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Abstract

This work studies consensus strategies for networks of agents with limited memory, computation, and communication capa-
bilities. We assume that agents can process only values from a finite alphabet, and we adopt the framework of finite fields,
where the alphabet consists of the integers {0, . . . , p − 1}, for some prime number p, and operations are performed modulo
p. Thus, we define a new class of consensus dynamics, which can be exploited in certain applications such as pose estimation
in capacity and memory constrained sensor networks. For consensus networks over finite fields, we provide necessary and
sufficient conditions on the network topology and weights to ensure convergence. We show that consensus networks over finite
fields converge in finite time, a feature that can be hardly achieved over the field of real numbers. For the design of finite-field
consensus networks, we propose a general design method, with high computational complexity, and a network composition
rule to generate large consensus networks from smaller components. Finally, we discuss the application of finite-field consensus
networks to distributed averaging and pose estimation in sensor networks.

1 Introduction

Sensor and actuator networks have recently attracted interest from different research communities, and, in the
last years, classic computation, control, and estimation problems have been reformulated to conform the distributed
nature of these networked systems [1,2,3]. An important example is the so-called consensus problem, where members
of a network aim to agree upon a parameter of interest via distributed computation [4]. Consensus algorithms have
found broad applicability in many domains, including robotics [5], estimation [6], and parallel computation [7].

In this work we focus on the consensus problem for networks of agents with limited memory, computation, and
communication capabilities. We assume that agents are capable of storing, processing, and transmitting exclusively
elements from a finite and pre-specified alphabet, and we conveniently model this situation with the formalism of
finite fields, where the alphabet consists of a set of integers, and operations are performed according to modular
arithmetic [8]. We study linear consensus networks over finite fields where, at each time instant, each agent updates
its state as a weighted combination over a finite field of its own value and those received from its neighbors. Besides
consensus in capacity and memory constrained networks, our finite-field consensus method has broad applicability
to problems in cooperative control, networked systems, and network coding, such as averaging, load balancing,
and pose estimation from relative measurements. Additionally, the use of a finite alphabet for computation and
communication makes our consensus method easily implementable and resilient to communication noise.

Related work Consensus algorithms have been proposed for different network model, agents dynamics, and commu-
nication schemes. Starting from the basic setup of time-independent network structure, broadcast and synchronous
communication, and unlimited communication bandwidth, consensus algorithms have been proposed to cope, for
instance, with time-varying topologies [9], gossip and asynchronous communication [10], and communication errors
and link failures [11]. It has been shown that, under mild connectivity assumptions on the interaction graphs, a simple
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linear iteration ensures consensus, where at each time agents update their state as a weighted average of the available
neighboring states [12]. While most of these approaches assume the possibility of processing and transmitting real
values, we consider the more realistic case of finite communication bandwidth, possibly due to digital communication
channels, and memory constraints. Moreover, we will show that topological conditions ensuring consensus over real
values and with real-valued communications are not sufficient for consensus over a finite field.

A relevant body of literature deals with consensus over quantized communication channels, where values exchanged by
the agents are quantized according to a predefined quantization scheme, and the proposed algorithms are resilient to
quantization errors [13,14,15,16,17]. In these works, although the data exchanged among robots is quantized, agents
perform computations over the field of real numbers. Thus, the consensus problem with quantized information is
related to our problem, yet fundamentally different, since we allow agents to operate on a finite field.

Logical consensus has been studied in [18] for the purpose of intruder or event detection. In logical consensus, a team
of agents aims to coordinate their decisions via distributed computation as a function of a set of logical (boolean)
events. By leveraging tools from cellular automata and convergence theory of finite-state iteration maps, the focus
of [18] is on the design of a synthesis technique for logical consensus systems. The main differences between [18] and
this paper are as follows. First, in logical consensus the agents state is a binary variable, while in our work it takes
value in an arbitrary finite set. Second, in logical consensus agents are allowed to perform any logical operation, such
as {and, or,not}, while our consensus algorithm makes use of only two mathematical operations, namely modular
addition and multiplication. Third and finally, in logical consensus agents aim to agree upon a logical expression or
compact sets [19], while finite-field consensus algorithms may be used to compute a (non-boolean) function of the
initial states, such as the average.

A distributed consensus algorithm with integer communication and computation is proposed and analyzed in [20].
With respect to this work, and similarly to [21], we make use of modular arithmetic, instead of standard arithmetic
and, therefore, we define a novel and complementary class of consensus networks. The use of modular arithmetic
is advantageous in several applications, such as pose estimation from relative measurements (Section 6). Finally,
networks based on modular arithmetic are studied in [22], in the context of system controllability and observability,
in [23], in the context of (linear) network coding, and in [24], in the more general context of finite dynamical systems.

Contributions The contributions of this paper are fourfold.

First, we propose the use of modular arithmetic to design consensus algorithms for networks of cooperative agents.
Consensus networks over finite fields are distributed, require limited, in fact finite, memory, computation, and com-
munication resources, and, as we show, they exhibit finite time convergence. Thus, finite-field consensus algorithms
are suitable for capacity and memory constrained networks, and for applications with time constraints.

Second, we thoroughly characterize convergence of consensus networks over finite fields. We provide necessary and
sufficient constructive conditions on the network topology and weights to achieve consensus. For instance, we show
that a network achieves consensus over a finite field if and only if the network matrix is row-stochastic over the finite
field, and its characteristic polynomial is sn−1(s−1). Additionally, we prove that the convergence time of finite-field
consensus networks is bounded by the network cardinality, and that graph properties alone are not sufficient to
ensure finite-field consensus. Our analysis complements the classic literature on real-valued consensus networks.

Third, we propose systematic methods to design consensus networks over finite fields. In particular, we derive a
general design method, with high computational complexity, independent of the agents interaction graph, and a
network composition rule based on graph products to generate large consensus networks from smaller components.
We show that networks generated by our composition rule exhibit a specific structure, and maintain the convergence
properties, including the convergence time, of the underlying components. Moreover, by using our general network
design method, we compute finite-field consensus weights for some specific classes of interaction graphs, and we
provide a lower bound on the number of networks achieving consensus as a function of the agents interaction graph
and the field characteristic.

Fourth and finally, we consider two applications in sensor networks, namely averaging and pose estimation from
relative measurements. In the averaging problem agents aim to determine the average (over the field of real numbers)
of their initial values. We show that, under a reasonable set of assumptions, the averaging problem can be solved
distributively and in finite time by using a finite-field average consensus algorithm. In the pose estimation problem
agents aim to estimate their orientation based on (local) relative measurements. For this problem we derive a
distributed pose estimation algorithm based on finite-field average consensus, and we characterize its performance.
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Paper organization In Section 2 we recall some preliminary notions on fields, linear algebra, and graph theory.
Section 3 contains our setup and some preliminary results on consensus over finite fields. In Section 4 we provide
necessary and sufficient conditions for consensus over finite fields, and we propose several illustrative examples.
In Section 5 we describe methods to design consensus networks over finite fields. Finally, Section 6 contains two
application scenarios, and Section 7 concludes the paper.

2 Notation and Preliminary Concepts

In this section we recall some definitions and properties of algebraic fields, linear algebra, and graph theory. We refer
the interested reader to [8,25,26] for a comprehensive treatment of these subjects.

A field F is a set of elements together with addition and multiplication operations, such that the following axioms
hold:

(A1) Closure under addition and multiplication, that is, for all a, b ∈ F, both a+ b ∈ F and a · b ∈ F;
(A2) Associativity of addition and multiplication, that is, for all a, b, c ∈ F, it holds a + (b + c) = (a + b) + c and

a · (b · c) = (a · b) · c;
(A3) Commutativity of addition and multiplication, that is, for all a, b ∈ F, it holds a+ b = b+ a and a · b = b · a;
(A4) Existence of additive and multiplicative identity elements, that is, for all a ∈ F, there exist b, c ∈ F such that

a+ b = a and a · c = a;
(A5) Existence of additive and multiplicative inverse elements, that is, for all a ∈ F, there exist b, c ∈ F such that

a+ b = 0 and a · c = 1, with a 6= 0;
(A6) Distributivity of multiplication over addition, that is, for all a, b, c ∈ F, it holds a · (b+ c) = (a · b) + (a · c).

A field is finite if it contains a finite number of elements. A basic class of finite fields are the fields Fp with characteristic
p a prime number, which consists of the set of integers {0, . . . , p − 1}, with addition and multiplication defined as
in modular arithmetic, that is, by performing the operation in the set of integers Z, dividing by p, and taking the
remainder. Unless specified differently, all the operations listed in this paper are performed in the field Fp.

Let a : Fmp → Fnp be a linear map between the vector spaces of dimensions m and n, respectively, over the field Fp.
As a classical result in linear algebra, the map a can be represented by a matrix A with n rows and m columns, and
elements from the field Fp. The image and kernel of A are defined as

Im(A) := {y ∈ Fnp : y = Ax, x ∈ Fmp }, Ker(A) := {x ∈ Fmp : Ax = 0},

where additions and multiplications are performed modulo p. Analogously, the pre-image of a set of vectors V ⊆ Fnp
through A is the set

A−1(V ) := {x ∈ Fnp : v = Ax, for all v ∈ V }.

For a matrix A ∈ Fn×np , let σp(A) denote the set of eigenvalues of A in the field Fp, that is,

σp(A) = {λ ∈ Fp : det(λI −A) = 0}.

Analogously, let Fp[s] denote the set of polynomials with coefficients in Fp, and let PA ∈ Fp[s] denote the char-
acteristic polynomial of A over Fp. 1 Notice that the cardinality |σp(A)| may be strictly smaller than the matrix
dimension n; in other words, finite fields are not algebraically closed.

We conclude this section with some standard graph definitions. A directed graph G = (V, E) consists of a set of
vertices V and a set of edges E ⊆ V × V. An edge (v, w) ∈ E is directed from vertex w to vertex v. For a vertex
v ∈ V, the set of in-neighbors of v is defined as N in

v = {w ∈ V : (v, w) ∈ E}, and the set of out-neighbors as
N out
v = {w ∈ V : (w, v) ∈ E}. The in-degree of v ∈ V equals |N in

v |, whereas the out-degree of v ∈ V equals |N out
v |.

A path in G is a subgraph P = ({v1, . . . , vk+1}, {e1, . . . , ek}) such that vi 6= vj for all i 6= j, and ei = (vi, vi+1) for

1 Since the characteristic polynomial P̄A(s) ∈ R[s] contains only integer coefficients for any A ∈ Fn×np , the characteristic

polynomial PA(s) ∈ Fp[s] is
∑n
i=0 mod(c̄i, p)s

i, where mod(·) is the modulus function, and c̄i is the i-th coefficient of P̄A(s).
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each i ∈ {1, . . . , k}. We say that the path starts at v1 and ends at vk+1, and, at times, we identify a path by its
vertex sequence v1, . . . , vk+1. A cycle or closed path is a path in which the first and last vertex in the sequence are
the same, i.e., v1 = vk+1. The length of a path (resp. cycle) equals the number of edges in the path (resp. cycle).
A directed graph is strongly (resp. weakly) connected if there exists a directed (resp. undirected) path between any
two vertices. Two subgraphs of the same graph are disjoint if they have no common vertices. A root (resp. globally
reachable node) is a vertex v from which (resp. to which) there exists a directed path to (resp. from) every vertex in
the graph, including v itself. Finally, a directed graph is aperiodic if there is no integer greater than one that divides
the length of every cycle of the graph.

3 Models of Consensus Networks over Finite Fields

Consider a set of n ∈ N>0 agents and a finite field Fp, for some prime number p. Let the agents interaction be
described by the directed graph G = (V, E), where i ∈ V denotes the i-th agent, with V = {1, . . . , n}, and (i, j) ∈ E
if there is a directed edge from agent j to agent i (agent i senses agent j, or, equivalently, the behavior of agent
j affects agent i). We assume that each agent is able to manipulate and transmit values from the finite field Fp

according to a pre-specified protocol. We focus on distributed protocols in which (i) each agent i is associated with
a state xi ∈ Fp, and (ii) each agent updates its state as a weighted combination of the states of its in-neighbors N in

i .
Let aij ∈ Fp be the weight associated with the edge (i, j), and let A = [aij ], A ∈ Fn×np , be the weighted adjacency
matrix of G, or simply network matrix, where aij = 0 whenever (i, j) 6∈ E . Let x : N≥0 → Fnp be the vector containing
the agents states. Then the evolution of the network state x over time is described by the iteration (or network)

x(t+ 1) = Ax(t), (1)

where all operations are performed in the field Fp.

The transition graph associated with the iteration (1) over Fp is defined as GA = (VA, EA), where, VA = {v : v ∈ Fnp}
and, for vi, vj ∈ VA, the edge (vi, vj) ∈ EA if and only if vj = Avi. It should be observed that the transition graph
contains pn vertices, and that each vertex has unitary out-degree. Moreover, it can be shown that the transition graph
is composed of disjoint weakly-connected subgraphs, and that each subgraph contains exactly one cycle, possibly of
unitary length [27]. Finally, each disjoint subgraph contains a globally reachable node. This particular structure of
the transition graph will be used to derive certain results on finite-field consensus. Examples of transition graphs
are given below in Fig. 1 and Fig. 2.

We say that the iteration (1) (or simply the network matrix A) over a finite field achieves

(i) asymptotic consensus, if for all initial states x(0) ∈ Fp it holds limt→∞ x(t) = α1, with α ∈ Fp and
1 = [1 . . . 1]T;

(ii) finite-time consensus, if for all initial states x(0) ∈ Fp there exists a finite time T ∈ N such that x(T ) =
x(T + τ) = α1 for all τ ∈ N, with α ∈ Fp and 1 = [1 . . . 1]T.

Consensus networks with real-valued weights and states have been extensively studied [12,28,4]. In this work we show
that real-valued consensus networks and finite-field consensus networks exhibit different features, and particular care
needs to be taken to ensure the desired properties over finite fields. It is clear from the above definitions that finite-
time consensus implies asymptotic consensus. We next show that the converse is also true.

Theorem 3.1 (Asymptotic consensus implies finite-time consensus) The iteration (1) over the field Fp

achieves asymptotic consensus only if it achieves finite-time consensus.

PROOF: Let GA = (VA, EA) be the transition graph associated with the iteration (1). Notice that the state
trajectory x of (1) coincides with a path on GA starting from the vertex v0 = x(0). Let C ⊂ VA be the set of
consensus vertices, that is, C = {v : v ∈ VA, v = α1, α ∈ Fp}. Suppose that the iteration (1) achieves consensus
on the value vc ∈ C. Since the vertex set VA is finite, the distance between v0 and vc is also finite. Consequently, a
consensus vertex is reached with a path on G of finite length, that is, a finite number of iterations in (1) are sufficient
to achieve consensus.

Following Theorem 3.1, iterations over finite fields either achieve consensus in finite time, or they are not convergent.
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In view of this result, in what follows we simply use consensus instead of finite-time and asymptotic consensus.
Differently from finite-field consensus networks, consensus networks over the field of real numbers usually converge
asymptotically. An exception is constituted by the class of de Bruijn graphs, which have been shown to yield finite-
time consensus over the field of real numbers [29]. On the other hand, de Bruijn graphs rely on a specific interaction
graph, while finite-field consensus networks include a much broader class of interaction graphs. We conclude this
section with a simple result. A matrix A over the field Fp is nilpotent if An = 0 and is row-stochastic if A1 = 1.

Lemma 3.2 (Finite-field consensus matrices) Consider the iteration (1) over the field Fp. If consensus is
achieved, then A is either nilpotent or row-stochastic.

PROOF: Since A achieves consensus, it follows from Theorem 3.1 that Atx(0) = At+1x(0) = α1 for some α ∈ Fp,
for all x(0), and for all t ≥ T , T ∈ N. Then Aα1 = α1, from which we conclude that either A1 = 1 (A is row-
stochastic) or α = 0 for all initial states x(0) (A is nilpotent).

As for the case of real-valued consensus, we limit our attention to row-stochastic network matrices. Although con-
sensus is trivially achieved whenever the network matrix is nilpotent, this case is of limited interest because the
consensus value is the origin independently of the agents initial states.

4 Analysis of Consensus Networks over Finite Fields

Conditions for consensus in real-valued networks have been deeply investigated in the last years [12,28,4]. For instance,
sufficient conditions ensuring real-valued consensus are that the network matrix A is row-stochastic and that the
associated directed graph is strongly connected and aperiodic. The following example shows that graph-theoretic
properties are not sufficient for an iteration over a finite field to achieve consensus.

Example 1 (Graph properties are not sufficient for finite-field consensus) Consider a fully connected
network with three agents over the field F3. Consider the network matrices

A1 =

2 1 1
2 1 1
2 1 1

 , A2 =

2 1 1
1 2 1
1 2 1

 , and A3 =

2 1 1
1 2 1
1 1 2

 .
Notice that A1, A2, and A3 are row-stochastic and their interaction graph is fully connected. It can be verified that
over the field F3 only the network matrix A1 achieves consensus, while A2 and A3 exhibit oscillatory dynamics for
certain initial conditions. An example of oscillatory dynamics generated by A3 is reported in Table 1.

Table 1
Sample state trajectory for the matrix A3 in Example 1.

x(0) x(1) x(2) x(3) x(4) x(5) x(6)

1 2 0 1 2 0 1

0 1 2 0 1 2 0

0 1 2 0 1 2 0

As shown in Example 1, graph properties of the network matrix are not sufficient to guarantee consensus for iterations
over a finite field (in short, finite-field consensus). Indeed, although the considered network matrices feature the
same connectivity properties, only one of them achieves finite-field consensus. In what follows we provide finite-field
consensus conditions based on the algebraic properties of the network matrix, and on the topological properties of
its transition graph.

The dynamic behavior of an iteration over a finite field is entirely described by its associated transition graph. The
next theorem provides a necessary and sufficient condition for finite-field consensus based on the transition graph.

Theorem 4.1 (Transition graph of a consensus network) Consider the iteration (1) over the field Fp with
row-stochastic matrix A, and let GA = (VA, EA) be its associated transition graph. The following statements are
equivalent:
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0 1 2 0 2 1 1 0 1 1 1 0 1 2 2 2 0 2 2 1 1 2 2 0

0 0 0

0 0 2 0 1 1 0 2 0 1 0 0 1 1 2 1 2 1 2 0 1 2 1 0

2 2 2

0 0 1 0 1 0 0 2 2 1 0 2 1 2 0 2 0 0 2 1 2 2 2 1

1 1 1

Fig. 1. Transition graph GA1 associated with the matrix A1 ∈ F3×3
3 in Example 1. Since GA1 contains exactly 3 cycles

corresponding to the self-loops around the consensus vertices, the network matrix A1 achieves consensus (see Theorem 4.1).

0 0 0 0 1 2 0 2 1 1 0 2 1 1 1 1 2 0 2 0 1 2 1 0 2 2 2

0 0 1 2 2 0

1 1 2

0 0 2 1 1 0

2 2 1

0 1 0 2 0 2

1 2 1

0 1 1 1 2 2

2 0 0

0 2 0 1 0 1

2 1 2

0 2 2 2 1 1

1 0 0

Fig. 2. Transition graph GA3 associated with the matrix A3 ∈ F3×3
3 in Example 1. Since GA3 contains more than 3 cycles, the

network matrix A3 does not achieve consensus (see Theorem 4.1). The oscillatory state trajectory in Table 1 corresponds to
the bottom right cycle in this figure.

(i) the iteration (1) achieves consensus, and
(ii) the transition graph GA contains exactly p cycles, corresponding to the unitary cycles around the vertices α1,

α ∈ {0, . . . , p− 1}.

Example 2 (Transition graph of a consensus network) The transition graphs associated with the matrices
A1 and A3 in Example 1 over the field F3 are reported in Fig. 1 and Fig. 2, respectively. As previously discussed,
and as predicted by Theorem 4.1, the matrix A1 achieves consensus, while the matrix A3 does not.

PROOF of Theorem 4.1:

(i) =⇒ (ii) Since the iteration achieves consensus, it follows from Lemma 3.2 that A1 = 1. Hence, the transition
graph contains p unitary cycles corresponding to the vertices α1 ∈ VA, with α ∈ Fp. Suppose by contradiction that
there exists an additional cycle C, and notice that the vertices α1, with α ∈ Fp, cannot be contained in C since
the out-degree of each vertex in the transition graph is exactly one (the transition graph is determined by the linear
map A). Thus, there exists a trajectory along C that does not converge to consensus, which contradicts the initial
hypothesis.

(ii) =⇒ (i) Notice that a state trajectory of the iteration (1) is in bijective correspondence with a path on the tran-
sition graph GA. Suppose that transition graph GA contains exactly p unitary cycles located at the vertices α1 ∈ VA,
with α ∈ Fp. Then, since each vertex in the transition graph has unitary out-degree, every (sufficiently long) path in
GA eventually reaches one of the cycles, and, consequently, every state trajectory converges to a consensus state.

Theorem 4.1 provides a necessary and sufficient condition for finite-field consensus based on the transition graph.
From condition (ii) in Theorem 4.1 and the fact that each vertex in the transition graph has unitary out-degree,
we also note that the transition graph of a consensus matrix is composed of p disjoint weakly-connected subgraphs.
Moreover, by means of [27, Proposition 3.4], it can be shown that disjoint subgraphs have the same graph topology.

A verification of the convergence condition in Theorem 4.1 may be prohibitive for large networks, because the size of
the transition graph grows exponentially with the number of agents in the network (the transition graph contains pn

vertices and pn edges, since each vertex has unitary out-degree). In what follows we shall derive consensus conditions
based on the network matrix instead of its transition graph. Consider the inverse recursion

St+1
α = A−1(Stα), (2)
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where Stα ⊂ Fnp for all times t and S0α = {α1}. Notice that the inverse recursion defines a sequence of sets, and that

the set Stα contains the initial states converging to the consensus value α1 in at most t iterations. We say that the
recursion (2) is convergent with limiting set Sα if there exists T < n satisfying Sα = STα = ST+1

α . The following
theorem exploits the inverse recursion and the structure of the transition graph to characterize finite-field consensus.

Theorem 4.2 (Recursion subspaces of a consensus network) Consider the iteration (1) over the field Fp

with row-stochastic matrix A. The following statements are equivalent:

(i) the iteration (1) achieves consensus,
(ii) there exists α ∈ Fp such that the recursion (2) is convergent and the limiting set Sα satisfies |Sα| = pn−1, and

(iii) for all α ∈ Fp the recursion (2) is convergent and each limiting set Sα satisfies |Sα| = pn−1.

Example 3 (Inverse recursion for a finite-field consensus network) For the matrix A1 ∈ F3×3
3 in Example

1, the set S1 generated by the inverse recursion (2) is

S1 =


1

1
1

,
0

0
1

,
0

1
0

,
0

2
2

,
1

0
2

,
1

2
0

,
2

0
0

,
2

1
2

,
2

2
1

 .

Because |S1| = 32, the network matrix A1 achieves consensus due to Theorem 4.2. Instead, for the network matrix
A3 ∈ F3×3

3 in Example 1, the inverse recursion yields S1 = {1}, so that A3 does not achieve consensus.

PROOF of Theorem 4.2: Consider the transition graph GA = (V, E), and define the reverse graph ḠA = (V, Ē),
where (i, j) ∈ Ē if and only if (j, i) ∈ E . Notice that the recursion (2) is convergent if and only if ḠA contains no
cycle of length greater than 1 reachable from α1. Recall from [27, Theorem 1] that GA (resp. ḠA) is obtained as the
graph product of a tree by a set of cycles. Hence, the graph GA (resp. ḠA) is composed of disjoint weakly-connected
subgraphs, and disjoint subgraphs have the same structure. From this argument we conclude that (ii) and (iii) are
equivalent.

(i) =⇒ (ii) Since A achieves consensus, the graph GA contains exactly p unitary cycles corresponding to the
consensus vertices (see Theorem 4.1 and Fig. 1). By [27, Theorem 1], the above reasoning, and the fact that A
achieves consensus, it follows that |S0|+ · · ·+ |Sp−1| = pn, and that |Sα| = pn−1 for all α ∈ Fp.

(ii) =⇒ (i) Since A1 = 1, the transition graph contains p cycles of unitary length located at the consensus vertices.
Let the recursion (2) be convergent for some α ∈ Fp. From [27, Theorem 1], the graph GA contains p identical,
disjoint, weakly-connected subgraphs, each one terminating in a consensus vertex. Since |Sα| = pn−1, it follows that
consensus is achieved from pn states (every initial state), which concludes the proof.

According to Theorem 4.2, the convergence of the network (1) can be determined by iterating the inverse recursion
(2) for some α ∈ Fp. This computation does not require analyzing the transition graph. Our last and most explicit
condition for finite-field consensus is based upon the characteristic polynomial of the network matrix (computed
over the finite field).

Theorem 4.3 (Characteristic polynomial of a consensus network) Consider the iteration (1) over the finite
field Fp with row-stochastic matrix A. The following statements are equivalent:

(i) the iteration (1) achieves consensus, and
(ii) PA(s) = sn−1(s− 1).

Example 4 (Characteristic polynomial of consensus matrices) Consider the network matrices in Example
1 over the field F3. It can be verified that

PA1(s) = s2(s− 1), PA2(s) = s(s2 − 2s+ 1), and PA3(s) = s3 − 1.

As predicted by our previous analysis and by Theorem 4.3, only the network matrix A1 achieves consensus.
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The proof of this theorem is postponsed to the Appendix. Theorem 4.3 is equivalently restated as follows: A achieves
finite-field consensus if and only if σp(A) = {1, 0, . . . , 0}. In other words, the eigenvalues of a finite-field matrix
achieving consensus are all contained in the considered finite field and, consequently, every finite-field matrix achiev-
ing consensus can be represented in Jordan canonical form via a similarity transformation; see [30] and [31, Theorem
3.5]. We conclude this section by characterizing the convergence value of a finite-field consensus network.

Theorem 4.4 (Finite-field consensus time and value) Consider the iteration (1) over the finite field Fp with
row-stochastic matrix A and with initial state x(0) ∈ Fnp . Assume the iteration (1) achieves consensus. Let T < n
denote the dimension of the largest Jordan block associated with the eigenvalue 0. Let π ∈ Fnp be the unique eigenvector
satisfying πA = π and π1 = 1. Then

AT = 1π,

so that consensus is achieved at the value πx(0) after T iterations. Moreover, the i-th component of π is nonzero
only if the i-th vertex of the directed graph associated with A is a root.

PROOF: Since A achieves consensus, we have σp(A) = {1, 0, . . . , 0}, and A admits a Jordan canonical form
JA = V −1AV over Fp. Moreover, the matrix A converges in T < n iterations. The next part of the proof follows the
reasoning in [32, Theorem 3]. Let the first column of T be 1, and let the matrix JA have only zero elements, except
for the unitary entry in position (1, 1). Since V −1A = JAV

−1, the first row of V −1, say π, satisfies πA = π. Then
AT = V JTAV

−1 = 1π. Since A1 = 1, it follows that 1 = AT1 = 1π1, and consequently π1 = 1. To show the last
statement, let G be the directed graph associated with A, and let i be a vertex of G. Assume that i is not a root of G,
and let the initial state x(0) be all zeros, except for the i-th component. Since i is not a root, there exists a node j
which is not reachable from i, and, consequently, the value of the j-th agent is not affected by the i-th agent. Since A
achieves consensus for all initial states, the j-th entry of 1πx(0) needs to be zero, from which the statement follows.

Observe that Theorem 4.4 is not a direct consequence of the theory of non-negative matrices over the field of real
numbers [30]. In fact, if regarded as a real-valued matrix, a finite-field consensus matrix is generally unstable.

5 Design of Consensus Networks over Finite Fields

In Section 4 we characterize the convergence of consensus networks over finite fields. With respect to consensus
networks over the field of real numbers, finite-field consensus networks require less computational effort and commu-
nication bandwidth, and they converge in a finite number of iterations. On the other hand, convergence conditions
for finite-field consensus networks depend on the numerical entries of the network matrix (Theorem 4.3), and not
only on the connectivity properties of the underlying graph as in the case of consensus networks with real values.
For this reason, the design of finite-field consensus networks deserves particular attention. In this section we describe
methods to design finite-field consensus networks, and we discuss their limitations. First, we elaborate on Theorem
4.3 to describe a general design method, and we propose a solution for particular interaction graphs. Then we present
a scalable composition rule to generate finite-field consensus networks from smaller consensus components.

5.1 Network design via characteristic polynomial

The objective of this section is to design a finite-field consensus matrix A whose sparsity patter is compatible with
a given agents interaction graph G = (V, E), that is, to design the network matrix A = [aij ], aij ∈ Fp, where p is a
given prime number, and aij 6= 0 only if (i, j) is an edge of G. Recall from Theorem 4.3 that the network matrix A
achieves consensus if and only if its characteristic polynomial is PA(s) = sn(s−1) and A1 = 1. Since two polynomials
are equal if and only if all coefficients are equal, the entries of A can be determined by simultaneously solving the
following equations: 

A ∈ Fn×np , with aij = 0 if (i, j) 6∈ E ,
1 = A1,
1 = −c(A,n− 1),
0 = c(A, j), j ∈ {0, . . . , n− 2},

(3)
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where c(A, d) is the coefficient of the monomial of degree d in the (parametric) characteristic polynomial PA.

Example 5 (Design for networks with 2 agents) Let A =

[
a11 a12
a21 a22

]
∈ F2×2

p , and notice that PA(s) = s2 −
(a11+a22)s+a11a22−a12a21. It follows from (3) that A achieves consensus if and only if a11 = 1−a12, a22 = 1−a21,

a12 + a21 = 1, and, consequently, if and only if A =

[
1− α α
1− α α

]
for some α ∈ Fp.

Notice that the system of equations (3) contains non-linear, multivariate, polynomial equations, where the unknown
variables are the entries of the network matrix A, and that a solution is required over the finite field Fp. The
problem of solving systems of multivariate polynomial equations over finite fields is NP-hard [33,34], and it is one
of the important research problems in cryptography and information security [35]. Besides enumerating all possible
solution candidates, 2 several solution techniques have been proposed over the last years, see for instance [36,37].
We next provide a condition on the agents interaction graph for the existence of a finite-field network achieving
consensus.

Theorem 5.1 (Existence of finite-field consensus matrices) Let G = (V, E) be the directed agents interaction

graph, with |V| = n and |E| = m. Assume that G contains a root, and that m > n2+n
2 . Then the system of equations

(3) admits N ≥ p
2m−n2−n

2 solutions over the field Fp, where N is divisible by the characteristic p. In other words,
there exist N network matrices A = [aij ] achieving consensus, with aij ∈ Fn×np and aij = 0 if (i, j) 6∈ E.

PROOF: Let c(A, d) be the coefficient of the monomial of degree d in the parametric characteristic polyno-
mial PA, with A = [aij ] and aij = 0 if (i, j) 6∈ E . Define the polynomial fi ∈ Fp[aij ] with (i, j) ∈ E as:
fi = fi(aij) =

∑n
j=1 aij − 1 for i ∈ {1, . . . , n}, fn+1 = 1 + c(A,n− 1), and fi = c(A, 2n− i) for i ∈ {n+ 2, . . . , 2n}.

Notice that a solution to (3), and hence a finite-field consensus matrix compatible with G, can be computed by
simultaneously solving the equations fi = 0 for i ∈ {1, . . . , 2n}. Observe that deg(fi) = 1 for i ∈ {1, . . . , n}, and

deg(fi) ≤ i−n for i ∈ {n+ 1, . . . , 2n}. Then
∑2n
i=1 deg(fi) ≤ n+ n(n−1)

2 ≤ n2+n
2 . Since m > n2+n

2 by assumption, we
conclude from [8, Theorem 6.8] that the number of simultaneous solutions N to the equations fi = 0, i ∈ {1, . . . , 2n},
in the field Fp is divisible by the characteristic p. To show that N ≥ p 2m−n2−n

2 , we next construct a network matrix
A achieving consensus and compatible with the interaction graph G, and then employ [8, Theorem 6.11]. Let v be a
root of G, and let S = (V, ES) be a rooted spanning tree of G with root v, and with (v, v) ∈ ES and (i, i) 6∈ ES for
i 6= v. Relabel the vertices V according to their distance from the root v. Define the matrix A = [aij ], where aij = 1
if (i, j) ∈ ES , and aij = 0 otherwise. Notice that A ∈ Fn×np is triangular and row-stochastic, and that its diagonal
elements are {1, 0, . . . , 0}. It follows from Theorem 4.3 that A achieves consensus.

In view of the existence Theorem (5.1), consensus over finite fields is possible on a fairly broad class of interaction
graphs. A complete characterization of all the interaction topologies yielding consensus over finite fields is beyond
the scope of this work, and it is left as the subject of future research. We conclude this section with a remark.

Remark 1 (Network design for fully connected graphs) Let the agents interaction graph G = (V, E) be fully
connected, that is (i, j) ∈ E for all i, j ∈ {1, . . . , n}. Let v ∈ F1×n

p be any vector satisfying v1 = 1. Then the network

matrix A = [vT · · · vT]T achieves consensus over Fp; see for instance the matrix A1 in Example 1. To see this, let

1orth ∈ Fn×(n−1)p be any full column rank matrix satisfying v1orth = 0. Since A1 = 1, and A1orth = 0, we conclude
that σp(A) = {1, 0, . . . , 0}, with |σp(A)| = n, and the claimed statement follows from Theorem 4.3.

5.2 Network design via network composition

In this section we use the concept of graph products to generate finite-field consensus networks from smaller consensus
components. For two matrices A ∈ Fn×np and B ∈ Fm×mp , let A ⊗ B ∈ Fnm×nmp denote their Kronecker product,

2 If m is the number of free entries in A, a brute-force solution to (3) requires computing all pm possible matrices A compatible
with the interaction graph G.
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Fig. 3. Agents interaction graphs for the matrices A (left) and Ak = A⊗A (right) in Example 6. Self-loops have been omitted.
Notice that the interaction graphs of A and Ak are self-similar [38].

where [30]

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

an1B an2B · · · annB

 .

Theorem 5.2 (Finite-field consensus via Kronecker product) Consider the network matrices A ∈ Fn×np and

B ∈ Fm×mp , and assume that A and B achieve consensus. Then the network matrix A ⊗ B ∈ Fnm×nmp achieves
consensus.

Example 6 (Finite-field consensus network via Kronecker product) Consider the network matrix

A =

9 3 0
1 9 2
0 7 5


over the field F11. It can be verified that A achieves consensus. By Theorem 5.2 the network matrix

Ak = A⊗A =



4 5 0 5 9 0 0 0 0
9 4 7 3 5 6 0 0 0
0 8 1 0 10 4 0 0 0
9 3 0 4 5 0 7 6 0
1 9 2 9 4 7 2 7 4
0 7 5 0 8 1 0 3 10
0 0 0 8 10 0 1 4 0
0 0 0 7 8 3 5 1 10
0 0 0 0 5 2 0 2 3



achieves consensus over F11. In fact, it can be verified that PAk
= s8(s − 1) and Ak1 = 1. Moreover, the network

matrices A and Ak have the same convergence speed. The interaction graph of A and Ak are reported in Fig. 3.
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PROOF of Theorem 5.2: We first show that (A ⊗ B) is row-stochastic. Let 1n be the vector of all ones of
dimension n. Since A and B are row-stochastic over Fp, we have

(A⊗B)1nm =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

an1B an2B · · · annB

1nm =


∑n
j=1 a1,jB1m∑n
j=1 a2,jB1m

...∑n
j=1 an,jB1m

 =


∑n
j=1 a1,j1m∑n
j=1 a2,j1m

...∑n
j=1 an,j1m

 = 1nm.

Following the same argument as in [30], let JA = P−1AP and JB = Q−1BQ be the canonical Jordan form of A
and B, respectively [31, Theorem 3.5]. Then JA ⊗ JB = (P−1AP ) ⊗ (Q−1BQ) = (P−1 ⊗ Q−1)(A ⊗ B)(P ⊗ Q) =
(P⊗Q)−1(A⊗B)(P⊗Q), so that A⊗B and JA⊗JB are similar. Thus the eigenvalues of A⊗B are the same as those
of JA ⊗ JB , and, because JA and JB are upper triangular with eigenvalues λi and µi on the diagonal, we conclude
that JA⊗JB is also upper triangular with diagonal entries, and eigenvalues, λiµj . Finally, since σp(A) = {1, 0, . . . , 0}
and σp(B) = {1, 0, . . . , 0}, the statement follows from Theorem 4.3.

Following Theorem 5.2, finite-field consensus networks can be constructed by composing smaller components. We
refer the interested reader to [39,38] for a comprehensive discussion of graphs generated via Kronecker product of
adjacency matrices. Regarding the convergence speed of finite-field consensus networks generated via Kronecker
products, the following holds. Let Ak = A1⊗· · ·⊗Am, and let si be the number of iterations needed for convergence
of the network Ai, i ∈ {1, . . . ,m}. Due to [40, Theorem 4.3.17], the consensus network Ak converges exactly in
max{s1, . . . , sm} iterations. In other words, the consensus network Ak is as fast as the slowest of its components.

6 Application to Average Consensus and Distributed Pose Estimation

This section contains two application scenarios for finite-field consensus networks. In Section 6.1 we develop a finite-
time averaging algorithm based on finite-field consensus networks. Instead, in Section 6 we use finite-field networks
to distributively estimate the orientation of a sensor network given relative measurements.

6.1 Finite-time average consensus

Given a sensor network, let x0 ∈ Fnp be the vector containing the agents initial states. Let xR = 1Tx0/n ∈ R be the
average of the agents initial states over the field of real numbers. The average of the agents initial states over the
field Fp can be computed by means of Fermat’s little theorem [41] as xF = np−21Tx0 ∈ Fp, where we assume n 6= kp,
with k ∈ N, for the inverse of n over Fp to exist. In what follows, first we show how to compute the average xF
by means of finite-field consensus networks. Then we describe conditions that allow to recover the average xR from
the knowledge of xF and the total number of agents. We remark that distributed algorithms for average consensus
are useful in several applications, including distributed parameter estimation [6], distributed hypothesis testing [42],
robotic coordination [2], and for the understanding of opinion dynamics [43].

We say that the iteration (1) over the field Fp achieves average consensus if it achieves consensus, and the consensus
value is np−21Tx0 for every initial state x0. A condition for finite-field average consensus is given in the next theorem.

Theorem 6.1 (Finite-field average consensus) Consider the iteration (1) over the field Fp with row-stochastic
matrix A. Assume that the field characteristic satisfies n 6= kp for all k ∈ N. The following statements are equivalent:

(i) the iteration (1) achieves average consensus, and
(ii) PA(s) = sn−1(s− 1), and 1TA = 1T.

Example 7 (An example of finite-field average consensus) Consider the network matrix

A =

2 3 1
2 4 0
2 4 0


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Fig. 4. A subgraph of the transition graph associated with the network matrix A in Example 7. Notice that the sum of the
initial states is maintained, and thus average consensus is achieved.

over the field F5. It can be verified that A1 = 1, 1TA = 1T, and PA = s2(s− 1). By Theorem 6.1 the network matrix
A achieves average consensus over F5. In Fig. 4 we show a subgraph of the transition graph associated with A.

PROOF of Theorem 6.1:

(i) =⇒ (ii) Since the iteration achieves consensus, it follows from Theorem 4.4 that An = 1π, where π satisfies
πA = π. Because A achieves average consensus, it needs to be 1π = np−211T. Then π = np−21T, and 1TA = 1T.

(ii) =⇒ (i) Since PA(s) = sn−1(s − 1) and A1 = 1, it follows from Theorem 4.3 that the network achieves
consensus. Notice that 1TA = 1T implies that 1Tx(t) = 1Tx(0) at all times time t. Let α be the consensus value,
and notice that nα = 1Tx(0). To conclude the proof, α = np−21Tx(0), and the network achieves average consensus.

Theorem 6.1 provides a necessary and sufficient condition for a network with n 6= kp agents to achieve average
consensus over Fp. The condition n 6= kp is actually necessary for average consensus. In other words, if n = kp for
some k ∈ N, then there exists no network matrix satisfying all conditions in Theorem 6.1 and, therefore, average
consensus cannot be achieved. To see this, let x(0) be the network initial state, with 1Tx(0) 6= 0, and assume by
contradiction that α is the corresponding consensus value. Since 1Tx(t) = 1Tx(0) at all times t, it needs to be
nα = 1Tx(0). Then 0 = nα = 1Tx(0) 6= 0, since kp and 0 are in fact the same element in Fp.

Suppose now that the average xF has been computed, and that each agent knows the total number of agents, the
field characteristic, and its own initial state. With these assumptions, it is generally not possible to recover the
average xR. To see this, consider the case n = 3, p = 5, and the initial conditions x1 = [2 2 2]T and x2 = [0 0 1]T.
Over the field of real numbers we have x1,R = 1Tx1/n = 2 and x2,R = 1Tx2/n = 1/3. Over the field Fp, instead,
x1,F = np−21Tx1 = 2 and x2,F = np−21Tx2 = 2. Since x1,F = x2,F and x1,R 6= x2,R, it is not possible to recover the
average value over the field of real numbers from the average over a finite field and knowledge of network cardinality
and parameters. In the next theorem we present a sufficient condition to recover the desired real-valued average.

Theorem 6.2 (Average computation) Let x0 ∈ Fnp , let xR = 1Tx0/n ∈ R, and let xF = np−21Tx0. If the field
characteristic satisfies n‖x0‖∞ ≤ p, then xR = mod(nxF, p)/n.

PROOF: The statement follows from the relation

mod(nxF, p) = mod(np−11Tx0, p) = 1Tx0,

where the last equality holds because mod(np−1, p) = 1, and n‖x0‖∞ ≤ p.

Our finite-time average consensus algorithm follows from Theorems 6.1 and 6.2, and it is reported in Algorithm 1.

We conclude this part by noticing that the condition n‖x0‖∞ ≤ p in Theorem 6.2 is not restrictive. In fact, the field
characteristic p is a design parameter, and, in general, it can be chosen to satisfy the above condition as long as the
network cardinality n is known and a bound on the agents initial state is known.
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Algorithm 1 Distributed average computation (agent i)

Input: Field characteristic p, Initial state xi(0) ∈ Fp, Neighbors set N in
i and N out

i , Weights aij ∈ Fp for all j ∈ N in
i ,

Number of iterations T (set T = n otherwise), Number of agents n;
Require: p is a prime number, A = [aij ] achieves average consensus over Fp, nmax{x1(0), . . . , xn(0)} ≤ p;
Output: Average of initial states xave =

∑n
j=1 xj(0)/n ∈ R;

for t = 0, . . . , T do
Transmit xi(t) to N out

i ;
Receive xj(t) from N in

i ;
Set xi(t+ 1) =

∑
j∈N in

i
aijxj(t);

end for
return xave = mod(nxi(T ), p)/n;

6.2 Pose estimation from relative measurements

In this section we use our previous analysis to calibrate the orientation of a network of cameras. This problem has
been previously considered in [44,45,46] as a distributed estimation problem over SO(2). With respect to the existing
literature, we let the measurements and the orientations take value in a pre-specified finite field, and we develop an
estimation algorithm with performance guarantees based on modular arithmetic.

A camera network is modeled by an undirected graph G = (V, E), where each vertex is associated with a camera.
Let n = |V| and m = |E|. Let θi : N≥0 → Op be the orientation of the i-th camera as a function of time, where, for
some prime number p,

Op :=

{
k

2π

p
: k ∈ {0, . . . , p− 1}

}
. (4)

We refer to p as to discretization accuracy. For notational convenience, we define the directed graph Gd = (Vd, Ed)
associated with the camera network G, where Vd = V, and (i, j) ∈ Ed if and only if (i, j) ∈ E and i < j. For each
(i, j) ∈ Ed, let ηij ∈ Op be the relative measurement between camera i and camera j, that is ηij = θi − θj . Let θ be
the vector of the cameras orientations, and let η be the vector of relative measurements. Assign an arbitrary ordering
to the edges Ed, and define the incidence matrix B ∈ Fm×np of Gd by specifying the k-row of B corresponding to the
edge (i, j) as

bk` =


1, if ` = i,

−1, if ` = j,

0, otherwise.

(5)

Observe that Bθ = η. We consider the following problem.

Problem 1 (Pose estimation from relative measurements) Let G be a camera network, and let Gd be its
associated directed graph. Let p be the discretization accuracy, let B be the incidence matrix of Gd, and let η ∈ Omp
be the vector of relative measurements. Determine a set of cameras orientations θ ∈ Onp satisfying Bθ = η over Fp.

Notice that, if the incidence matrix B and the relative measurements η are available to some camera or central unit,
then Problem 1 requires the solution of system of linear equations. Instead, we propose an algorithm that requires
each camera to have access to local relative measurements and to communicate with its immediate neighbors. Our
distributed pose estimation algorithm is in Algorithm 2.

Because cameras transmit and operate only on values in the finite field Fp, we argue that Algorithm 2 is suitable
for agents with limited capabilities, and it is robust to transmission noise. In the next theorem we analyze the
convergence of Algorithm 2.

Theorem 6.3 (Convergence of Algorithm 2 with perfect measurements) Let G = (V, E) be a camera net-
work, and let Gd be its associated directed graph. Let η ∈ Omp be the vector of relative measurements, and let B be
the incidence matrix of Gd. If η ∈ Im(B) and A achieves average consensus over Fp, then
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Algorithm 2 Distributed pose estimation (camera i)

Input: Discretization accuracy p, Initial pose θi(0) ∈ Op, Neighbors set N in
i and N out

i , Weights aij ∈ Fn×np for all j ∈ N in
i ,

Number of iterations T (set T = n otherwise), Relative measurements ηij ∈ Op for all j ∈ N in
i ;

Require: p is a prime number, A = [aij ] achieves average consensus over Fp;
Output: Orientation θi compatible with measurements η = [ηij ];

for t = 0, . . . , T do

Transmit xi(t) = pθi(t)
2π

to N out
i ;

Receive xj(t) =
pθj(t)

2π
from N in

i ;
Update orientation θi(t) as:

xi(t+ 1) =
∑
j∈N in

i

aij
(
xj(t) +

p ηij
2π

)
, (6a)

θi(t+ 1) = xi(t+ 1)
2π

p
. (6b)

end for
return Orientation θi;

(i) Algorithm 2 converges in finite time, that is, θ̃ := θ(T ) = θ(T + τ) for some θ̃ ∈ Onp , T < n, and for all τ ∈ N,
and

(ii) the final network orientation is compatible with the relative measurements, that is, Bθ̃ = η.

PROOF: Consider the update law (6a), and notice that it can be written as x(t + 1) = Ax(t) + LBv, where
p η
2π = Bv for some vector v ∈ Fnp (y ∈ Im(B) by assumption), L ∈ Fn×mp , and the k-th column of L corresponding
to the edge (i, j) ∈ Ed is specified as

l`k =


aij , if ` = i,

−aij , if ` = j,

0, otherwise.

(7)

Observe that

(LB)ij =


∑
k∈N in

i
aik, if i = j,

−aij , if j ∈ N in
i ,

0, otherwise.

so that LB1 = 0 (asymmetric Laplacian matrix of G [2]). Notice that x(t) = Atx(0)+
∑t−1
τ=0A

τLBv. Since A achieves
average consensus, we have AT = np−211T for some T < n. Thus, AtLB = np−211TLB for all t ≥ T . We now show
that 1TLB = 0, from which statement (i) follows. Since A achieves average consensus, it follows from Theorem 6.1
that A1 = 1 and 1TA = 1T. Hence, for each node k ∈ V,

∑n
j=1 akj =

∑n
j=1 ajk, and, consequently, 1TLB = 0.

Let x̃ be a fixed point of (6a), that is, (I−A)x̃ = LBv. Since A1 = 1, it follows that I = diag(
∑
j a1,j , . . . ,

∑
j an,j),

and I − A = LB. Then LB(x̃ − v) = 0 for every fixed point x̃ of (6a). Because A is a consensus matrix, 1 is a
simple eigenvalue of A, and A1 = 1. Then Ker(LB) = Ker(I−A) = Im(1). Notice that, by construction, η = 2π

p Bv,

θ̃ = 2π
p x̃, and B1 = 0. Consequently, (θ̃ − η) ∈ Im(1), and statement (ii) follows.

In Theorem 6.3 we assume that the measurements satisfy η ∈ Im(B), or, equivalently, that the measurements are not
affected by noise. While this assumption is justified by the fact that we only consider discretized measurements, in
what follows we study the evolution of Algorithm 2 when the measurements are affected by noise. Let e(t) = η−Bθ(t).

Theorem 6.4 (Convergence of Algorithm 2 with noisy measurements) Let G = (V, E) be a camera network,
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and let Gd be its associated directed graph. Let η ∈ Omp be the vector of relative measurements, and let B be the
incidence matrix of Gd. If A achieves average consensus over Fp, then

(i) there exists a finite time T < n such that the estimation error is constant, that is, e(t) = e(t+ 1) for all t ≥ T ,
and

(ii) for all t ≥ T , the estimation error satisfies

e(t) =

(
I −B

T−1∑
τ=0

AτL

)
ηorth,

where ηorth is the orthogonal projection of η onto Im(B)⊥, and L is as in (7).

PROOF: With the same notation as in the proof of Theorem 6.3, let T < n be the number of iterations needed
for convergence of the network matrix A, that is, AT = np−211T. Notice that BAt = 0 for all t ≥ T , so that

e(t) = η −Atx(0)−
t−1∑
τ=0

AτLη = η −
T−1∑
τ=0

AτLη,

for all t ≥ T , and statement (i) follows. To show statement (ii), let η = ηpar + ηorth, where ηpar ∈ Im(B), and
ηorth ∈ Im(B)⊥. From the linearity of (6a) and Theorem 6.3 we have

ηpar = B

T−1∑
τ=0

AτLηpar,

which concludes the proof.

Theorem 6.4 characterize the performance of Algorithm 2 when the measurements are affected by noise. Notice
that the estimation error can be minimized by properly choosing the network matrix A. We now conclude with a
numerical example.

Example 8 (Average computation and pose estimation via finite-field consensus) Consider a camera
network with 4 cameras configured in a circle topology and network matrix

A =


0 4 2 0
1 1 0 4
0 0 2 4
0 1 2 3

 ∈ F4×4
5 .

It can be verified that A achieves average consensus over F5 in at most 3 iterations. In Fig. 5(a) we show that the
network matrix A allows for the computation of the real-valued average of the agents initial states in 3 iterations
(see Algorithm 1 and Section 4).

Let Ak ∈ F1024×1024
5 be the network matrix generated from A as Ak = A ⊗ A ⊗ A ⊗ A ⊗ A. The sparsity pattern of

Ak is reported in Fig. 5(b). In Fig. 6 we validate our distributed pose estimation algorithm (see Section 6.2).

7 Conclusion and Future Work

In this paper we propose a distributed consensus algorithm for agents with limited memory, computation, and com-
munication capabilities. Our approach is based on finite-fields, where agents states lie in a finite set, and operations
are performed according to modular arithmetic. For our algorithm we identify necessary and sufficient convergence
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Fig. 5. For the network described by the matrix A in Example 8, let 0, 1, 1, 1 be the agents initial states, respectively. Agents
implement Algorithm 1. In Fig. 5(a) (above), we report the network disagreement as a function of time, where the disagreement
at a given time equals the largest agents state minus the smallest agents state. Notice that the network achieves consensus in
3 iterations (see Section 4). In Fig. 5(a) (below), we report the average computed by the first agent (solid black) as a function
of time (see Section 6.1). Notice that the first agent, and hence every agent in the network, computes the average of the initial
states (dashed red) at the third iteration. Fig. 5(b) shows the sparsity pattern of the matrix Ak ∈ F1024×1024

5 in Example 8.
The network defined by Ak has 1024 nodes and 105 edges.

conditions, and we characterize the convergence time. Additionally, we discuss several network design methods,
and we propose some application scenarios. Our work proposes a novel class of consensus dynamics, which are
advantageous in several applications, and it complements the existing literature on real-valued consensus.

Through our analysis we show that finite-field consensus networks outperforms their real-valued counterpart in
many aspects, including the convergence speed, robustness to communication errors, and agents requirements. These
advantages come at the expenses of a more convoluted network design, which we identify as an interesting research
direction. In particular, distributed network design algorithms, as well as gossip and asynchronous protocols should
be investigated to broaden the applicability of finite-field consensus networks. Other theoretical research questions
include characterizing the existence of finite-field consensus weights for a given interconnection structure and field
characteristic, as well as the design of fastest finite-field consensus networks with fixed agents interconnection graph.

APPENDIX

Before proving Theorem 4.3, we recall the following fundamental results and facts in linear algebra.

Theorem 7.1 (Primary decomposition theorem [25]) Let A : V → V be a linear operator on some vector space
V over some field F, and let p(s) =

∏r
i=1 pi(s) be an annihilating polynomial for A with degree greater than 1, for

some relatively prime polynomials p1, . . . , pr. Then

(i) Wi = Ker(pi(A)) is a A-invariant subspace for all i ∈ {1, . . . , r},
(ii) V =W1 ⊕W2 ⊕ · · · ⊕Wr, where ⊕ denote the direct sum operator, and

(iii) if
∏r
i=1 pi(s) = PA(s) and Ai is the restriction of A to Wi, then pi is the characteristic polynomial of Ai.

Recall that the order of a polynomial g ∈ F[s], denoted by ord(g), is the smallest positive integer r such that g(s)
divides sr−1 over F, that is, the smallest positive integer r such that there exists q ∈ F[s] satisfying sr−1 = g(s)q(s).
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Fig. 6. For the camera network with 1024 cameras described by the matrix Ak in Example 8, this figure show the effectiveness
of the our pose estimation algorithm in Algorithm 2. The figure above considers the noiseless case (Theorem 6.3). The dashed
black line denotes the infinity norm of the estimation error, while solid red line corresponds to the (normalized) two norm of
the difference between two consecutive estimation errors. We conclude that, in the absence of measurement noise, Algorithm
2 converges in 3 iterations to a configuration compatible with the relative measurements. The figure below considers the
case of noisy measurements (Theorem 6.4). Notice that, since the measurements are affected by noise, the estimation error
remains nonzero (dashed black). However, the algorithm converges to a configuration with constant estimation error. Indeed,
the difference between two consecutive estimation errors is zero after 3 iterations (solid red).

Theorem 7.2 (Order of a polynomial over finite field [24]) Let g ∈ F[s] be an irreducible polynomial satisfying
g(0) 6= 0 and ord(g) = e. Consider f = gs, and t is the smallest integer such that pt ≥ s, then ord(f) = ept.

We are now ready to prove Theorem 4.3.

PROOF of Theorem 4.3: Let PA ∈ Fp[s] be the characteristic polynomial of A, and notice that PA can be
written as

PA(s) = det(sI −A) = shP̄ (s), (A-1)

for some h ∈ N≥0, and P̄ (s) ∈ Fp[s] with P̄ (0) 6= 0.

(i) =⇒ (ii) Due to Lemma 3.2, we have 1 ∈ σp(A). Thus, we factorize PA in irreducible polynomials as

PA(s) = (s− 1)k
r∏
j=1

Qj(s)
mj ,

where k,mj ∈ N are given by the algebraic multiplicity of the corresponding eigenvalue.

We start by showing that k = 1. Assume by contradiction that k > 1. Let W2 = Ker((I − A)k), and let A2 be the
restriction of A to W2. Recall from [27] that the cycle structure of the transition graph G2 of A2 is

Cycles(G2) = C1 +

k∑
i=1

(pi − pi−1)C1, (A-2)

where the sums of cycles is just the corresponding union graph, and C1 denotes a unitary cycle, that is, a fixed point
for A. From (A-2) it follows that, if k > 1, then the number of cycles in G2 is strictly greater than p. By Theorem
4.1 we conclude that k = 1.
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We now show that r = 0. Assume by contradiction that r > 0. LetW3 = Ker(Qj(A)mj ), and let A3 be the restriction
of A to W3. Then the cycle structure of the transition graph G3 of A3 is

Cycles(G3) = C1 +

mj∑
i=1

pdeg(Qj)i − pdeg(Qj)(i−1)

`i
C`i ,

where `i = ord(Q
nj

j ) ≥ deg(Qj) ≥ 1 from Theorem 7.2, and deg(·) denotes the degree of a polynomial. Since the
graph structure of A is given by the product of the graphs associated with the irreducible factors of its characteristic
polynomial [27], the number of cycles is greater than p whenever either k > 1 or r > 0 (see Example 4 and Fig. 2).

(ii) =⇒ (i) Let W1 = Ker(A− I) = Im(1) and recall from Theorem 7.1 that W1 is A-invariant. Let V = [V1 1] be
an invertible matrix, where the columns of V1 are a basis for W⊥1 . Then we have

Ã = V −1AV =

[
A11 0
A21 1

]
.

Since the eigenvalues of a matrix are not affected by similarity transformations, the characteristic polynomial of the
matrix A11 is sn−1, so that A11 is nilpotent. It follows that every vector in W⊥1 converges to the origin in at most
n−1 iterations, while vectors inW1 (consensus vectors) are fixed points for the matrix A. This concludes the proof.
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