2.3. Problem Formulation

In the rest of paper, unless otherwise stated we will useG = (X,Σ, α, x0,Xm),
R= (Q,Σ, δ, q0,Qm) andS = (Y,Σ, β, y0,Ym) to denote the nondeterministic plant,

7

the deterministic specification and the supervisor (possibly nondeterministic) re-
spectively. Next we formalize the notion of bisimilarity enforcing supervisor,
which always enables all uncontrollable events and enforces bisimilarity between
the supervised system and the specification.

Definition 5. Given a plantG and a specificationR, a supervisorS is said to be a
bisimilarity enforcing supervisor forG andR if:

(1) There is a bisimulation relationφ such thatG||S �φ R;
(2) (∀y ∈ Y)(∀σ ∈ Σuc) β(y, σ) , ∅.

This paper aims to solve the following problems.
Problem 1: Given a nondeterministic plantG and a deterministic specification

R, what condition guarantees the existence of a bisimilarityenforcing supervisor
S for G andR?

Problem 2: How to check this condition effectively?
Problem 3: If the condition is satisfied, how to construct a bisimilarity en-

forcing supervisorS?
Problem 4: If the condition is not satisfied, how to obtain a maximal per-

missive sub-specification which enables the synthesis of bisimilarity enforcing
supervisors?

3. Supervisory Control for Bisimilarity

This section investigates Problem 1 and Problem 3, also called the bisimilarity
enforcing supervisor synthesis problem. We begin with the existence condition
of a bisimilarity enforcing supervisor. For sufficiency, since we need design a
bisimilarity enforcing supervisor, the following conceptis introduced.

Definition 6. Given G1 = (X1,Σ, x01, α1,Xm1), the uncontrollable augment au-
tomatonG1uc of G1 is defined as:

G1uc = (X1 ∪ {Dd},Σ, x01, αuc,Xm1),

where for anyx ∈ X1 ∪ {Dd} andσ ∈ Σ:

αuc(x, σ) =

α1(x, σ) σ ∈ EG1(x);
{Dd} (σ ∈ Σuc\EG1(x)) ∨ (x = Dd ∧ σ ∈ Σuc);
∅ otherwise.

8

We can see that an uncontrollable augment automaton can be employed in the
construction of bisimilarity enforcing supervisors because it naturally satisfies the
condition (2) required for a bisimilarity enforcing supervisor (Definition 5).

On the other side, for necessity we haveG||S � R, which impliesR ≺ G||S ≺
G. HenceR ≺ G is a necessary condition to guarantee the existence of a bisim-
ilarity enforcing supervisor. Moreover,G||S � R implies L(G||S) = L(R), thus
language controllability of the specification is also a necessary condition for the
existence of a bisimilarity enforcing supervisor. To satisfy those necessary condi-
tions, we will introduce synchronous simulation-based controllability as a prop-
erty of the specification. Before that, we need the followingconcept.

Definition 7. Given G1 = (X1,Σ, x01, α1,Xm1), G2 = (X2,Σ, x02, α2,Xm2) and a
simulation relationφ such thatG1 ≺φ G2, φ is called a synchronous simulation
relation fromG1 to G2 if (x1, x2) ∈ φ for anyx1 ∈ X1 andx2 ∈ XsynG1G2(x1).

If there exists a synchronous simulation relationφ from G1 to G2, G1 is said
to be synchronously simulated byG2, denoted asG1 ≺synφ G2. For a determin-
istic specificationR, if R is synchronously simulated byG, thenG possesses the
branches which are bisimilar toRand the branches which are outsideL(R). Hence
it turns out thatG||R� R. If R is further language controllable with respect toL(G)
andΣuc, thenG||R = G||Ruc, implying thatRuc is a candidate of bisimilarity en-
forcing supervisor. Base on this observation, we provide the following concept.

Definition 8. GivenG1 = (X1,Σ, x01, α1,Xm1) andG2 = (X2,Σ, x02, α2,Xm2), G1 is
said to be synchronously simulation-based controllable with respect toG2 andΣuc

if it satisfies:
(1) There is a synchronous simulation relationφ such thatG1 ≺synφ G2;
(2) L(G1) is language controllable with respect toL(G2) andΣuc.

It is immediate to see that whenR is synchronously simulation-based con-
trollable with respect toG andΣuc, it not only satisfies the necessary conditions
(R ≺ G and language controllability ofL(R)) for the existence of a bisimilar-
ity enforcing supervisor but also enables the development of Ruc as a bisimilarity
enforcing supervisor to accomplish the sufficiency of the existence condition.

Then we present a necessary and sufficient condition for the existence of a
bisimilarity enforcing supervisor.

Theorem 1. Given a plant G and a deterministic specification R, there exists a
bisimilarity enforcing supervisor S for G and R if and only ifR is synchronously
simulation-based controllable with respect to G andΣuc.

9

Proof. For sufficiency, we chooseRuc as the supervisor. LetG||R= (X||,Σ, (x0, q0),
α||,Xm||). Consider a relationφ1 = {((x, q), q) | (x, q) ∈ X||}. We show thatφ1 ∪ φ

−1
1

is a bisimulation relation fromG||R to R. First note that ((x0, q0), q0) ∈ φ1. Pick
((x, q), q) ∈ φ1 and (x′, q′) ∈ α||((x, q), σ), whereσ ∈ Σ. By the definition of
parallel composition, we haveq′ ∈ δ(q, σ), which implies ((x′, q′), q′) ∈ φ1. When
(x′, q′) ∈ Xm||, thenq′ ∈ Qm. On the other side, pick (q, (x, q)) ∈ φ−1

1 andq′ ∈
δ(q, σ). Since (x, q) ∈ X|| and there is a synchronous simulation relationφ such that
R≺synφ G, we have (q, x) ∈ φ. Then there isx′ ∈ α(x, σ) such that (q′, x′) ∈ φ, and
if q′ ∈ Qm, thenx′ ∈ Xm. It follows that (x′, q′) ∈ α||((x, q), σ) and (x′, q′) ∈ Xm||

whenq′ ∈ Qm. That is, (q′, (x′, q′)) ∈ φ−1
1 . HenceG||R �φ1∪φ

−1
1

R. Moreover
from determinism and language controllability ofR and the fact thatRuc adds
every state a transition toDd through undefined uncontrollable events does not
change the result of parallel composition, we haveG||Ruc = G||R. It implies that
G||Ruc �φ1∪φ

−1
1

R.
For necessity, suppose there is a bisimilarity enforcing supervisorS for G

andR. Then, there is a bisimulation relationφ′ = φ ∪ φ−1 such thatR ≺φ G||S
andG||S ≺φ−1 R. Let G||S = (XG||S,Σ, (x0, y0), αG||S,XmG||S). Consider a relation
φ1 = {(q, x) ∈ Q× X | (∃y ∈ Y) (q, (x, y)) ∈ φ}. We show thatφ1 is a synchronous
simulation relation fromR to G. By the definition of parallel composition,φ1 is
a simulation relation fromR to G. Assume there isq ∈ Q and x′ ∈ XsynRG(q)
such that (q, x′) < φ1. Hence there existss ∈ Σ∗ such thatq ∈ δ(q0, s) and
x′ ∈ α(x0, s). SinceR ≺φ G||S, for q ∈ δ(q0, s), there is (x, y) ∈ αG||S((x0, y0), s)
such that (q, (x, y)) ∈ φ, which impliesy ∈ β(y0, s) and in turn implies (x′, y) ∈
αG||S((x0, y0), s). BecauseG||S ≺φ−1 R, for (x′, y) ∈ αG||S((x0, y0), s), there isq′ ∈
δ(q0, s) such that ((x′, y), q′) ∈ φ−1. SinceR is deterministic, we haveq = q′.
Therefore, (q, (x′, y)) ∈ φ, which implies (q, x′) ∈ φ1. It introduces a contradiction.
Then the assumption is not correct. That is, for anyq ∈ Q and x ∈ XsynRG(q),
(q, x) ∈ φ1. SoR≺synφ1 G. Next we show language controllability ofL(R). Since a
bisimilarity enforcing supervisorS enables all uncontrollable events at each state,
L(G||S) is language controllable with respect toL(G) andΣuc, further,G||S � R
impliesL(G||S) = L(R). It follows thatL(R) is language controllable w.r.t.L(G)
andΣuc. SoR is synchronously simulation-based controllable w.r.t.G andΣuc.

Remark 1. Theorem 1 shows that if a deterministic R is synchronously simulation-
based controllable with respect to G andΣuc, Ruc is a bisimilarity enforcing su-
pervisor for G and R. Here synchronous simulation-based controllability of R
is equivalent to the conditions (G||det(R) � R and language controllability of
L(R)) specialized to deterministic specifications (Zhou& Kumar, 2011) to ensure

10

the existence of a deterministic bisimilarity supervisor.However, the notion of
synchronous simulation-based controllability offers computation advantages com-
pared to the conditions in (Zhou& Kumar, 2011) (See section 4). Moreover, it en-
ables the calculation of maximal permissive sub-specification when the existence
condition for a bisimilarity enforcing supervisor does nothold (See section 5).

Figure 4: S′1 (First Left),S′2 (Second Left),G1||S′1 (Second Right) andG2||S′2 (First Right)

Now we revisit the motivating example.

Example 1. Let i=1, 2. We need design supervisor S′i such that Gi ||S′i � Rsi . Since
Rs2 is deterministic and synchronously simulation-based controllable with respect
to G2 andΣuc2={w2}, from Theorem 1 we can design(Rs2)uc to be S′2 (Fig. 4 (Sec-
ond Left)). The supervised system G2||S′2 is shown in Fig. 4 (First Right) and it can
be seen that G2||S′2�φ∪φ−1Rs2, whereφ={(q′0, (x

′
0, y
′
0)), (q

′
1, (x

′
1, y
′
1)), (q

′
2, (x

′
2, y
′
2)), (q

′
2,

(x′3, y
′
2)), (q

′
3, (x

′
4, y
′
3)), (q

′
4, (x

′
5, y
′
4))}. In addition, S′1 for G1 can be designed as

shown in Fig. 4 (First Left) according to our results in (Sun& Lin, 2012). Then
G1||S′1 � Rs1 (Fig. 4 (Second Right)). As a result,||i∈{1,2}Gi ||S′i � R.

4. A Test Algorithm for the Existence of a Bisimilarity Enfor cing Supervisor

To solve Problem 2, an algorithm is proposed in this section to test the exis-
tence of a bisimilarity enforcing supervisor. We start by introducing synchronously
simulation-based controllable product, which will be usedin the test algorithm.

11

Definition 9. GivenG1 = (X1,Σ, x01, α1,Xm1) andG2 = (X2,Σ, x02, α2,Xm2), the
synchronously simulation-based controllable product ofG1 andG2 is an automa-
ton

G1||syncG2 = ((X1 × X2) ∪ {qd, q
′
d},Σ, α12, (x01, x02),Xm1 × Xm2),

where for any (x1, x2) ∈ X1 × X2 andσ ∈ Σ, the transition function is defined as:

α12((x1,x2), σ) =

α1(x1, σ)×α2(x2, σ) σ ∈ EG1(x1) ∩ EG2(x2);
qd σ∈EG1(x1)\EG2(x2);
q′d σ∈Σuc∩ (EG2(x2)\EG1(x1));
∅ otherwise.

Since synchronous simulation-based controllability is a necessary and suffi-
cient condition for the existence of a bisimilarity enforcing supervisor, the follow-
ing algorithm for testing synchronous simulation-based controllability of R also
verifies the existence of a bisimilarity enforcing supervisor for G andR.

Algorithm 1. Given a plant G and a deterministic specification R, the algorithm
for testing synchronous simulation-based controllability of R with respect to G
andΣuc is described as below.

Step 1: Obtain R||syncG = (Xsync,Σ, αsync, (q0, x0),Xmsync);
Step 2: R is synchronously simulated-based controllable with respect to G and

Σuc if and only if qd and q′d are not reachable in R||syncG and x ∈ Xm for any
reachable state(q, x) in R||syncG with q∈ Qm.

Theorem 2. Algorithm 1 is correct.

Proof. From the definition of synchronously simulation-based controllable prod-
uct, it is obvious that any (q, x) satisfyingx ∈ XsynRG(q) is a state reachable in
R||syncG, and any (q, x) ∈ Xsync\{qd, q′d} satisfies thatx ∈ XsynRG(q). For syn-
chronous simulation-based controllability to hold, condition (1) and condition (2)
of Definition 8 should be satisfied. On the other hand, if condition (1) is violated,
there are two cases. Case 1: there exist (q, x) andσ ∈ Σ such thatx ∈ XsynRG(q)
andσ ∈ ER(q)\EG(x). So qd ∈ αsync((q, x), σ). Case 2: there is (q, x) such
that x ∈ XsynRG(q) and x < Xm whenq ∈ Qm. If condition (2) is violated, i.e.
there exist (q, x) andσ ∈ Σuc such thatx ∈ XsynRG(q) andσ ∈ EG(x)\ER(q). So
q′d ∈ αsync((q, x), σ). It follows thatqd andq′d are reachable inR||syncG or x < Xm

for any reachable state (q, x) in R||syncG with q ∈ Qm iff R is not synchronously
simulated-based controllable w.r.t.G andΣuc.

12

Remark 2. Algorithm 1 can be terminated because the state sets and the event
sets of R and G are finite. Since G is nondeterministic and R is deterministic,
their numbers of transitions are O(|X|2|Σ|) and O(|Q||Σ|) respectively. Then the
complexity of constructing R||syncG is O(|X|2|Q|2|Σ|). In addition, the complexity of
checking the reachability of qd and q′d in R||syncG is O(log(|X||Q|)) (Jones, 1975).
So the complexity of Algorithm 1 is O(|X|2|Q|2|Σ|). That is, the algorithm for test-
ing the existence of a bisimilarity enforcing supervisor has polynomial complex-
ity. Zhou& Kumar (2011) used the conditions such as G||det(R) � R and L(R)
is language controllable with respect to L(G) andΣuc to guarantee the existence
of a deterministic supervisor that achieves bisimulation equivalence. The com-
plexity of verifying those conditions with respect to deterministic specifications is
O(|X|2|Q|2|Σ|3log(|X||Q|2)) (Remark 2 in (Zhou& Kumar, 2011)). Hence, we argue
that Algorithm 1 is more effective.

We provide the following example to illustrate the algorithm for checking syn-
chronous simulation-based controllability.

Figure 5: PlantG (Left), SpecificationR (Middle) andR||syncG (Right) of Example 2

Example 2. Consider a plant G and a specification R withΣuc = {b, e} config-
ured in Fig. 5. We can see that R is not synchronously simulation-based con-
trollable with respect to G andΣuc because for f∈ L(G) ∩ L(R) and e ∈ Σuc,
f e∈ L(G)\L(R), and e is defined at q7 but not x8 ∈ XsynRG(q7).

Next we use Algorithm 1 to test synchronously simulation-based controllability
of R. The synchronously simulation-based controllable product R||syncG is shown
in Fig. 5 (Right). It can be seen that qd and q′d are reachable in R||syncG. Hence R
is not synchronously simulation-based controllable with respect to G andΣuc.

13

5. Supremal Synchronously Simulation-Based ControllableSub-specifications

This section studies Problem 4, i.e., the synthesis of supremal synchronously
simulation-based controllable sub-specifications, because a synchronous simulation-
based controllable sub-specification ensures the existence of a bisimilarity enforc-
ing supervisor. First we introduce the notion of supremal.

Given (A,≤) andA′ ⊆ A, where≤⊆ A× A is a transitive and reflexive relation
overA, x ∈ A is said to be a supremal ofA′, denoted bysupA′, if it satisfies:

(1) ∀y ∈ A′: y ≤ x;
(2) ∀z ∈ A : [∀y ∈ A′ : y ≤ z] ⇒ [x ≤ z].
When we define the supremal ofA′, a set (A,≤) should be given with respect

to the element ofA′. If the elements ofA′ are languages, the set (2Σ
∗

,⊆) should be
applied because 2Σ

∗

includes all languages over alphabetΣ and language inclusion
fully captures the comparison between two languages. However, if the elements of
A′ are automata, the set (B,≺) should be applied, whereB is a full set of automata
with alphabetΣ and≺⊆ B × B is the simulation relation, sinceB includes all
automata over alphabetΣ and the simulation relation is adequate for automata
(possibly nondeterministic) comparison.

We consider the class of sub-specifications that satisfies synchronous simulation-
based controllability as below.

C1 := {R′ | R′ is deterministic,R′ ≺ R and R′ is synchronous

simulation− based controllable w.r.t.G andΣuc}

It can be seen that the supremal ofC1 with respect to (B,≺) is a supremal
synchronously simulation-based controllable sub-specification. However, it is
difficult to directly calculate the supremal ofC1 becauseC1 is not closed under
the upper bound (join) operator with respect to (B,≺) (Zhou & Kumar, 2011).
To encounter this problem, we would like to convert the automaton setC1 into
equivalently expressed language sets which are closed under the upper bound (set
union) operator with respect to (2Σ

∗

,⊆) (Cassandras & Lafortune, 2008). Next we
do this conversion item by item. First, for two deterministic automataR′ and
R, the conditionR′ ≺ R is equivalent to the language conditionL(R′) ⊆ L(R)
andLm(R′) ⊆ Lm(R). Second, language controllability required in synchronous
simulation-based controllability is naturally a languagedescription. It remains
to convert synchronous simulation relation required in synchronous simulation-
based controllability to an equivalent language condition. To complete the con-
version, we need the following concept.

14

Definition 10. GivenG = (X,Σ, x0, α,Xm), the synchronous state merger operator
onG is defined as an automaton

Fsyn(G) = (Xsyn,Σ, {x0}, αsyn,Xmsyn),

whereXsyn = 2X, Xmsyn = {Y1 | Y1 ⊆ Xm}, and for anyA ∈ Xsyn andσ ∈ Σ, the
transition function is defined as:

αsyn(A, σ) =

{

∪x∈Aα(x, σ) σ ∈ ∩x∈AEG(x);
unde f ined otherwise.

By using Fsyn(G), the synchronous simulation relation from a deterministic
automatonG1 to a plantG is equivalent to language conditionsL(G1) ⊆ L(Fsyn(G))
andLm(G1) ⊆ Lm(Fsyn(G)), which is illustrated by the following proposition.

Proposition 1. Given a plant G and a deterministic automaton G1, there is a
synchronous simulation relationφ such that G1 ≺synφ G iff L(G1) ⊆ L(Fsyn(G))
and Lm(G1) ⊆ Lm(Fsyn(G)).

Proof. Let Fsyn(G) = (Xf ,Σ, {x0}, α f ,Xm f), G1 = (X1,Σ, x01, α1,Xm1) andGL =

G1||G = (XL,Σ, (x01, x0), αL,XmL). For sufficiency, consider a relationφ = {(x1, x) ∈
X1 × X | x ∈ XsynG1G(x1)}. We show thatφ is a synchronous simulation relation
from G1 to G. First note that (x01, x0) ∈ φ. Pick (x1, x) ∈ φ andx′1 ∈ α1(x1, σ),
whereσ ∈ Σ. Sincex ∈ XsynG1G(x1), there iss ∈ Σ∗ such thatx1 ∈ α1(x01, s) and
x ∈ α(x0, s). Hences, sσ ∈ L(G1), moreover,L(G1) ⊆ L(Fsyn(G)). It follows that
s, sσ ∈ L(Fsyn(G)). Therefore there existA = α f ({x0}, s) andA1 = α f (A, σ). By
the definition ofFsyn(G), we havex ∈ A andσ ∈ ∩x′′∈AEG(x′′), which implies
there isx′ ∈ α(x, σ) such thatx′ ∈ XsynG1G(x′1), i.e. (x′1, x

′) ∈ φ. Next we show
that x1 ∈ Xm1 implies x ∈ Xm. Becausex1 ∈ Xm1, we haves ∈ Lm(G1), in addi-
tion, Lm(G1) ⊆ Lm(Fsyn(G)). It follows s ∈ Lm(Fsyn(G)), that isA ⊆ Xm, implying
x ∈ Xm. SoG1 ≺synφ G.

For necessity, the induction method is used to proves ∈ L(Fsyn(G)) for any
s ∈ L(G1), that isL(G1) ⊆ L(Fsyn(G)). (1) |s| = 0, thens = ǫ. It is obvious
that ǫ ∈ L(Fsyn(G)). (2) Assume when|s| = n, we haves ∈ L(Fsyn(G)) for any
s ∈ L(G1). (3) |s| = n + 1. Let s = s1σ, whereσ ∈ Σ. Becauses1σ ∈ L(G1)
andG1 is deterministic, for anyx2 ∈ α1(x01, s1), we haveσ ∈ EG1(x2). Since
G1 ≺synφ G, for any x′′ ∈ α(x0, s1), we have (x2, x′′) ∈ φ. It follows thatσ ∈
∩x′′∈α(x0,s1)EG(x′′). In addition, |s1| = n implies s1 ∈ L(Fsyn(G)), which in turn
implies there isA1 = α f ({x0}, s1) such thatx′′ ∈ A1. HenceA2 = α f (A1, σ) =

15

∪x′′∈A1α(x
′′, σ), that is,s1σ ∈ L(Fsyn(G)). Therefore for anys ∈ L(G1), we have

s ∈ L(Fsyn(G)), i.e. L(G1) ⊆ L(Fsyn(G)). Next we showLm(G1) ⊆ Lm(Fsyn(G)) by
proving s′ ∈ Lm(Fsyn(G)) for any s′ ∈ Lm(G1). Sinces′ ∈ Lm(G1), there isx4 ∈

α1(x01, s′) such thatx4 ∈ Xm1. BecauseG1 ≺synφ G implies (x4, x′′′) ∈ φ for any
x′′′ ∈ α(x0, s′), we havex′′′ ∈ Xm. Definition ofFsyn(G) impliess′ ∈ Lm(Fsyn(G)),
i.e. Lm(G1) ⊆ Lm(Fsyn(G)).

Hence the automaton setC1 can be converted into the following langauge sets:

C2 := {L1 ⊆ L(R) ∩ L(Fsyn(G)) | L1 = L1 and L1 is language controllable

w.r.t. L(G) andΣuc};

C3 := {L1 ∩ Lm(R) ∩ Lm(Fsyn(G)) | L1 ∈ C2}.

The computation of supremal synchronously simulation-based controllable
sub-specification, i.e.,supC1, with respect to (B,≺), can be achieved through the
computation of the supremal languages ofC2 andC3 with respect to (2Σ

∗

,⊆) as
shown in the following theorem.

Theorem 3. Given a plant G and a deterministic specification R, if supC2 , ∅,
then G(supC2,supC3) ∈ supC1.

Proof. Let L1=supC2,∅ and L′1=supC2∩Lm(R)∩Lm(Fsyn(G))=supC3. First we
show thatG(L1,L′1)∈C1. SinceL1=supC2, we haveL1∈C2, which impliesL1 is
language controllable w.r.t.L(G) andΣuc andL1⊆L(Fsyn(G)). In addition, defi-
nition of L′1 implies L′1⊆Lm(Fsyn(G)). From Proposition 1, it follows thatG(L1,L′1)

is synchronously simulation-based controllable w.r.t.G andΣuc. SinceL1∈C2

also impliesL1⊆L(R) andL′1⊆Lm(R) andR andG(L1,L′1) are deterministic, we have
G(L1,L′1)≺R. Therefore,G(L1,L′1)∈C1. Next we show thatR1≺G(L1,L′1) for anyR1 ∈ C1.
Suppose there isR1∈C1 such thatR1⊀G(L1,L′1). SinceR1∈C1, it impliesR1≺R, more-
over,R1 andRare deterministic. It follows thatL(R1)⊆L(R) andLm(R1)⊆Lm(R). In
addition,R1∈C1 also implies synchronous simulation-based controllability of R1.
HenceL(R1) is language controllable with respect toL(G) andΣuc and there is a
synchronous simulation relationφ such thatR1≺synφG implying L(R1)⊆L(Fsyn(G))
and Lm(R1)⊆Lm(Fsyn(G)) according to Proposition 1. HenceL(R1)∈C2. More-
over, Lm(R1)⊆L(R1). By the definition of supremal, we haveL(R1)⊆supC2=L1

andLm(R1)⊆supC3=L′1, further,R1 andG(L1,L′1) are deterministic. It follows that
R1≺G(L1,L′1), which introduces a contradiction. Hence, the assumption is not cor-
rect. That is, we haveR1≺G(L1,L′1) for anyR1∈C1. SoG(L1,L′1)=G(supC2,supC3)∈supC1.

16

Next we present a recursive algorithm for computing the supremal synchronously
simulation-based controllable sub-specification.

Algorithm 2. Given a plant G and a deterministic specification R, the algo-
rithm for computing the supremal synchronously simulation-based controllable
sub-specification with respect to G andΣuc is described as follows:

Step 1: Obtain det(G) = (Xdet,Σ, x0det, αdet,Xmdet), G′ = (Fsyn(G)||R)uc =

(X′,Σ, x′0, α
′,X′m) and G′′ = G′|| det(G) = (X′′,Σ, x′′0 , α

′′,X′′m);
Step 2: Z0 := {(x′1, x2) ∈ X′ × Xdet | x′1 = Dd};
Step 3:∀k ≥ 0, Zk+1 = Zk ∪ {z ∈ X′′ − Zk | (∃σ ∈ Σuc) α′′(z, σ) ∈ Zk};
Step 4: If Zk+1 = Zk , Z, then the subautomaton FG′′(X′′ − Zk) of G′′ is

a supremal synchronously simulation-based controllable sub-specification with
respect to G andΣuc.

Theorem 4. Algorithm 2 is correct.

Proof. ConsiderR′′=FG′′(X′′−Zk)=(Q′′,Σ, q′′0 , δ
′′,Q′′m), whereZk+1=Zk,Z with k≥

0. First we show thatL(R′′)∈C2. Definition ofZk impliesL(R′′) is language con-
trollable w.r.t.L(G) andΣuc, and the fact thatL(det(G))=L(G) impliesL(R′′)⊆L(Fsyn

(G))∩L(R) andLm(R′′)⊆Lm(Fsyn(G))∩Lm(R). It follows thatL(R′′)∈C2. Next we
show thatL2⊆L(R′′) for anyL2∈C2. Suppose there isL2∈C2 such thatL2*L(R′′),
that is, there iss∈Σ∗ such thats∈L2\L(R′′). Sinces<L(R′′), there existss1∈{s} such
that (x′1, x1)∈Zk′ , wherex′1∈α

′(x′0, s1), x1∈αdet(x0det, s1) andk′=0, 1, · · · k. Hence
there iss2 ∈ Σ

∗
uc such thatx′2∈α

′(x′1, s2) andx2∈αdet(x1, s2) with (x′2, x2)∈Z0, which
impliess1s2∈L(G)\L(Fsyn(G)||R). Moreover,L(Fsyn(G)||R)=L(Fsyn(G))∩L(R) and
L2⊆L(Fsyn(G))∩L(R). It follows that s1s2<L2. If s2=ǫ, then s1<L2, which im-
plies s<L2. If s2,ǫ, thens1s2(1) · · · s2(|s2| − 1)<L2 becauseL2 is language con-
trollable w.r.t. L(G) andΣuc, s2(|s2|)∈Σuc and s1s2∈L(G)\L2. It in turn follows
that s1s2(1)· · ·s2(|s2| − 2)<L2, s1s2(1)· · ·s2(|s2| − 3)<L2, · · · , s1<L2. Hences<L2.
So there is a contradiction, which implies the assumption isnot correct. Then
L2⊆L(R′′) for any L2∈C2. As a result,L(R′′)=supC2. It remains to show that
Lm(R′′)=supC3. By the definition ofR′′ and the fact thatLm(Fsyn(G))⊆Lm(G), we
haveLm(R′′)=L(R′′)∩Lm(Fsyn(G))∩Lm(R)=supC2∩Lm (Fsyn(G))∩Lm(R)=supC3. It
follows thatR′′ is a deterministic automaton such thatL(R′′)=supC2 andLm(R′′)
= supC3. By Theorem 3, we haveR′′∈supC1.

Remark 3. Algorithm 2 can be terminated because the state set X′′ is finite. Be-
cause the state numbers of Fsyn(G) and det(G) are both O(2|X|). Therefore, the
complexity of Algorithm 2 is O(22|X||Q||Σ|).

17

Furthermore, the supremal synchronously simulation-based controllable sub-
specification can be calculated by formulas without applying the recursive algo-
rithm.

Theorem 5. Given a plant G and a deterministic specification R, if M= L(R) ∩
L(Fsyn(G)) − [(L(G) − L(R) ∩ L(Fsyn(G)))/Σ∗uc]Σ

∗
, ∅, then G(M,M′) is a supremal

synchronously simulation-based controllable sub-specification with respect to G
andΣuc, where M′ = M ∩ Lm(R) ∩ Lm(Fsyn(G)).

Proof. According to Theorem 1 and Theorem 2 in (Brandt et al., 1990), we ob-
tain supC2 = L(R) ∩ L(Fsyn(G)) − [(L(G) − L(R) ∩ L(Fsyn(G)))/Σ∗uc]Σ

∗
= M. It

follows thatM′ = supC3. From Theorem 3,G(M,M′) is a supremal synchronously
simulation-based controllable sub-specification w.r.t.G andΣuc.

Now we revisit Example 2.

Figure 6: Fsyn(G) (Left) anddet(G) (Right)

Example 3. Example 2 indicates that R is not synchronously simulation-based
controllable with respect to G andΣuc. Thus, we would like to calculate the supre-
mal synchronously simulation-based controllable sub-specification with respect
to G andΣuc by the proposed methods.

(1) Recursive Method: From Algorithm 2, we establish Fsyn(G) and det(G),
shown in Fig. 6. Then G′′=(X′′,Σ, x′′0 , α

′′,X′′m)=(Fsyn(G)||R)uc||det(G) is achieved
in (Fig. 7 (Left)). We obtain Z0={(Dd, x′10)}, Z1=Z0∪{({x7, x8}, q7, x′7), ({x4}, q4, x′4)}
and Z2=Z1∪{({x2}, q2, x′2)}=Z3. Therefore, the supremal synchronously simulation-
based controllable sub-specification FG′′(X′′−Z2) is obtained in Fig. 7.

(2) Formula-based Method: First we construct Fsyn(G), which can be seen in
Fig. 6 (Left). Hence L(R) ∩ L(Fsyn(G)) = (d(f m+ eg)n+ c f gn+ f gn)∗ab. Thus,

18

Figure 7: (Fsyn(G)||R)uc||det(G) (Left) andFG′′ (X′′ − Z2) (Right)

M = L(R)∩L(Fsyn(G))−[(L(G)−L(R)∩L(Fsyn(G)))/Σ∗uc]Σ
∗=(d(f m+ eg)n+ c f gn

+ f gn)∗ab-(d(f m+ eg)n + c f gn+ f gn)∗abΣ∗ -(d(f m+ eg)n + c f gn+ f gn)∗aΣ∗-
(d(f m+eg)n+c f gn+ f gn)∗ fΣ∗ =(d(f m+ eg)n+ c f gn)∗ , ∅ and M′ = M∩Lm(R)∩
Lm(Fsyn(G))=(d(f m+eg)n+c f gn)∗(d(f m+eg)+c f g). The supremal synchronously
simulation-based controllable sub-specification G(M,M′)=FG′′(X′′−Z2) is achieved
in Fig. 7 (Right).

6. Conclusion

In this paper, we investigated the bisimilarity enforcing supervisory control
of nondeterministic plants for deterministic specifications. A necessary and suf-
ficient condition for the existence of a bisimilarity enforcing supervisor was de-
duced from synchronous simulation-based controllabilityof the specification, which
can be verified by a polynomial algorithm. For those specifications fulling the ex-
istence condition, a bisimilarity enforcing supervisor has been constructed. Con-
trarily, when the existence condition does not hold, a recursive method and a
formula-based method have been developed to calculate the maximal permissive
sub-specifications.

References

Barrett, G., & Lafortune, S. (1998). Bisimulation, the supervisory control problem
and strong model matching for finite state machines.Discrete Event Dynamic
Systems, 8, 377–429.

Brandt, R., Garg, V., Kumar, R., Lin, F., Marcus, S., & Wonham, W. (1990). For-
mulas for calculating supremal controllable and normal sublanguages.Systems
& Control Letters, 15, 111–117.

19

Cassandras, C., & Lafortune, S. (2008).Introduction to discrete event systems.
Springer.

Chaki, S., Clarke, E., Giannakopoulou, D., & Pasareanu, C. (2004). Abstraction
and assume-guarantee reasoning for automated software verification. Techni-
cal Report Research Institute for Advanced Computer Science.

Clarke, E. (1997). Model checking.Foundations of software technology and
theoretical computer science, Lecture notes in computer science, 1346, 54–56.

Jones, N. (1975). Space-bounded reducibility among combinatorial problems*.
Journal of Computer and System Sciences, 11, 68–85.

Karimadini, M., & Lin, H. (2011). Guaranteed global performance through local
coordinations.Automatica, 47, 890–898.

Komenda, J., & van Schuppen, J. (2005). Control of discrete-event systems with
partial observations using coalgebra and coinduction.Discrete Event Dynamic
Systems, 15, 257–315.

Liu, F., Lin, H., & Dziong, Z. (2011). Bisimilarity control of partially observed
nondeterministic discrete event systems and a test algorithm. Automatica, 47,
782–788.

Madhusudan, P., & Thiagarajan, P. (2002). Branching time controllers for discrete
event systems.Theoretical Computer Science, 274, 117–149.

Milner, R. (1989).Communication and concurrency. Prentice-Hall.

Ramadge, P., & Wonham, W. (1987). Supervisory control of a class of discrete
event processes.SIAM journal on control and optimization, 25, 206–230.

Su, R., van Schuppen, J., & Rooda, J. E. (2010). Model Abstraction of Nondeter-
ministic Finite-State Automata in Supervisor Synthesis.IEEE Transactions on
Automatic Control, 55, 2527–2541.

Sun, Y., & Lin, H. (2012). Bisimilarity enforcing supervisory control for nonde-
terministic discrete event systems.Accepted by American Control Conference
2012, X, to appear.

Tabuada, P. (2008). Controller synthesis for bisimulationequivalence.Systems&
Control Letters, 57, 443–452.

20

Tabuada, P., & Pappas, G. (2004). Bisimilar control affine systems.Systems&
Control Letters, 52, 49–58.

Tabuada, P., Pappas, G., & Lima, P. (2004). Compositional abstractions of hybrid
control systems.Discrete event dynamic systems, 14, 203–238.

Willner, Y., & Heymann, M. (1991). Supervisory control of concurrent discrete-
event systems.International Journal of Control, 54, 1143–1169.

Zhou, C., & Kumar, R. (2007). A small model theorem for bisimilarity control
under partial observation.IEEE Transactions on Automation Science and En-
gineering, 4, 93–97.

Zhou, C., & Kumar, R. (2011). Bisimilarity enforcement for discrete event sys-
tems using deterministic control.IEEE Transactions on Automatic Control, 56,
2986 – 2991.

Zhou, C., Kumar, R., & Jiang, S. (2006). Control of nondeterministic discrete-
event systems for bisimulation equivalence.IEEE Transactions on Automatic
Control, 51, 754–765.

21

	1 INTRODUCTION
	2 Preliminary and Problem Formulation
	2.1 Preliminary Results
	2.2 A Motivating Example
	2.3 Problem Formulation

	3 Supervisory Control for Bisimilarity
	4 A Test Algorithm for the Existence of a Bisimilarity Enforcing Supervisor
	5 Supremal Synchronously Simulation-Based Controllable Sub-specifications
	6 Conclusion

