
ar
X

iv
:1

31
1.

03
57

v1
  [

qu
an

t-
ph

] 
 2

 N
ov

 2
01

3

Analysis of Quantum Linear Systems’ Response to

Multi-photon States

Guofeng Zhang a

aDepartment of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong

Abstract

The purpose of this paper is to present a mathematical framework for analyzing the response of quantum linear systems driven
by multi-photon states. Both the factorizable (namely, no correlation among the photons in the channel) and unfactorizable
multi-photon states are treated. Pulse information of multi-photon input state is encoded in terms of tensor, and response
of quantum linear systems to multi-photon input states is characterized by tensor operations. Analytic forms of output
correlation functions and output states are derived. The proposed framework is applicable no matter whether the underlying
quantum dynamic system is passive or active. The results presented here generalize those in the single-photon setting studied in
(Milburn, 2008) and (Zhang & James, 2013). Moreover, interesting multi-photon interference phenomena studied in (Sanaka,
Resch & Zeilinger, 2006), (Ou, 2007), and (Bartley, et al., 2012) can be reproduced in the proposed framework.
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1 Introduction

Analysis of system response to various types of input signals is fundamental to control systems engineering. Step
response enables a control engineer to visualize system transient behavior such as rise time, overshoot and settling
time; frequency response design methods are among the most powerful methods in classical control theory; response
analysis of linear systems initialized in Gaussian states driven by Gaussian input signals is the basis of Kalman
filtering and linear quadratic Gaussian (LQG) control (see, e.g., Anderson & Moore, 1971; Kwakernaak & Sivan,
1972;Anderson & Moore, 1979; Zhou, Doyle & Glover, 1996;Qiu & Zhou, 2009).

Over the last two decades, there has been rapid advance in experimental demonstration and theoretical investiga-
tion of quantum (namely, non-classical) control systems due to their promising applications in a wide range of areas
such as quantum communication, quantum computation, quantum metrology, laser-induced chemical reaction, and
nano electronics (Gardiner & Zoller, 2000; Loudon, 2000;Nielsen & Chuang, 2000;D’Alessandro, 2007;Walls & Mil-
burn, 2008;Wiseman & Milburn, 2010;Belavkin, 1983;Huang, Tarn & Clark, 1983;Yurke & Denker, 1984;Gardiner,
1993; Doherty & Jacobs, 1999; Khaneja, Brockett & Glaser, 2001; Albertini & D’Alessandro, 2003; Yanagisawa &
Kimura, 2003;Stockton, van Handel & Mabuchi, 2004;Mabuchi & Khaneja, 2005;van Handel, Stockton & Mabuchi,
2005;Altafini, 2007;Mirrahimi & van Handel, 2007;James, Nurdin & Petersen, 2008;Rouchon, 2008;Bonnard, Chyba
& Sugny, 2009;Gough & James, 2009; Li & Khaneja, 2009;Mirrahimi & Rouchon, 2009;Nurdin, James & Doherty,
2009; Yamamoto & Bouten, 2009; Bloch, Brockett & Rangan, 2010; Bolognani & Ticozzi, 2010; Brif, Chakrabarti
& Rabitz, 2010; Dong & Petersen, 2010; Gough, James & Nurdin, 2010; Munro, Nemoto & Milburn, 2010; Wang
& Schirmer, 2010;Maalouf & Petersen, 2011; Zhang & James, 2011; Altafini & Ticozzi, 2012; Amini, Mirrahimi &
Rouchon, 2012; Zhang, et al., 2012;Qi, 2013). Within this program quantum linear systems play a prominent role.
Quantum linear systems are characterized by linear quantum stochastic differential equations (linear QSDEs). In
quantum optics, linear systems are widely used because they are easy to manipulate and, more importantly, lin-
ear dynamics often serve well as good approximation of more general dynamics ( Gardiner & Zoller, 2000; Loudon,
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2000;Walls & Milburn, 2008;Wiseman & Milburn, 2010). Besides their broad applications in quantum optics, linear
systems have also found applications in many other quantum-mechanical systems such as opto-mechanical systems
( Massel, et al., 2011, Eqs. (15)-(18)), circuit quantum electrodynamics (circuit QED) systems ( Matyas, et al.,
2011, Eqs. (18)-(21)), atomic ensembles ( Stockton, van Handel & Mabuchi, 2004, Eqs. (A1),(A4)), quantum mem-
ory ( Hush, Carvalho, Hedges & James, 2013, Eqs. (12)-13). From a signals and systems point of view, quantum
linear systems driven by Gaussian input states have been studied extensively, and results like quantum filtering and
measurement-based feedback control have been well established (Wiseman & Milburn, 2010).

In addition to Gaussian states there are other types of non-classical states, for example single-photon states and
multi-photon states. Such states describe electromagnetic fields with a definite number of photons. Due to their
highly non-classical nature and recent hardware advance, there is rapidly growing interest in the generation and
engineering (e.g., pulse shaping) of photon states, and it is generally perceived that these photon states hold promis-
ing applications in quantum communication, quantum computing, quantum metrology and quantum simulations
( Cheung, Migdall & Rastello, 2009;Gheri, Ellinger, Pellizzari & Zoller, 1998; Sanaka, Resch & Zeilinger, 2006;Ou,
2007; Bartley, et al., 2012;Milburn, 2008; Gough, James & Nurdin, 2013; Hush, Carvalho, Hedges & James, 2013).
Thus, a new and important problem in the field of quantum control engineering is: How to characterize and engineer
interaction between quantum linear systems and photon states? The interaction of quantum linear systems with
continuous-mode photon states has recently been studied in the literature, primarily in the physics community. For
example, interference phenomena of photons passing through beamsplitters have been studied, see, e.g., Sanaka,
Resch & Zeilinger, 2006;Ou, 2007;Bartley, et al., 2012. Milburn discussed how to use an optical cavity to manipulate
the pulse shape of a single-photon light field (Milburn, 2008). Quantum filtering for systems driven by single-photon
fields has been investigated in Gough, James & Nurdin, 2013, based on which nonlinear phase shift of coherent
signal induced by single-photon field has been studied inCarvalho, Hush & James, 2012. Intensities of output fields
of quantum systems driven by continuous-mode multi-photon light fields have been studied in Baragiola, Cook,
Brańczyk & Combes, 2012. InZhang & James, 2013 the response of quantum linear systems to single-photon states
has been studied. Formulas for intensities of output fields have been derived. In particular, a new class of optical
states, photon-Gaussian states, has been proposed.

In the analysis of the response of quantum linear systems to single-photon states, matrix presentation is sufficient
because two indices are adequate: one for input channels, and the other for output channels. However, this is not
the case in the multi-photon setting. In addition to indices for input and output channels, we need another index to
count photon numbers in channels. As a result, tensor representation and operation are essential in the multi-photon
setting. To be specific, multi-photon state processing by quantum linear systems can be mathematically represented
in terms of tensor processing by transfer functions. The key ingredient for such an operation is the following (for
the passive case). Let E(t) = (Ejk(t)) ∈ Cm×m be the transfer function of a quantum linear passive system with m
input channels. For each j = 1, . . . ,m, let Vj(t1, . . . , tℓj ) be an ℓj-way m-dimensional tensor function that encodes
the pulse information of the j-th input channel containing ℓj photons. Denote the entries of Vj(t1, . . . , tℓj ) by
Vj,k1,...,kℓj

(t1, . . . , tℓj ). For all given 1 ≤ r1, . . . , rℓj ≤ m, define an ℓj-way m-dimensional tensor Wj with entries

given by the following multiple convolution

Wj,r1,...,rℓj
(t1, . . . , tℓj )

=

m∑

k1,...,kℓj
=1

∫ ∞

−∞
· · ·
∫ ∞

−∞
Er1k1(t1 − ι1) · · ·Erℓj kℓj (tℓj − ιℓj )Vj,k1,...,kℓj

(ι1, . . . , ιℓj )dι1 . . . dℓj .

It turns out that the tensors Wj (j = 1, . . . ,m) encode the pulse information of the output field. That is, an ℓj-way
input tensor is mapped to an ℓj-way output tensor by the quantum linear passive system.

The contributions of this paper are three-fold. First, the analytic form of the steady-state output state of a quantum
linear system driven by a multi-photon input state is derived. When the quantum linear system is a beamsplitter
(a static passive device), interesting multi-photon interference phenomena studied in ( Sanaka, Resch & Zeilinger,
2006), (Ou, 2007), and (Bartley, et al., 2012) are re-produced by means of our approach, see Examples 1,2,3. Second,
when the underlying quantum linear system is not passive (e.g., a degenerate parametric amplifier), the steady-state
output state with respect to a multi-photon input state is not a multi-photon state. In terms of tensor representation,
a more general class of states is defined. Such rigorous mathematical description paves the way for multi-photon
state engineering. Third, both the factorizable and unfactorizable multi-photon states are treated in this paper. Here
a factorizable multi-photon state is a state for which the photons in a given channel are not correlated, while for an

2



G

bout b

Fig. 1. Quantum linear system G with input b and output bout

unfactorizable multi-photon state there exists correlation among the photons. This difference cannot occur in the
single-photon state case. Thus, the mathematical framework presented here is more general.

The rest of the paper is organized as follows. Preliminary results are presented in Section 2. Specifically, quantum
linear systems are briefly reviewed in Subsection 2.1 with focus on stable inversion and covariance function transfer,
in Subsection 2.2 several types of tensors and their associated operations are introduced. The multi-photon state
processing when input states are factorizable in terms of pulse shapes is studied in Section 3. (Here the word
“factorizable” means there is no correlation among photons in each specific channel.) Specifically, single-channel
and multi-channel multi-photon states are presented in Subsections 3.1 and 3.2 respectively, covariance functions
and intensities of output fields are studied in Subsection 3.3, while an analytic form of steady-state output states
is derived in Subsection 3.4. The unfactorizable case is investigated in Section 4. Specifically, unfactorizable multi-
channel multi-photon states are defined in Sebsection 4.1, the analytic form of the steady-state output state is
presented in Subsection 4.2 where the underlying system is passive, the active case is studied in Subsection 4.3.
Some concluding remarks are given in Section 5.

Notations. m is the number of input channels, and n is the number of degrees of freedom of a given quantum linear
stochastic system. |φ〉 denotes the initial state of the system which is always assumed to be vacuum, |0〉 denotes

the vacuum state of free fields. Given a column vector of complex numbers or operators x = [ x1 · · · xk ]T where

k is a positive integer, define x# = [ x∗1 · · · x∗k ]T , where the asterisk ∗ indicates complex conjugation or Hilbert

space adjoint. Denote x† = (x#)T . Furthermore, define the doubled-up column vector to be x̆ = [ xT (x#)T ]T .

Let Ik be an identity matrix and 0k a zero square matrix, both of dimension k. Define Jk = diag(Ik,−Ik) and

Θk = [ 0 Ik; −Ik 0 ] (The subscript “k” is often omitted.) Then for a matrix X ∈ C2j×2k, define X♭ := JkX
†Jj . ⊗c

denotes the Kronecker product. Given a function f(t) in the time domain, define its two-sided Laplace transform
( Sogo, 2010, (13)) to be F [s] = Lb{f(t)}(s) :=

∫∞
−∞ e−stf(t)dt. Given two constant matrices U , V ∈ Cr×k, define

∆(U, V ) = [U V ;V # U#]. Similarly, given time-domain matrix functions E−(t) and E+(t) of compatible dimensions,
define ∆(E−(t), E+(t)) = [E−(t) E+(t);E+(t)# E−(t)#]. Given two operators A and B, their commutator is defined
to be [A,B] := AB − BA. For any integer r > 1, we write

∫

r for integration in the space Rr. We also write dt1→r

for dt1 · · · dtr. Finally, given a column vector a, we use aj to denote its entries. Given a matrix A, we use Ajk to
denote its entries. Given a 3-way tensor A (also called a tensor of order 3), we use Aijk to denote its entries; we do
the similar thing for higher order tensors.

2 Quantum linear systems and tensors

This section records preliminary results necessary for the development of the paper. Quantum linear systems are
briefly discussed is Subsection 2.1. Tensors and their associated operations, the appropriate mathematical language
to describe the interaction of a quantum linear system with multi-photon channels, is introduced in Subsection 2.2.

2.1 Quantum linear systems

In this subsection quantum linear systems are described in the input-output language, which makes it natural
to present transfer of covariance function of input fields. Moreover, the input-output framework also enables the
definition of the stable inversion of quantum linear systems.

2.1.1 Fields and systems

In this part we set up the model which is a quantum linear system driven by boson fields, ( Gardiner & Zoller,
2000;Walls & Milburn, 2008;Wiseman & Milburn, 2010).
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The triple (S,L,H) provides a compact way for the description of open quantum systems ( Gough & James,
2009;Gough, James & Nurdin, 2010; Zhang & James, 2012). Here the self-adjoint operator H is the initial system
Hamiltonian, S is a unitary scattering operator, and L is a coupling operator that describes how the system is coupled
to its environment. The environment is an m-channel electromagnetic field in free space, represented by a column
vector of annihilation operators b(t) = [b1(t), · · · , bm(t)]T . Let t0 be the initial time, namely, the time when the

quantum system starts interacting with its environment. Define a gauge process Λ(t) by Λ(t) =
∫ t

t0
b#(τ)bT (τ)dτ =

(
Λjk(t)

)

j,k=1,...,m
with operator entries Λjk(t) on the Fock space F for the free field (Gardiner & Zoller, 2000,Walls

& Milburn, 2008). In this paper it is assumed that these quantum stochastic processes are canonical, that is, they
have the following non-zero Ito products

dBj(t)dB
∗
k(t) = δjkdt, dΛ

jkdB∗
l (t) = δkldB

∗
j (t),

dBj(t)dΛ
kl(t) = δjkdBl(t), dΛ

jk(t)dΛlm(t) = δkldΛ
jm(t), j, k, l = 1, . . . ,m,

where B(t) = [B1(t), · · · , Bm(t)]T is a column vector of the integrated field operators defined via B(t) :=
∫ t

t0
b(r)dr.

In the interaction picture the stochastic Schrodinger’s equation for the open quantum system driven by the free field
b(t) is, in Ito form (Gardiner & Zoller, 2000, Chapter 11),

dU(t, t0) =

{

Tr[(S − Im)dΛ(t)T ] + dB†(t)L− L†SdB(t)− (
1

2
L†L+ iH)dt

}

U(t, t0), t ≥ t0, (1)

with U(t, t0) = I being an identity operator for all t ≤ t0.

Specific to the linear case, the open quantum linear system G shown in Fig. 1 represents a collection of n interacting
quantum harmonic oscillators a(t) = [a1(t), . . . , an(t)]

T (defined on a Hilbert space HG) coupled tom boson fields b(t)
described above (Gardiner & Zoller, 2000,Wiseman & Milburn, 2010,Zhang & James, 2011,Zhang & James, 2012).
Here, aj (j = 1, . . . , n) is the annihilation operator of the jth oscillator satisfying the canonical commutation relations
[aj , a

∗
k] = δjk. Denote ă(t0) = ă. The vector operator L ∈ HG is defined as L = C−a+ C+a

# with C−, C+ ∈ Cm×n.

The initial Hamiltonian H ∈ HG is H = 1
2 ă

†∆(Ω−,Ω+) ă with Ω−,Ω+ ∈ Cn×n satisfying Ω− = Ω†
− and Ω+ = ΩT

+.
By (1), the dynamic model for the system G is

˙̆a(t) =Aă(t) +Bb̆(t), ă(t0) = ă, (2)

b̆out(t) =Că(t) +Db̆(t), (3)

in which system matrices are given in terms of the physical parameters S,L,H , specifically,

D = ∆(S, 0), C = ∆(C−, C+), B = −C♭∆(S, 0), A = −1

2
C♭C − iJn∆(Ω−,Ω+).

The transfer function (impulse response function) for the system G is

gG(t) :=

{

δ(t)D + CeAtB, t ≥ 0,

0, t < 0.
(4)

This, together with (2) and (3), yields

b̆out(t) = CeA(t−t0)ă+

∫ t

t0

gG(t− r)b̆(r)dr. (5)

The system G is said to be passive if both C+ = 0 and Ω+ = 0. The system G is said to be asymptotically stable
if the matrix A is Hurwitz ( Zhang & James, 2011, Section III-A).
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Define matrix functions

gG−(t) :=







δ(t)S − [C− C+ ]eAt

[

C
†
−

−C†
+

]

S, t ≥ 0,

0, t < 0,

gG+(t) :=







−[C− C+ ]eAt

[

−CT
+

CT
−

]

S#, t ≥ 0,

0, t < 0.

(Note that when G is passive, gG+(t) ≡ 0.) With these functions, the transfer function in (4) can be re-written as

gG(t) = ∆ (gG−(t), gG+(t)) .

Finally, assume that the system (2)-(3) is asymptotically stable. Letting t0 → −∞ and noticing (4), equation (5)
becomes

b̆out(t) =

∫ ∞

−∞
gG(t− r)b̆(r)dr, (6)

which characterizes the steady-state relation between the input and the output.

2.1.2 Stable inversion

In this par some results for the stable inversion of quantum linear systems G are recorded, which are used in the
derivation of output states of quantum linear systems driven by multi-photon states, cf. Sections 3 and 4.

For the transfer function gG(t) defined in (4), let ΞG[s] be its two-sided Laplace transform (see the Notations part
and Sogo, 2010, Eq. (13). Define a matrix function gG−1(t) to be

gG−1(t) := L
−1
b {ΞG[s]

−1}(t). (7)

The following result is proved in Zhang & James, 2013, Lemma 1.

Lemma 1 Assume that the system G is asymptotically stable. Then

gG−1(t) =∆
(
gG−(−t)†,−gG+(−t)T

)
. (8)

Remark 1. Because the system G is asymptotically stable, it has no zeros on the imaginary axis, ΞG[s]
−1 is well

defined. It is worth pointing out that the matrix function gG−1(−t) turns out to be the transfer function of the
inverse system defined inGough, James & Nurdin, 2010, (71).

Lemma 2 Assume the quantum linear system G is asymptotically stable. Define an operator

b̆−(t, t0) := U(t, t0)b̆(t)U(t, t0)
∗, t ≥ t0.

Then

b̆−(t,−∞) =

∫ ∞

−∞
gG−1(t− r)b̆(r)dr. (9)

Proof. Because b̆out(t) = U(t, t0)
∗b̆(t)U(t, t0), equation (5) gives

U(t, t0)
∗b̆(t)U(t, t0) = CeA(t−t0)ă+

∫ t

t0

gG(t− r)b̆(r)dr.
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That is,

b̆(t) = CeA(t−t0)U(t, t0)ăU(t, t0)
∗ +

∫ t

t0

gG(t− r)b̆−(t, t0)dr.

Letting t0 → −∞ and noticing (4) we have

b̆(t) =

∫ ∞

−∞
gG(t− r)b̆−(r,−∞)dr. (10)

However, by Eq. (7), we have gG−1 ∗ gG(t) = δ(t). Substituting it into (10) yields (9).

Remark 2. Operators b̆−(r, t0) and b̆−(r,−∞) are formally defined mathematically, they may not correspond to
physical variables. However, they do help in the derivation of the steady-state state of output fields.

2.1.3 Steady-state covariance transfer

Here we record esults concerning covariance function transfer by the quantum linear system G defined in (2)-(3).

Assume the quantum linear system G is in the vacuum state |φ〉. Assume further that the input field is in a
zero-mean state ρf . (specific types of ρf will be studied in the sequel.) Denote the covariance functions of the input
filed b(t) and the output field bout(t) by R(t, r) and Rout(t, r) respectively, that is,

R(t, r) = Tr[ρf b̆(t)b̆
†(r)], Rout(t, r) = Tr[|φ〉〈φ| ⊗ ρf b̆out(t)b̆

†
out(r)]. (11)

According to (6) and (11) we have

Lemma 3 Assume that the system (2)-(3) is asymptotically stable. Let the input field have covariance R(t, r) defined
in (11). The steady-state (namely t0 → −∞) output covariance function Rout(t, r) is

Rout(t, r) =

∫ ∞

−∞

∫ ∞

−∞
gG(t− τ1)R(τ1, τ2)gG(r − τ2)

†dτ1dτ2. (12)

In the frequency domain, we have

Theorem 4 Assume that the system (2)-(3) is asymptotically stable. If the input field is stationary with spectral
density matrix R[iω] (namely, the Fourier transform of R(t, t)), the output spectral density matrix is given by

Rout[iω] = ΞG[iω]R[iω]ΞG[iω]
†. (13)

In particular, if the input field is in the vacuum state |0〉, that is, R[iω] =

[

Im 0

0 0m

]

, then the output state is a

Gaussian state with output spectral density matrix

Rout[iω] = ΞG[iω]

[

Im 0

0 0m

]

ΞG[iω]
†. (14)

In what follows we focus on the Gaussian input field states. Denote the initial joint system-field Gaussian state by
ρ0g = |φ〉〈φ| ⊗ ρf where ρf is a Gaussian field state. Define the steady-state joint state

ρ∞g := lim
t0→−∞
t→∞

U(t, t0)ρ0gU(t, t0)
∗, (15)
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and the steady-state output field state
ρfield,g := Trsys[ρ∞g],

where the subscript “sys” indicates that the trace operation is performed with respect to the system. Moreover,
if the input state ρf is stationary with spectral density R[iω], according to Theorem 4, ρfield,g is the steady-state
output field density with covariance function Rout[iω] given in (13). Finally, if ρf = |0〉〈0|, then ρfield,g is stationary
zero-mean Gaussian with Rout[iω] given in (14).

Remark 3. Because ρfield,g is obtained by tracing out the system, it is in general a mixed state. Moreover, ρ∞g is
in general not the vacuum state even if ρf = |0〉〈0|. However, if the system G is passive, then by (14),

Rout[iω] =

[

Im 0

0 0m

]

= Rin[iω]. (16)

That is, in the passive case the steady-state output state ρfield,g is again the vacuum state.

2.2 Tensors

In this subsection several types of tensors and their associated operations are introduced. Because different chan-
nels may have different numbers of photons, fibers of the tensors may thus have different lengths, see e.g., (17).
Nonetheless, with slight abuse of notation, we still call these objects tensors.

Given positive integers m and ℓ1, . . . , ℓm, let Cm×(ℓ1,...,ℓm) be a space of matrix-like objects, whose element ξ is of
the form

ξ =








ξ11 · · · ξ1ℓ1

...
. . .

...

ξm1 · · · ξmℓm







.

In this paper ξ is used to represent m-channel multi-photon input states with ℓj denoting the photon number in
the j-th channel, j = 1, . . . ,m. Because channels may have different numbers of photons, ℓ1, . . . , ℓm may not equal
each other. Nonetheless in the paper we still call ξ a matrix. Next we define a tensor space Cm×m×(ℓ1,...,ℓm), whose
elements S are defined in the following way: For each i, j = 1, . . . ,m, the model-3 fiber is

Sij: =








Sij1

...

Sijℓj







∈ C

ℓj . (17)

That is, when the first two indices i, j are fixed, we have a vector of dimension ℓj . S looks like a 3-way tensor (Kolda
& Bader, 2009), but its mode-3 fibers may have different dimensions for different j. Nevertheless, in this paper we
still call S a 3-way tensor and Cm×m×(ℓ1,...,ℓm) a space of 3-way tensors over the field of complex numbers. Given a
matrix ξ ∈ Cm×(ℓ1,...,ℓm), we may represent it as a 3-way tensor ξ↑ ∈ Cm×m×(ℓ1,...,ℓm), by defining horizontal slices
to be

ξ
↑
i:: =




















0 · · · 0
...
. . .

...

0 · · · 0







i−1

ξi1 · · · ξiℓi

0 · · · 0
...
. . .

...

0 · · · 0







m−i




















∈ C
m×(ℓ1,...,ℓm), ∀i = 1, . . . ,m. (18)
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This update turns out to be very useful because the output state of a quantum passive linear system driven
by an m-channel multi-photon state encoded by a matrix ξ ∈ Cm×(ℓ1,...,ℓm) can be characterized by a tensor in
Cm×m×(ℓ1,...,ℓm), see Sec. 3.4.

We adopt notations inKolda & Bader, 2009. For each j = 1, . . . ,m and k = 1, . . . , ℓj ,

S:jk =








S1jk

...

Smjk







∈ C

m

is mode-1 (column) fiber. Si:: and S:j: are respectively horizontal and lateral slices (matrices) of the form

Si:: =








S T
i1:

...

S T
im:







∈ C

m×(ℓ1,...,ℓm), S:j: =
[

S:j1 · · · S:jℓj

]

∈ C
m×ℓj , ∀i, j = 1, . . . ,m.

Finally, let C ∈ C
m×(ℓ1,...,ℓm)×(ℓ1,...,ℓm) be a 3-way tensor. We say that C is partially Hermitian in modes 2 and 3 if

all the horizontal slices are Hermitian matrices. That is, for all i = 1, . . . ,m, the horizontal slices Ci:: ∈ Cℓi×ℓi satisfy

C
†
i:: = Ci::. This is a natural extension of the concept partially symmetric discussed in (Kolda & Bader, 2009) to the

complex domain.

In what follows we define operations associated to these tensors. Given 3-way tensors S (t),T (r) ∈ Cm×m×(ℓ1,...,ℓm)

and partially Hermitian tensor C ∈ Cm×(ℓ1,...,ℓm)×(ℓ1,...,ℓm), we define a matrix S (t)⊛T (r) ∈ Cm×m whose (i,k)-th
entry is

(S (t)⊛ T (r))ik :=

m∑

j=1

1

Nℓj

ℓj∑

β=1

ℓj∑

α=1

CjαβSijα(t)Tkjβ(r), ∀i, k = 1, . . . ,m, (19)

where Nℓj (j = 1, . . . ,m) are positive scalars. (The physical interpretation of Nℓj will be given in Sec. 3.) It can be
verified that

(S (t)⊛ T (r))
†
= T (r)# ⊛ S (t)#. (20)

In this paper, we call C a “core tensor” for the operation ⊛. According to (19) and the definition of ξ↑ in (18), we
have

diagj=1,...,m(
1

Nℓj

ℓj∑

i,k=1

Cjikξ
ji(r)∗ξjk(t)) = ξ↑(r)# ⊛ ξ↑(t), (21)

Given a matrix function E(t) ∈ Cm×m and a 3-way tensor S (t) ∈ Cm×m×(ℓ1,...,ℓm), define T ∈ Cm×m×(ℓ1,...,ℓm)

whose (i, j, k)-th element is

Tijk(t) :=

m∑

r=1

∫ ∞

−∞
Eir(t− τ)Srjk(τ)dτ.

In compact form we write
T = S ×1 E,

where ×1 is called 1-mode matrix product (Kolda & Bader, 2009, Sec. 2.5).

Given two matrices E(t), F (t) ∈ Cm×m and two tensors S (t),T (t) ∈ Cm×m×(l1,...,ℓm), define

∆(S ,T )×1 ∆(E,F ) := ∆(S ×1 E + T
# ×1 F,T ×1 E + S

# ×1 F ). (22)

That is, the operation ×1 is performed block-wise. This operation is useful in studying the output state of a quantum
linear system driven by a multi-channel multi-photon input state.
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Finally, we define another type of operations between matrices and tensors. Let E(t) = (Ejk(t)) ∈ Cm×m be
the transfer function of the underlying quantum linear system with m input channels. For each j = 1, . . . ,m, let
Vj(t1, . . . , tℓj) be an ℓj-way m-dimensional tensor function that encodes the pulse information of the jth input field
containing ℓj photons. Denote the entries of Vj(t1, . . . , tℓj ) by Vj,k1,...,kℓj

(t1, . . . , tℓj ). Define an ℓj-waym-dimensional

tensor Wj with entries given by the following multiple convolution

Wj,r1,...,rℓj
(t1, . . . , tℓj )

=
m∑

k1,...,kℓj
=1

∫ ∞

−∞
· · ·
∫ ∞

−∞
Er1k1(t1 − ι1) · · ·Erℓjkℓj (tℓj − ιℓj )Vj,k1,...,kℓj

(ι1, . . . , ιℓj )dι1 . . . dℓj

for all 1 ≤ r1, . . . , rℓj ≤ m. In compact form we write

Wj = Vj ×1 E ×2 · · · ×ℓj E, ∀j = 1, . . . ,m, (23)

cf. Kolda & Bader, 2009, Sec. 2.5. More discussions on tensors will be given in Section 4.3.

3 The factorizable case

In this section we study how a quantum linear system responds to a factorizable multi-photon input state, here
the word “factorizable” means that photons in each input channel are not statistically correlated. The single-channel
and multi-channel multi-photon input states are defined in Subsections 3.1 and 3.2 respectively, output covariance
functions and intensities are presented in Subsection 3.3, while the output states are derived in Subsection 3.4.

3.1 Single-channel multi-photon states

In this subsection single-channel ℓ-photon states are defined and their statistical properties are discussed.

For any given positive integer ℓ and real numbers t1, . . . , tℓ, let P (t1, . . . , tℓ) be a permutation of the numbers
t1, . . . , tℓ. Denote the set of all such permutations by Sℓ. For arbitrary functions ξ1(t), . . . , ξℓ(t) defined on the real
line, define

Nℓ :=
∑

P∈Sℓ

∫

ℓ

ξℓ(tℓ)
∗ · · · ξ1(t1)∗ξ1(P (t1)) · · · ξℓ(P (tℓ))dt1→ℓ, (24)

provided the above multiple integral converges (this is always assumed in the paper). The subscript “ℓ” in Nℓ

indicates the number of photons. It can be shown that Nℓ > 0. A single-channel continuous-mode ℓ-photon state
|ψℓ〉 is defined via

|ψℓ〉 :=
1√
Nℓ

ℓ∏

k=1

B∗(ξk)|0〉, (25)

where B∗(ξk) :=
∫∞
−∞ b∗(t)ξk(t)dt, (k = 1, . . . ,m.) Because |ψℓ〉 is a product of single integrals, there is no correlation

among the photons. This type of multi-photon states is therefore called factorizable photon states. It can be shown
that

〈0|
ℓ∏

i=1

B(ξi)

ℓ∏

k=1

B∗(ξk)|0〉 =
∑

P∈Sℓ

∫

ℓ

ξℓ(tℓ)
∗ · · · ξ1(t1)∗ξ1(P (t1)) · · · ξℓ(P (tℓ))dt1→ℓ = Nℓ.

Thus 〈ψℓ|ψℓ〉 = 1. That is, |ψℓ〉 is normalized.

When ℓ = 1, N1 =
∫∞
−∞ |ξ1(t)|2dt, |ψ1〉 is a single-photon state, (Loudon, 2000, (6.3.4);Milburn, 2008, (9)). On the

other hand, when ξ1(t) ≡ · · · ≡ ξℓ(t) ≡ ξ(t) and
∫∞
−∞ |ξ(t)|2dt = 1, the input light field contains ℓ indistinguishable

photons; such states are called continuous-mode Fock states which have been intensely studied, in e.g.,Gheri, Ellinger,
Pellizzari & Zoller, 1998, (3); Baragiola, Cook, Brańczyk & Combes, 2012, (13).

For convenience, define a matrix C ∈ Cℓ×ℓ whose entries are

Cik = 〈0|
ℓ∏

α=1,α6=i

B(ξα)

ℓ∏

β=1,β 6=k

B∗(ξβ) |0〉 , ℓ ≥ 2. (26)
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Clearly, C = C†.

Lemma 5 Cik defined in (26) satisfies

ℓ∑

k=1

Cik

∫ ∞

−∞
ξi(t)

∗ξk(t)dt = Nℓ, ∀i = 1, . . . , ℓ.

In what follows we study statistical properties of the ℓ-photon state |ψℓ〉. It is easy to show that for all t ≥ t0,
〈ψℓ|b(t)|ψℓ〉 = 0. That is, the field has zero average field amplitude. The following result summarizes the second-order
statistical information of the ℓ-photon state |ψℓ〉.

Lemma 6 Let n̄(t) denote the field intensity with respect to the state |ψℓ〉, namely,

n̄(t) = 〈ψℓ|b∗(t)b(t)|ψℓ〉.

(In quantum optics, the second-order moment n̄(t) is the count rate ( Gardiner & Zoller, 2000).) Moreover, let the
field covariance function be

R(t, r) = 〈ψℓ|b̆(t)b̆†(r)|ψℓ〉,
as given by (11). Then we have

R(t, r) = δ(t− r)

[

1 0

0 0

]

+
1

Nℓ

ℓ∑

i=1

ℓ∑

k=1

∆
(
Cikξk(t)ξi(r)

∗, 0
)
, (27)

n̄(t) =
1

Nℓ

ℓ∑

i=1

ℓ∑

k=1

Cikξi(t)
∗ξk(t). (28)

Proof. Clearly,

R(t, r) = δ(t− r)

[

1 0

0 0

]

+∆(〈ψℓ|b∗(r)b(t)|ψℓ〉, 〈ψℓ|b(t)b(r)|ψℓ〉). (29)

Observing that

b(t)|ψℓ〉 =
1√
Nℓ

ℓ∑

k=1

ξk(t)

ℓ∏

r=1,r 6=k

B∗(ξr)|0〉, (30)

we have

〈ψℓ|b∗(r)b(t)|ψℓ〉 =
1

Nℓ

ℓ∑

i=1

ℓ∑

k=1

Cikξi(r)
∗ξk(t), 〈ψℓ|b(t)b(r)|ψℓ〉 = 0. (31)

Substituting (31) into (29) establishes (27). Finally, because n̄(t) is the 2-by-2 entry of R(t, t), (28) follows (27).

In particular, for the single-photon case, the field covariance function is

R(t, r) = δ(t− r)

[

1 0

0 0

]

+∆(ξ1(t)ξ1(r)
∗, 0) , (32)

which is the same as Zhang & James, 2012, (35).

Remark 4. According to Lemma 6, the ℓ-photon state |ψℓ〉 is not Gaussian; it may not be stationary either. So, its
first and second order moments cannot provide all statistical information of the input field.
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3.2 Multi-channel multi-photon states

In this subsection multi-channel multi-photon states are defined.

Let there be m input field channels. For the j-th field channel, let ℓj be the number of photons (j = 1, . . . ,m).
Similar to (25), define the j-th channel ℓj-photon state by

|Ψj〉 :=
1

√
Nℓj

ℓj∏

k=1

B∗
j (ξ

jk)|0〉, (33)

where the subscript “j” indicates the j-th channel, and ℓj indicates that there are ℓj photons in this channel. In
analog to (24), for each j = 1, . . . ,m, the normalization coefficient Nℓj is defined to be

Nℓj :=
∑

P∈Sℓj

∫

ℓj

ξjℓj (tℓj )
∗ · · · ξj1(t1)∗ξj1(P (t1)) · · · ξjℓj (P (tℓj ))dt1→ℓj .

We define an m-channel multi-photon state as

|Ψ〉 := |Ψ1〉 ⊗ |Ψ2〉 ⊗ · · · ⊗ |Ψm〉 =
m∏

j=1

1
√
Nℓj

ℓj∏

k=1

B∗
j (ξ

jk)|0⊗m〉. (34)

In particular, for each j = 1, . . . ,m, if ξj1(t) ≡ · · · ≡ ξjℓj (t), then (34) defines a multi-channel continuous-mode Fock
state, see eg., Baragiola, Cook, Brańczyk & Combes, 2012, (D1).

3.3 Output covariance functions and intensities

In this subsection analytical forms of output covariance functions Rout(t, r) and intensities n̄out(t) are presented.

3.3.1 Steady-state output covariance function

In this part we derive an explicit expression of Rout(t, r) when the input is in the multi-channel multi-photon state
|Ψ〉 defined in (34).

We first introduce some notation. Define a 3-way tensor C ∈ Cm×(ℓ1,...,ℓm)×(ℓ1,...,ℓm), whose elements are

Cjik := 〈0|
ℓj∏

α=1,α6=i

Bj(ξ
jα)

ℓj∏

β=1,β 6=k

B∗
j (ξ

jβ) |0〉 , ∀j = 1, . . . ,m, and i, k = 1, . . . , ℓj. (35)

Clearly, C is partially Hermitian, that is, Cj:: = C
†
j:: ∈ Cℓj×ℓj , (j = 1, . . . ,m). Similar to (31), for each j = 1, . . . ,m,

〈
Ψ|bj(t)b∗j (r)|Ψ

〉
= δ(t− r) +

1

Nℓj

ℓj∑

i=1

ℓj∑

k=1

Cjikξ
ji(r)∗ξjk(t).

Consequently, the input covariance function is

R(t, r) = δ(t− r)

[

Im

0m

]

+

[

ξ↑(r)# ⊛ ξ↑(t)
(
ξ↑(r)# ⊛ ξ↑(t)

)†

]

. (36)

For state |Ψ〉 defined in (34), let ξ↑ be the 3-way tensor defined via (18). Then we can define 3-way tensors η−, η+ ∈
C

m×m×(ℓ1,...,ℓm) by
∆
(
η−, η+

)
:= ∆

(
ξ↑,0

)
×1 gG, (37)
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where the operation ×1 has been defined in (22). For example, for a single-channel ℓ-photon input state defined in
(25), equation (37) yields

η−k (t) :=

∫ ∞

−∞
gG−(t− τ)ξk(τ)dτ, η+k (t) :=

∫ ∞

−∞
gG+(t− τ)ξk(τ)

∗dτ, k = 1, 2, . . . ℓ. (38)

Theorem 7 Assume that the quantum linear system G is asymptotically stable. Let the input field have covariance
R(t, r) be that given in (36). Then the steady-state output covariance function is

Rout(t, r) =

∫ ∞

−∞
gG(t− τ)

[

Im

0m

]

gG(r − τ)†dτ (39)

+ ∆
((
η−(r)# ⊛ η−(t)

)
,
(
η+(r) ⊛ η−(t)

))T
+∆

(
η+(t)⊛ η+(r)#, η+(t)⊛ η−(r)

)
,

where the tensors η−(t) and η+(t) are given by (37), and the core tensor for the operation ⊛ is the tensor C given
in (35).

Proof. (39) can be derived by substituting (36) into (12) and with the aid of (20)-(21) and (37).

3.3.2 Steady-state output intensity

For the multi-channel multi-photon input state |Ψ〉 defined in (34), the steady-state (t0 → −∞) intensity of the
output field is

n̄out(t) =
〈

φΨ|b#out(t)bTout(t)|φΨ
〉

. (40)

Because n̄out(t) is the 2-by-2 block of Rout(t, t), the following result is an immediate consequence of Theorem 7.

Corollary 8 Assume the quantum linear system G is asymptotically stable. The steady-state (t0 → −∞) intensity
n̄out(t) of the output field defined in (40), of the system G driven by the m-channel multi-photon input field |Ψ〉
defined in (34), is given by

n̄out(t) =

∫ ∞

−∞
gG+(t)#gG+(t)T dt+

(
η+(t)⊛ η+(t)#

)T
+ η−(t)# ⊛ η−(t), (41)

where η−(t) and η+(t) are given by (37), and the core tensor for the operation ⊛ is given in (35).

3.4 Steady-state output state

The preceding subsections studied the first and second order moments of output fields of quantum linear systems
driven by multi-photon states. Because the output states are in general not Gaussian, these moments cannot provide
the complete information of output fields. In this subsection we derive the analytic form of output states.

A multi-channel continuous-mode multi-photon state |Ψ〉 defined in (34) is parameterized by the functions ξjk(t),
each of which has two indices j and k. The index j (from 1 to m) indicates the j-th input channel, while the index
k (from 1 to ℓj for each given j) is used to count the number of photons in each channel. On the other hand,
according to (37), the steady-state output covariance function (in (39)) and intensity n̄out(t) (in (41)) of the linear
quantum system G driven by |Ψ〉 are parameterized by tensor functions η−ijk(t) and η

+
ijk(t), each of which has three

indices i, j, k. Formally, the index i indicates that each output channel is a linear combination of the input channels.
Interestingly, let ξ− = ξ↑ (c.f. (18)), that is,

ξ−ijk(t) :=

{

0, i 6= j,

ξjk(t), i = j.

12



Define further ξ+ ∈ Cm×m×(ℓ1,...,ℓm) to be a zero tensor. Then the m-channel multi-photon state |Ψ〉 can be re-
written as

|Ψ〉 =
m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

(B∗
i (ξ

−
ijk)−Bi(ξ

+
ijk))|0⊗m〉. (42)

Accordingly, (37) can be re-written as

∆(η−, η+) = ∆(ξ−, ξ+)×1 gG. (43)

In light of the above discussion, we derive the steady-state output state of the quantum linear system G driven by
an input state of the form

ρξ,R =
m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

(B∗
i (ξ

−
ijk)−Bi(ξ

+
ijk))ρR





m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

(B∗
i (ξ

−
ijk)−Bi(ξ

+
ijk))





∗

,

where

ξ(t) = ∆(ξ−(t), ξ+(t)), (44)

with ξ−, ξ+ ∈ Cm×m×(ℓ1,...,ℓm) and ρR is a stationary zero-mean Gaussian state with covariance function R[iω].

In order for ρξ,R to be a valid state, ξ−, ξ+ and ρR have to satisfy certain conditions. We first introduce some

notation. Given a tensor ϕ ∈ C2m×m×(ℓ1,...,ℓm), define tensor products consisting of ℓj vectors, each of dimension
2m:

Mϕ:j
(t1→ℓj ) := ϕ:j1(t1)⊗c · · · ⊗c ϕ:jℓj (tℓj ), j = 1, . . . ,m,

M+
ϕ:j

(t1→ℓj ) := ϕ:jℓj (t1)⊗c · · · ⊗c ϕ:j1(tj), j = 1, . . . ,m,

where ⊗c is the Kronecker product as introduced in the Notations part. Then define tensor products of the form

Mϕ(t1→ℓ1+···+ℓm) :=
1

√
Nℓ1

Mϕ:1
(t1→ℓ1)⊗c · · · ⊗c

1
√
Nℓm

Mϕ:m
(tℓ1+···+ℓm−1+1→ℓ1+···+ℓm),

M+
ϕ (t1→ℓ1+···+ℓm) :=

1
√
Nℓm

M+
ϕ:m

(t1→ℓm)⊗c · · · ⊗c
1

√
Nℓ1

M+
ϕ:1

(tℓ2+···+ℓm+1→ℓ1+···+ℓm).

Similarly, for the operators b̆(t), define

Mb̆(t1→k) := b̆(t1)⊗c · · · ⊗c b̆(tk), ∀k ≥ 1.

Finally for a matrix A, let A⊗k
c := A⊗c · · · ⊗c A be an k-way Kronecker tensor product.

The following equation will be used in Definition 9.

∫

2
∑

m

j=1
ℓj

(M+
ξ (t1→ℓ1+···+ℓm)# ⊗c Mξ(tℓ1+···+ℓm+1→2(ℓ1+···+ℓm)))

T J⊗ℓ1+···+ℓm
c

⊗c Θ
⊗ℓ1+···+ℓm

c Tr[ρRMb̆(t1→2(ℓ1+···+ℓm))]dt1→2(ℓ1+···+ℓm) = 1, (45)

where ξ is given in (44) and Θ = [ 0 I; −I 0 ] as introduced in the Notations part.
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Definition 9 A state ρξ,R is said to be a photon-Gaussian state if it belongs to the set

F0 :=






ρξ,R =

m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

(B∗
i (ξ

−
ijk)−Bi(ξ

+
ijk))ρR (46)

×





m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

(B∗
i (ξ

−
ijk)−Bi(ξ

+
ijk))





∗

: ξ and ρR satisfy (45)






.

Remark 5. Clearly, the m-channel multi-photon state |Ψ〉 defined in (42) belongs to F0.

Proposition 10 The photon-Gaussian states ρξ,R ∈ F0 are normalized, that is Tr[ρξ,R] = 1.

Proof. For each j = 1, . . . ,m, define ξ:j(t) ∈ C2m×2ℓj by

ξ:j(t) := ∆
(
ξ−:j:(t), ξ

+
:j:(t)

)
= [ξ:j1(t) · · · ξ:j(2ℓj)(t)],

where

ξ:jk(t) =

[

ξ−:jk(t)

ξ+:jk(t)
#

]

∈ C
2m, ∀k = 1, . . . , 2ℓj.

It can be shown that

m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

(

B∗
i (ξ

−
ijk)− Bi(ξ

+
ijk)
)

=

m∏

j=1

1
√
Nℓj

ℓj∏

k=1

∫ ∞

−∞

[

−ξ+:jk(t)† ξ−:jk(t)T
]

b̆(t)dt

=

m∏

j=1

1
√
Nℓj

ℓj∏

k=1

∫ ∞

−∞
ξ:jk(t)

T (Θb̆(t))dt

=
m∏

j=1

1
√
Nℓj

∫

ℓj

(
ξ:j1(t1)⊗c ξ

:j2(t2)⊗c · · · ⊗c ξ:jℓj (tℓj )
)T

(Θb̆(t1))⊗ (Θb̆(t2)) · · · ⊗ (Θb̆(tℓj ))dt1→ℓj

=

∫

ℓ1+···+ℓm

(
Mξ:1(t1→ℓ1)⊗c · · · ⊗c Mξ:m(tℓ1+···+ℓm−1+1→ℓ1+···+ℓm)

)T
(Θb̆(t1))⊗ · · · ⊗ (Θb̆(tℓ1+···+ℓm))dt1→ℓ1+···+ℓm

=

∫

ℓ1+···+ℓm

Mξ(t1→ℓ1+···+ℓm)TΘ⊗ℓ1+···+ℓm
c Mb̆(t1→ℓ1+···+ℓm)dt1→ℓ1+···+ℓm ,

where Θ = [ 0 I; −I 0 ] as introduced in the Notations part. Thus, that Tr[ρξ,R] = 1 is equivalent to that (45) holds.

The proof is completed.

The following result is the main result of this subsection.

Theorem 11 Suppose that the linear quantum system G is asymptotically stable. Then the steady-state output state
of G driven by a state ρξ,R ∈ F0 is

ρη,Rout
=

m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

(B∗
i (η

−
ijk)−Bi(η

+
ijk))ρfield,g





m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

(B∗
i (η

−
ijk)−Bi(η

+
ijk))





∗

, (47)
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where the 3-way tensors η− and η+ are given by (43), and ρfield,g is a stationary zero-mean Gaussian field whose
covariance function is

Rout[iω] = G[iω]R[iω]G[iω]†.

given by the Gaussian transfer (13) in Theorem 4. Clearly, ρη,Rout
∈ F0.

Proof. Let ρ(t, t0) be the density operator of the composite system. Then

ρ(t, t0) = U(t, t0)|φ〉〈φ| ⊗ ρξ,RU(t, t0)
∗.

We study the steady-state behavior of the state, that is, we assume that the interaction starts in the distant past
(t0 → −∞), and also let t→ ∞.

ρ∞ (48)

:= lim
t0→−∞
t→∞

ρ(t, t0)

= lim
t0→−∞
t→∞

U(t, t0)|φ〉〈φ| ⊗ ρξ,RU(t, t0)
∗

= lim
t0→−∞
t→∞

m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

U(t, t0)
(

Isys ⊗ (B∗
i (ξ

−
ijk)−Bi(ξ

+
ijk))

)

U(t, t0)
∗ρ∞,g

× lim
t0→−∞
t→∞





m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

U(t, t0)
(

Isys ⊗ (B∗
i (ξ

−
ijk)−Bi(ξ

+
ijk))

)

U(t, t0)
∗





∗

,

where ρ∞,g is given in (15). According to Lemmas 1 and 2, we have

[

b−j (t,−∞)

b−
∗

j (t,−∞)

]

=

[ ∑m
k=1

∫∞
−∞ g

kj
G−

(r − t)∗bk(r) − g
kj
G+(r − t)b∗k(r)dr

∑m
k=1

∫∞
−∞ −gkjG+(r − t)∗bk(r) + g

kj
G−

(r − t)b∗k(r)dr

]

. (49)

As a result,

lim
t0→−∞
t→∞

m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

U (t, t0)
(

Isys ⊗
(

B∗
i (ξ

−
ijk)−Bi(ξ

+
ijk)
))

U (t, t0)
∗

=

m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

∫ ∞

−∞

(

ξ−ijk(tk)b
−∗
i (tk,−∞)dtk − ξ+ijk(tk)

∗b−i (tk,−∞)dtk

)

=

m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

∫ ∞

−∞

(

−
∫ ∞

−∞

m∑

r=1

griG+(ι − tk)
∗ξ−ijk(tk)dtkbr(ι)dι +

∫ ∞

−∞

m∑

r=1

griG−(ι− tk)ξ
−
ijk(tk)dtkb

∗
r(ι)dι

−
∫ ∞

−∞

m∑

r=1

griG−(ι − tk)
∗ξ+ijk(tk)

∗dtkbr(ι)dι +

∫ ∞

−∞

m∑

r=1

griG+(ι− tk)ξ
+
ijk(tk)

∗dtkb
∗
r(ι)dι

)

=

m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

(

B∗
i (η

−
ijk)−Bi(η

+
ijk)
)

, (50)

where 3-way tensors η− and η+ are given by (43). Substituting (50) into (48) we have

ρ∞ =

m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

(B∗
i (η

−
ijk)−Bi(η

+
ijk))ρ∞,g





m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

(B∗
i (η

−
ijk)−Bi(η

+
ijk))





∗

.

Tracing out the system part, (47) is obtained. The proof is completed.

15



Restricted to the single-channel case, we have

Corollary 12 Assume that the quantum linear system G is asymptotically stable. If the single-channel ℓ-photon
input state is |ψℓ〉 defined in (25), the steady-state output state is

ρout =
1√
Nℓ

ℓ∏

k=1

(B∗(η−k )−B(η+k ))ρfield,g

(

1√
Nℓ

ℓ∏

k=1

B∗(η−k )−B(η+k )

)∗

, (51)

where η−k (t) and η+k (t) are given by (38) and ρfield,g is given in (2.1.3).

Specific to the passive case, the steady-state output state is a multi-photon state, as given by the following result.

Corollary 13 Assume that the quantum linear system G is asymptotically stable and passive. The steady-state
output state of G driven by the multi-photon state |Ψ〉 is a pure state

|Ψout〉 =
m∏

j=1

1
√
Nℓj

ℓj∏

k=1

m∑

i=1

B∗
i (η

−
ijk)|0⊗m〉.

In particular, in the single-channel case, the steady-state output state of G driven by the single-photon state |ψl〉 is

|Ψout〉 =
1√
Nℓ

ℓ∏

k=1

B∗(η−k )|0〉, (52)

Example 1: Beamsplitter. Consider a beamsplitter with parameters L = 0, H = 0, and

S =

[ √
η

√
1− η

−√
1− η

√
η

]

, (0 < η < 1).

Let each input channel have two photons. As with (34), define an input state to be |Ψ〉 =
2∏

j=1

1√
N2j

2∏

k=1

B∗
j (ξ

jk)|0⊗2〉,

where N2j =
∫∞
−∞ |ξj1(t)|2dt

∫∞
−∞ |ξj2(t)|2dt +

∣
∣
∣

∫∞
−∞ ξj2(t)∗ξj1(t)dt

∣
∣
∣

2

, (j = 1, 2). According to (43), we have η− ∈
C 2×2×2 with elements

η−111(t) =
√
ηξ11(t), η−112(t) =

√
ηξ12(t), η−121(t) =

√

1− ηξ21(t), η−122(t) =
√

1− ηξ22(t),

η−211(t) = −
√

1− ηξ11(t), η−212(t) = −
√

1− ηξ12(t), η−221(t) =
√
ηξ21(t), η−222(t) =

√
ηξ22(t).
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According to Corollary 13,

|Ψout〉 =
η(1− η)
√
N21N22

B∗
1 (ξ

11)B∗
1 (ξ

12)B∗
1(ξ

21)B∗
1 (ξ

22)
∣
∣0⊗4

〉

+
η
√

η(1 − η)
√
N21N22

B∗
1 (ξ

11)B∗
1 (ξ

12)
(
B∗

1(ξ
22)B∗

2 (ξ
21) +B∗

1(ξ
21)B∗

2 (ξ
22)
) ∣
∣0⊗4

〉

−
√

η(1 − η)(1− η)
√
N21N22

B∗
1(ξ

21)B∗
1(ξ

22)
(
B∗

1 (ξ
12)B∗

2(ξ
11) +B∗

1(ξ
11)B∗

2(ξ
12)
) ∣
∣0⊗4

〉

+
η2

√

N21N22

B∗
1(ξ

11)B∗
1(ξ

12)B∗
2 (ξ

21)B∗
2 (ξ

22)
∣
∣0⊗4

〉

+
(1 − η)2
√
N21N22

B∗
1(ξ

21)B∗
1(ξ

22)B∗
2 (ξ

11)B∗
2(ξ

12)
∣
∣0⊗4

〉

− η(1− η)
√
N21N22

(
B∗

1(ξ
11)B∗

2(ξ
12) +B∗

1(ξ
12)B∗

2 (ξ
11)
) (
B∗

1(ξ
21)B∗

2(ξ
22) +B∗

1(ξ
22)B∗

2(ξ
21
) ∣
∣0⊗4

〉

− η
√

η(1 − η)
√
N21N22

(
B∗

1(ξ
11)B∗

2 (ξ
12) +B∗

1 (ξ
12)B∗

2 (ξ
11)
)
B∗

2(ξ
21)B∗

2 (ξ
22)
∣
∣0⊗4

〉

+

√

η(1 − η)(1− η)
√
N21N22

(
B∗

1(ξ
21)B∗

2(ξ
22) +B∗

1(ξ
22)B∗

2 (ξ
21)
)
B∗

2(ξ
11)B∗

2(ξ
12)
∣
∣0⊗4

〉

+
η(1− η)
√
N21N22

B∗
2(ξ

11)B∗
2(ξ

12)B∗
2 (ξ

21)B∗
2(ξ

22)
∣
∣0⊗4

〉
. (53)

Assume η = 1
2 , that is the system is a balanced beamsplitter. If ξ11(t) ≡ ξ12(t) ≡ ξ21(t) ≡ ξ22(t) and

∫∞
−∞ |ξ11(t)|2dt =

1, then N21 = N22 = 2. Let 1√
i!
√
k!
|i, k〉 be the state with i photons in the first channel and k photons in the second

channel respectively, (i = 0, . . . , 4). (53) reduces to

|Ψout〉=
√

3

8
|4, 0〉 − 1

2
|2, 0〉|0, 2〉+

√

3

8
|0, 4〉. (54)

(54) is the same as (15) in (Ou, 2007). In a similar way, (17) in (Ou, 2007) can also be re-produced.

4 The unfactorizable case

The factorizable multi-photon states studied in Secion 3 form a subclass of more general multi-photon states,
e.g., Gheri, Ellinger, Pellizzari & Zoller, 1998, (58) and Baragiola, Cook, Brańczyk & Combes, 2012, Section 2. In
this section, we study the response of quantum linear systems to general multi-channel multi-photon states where
there may exist correlation among photons in channels.

4.1 More general multi-photon states

The unfactorizable multi-photon states are defined in this subsection.

If a single channel has ℓ photons, a general form of continuous-mode ℓ-photon state is

|ψℓ〉 =
1√
Nℓ

∫

ℓ

ψ(t1, . . . , tℓ)b
∗(t1) · · · b∗(tℓ)dt1→ℓ|0〉, (55)

where ψ(t1, . . . , tℓ) is a multi-variable function, and

Nℓ =
∑

P∈Sℓ

∫

ℓ

ψ(t1, . . . , tℓ)ψ(P (t1), . . . , P (tℓ))dt1→ℓ
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is a normalization parameter, with P (t1, . . . , tℓ) and Sℓ as those defined in subsection 3.1. In general, for the m-
channel case, assume the j-th channel has ℓj photons, and the state for this channel is

|Ψj〉 =
1

√
Nℓj

∫

ℓj

Ψj(t1, . . . , tℓj )b
∗
j (t1) · · · b∗j(tℓj )dt1→ℓj |0〉. (56)

Then the state for the m-channel input field can be defined as

|Ψ〉 =
m∏

j=1

|Ψj〉 =
m∏

j=1

1
√
Nℓj

∫

ℓj

Ψj(t1, . . . , tℓj )b
∗
j (t1) · · · b∗j (tℓj )dt1→ℓj |0⊗m〉. (57)

Remark 6. In particular, when Ψj(t1, . . . , tℓj ) =
∏ℓj

k=1 Ψ
jk(tk), (j = 1, . . . ,m), (56) reduces to (33), and corre-

spondingly (57) reduces to (34), the factorizable case.

4.2 The passive case

In this subsection we study the response of the quantum linear passive system G to an m-channel input field in
the state |Ψ〉 defined in (57).

We first rewrite the m-channel multi-photon state |Ψ〉 into an alternative form; this will enable us to present the
input and output states in a unified form. For j = 1, . . . ,m, i = 1, . . . , ℓj, and ki = 1, . . . ,m, define

Ψj,k1,...,kℓj
(τ1, . . . , τℓj ) :=

{

Ψj(τ1, . . . , τℓj ), k1 = · · · = kℓj = j,

0, otherwise.
(58)

Thus for each j = 1, . . . ,m we have an ℓj-way m-dimensional tensor, denoted Ψj. The multi-channel multi-photon
state |Ψ〉 in (57) can be re-written as

|Ψ〉 =
m∏

j=1

1
√
Nℓj

m∑

k1,...,kℓj
=1

∫

ℓj

Ψj,k1,...,kℓj
(τ1, . . . , τℓj )b

∗
k1
(ι1) · · · b∗kℓj

(ιℓj )dι1→ℓj |0⊗m〉.

We define a class of pure states

F1 =






|Ψ〉 =

m∏

j=1

1
√
Nℓj

m∑

k1,...,kℓj
=1

∫

ℓj

Ψj,k1,...,kℓj
(τ1, . . . , τℓj )

ℓj∏

i=1

b∗ki
(τi)dτ1→ℓj |0⊗m〉 : 〈Ψ|Ψ〉 = 1






. (59)

Theorem 14 Suppose that the quantum linear system G is asymptotically stable and passive. The steady-state output
state of G driven by a state |Ψin〉 ∈ F1 is another state |Ψout〉 ∈ F1 with wave packet transfer

Ψout,j = Ψin,j ×1 gG− ×2 · · · ×ℓj gG− , ∀j = 1, . . . ,m,

where the operation between the matrix and tensor is defined in (23).

Because Theorem 14 is a special case of Theorem 17 for the active case, cf. Remark 9, its proof is omitted.

In particular, for the single-channel case, we have

Corollary 15 The steady-state output state of a quantum linear passive system G driven by the ℓ-photon state |ψℓ〉
in (55) is an ℓ-photon state

|ψout〉 =
1√
Nℓ

∫

ℓ

ψ−
out(ι1, . . . , ιℓ)b

∗(t1)b
∗(t2) · · · b∗(tℓ)dt1→ℓ|0〉,
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where the multi-variable function ψ−
out is

ψ−
out(t1, . . . , tℓ) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
gG−(t1 − τ1) · · · gG−(tℓ − τℓ)ψℓ(τ1, . . . , τℓ)dτ1 · · · dτℓ.

4.3 The active case

In this subsection we study the response of the quantum linear system G to the m-channel input field in the state
|Ψ〉 defined in (57). Here G is not necessarily passive. In this case, as shown in Sec. 3.4, gG+ contributes to the
output states. So the active case is more mathematically involved.

We first introduce some more notations in order to derive the steady-state output state. Define

sgn(di) :=

{

1, di = 1,

0, di = −1,
∀i = 1, . . . ,max{ℓ1, . . . , ℓm}.

For each j = 1, . . . ,m, i = 1, . . . , ℓj and ki = 1, . . . ,m, define

Ψ
d1,...,dℓj

k1,...,kℓj
(τ1, . . . , τℓj ) :=

{

Ψj(τ1, . . . , τℓj ), k1 = · · · = kℓj = j, d1 = · · · = dℓj = −1,

0, otherwise,
(60)

where the multi-variable function Ψj(τ1, . . . , τℓj ) is defined in (56). Ψ
d1,...,dℓj

k1,...,kℓj
(τ1, . . . , τℓj ) can be regarded as a 2ℓj-way

tensor in the tensor space C

ℓj

︷ ︸︸ ︷

m× . . .×m×

ℓj

︷ ︸︸ ︷

2× . . .× 2. Accordingly, for each j = 1, . . . ,m, and i = 1, . . . , ℓj define
operators

bdi

j (t) :=

{

b∗j (t), di = −1,

bj(t), di = 1.

Moreover, for each j, k = 1, . . . ,m, define

g
kj
Gd(t) :=

{

g
kj
G−

(t), d = −1,

g
kj
G+(t)

∗, d = 1.

With the above notations, for each j = 1, . . . ,m, |Ψj〉 defined in (56) can be encoded by a 2ℓj-way tensor in the

tensor space C

ℓj

︷ ︸︸ ︷

m× . . .×m×

ℓj

︷ ︸︸ ︷

2× . . .× 2. Specifically,

|Ψj〉 =
1

√
Nℓj

m∑

k1,...,kℓj
=1

∑

d1,...,dℓj
=±1

(−1)
∑

ℓj

i=1
sgn(di)

∫

ℓj

Ψ
d1,...,dℓj

k1,...,kℓj
(τ1, . . . , τℓj )b

d1

j (τ1) · · · b
dℓj

j (τℓj )dτ1→ℓj |0〉. (61)

Moreover, for each j = 1, . . . ,m, i = 1, . . . , ℓj and ki = 1, . . . ,m, define operators

b
d1,...,dℓj

k1,...,kℓj
(Ψj) := Ψ

d1,...,dℓj

k1,...,kℓj
(t1, . . . , tℓj )b

d1

j (t1) · · · b
dℓj

j (tℓj ), (62)

where the 2ℓj-way tensor Ψ
d1,...,dℓj

k1,...,kℓj
(τ1, . . . , τℓj ) is that defined in (60). Then (61) becomes

|Ψj〉 =
1

√
Nℓj

m∑

k1,...,kℓj
=1

∑

d1,...,dℓj
=±1

(−1)
∑

ℓj

i=1
sgn(di)

∫

ℓj

b
d1,...,dℓj

k1,...,kℓj
(Ψj)dt1 . . . dtℓj |0〉.
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Accordingly, the multi-channel state |Ψ〉 in (57) can be re-written as

|Ψ〉 =
m∏

j=1

1
√
Nℓj

m∑

k1,...,kℓj
=1

∑

d1,...,dℓj
=±1

(−1)
∑

ℓj

i=1
sgn(di)

∫

ℓj

b
d1,...,dℓj

k1,...,kℓj
(Ψj)dt1 . . . dtℓj |0⊗m〉. (63)

The above motivates us to define a class of states.

Definition 16 Let Ψ
d1,...,dℓj

k1,...,kℓj
(τ1, . . . , τℓj ) be a 2ℓj-way tensor in the tensor space

C

ℓj

︷ ︸︸ ︷

m× . . .×m×

ℓj

︷ ︸︸ ︷

2× . . .× 2. A state ρΨ,R is said to be a photon-Gaussian state if it belongs to the set

F2 :=







ρΨ,R =

m∏

j=1

1
√
Nℓj

m∑

k1,...,kℓj
=1

∑

d1,...,dℓj
=±1

(−1)

ℓj∑

i=1

sgn(di) ∫

ℓj

b
d1,...,dℓj

k1,...,kℓj
(Ψj)dt1 . . . dtℓj |0⊗m〉ρR

×









m∏

j=1

1
√
Nℓj

m∑

k1,...,kℓj
=1

∑

d1,...,dℓj
=±1

(−1)

ℓj∑

i=1

sgn(di) ∫

ℓj

b
d1,...,dℓj

k1,...,kℓj
(Ψj)dt1 . . . dtℓj |0⊗m〉









∗




, (64)

where the operator b
d1,...,dℓj

k1,...,kℓj
(Ψj) is defined in (62), and ρR is a zero-mean Gaussian field state with covariance

function R. It is assumed that Tr[ρΨ,R] = 1.

Remark 7. Clearly, the m-channel multi-photon state |Ψ〉 defined in (57) belongs to F2. Moreover, when G is
passive, F1 = F2.

Next we study how the input state in F2 is transformed by the quantum linear system G.

Theorem 17 Suppose that the quantum linear system G is asymptotically stable. The density function ρΨout,Rout
of

the steady-state output field of G driven by the density operator ρΨ,R ∈ F2 is

ρΨout,Rout
(65)

=





m∏

j=1

1
√
Nℓj

m∑

r1,...,rℓj=1

∑

f1,...,fℓj=±1

(−1)
∑

ℓj

i=1
sgn(fi)

∫

ℓj

b
f1,...,fℓj
r1,...,rℓj

(Ψout,j)dτ1→ℓj |0⊗m〉



 ρRout

×





m∏

j=1

1
√
Nℓj

m∑

r1,...,rℓj=1

∑

f1,...,fℓj=±1

(−1)
∑

ℓj

i=1
sgn(fi)

∫

ℓj

b
f1,...,fℓj
r1,...,rℓj

(Ψout,j)dτ1→ℓj |0⊗m〉



 ,

where

g
kj

Gdi,fi
(t) :=

{

g
kj

G−di
(t), fi = −1,

g
kj

Gdi
(t), fi = 1,

∀j, k = 1, . . . ,m, i = 1, . . . , ℓj , di = ±1,

b
dk,fk
i (t) :=

{

b−dk

i (t), fi = −1,

bdk

i (t), fi = 1,
∀i = 1, . . . ,m, ∀k = 1, . . . ,max{ℓ1, . . . , ℓm},

Ψ
d1→ℓj

,f1→ℓj

k1→ℓj
,r1→ℓj

(t1, . . . , tℓj ) :=

∫

ℓj

ℓj∏

i=1

griki

Gdi,fi
(ti − τi)Ψ

d1,...,dℓj

k1,...,kℓj
(τ1, . . . , τℓj )dτ1→ℓj , (66)
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b
f1,...,fℓj
r1,...,rℓj

(Ψout,j) :=
m∑

k1,...,kℓj
=1

∑

d1,...,dℓj
=±1

(−1)
∑

ℓj

i=1
sgn(di)Ψ

d1→ℓj
,f1→ℓj

k1→ℓj
,r1→ℓj

(t1, . . . , tℓj )

ℓj∏

i=1

bdi,fi
ri (ti), (67)

and ρRout
is a Gaussian state whose covariance function is obtained by the Gaussian transfer

Rout[iω] = G[iω]R[iω]G[iω]†.

Proof. It is easy to show that (49) can be re-written as

b−
d

j (t,−∞) =

m∑

k=1

∫ ∞

−∞

(

−gkj
G−d(r − t)b−d

k (r) + g
kj
Gd(r − t)bdk(r)

)

dr, d = ±1.

Note that

lim
t0→−∞
t→∞

U(t, t0)

∫

ℓj

m∑

k1,...,kℓj
=1

∑

d1,...,dℓj
=±1

(−1)
∑

ℓj

i=1
sgn(di)

×Ψ
d1→ℓj

k1→ℓj
(τ1, . . . , τℓj )b

d1

k1
(τ1) · · · b

dℓj

kℓj
(τℓj )dτ1→ℓjU(t, t0)

∗

=

∫

ℓj

m∑

k1,...,kℓj
=1

∑

d1,...,dℓj
=±1

(−1)
∑

ℓj

i=1
sgn(di)Ψ

d1→ℓj

k1→ℓj
(τ1, . . . , τℓj )

×
m∑

r1=1

∫ ∞

−∞

(

−gr1k1

G−d1
(t1 − τ1)b

−d1

r1 (t1)dt1 + gr1k1

Gd1
(t1 − τ1)b

d1

r1 (t1)dt1

)

· · ·
m∑

rℓj=1

∫ ∞

−∞

(

−grℓjkℓj

G
−dℓj

(tℓj − τℓj )b
−dℓj
rℓj

(tℓj )dtℓj + g
rℓjkℓj

G
dℓj

(tℓj − τℓj )b
dℓj
rℓj

(tℓj )dtℓj

)

dτ1→ℓj

=

∫

ℓj

m∑

r1,...,rℓj=1

∑

f1,...,fℓj=±1

(−1)
∑

ℓj

i=1
sgn(fi)

m∑

k1,...,kℓj
=1

∑

d1,...,dℓj
=±1

(−1)
∑

ℓj

i=1
sgn(di)

×Ψ
d1→ℓj

,f1→ℓj

k1→ℓj
,r1→ℓj

(t1, . . . , tℓj )

ℓj∏

i=1

bdi,fi
ri (ti)dt1→ℓj

=

m∑

r1,...,rℓj=1

∑

f1,...,fℓj=±1

(−1)
∑

ℓj

i=1
sgn(fi)

∫

ℓj

b
f1,...,fℓj
r1,...,rℓj

(Ψout)dt1 . . . dtℓj

This, together with the Gaussian transfer theorem (Theorem 4), establishes Theorem 17.

Remark 8. It can be verified that the factorizable m-channel multi-photon state |Ψ〉 defined in (34) (equivalently
(42)) can be re-written as

|Ψ〉〈Ψ| =
m∏

j=1

1
√
Nℓj

m∑

i=1

ℓj∏

k=1

(B∗
j (ξ

−
ijk)−Bj(ξ

+
ijk))|0⊗m〉〈0⊗m|





m∏

j=1

1
√
Nℓj

m∑

i=1

ℓj∏

k=1

(B∗
j (ξ

−
ijk)−Bj(ξ

+
ijk))





∗

. (68)

There is clear similarity between (34) and (63), or equivalently, between (68) and (64). The implication of such
similarity is that all the results for the unfactorizable case can be reduced to those for the factorizable case.

Remark 9. When the quantum linear system G is passive and ρR = |φ〉〈φ|, ρΨ,R in (64) becomes a pure state.
Moreover, for the case case, sgn(di) = 0 for all i. Therefore, in the passive case ρΨ,R is a pure state in the class F1

defined in (59). As a result, in the passive case Theorem 17 reduces to Theorem 14.

21



Remark 10. From (66) it can be seen that Ψ
d1→ℓj

,f1→ℓj

k1→ℓj
,r1→ℓj

(t1, . . . , tℓj ) is a 4ℓj way tensor, not a 2ℓj way tensor in

the space C

ℓj

︷ ︸︸ ︷

m× . . .×m×

ℓj

︷ ︸︸ ︷

2× . . .× 2. As a result, ρΨout,Rout
in (65) is not an element in the class F2. That is, the

class F2 is not an invariant set under the steady-state action of the quantum linear system G. However, using a
procedure similar to that presented in Theorem 17, it is not hard to derive the steady-state output state when a
quantum linear system G is driven by an input state ρΨout,Rout

. Clearly, the tensor representation plays a key role
in this study.

Next we use three examples to illustrate the results for the unfactorizable photon states.

Example 2: The (1 + ℓ)-photon case. Consider a beamsplitter with parameter

S =

[√
1−R

√
R

√
R −

√
1−R

]

, (0 < R < 1).

Let the input state be

|Ψin〉 = B∗
1(ξ)⊗

1√
Nℓ

ℓ∏

k=1

B∗
2(ξk)|00〉.

As with Example 1, the output state can be derived by means of Corollary 13. Alternatively, it can be derived via
Theorem 14. Clearly, m = 2, ℓ1 = 1, and ℓ2 = ℓ. By Theorem 14, the output state is

|Ψout〉 = (
√
1−RB∗

1 (ξ) +
√
RB∗

2(ξ))
1√
Nℓ

2∑

k1,...,kℓ=1

B∗
k1
(Sk12ξk1

) · · ·B∗
kℓ
(Skℓ2ξkℓ

)|00〉. (69)

In particular, assume ξ1(t) ≡ · · · ≡ ξℓ(t) ≡ ξ(t) and
∫∞
−∞ |ξ(t)|2dt = 1. Then (69) becomes

|Ψout〉 =
1√
ℓ!
(
√
1−RB∗

1 (ξ) +
√
RB∗

2(ξ))(
√
RB∗

1(ξ)−
√
1−RB∗

2 (ξ))
ℓ|00〉.

The coefficient for the component 1√
ℓ!
B∗

1(ξ)
ℓB∗

2(ξ)|00〉 = 1√
ℓ!
|ℓ, 1〉 is

√
Rℓ−1(R − ℓ(1 − R)), whose squared value is

exactly (in) in Sanaka, Resch & Zeilinger, 2006.

Example 3: The photon-catalyzed optical coherent (PCOC) case. Consider a beamsplitter with parameter

S =

[

T −R
R T

]

, (R, T > 0, R2 + T 2 = 1).

Let the input be |ψℓ〉 ⊗ |α〉, where |α〉 = e−|α|2/2∑∞
n=0

αn
√
n!
|n〉 is a coherent state. The input stat can be re-written

as

|Ψin〉 = e−|α|2/2
∞∑

n=0

αn

√
n!
|ℓ〉 ⊗ |n〉 = e−|α|2/2

∞∑

n=0

αn

√
n!

2∏

j=1

ℓj∏

k=1

B∗
j (ξ)|0⊗2〉,

where ℓ1 = ℓ and ℓ2 = n. That is, here it is assumed that all the photons are identical. By (43),

η−11k = Tξ, η−12k = −Rξ, η−21r = Rξ, η−22r = Tξ, ∀k = 1, . . . , ℓ, ∀r = 1, . . . , n.
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By Theorem 14,

|Ψout〉= e−|α|2/2
∞∑

n=0

αn

√
n!

2∏

j=1

ℓj∏

k=1

2∑

i=1

B∗
i (η

−
ijk)|0⊗2〉

= e−|α|2/2
∞∑

n=0

αn

√
n!

ℓ∑

i=0

n∑

j=0

(
n

n− j

)(
ℓ

i

)

(−1)jT n+ℓ−i−jRi+j |ℓ + j − i〉 ⊗ |n+ i− j〉.

When the first output channel is measured by means of the state |ℓ〉, the state at the second output channel becomes

|Ψout,conditioned〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

min{ℓ,n}
∑

j=0

(
n

n− j

)(
ℓ

j

)

(−1)jT n+ℓ−2jR2j |n〉,

which reproduces the key formula (1) inBartley, et al., 2012.

Remark 11. Examples 1, 2, and 3 illustrate that the proposed research is also applicable to the discrete-variable
multi-photon case.

Example 4: Multi-photon pulse shaping via optical cavity. In this example, we study how an optical cavity responds
to an unfactorizable 2-photon input state. The optical cavity has parameters Ω− = Ω+ = 0, C− =

√
κ,C+ = 0, S = 1.

Thus, A = −κ
2 I2, B = −√

κI2, C =
√
κI2, D = I2. Let an unfactorizable 2-photon input state be

|ψ2〉 =
1√
N2

∫ ∞

−∞

∫ ∞

−∞
ψ(t1, t2)b

∗(t1)b
∗(t2)dt1dt2|0〉,

where

ψ(t1, t2) =
1

2π |Σ|1/2
exp

(

−1

2

[

t1 − τ1 t2 − τ2

]

Σ−1

[

t1 − τ1

t2 − τ2

])

,

with

Σ =

[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

, σ1 > 0, σ2 > 0, −1 < ρ < 1.

That is, the input state has a 2-dimensional Gaussian pulse shape centered at (τ1, τ2) and with covariance matrix
Σ. When the correlation parameter ρ = 0, |ψ2〉 reduces to a factorizable state. According to Corollary 15, the
steady-state output state |ψ−

out〉 is given by

ψ−
out(t1, t2) =

∫ ∞

−∞

∫ ∞

−∞
gG−(t1 − r1)gG−(t2 − r2)ψ(r1, r2)dr1dr2,

where

gG−(t) =

{

δ(t)− κe−
κ
2
t, t ≥ 0,

0, t < 0.

In the following we fix τ1 = τ2 = σ1 = σ2 = 1, and study the pulse shape ψ−
out(t1, t2) of the output state for several

pairs of the correlation coefficient ρ and the cavity decay rate κ. Fig. 2 summarizes pulse shaping of multi-photon
states by the optical cavity in different scenarios. Fig. 2(a)-(f) are for the case of ρ = 0.5. Fig. 2(a) is the shape
ψ(t1, t2) of the input state, while Fig. 2(b)-(f) are the shapes ψ−

out(t1, t2) for the output state for different decaying
rates. Fig. 2(g)-(k) are for the case of ρ = −0.5. Fig. 2(g) is the shape ψ(t1, t2) of the input state, while Fig. 2(h)-(k)
are the shapes ψ−

out(t1, t2) for the output state for different decaying rates.
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        (a) 0.5                                                 (b)  0.1                                                (c)  0.25  

 

                    (d)  0.5                                              (e)  1                                                     (f )  4   

 

                     (g)  0.5                                         (h)  0.1                                                (i)  0.25  

 

                    ( j)  0.5                                                  (k)  1                                                  (l)  4                        

Fig. 2. Multi-photon pulse shaping via an optical cavity. (a) and (g) are pulse shapes for the input 2-photon state with different
correlations ρ. When the decay rate is small ((b) and (h)), the shape of ψ−

out
of the output 2-photon state is similar to that

of ψ of the input 2-photon state; As decay rate increases, the pulse shapes deform ((c)-(e) and (i)-(k)); When the decay rate
is large ((f) and (l)), the shape of ψ−

out
is similar with that of ψ, however their mean values are significantly different.
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5 Conclusion

In this paper we have studied the response of quantum linear systems to multi-channel multi-photon states. New
types of tensors are defined to encode pulse information of multi-photon states, for both the factorizable case and
the unfactorizable case. The steady-state action of quantum linear systems on multi-photon states are characterized
in terms of tensor processing by transfer functions. Explicit forms of output states, output covariance functions
and output intensities have been derived. In contrast to the discrete-variable (single-mode) treatments in most
discussions on quantum information, we have presented a continuous-variable (multi-mode) treatment of multi-
photon processing. As can be seen from Examples 1-3, the continuous-variable treatment is also applicable to many
discrete-variable treatments. Moreover, the continuous-variable treatment is closer to a real experimental environment
in optical quantum information processing. As demonstrated by Example 4 for pulse shaping by optical cavities, one
immediate future research is: How to design desired pulse shapes (which encode time or frequency correlation among
photons) by means of quantum linear systems, as has been investigated inMilburn, 2008 andZhang & James, 2013
in the single-photon setting for the passive case. Another future research is to study how multi-photon pulses can be
stored and read out by gradient echo memories ( Hush, Carvalho, Hedges & James, 2013), which are indispensable
components of complex quantum optical networks for quantum communication and computing.
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