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Abstract

Simulation can be a very powerful tool to help decision making in many applications but

exploring multiple courses of actions can be time consuming. Numerous ranking & selection

(R&S) procedures have been developed to enhance the simulation efficiency of finding the best

design. To further improve efficiency, one approach is to incorporate information from across the

domain into a regression equation. However, the use of a regression metamodel also inherits some

typical assumptions from most regression approaches, such as the assumption of an underlying

quadratic function and the simulation noise is homogeneous across the domain of interest. To

extend the limitation while retaining the efficiency benefit, we propose to partition the domain of

interest such that in each partition the mean of the underlying function is approximately quadratic.

Our new method provides approximately optimal rules for between and within partitions that

determine the number of samples allocated to each design location. The goal is to maximize the

probability of correctly selecting the best design. Numerical experiments demonstrate that our new

approach can dramatically enhance efficiency over existing efficient R&S methods.
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1 Introduction

Simulation optimization is a method to find a design consisting of a combination of input

decision variable values of a simulated system that optimizes a particular output
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performance measure of the system. We propose to investigate stochastic problems on a

discrete domain with a finite simulation budget consisting of runs conducted sequentially on

a single computer. To assess the performance at a single design location on the domain, the

uncertainty in the system performance measure requires multiple runs to obtain a good

estimate of the performance measure.

When presented with a relatively small number of designs in the domain, the problem we

consider is that of selecting the best design from among the finite number of choices.

Ranking and Selection (R&S) procedures are statistical methods specifically developed to

select the best design or a subset that contains the best design from a set of k competing

design alternatives. Rinott [20] developed two-stage procedures for selecting the best design

or a design that is very close to the best system. Many researchers have extended this idea to

more general R&S settings in conjunction with new developments (e.g., [2]).

To improve efficiency for R&S, several approaches have been explored for problems of

selecting a single best design. Intuitively, to ensure a high probability of correct selection

(PCS) of the best design, a larger portion of the computing budget should be allocated to

those designs that are critical in the process of identifying the best design. A key

consequence is the use of both the means and variances in the allocation procedures, rather

than just the variances, as in [20]. Among examples of such approaches, the Optimal

Computing Budget Allocation (OCBA) approach by Chen et al. [9,11] and Lee et al. [17,18]

is the most relevant to this paper. OCBA maximizes a simple heuristic approximation of the

PCS. The approach by Chick and Inoue [12] estimates the PCS with Bayesian posterior

distributions and allocates further samples using decision-theory tools to maximize the

expected value of information in those samples. Branke et al. [3] provide a nice overview

and extensive comparison for some of relevant selection procedures.

Brantley et al. [5] take an approach called optimal simulation design (OSD) that is different

than most R&S methods by incorporating information from across the domain into a

regression equation. Morrice et al. [19] extended the concepts from OSD to a method for

selecting the best configuration based on a transient mean performance measure. Unlike

traditional R&S methods, this regression based approach requires simulation of only a

subset of the alternative design locations and so the simulation efficiency can be

dramatically enhanced. While the use of a regression metamodel can dramatically enhance

efficiency, the OSD method also inherits some typical assumptions from most DOE

approaches. It is assumed that there is an underlying quadratic function for the means and

the simulation noise is homogeneous across the domain of interest. Such assumptions are

common in some of the DOE literature but become a limit for simulation optimization.

Motivated by iterative search methods (e.g., Newton’s method in nonlinear programming)

which rely upon a quadratic assumption only in a small local area of the search space during

each iteration, we assume that we have several adjacent partitions and that in each partition

the mean of the underlying function is approximately quadratic. Thus, we can utilize the

efficiency benefit of a regression metamodel. From the perspective of simulation efficiency,

we want to determine how to simulate each design point in the different partitions so that the

overall simulation efficiency can be maximized.
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Specifically, we want to determine i) how much simulation budget to allocate to each

partition; ii) which design points in each partition must be simulated from the predetermined

set of design points; iii) how many replications should we simulate for those design points?

This paper develops a Partitioning Optimal Simulation Design (POSD) method to address

these issues. Numerical testing demonstrates that partitioning the domain and then

efficiently allocating within the partitions can enhance simulation efficiency, even compared

with some existing efficient R&S methods such as OCBA. By incorporating efficient

allocations between the partitions in addition to efficient allocation within the partitions, the

POSD method offers dramatic further improvements. As compared with only efficiently

allocating within each partition, the POSD method offers an improvement over not only the

well-known D-optimality approach in DOE literature (by 70~74% reduction) but also the

OSD method developed in [5] (by 55%~65% reduction). The rest of the paper is organized

as follows.

In Section 2, we introduce the simulation optimization problem setting and Bayesian

framework. Section 3 develops an approximate PCS while Section 4 provides heuristic

approximations of the optimal simulation allocations to maximize the approximate PCS.

Numerical experiments comparing the results using the new partitioned OSD (POSD)

method and other methods are provided in Section 5. Finally, Section 6 provides the

conclusions and suggestions for future work using the concepts introduced here.

2 Problem Setting and Bayesian Framework

This paper explores a problem with the principal goal of selecting the best of multiple

alternative design locations. Without loss of generality, we assume that we have m adjacent

partitions and that each partition has k design locations. We aim to find the minimization

problem shown below in (1) where the “best” design location is the one with smallest

expected performance measure

(1)

Addressing how the domain is partitioned is not within the scope of this paper and we

assume this partitioning scheme is derived from knowledge of the domain, through iterative

refinement, or through an optimal selection procedure such as multivariate adaptive

regression splines (MARS) [14].

In this paper, we consider that the expectation of the unknown underlying function for each

partition is quadratic or approximately quadratic in nature on the prescribed domain, i.e., for

each partition h,

(2)

For ease of notation, we define βh = [βh0, βh1, βh2]. In (2), the parameters βh are unknown

and we consider a common case where y(xhi) must be estimated via simulation with noise.

The simulation output f (xhi) is independent from replication to replication such that
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(3)

The parameters βh are unknown so y(xhi) are also unknown. However, we can estimate

expected performance measure at xhi, that we define as ŷ(xhi), by using a least squares

estimate of the form shown in (4) below where βĥ0, β̂
h1, and β̂

h2 are the least squares

parameter estimates for the corresponding parameters associated with the constant, linear,

and quadratic terms in (2).

(4)

In a similar manner, we define βĥ = [β̂
h0, β̂

h1, β̂
h2]. In order to obtain the least squares

parameter estimates for each partition, we take nh samples on any choice of xhi (on at least

three design locations for each partition to avoid singular solutions). We assume that these

xhi are given beforehand and we can only take samples from these points. Given the nh

samples, we define Fh as the nh dimensional vector containing the replication output

measures f (xhi) and Xh as the nh × 3 matrix composed of rows consisting of [1, xhi, ] with

each row corresponding to its respective entry of f (xhi) in Fh. Using the matrix notation and

a superscript t to indicate the transpose of a matrix, for each partition we determine the least

squares estimate for the parameters βh which minimize the sum of the squares of the error

terms (Fh − Xhβh)t (Fh − Xhβh). As shown in many regression texts, we obtain the least

squares estimate for the parameters as .

Our problem is to select the design location associated with the smallest mean performance

measure from among the mk design locations within the constraint of a computing budget

with only T simulation replications. Given the least squares estimates for the parameters, we

can use (4) to estimate the expected performance measure at each design location. We

designate the design location with the smallest estimated mean performance measure in each

partition as xhb so that ŷ(xhb) = mini ŷ(xhi) and designate xBb as the design location with the

smallest estimated mean performance measure across the entire domain so that ŷ(xBb) =

minh ŷ(xhb). Given the uncertainty of the estimate of the underlying function, xBb is a

random variable and we define Correct Selection as the event where xBb is indeed the best

location. We define Nhi as the number of simulation replications conducted at design

location xhi. Since the simulation is expensive and the computing budget is restricted, we

seek to develop an allocation rule for each Nhi in order to provide as much information as

possible for the identification of the best design location. Our goal then is to determine the

optimal allocations to the design locations that maximize the probability that we correctly

select the best design (PCS). This Optimal Computing Budget Allocation (OCBA) problem

is reflected in (5) below.

(5)
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The constraint  denotes the total computational cost and implicitly

assumes that the simulation execution times for one sample are constant across the domain.

The nature of this problem makes it extremely difficult to solve. To understand the

underlying functions for each partition y(xhi), we must conduct simulation runs to obtain f

(xhi), which is a measure of the system performance. Compounding this property is the fact

that f (xhi) is a function of the random variable εh. To even assess the performance at one

point on the partition, the uncertainty in the system performance measure requires multiple

runs to obtain good approximations of the performance measure. Since the optimal

allocation is dependent upon the uncertainty of the parameters and the random variable xBb,

we can only estimate the PCS even after exhausting the total simulation budget T.

Incorporating the information from the underlying functions of each partition adds an

additional level of complexity to the derivation of the optimal allocations; however, it is this

concept that we aim to exploit in order to provide a significant improvement in the ability to

maximize PCS.

In order to solve the problem in (5), we must obtain estimates for the parameters βh. Due to

the ease of the derivation, we will proceed with a Bayesian regression framework where the

parameters βh are assumed to be unknown and are treated as random variables. We aim to

find the posterior distributions of βh as the simulation replications are conducted and use

these distributions to update the posterior distribution of the performance measures for each

design location. We can then perform the comparisons with the performance measure at

design location xBb as expressed in (5).We will use β̃
h and ỹ(xhi) to denote the random

variables whose probability distributions are the posterior distribution of βh and y (xhi)

conditional on Fh given samples respectively. Therefore, given a set of initial nh simulation

runs with the output contained in vector Fh and the design location xBb obtained from the

least squares results derived in the previous section, we can redefine PCS from (5) based on

the Bayesian concept [8,10] as

(6)

Using a non-informative prior distribution and assuming that the conditional distribution of

the simulation output vector Fh is a multi-variate normal distribution with mean Xhβh and a

covariance matrix  where I is an identity matrix, DeGroot ([13]) shows that the posterior

distribution of βh is then given by

(7)

Since ỹ(xhi) is a linear combination of β̃
h, we have

(8)

where .
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Similar to the approach in [5] for the one partition case, we are interested in how the PCS in

(6) changes if we conduct additional runs before we actually conduct the simulation

replications so that we can make allocations that maximize the PCS in (5). See [5] for a

detailed discussion of the predictive posterior distributions.

In order to further simplify (5), the following theorem allows us to reduce the number of

support points required for our allocations for each partition.

Theorem 1 Given that we assume the expectation of our underlying function is quadratic

within each partition, we require only three support points on each partition and two of

these support points will be at the extreme design locations (xh1 and xhk) on each partition.

Proof: Having established that the PCS criterion conforms to a Loewner ordering, Brantley

et al. ([5]) then utilize the results commonly used in the DOE literature [16].

Given the results of Theorem 1, we will refer to the support points for each partition as {xh1,

xhs, xhk} where xh1 ≤ xhs ≤ xhk. (Note that since xhb may be at different locations on each

partition, then xhs may also be at different locations on each partition). For notation sake, we

define the number of runs allocated to partition h as Nh· and the percentage of Nh· that is

allocated to each support point as αhi = Nhi / Nh·, i ∈ {1, s, k}. Using this notation and the

PCS equation in (6), we can now restate the OSD problem in Equation (5) as the OSD

problem in Equation (9) below.

(9)

We can estimate  from our least squares results and can calculate ỹ(xhi) using (8). While

PCS can then be estimated using Monte Carlo simulation with (9), it can be very time

consuming. The next section reduces the number of comparisons required and presents a

way to approximate the PCS without running Monte Carlo simulations.

3 Approximate PCS

The previous section demonstrated how we can utilize the quadratic structure of the

underlying function in order to provide estimates of the performance measure across each

partition and to reduce the number of design locations that will receive simulation

allocations. In this section, we will find an approximation for our PCS equation and then

express the approximation in terms of the number of simulations allocated to each design

location.

Upon inspection, the PCS equation in (9) has two types of comparisons that are delineated in

(10). The first type consists of the k − 1 comparisons between ỹ(xBb) and each ỹ(xBi) for i ≠

b in the best partition. The second type consists of the k(m−1) comparisons between ỹ(xBb)

and each ỹ(xhi) when h ≠ B.

(10)
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Given xBb estimated from the second order polynomial metamodel results, the assumption

that our underlying function is quadratic within each partition allows us to reduce the

required number of comparisons within the best partition from the k − 1 comparisons

expressed in (10) to two comparisons. For the interior design case shown in (11) below,

Brantley et al. ([5]) show using the assumption of a underlying function that is quadratic that

we have correctly selected if the design that we have selected is better than both of its

neighboring designs. They also show in a similar manner for the two boundary cases in (11)

that we know that we have correctly selected if the selected design is better than both the

adjacent design and the opposite boundary design. As such, (10) can be rewritten as shown

in (11) subject to the three cases following (11).

(11)

Case 1(Interior Design Case) b ≠ 1, k; A = b − 1; Z = b + 1,

Case 2(Left Boundary Design Case) b = 1; A = 2; Z = k,

Case 3(Right Boundary Design Case) b = k; A = 1; Z = k − 1.

We have the same assumption of an underlying function that is quadratic in the non-best

partitions also. However, the comparisons in (10) for the non-best partitions are against

ỹ(xBb) instead of the local best ỹ(xhb). If we apply the Bonferroni inequality to the

comparisons with the global best for a non-best partition, we obtain

(12)

We can also establish a different lower bound for the comparisons from a non-best partition

by using the quadratic information within the partition as expressed in the following lemma.

Lemma 2 Subject to the conditions expressed in Case 1 – Case 3 after (11), a lower bound

for the comparisons with the global best for a non-best partition can be expressed by using

the quadratic information within the partition as shown in (13).

(13)

Proof: See [5].

For ease of discussion, we will refer to comparisons involving design locations from more

than one partition as “between partition” comparisons and we will refer to comparisons

involving design locations from just one partition as “within partition” comparisons.

Given these two possible lower bounds for each non-best partition, applying the Bonferroni

inequality to (11) yields a lower bound for our PCS as shown in (14), which we will

consider our approximate PCS (APCS).
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(14)

To simplify the notation later in the paper, we will define the set of partitions Ψ as those

partitions where we use the lower bound associated with (13) such that

Using this definition of Ψ, we can write (14) in an alternate form as

Using this alternate form of the APCS in (14), we can now restate the POSD problem in (9)

as the POSD problem in (15) below with three cases.

POSD Problem

(15)

Case 1(Interior Design Case) b ≠ 1, k; A = b − 1; Z = b + 1,

Case 2(Left Boundary Design Case) b = 1; A = 2; Z = k,

Case 3(Right Boundary Design Case) b = k; A = 1; Z = k − 1.
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4 Approximations of the Optimal Allocations

In this section, we will derive an efficient heuristic approximations of the optimal

allocations of simulation runs to the designated support points {xh1, xhs, xhk}. Since our aim

is to efficiently allocate the computing budget to the three support points in each partition,

we will rewrite the APCS equation in (15) so that it is expressed in terms of the number of

simulation runs allocated to each partition and the percentage of these partition allocations

that is allocated to each support point within the partitions. For the within partition

comparisons, define . This result

shows that d̃ (xhi) is a linear combination of the β̃
h elements so the d̃(xhi) terms are also

normally distributed. Using the results of Section 2, d̃(xhi) ~ N(d̂(xhi), ζhi) where d̂(xhi) ≡

ŷ(xhi)− ŷ(xhb). As shown in [5],

(16)

For the between partition comparisons, define δ̃(xhb) ≡ ỹ(xhb) − ỹ(xBb). As with the within

partition comparisons, this shows δ̃(xhb) is a linear combination of the β̃
h elements so the δ̃

(xhb) terms are also normally distributed. Using the results of Section 2, δ̃(xhb) ~ N(δ̂(xhb),

ξhb), where δ̂(xhb) ≡ ŷ(xhb) − ŷ(xBb). Assuming independence of the simulation runs

between partitions and as shown in [4],

(17)

where Ehi,1 = [(xhs − xhi)(xhk − xhi)]/[(xh1 − xhs)(xh1 − xhk)], Ehi, s = [(xh1 − xhi)(xhk − xhi)]/

[(xhs − xh1)(xhs − xhk)], Ehi, k = [(xh1 − xhi)(xhs − xhi)]/[(xhk − xh1)(xhk − xhs)].

To simplify the notation, we define probability PΩ = maxh≠B;i=1,…, k [P({δ̃(xhi) ≥ 0}]. This

probability is the most competitive comparison from among the (m − 1) /k between partition

comparisons. We also define for the best partition probability PBM and, for h ≠ B, we define

probability PhM such that for h = B

(18a)

and, for h ≠ B
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(18b)

Finally, we define RB for the best partition and Rh for h ≠ B as shown below.

(19a)

(19b)

Theorem 3 Using lower and upper bounds of the APCS, approximately optimal between

partition allocations and within partition allocations are as shown in (20a) and (20b) for the

best partition and (21a) and (21b) for h ≠ B. For brevity, we use OSD to refer to allocations

in accordance with the OSD conditions in (B1) and as derived for the one partition case

presented in [5]. For h = B,

(20a)

(20b)

For h ≠ B,

(21a)

(21b)

Proof: See Appendix A.
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Given the results from Theorem 2 expressed in (21a–b) for the non-best partitions, we now

revisit how to approximate the probabilities in (12) and (13) in order to choose between the

two different lower bounds expressed in the APCS in (15). As an approximation, we use the

Cantelli inequality [21] such that for within partition comparisons

A similar expression can be made for between partition comparisons such that for each

partition h in (15), we seek

(22)

The following is the algorithm that we used to implement the POSD method for the

experiments in this paper:

Algorithm 1 (OSD Procedure (Maximizing PCS))

INPUT: k (the number of design locations), T (the computing budget), xi (the design

locations with partitions already determined), n (the number of initial runs), θj (the number

runs allocated each iteration j);

INITIALIZE: j ← 0; Perform n0 simulation replications for three design locations in each

partition; by convention we use the D-opt support points such that

.

LOOP WHILE  DO

UPDATE :

• Estimate a quadratic regression equation using the information from all prior

simulation runs for each partition.

• Estimate the mean and variance of each design location using (4).

• Determine the observed global best design so that xBb = arg minBi ŷ(xi) and the

local best design in each partition so that xhb = arg minhi ŷ(xi).

• Based upon the location of the best design in each partition, use (15) to determine

xhA and xhZ.

• Determine PBM and PhM using (18a–b) and corresponding RB and Rh using (19a–

b).

• Determine PΩ = arg maxh≠B;i=1,…,k [P {−δ̃(xhi) ≥ 0}].

• Determine h ∈ Ψ using (22).
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ALLOCATE : Increase the computing budget by θj+1 and calculate the new between budget

allocations  using (20a) and (21a) (round as needed). Using  as well as (20b) and

(21b), determine the within budget allocations for  and  (round as needed).

SIMULATE : Perform  simulations for partition h, h = 1, …, m; design i, i = 1, s, k; j

← j + 1.

END OF LOOP

5 Numerical Experimentation

In this section, we describe how we compared the results from our new POSD method

against the results from five other allocation procedures. We start by providing a description

of the other methods chosen to provide a perspective of the efficiency gained by using

optimal allocations, by using the information from a regression equation, and by optimally

allocating between and within the partitions. We then describe our testing framework and

provide our experimental results.

5.1 Comparison Methods

The simplest allocation case is a naive method that equally allocates (EA) the runs to each

design location such that Ni = T/k for each i. For this method, we designate the design

location with the smallest mean performance measure as xb so that

Instead of equally allocating, we also tested the OCBA method, which is one of the efficient

R&S performers [3]. This method requires a set of initialization runs and, based upon the

findings of [11], we used an initial allocation of 5 runs for each design location. We then

used the method described in [11] to determine how to allocate 99 additional runs within

each partition.

Both EA and OCBA rely upon comparisons of the mean response at the global best design

location and each individual design location and do not rely upon a response surface within

each partition to aid in the comparisons. For our experiments, we will also compare against

three methods that utilize a response surface within partitions. The first of these response

methods in our progression equally allocates to each design location but uses a response

surface (EA-RS) within each partition to compare the results. For EA-RS, each partition will

receive an equal number of runs if each partition has an equal number of designs.

The second response method leverages the results from [16] in which we require only three

support points for each partition to capture all of the information in the response. A very

popular way to do this in DOE literature is to use the D-optimality criterion (D-opt) that

maximizes the determinant of the information matrix resulting in minimizing the generalized

variance of the parameter estimates. Atkinson and Donev ([1]) provide a list of properties of
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this criterion and note that D-opt often performs well compared to other criteria. For an

underlying quadratic function, this criterion establishes support points at the two extreme

points and at the center of the domain and allocates one third of the simulation budget to

each of these support points. Using the notation from our early POSD derivation, this

criterion will always allocate with {αh1, αh,(k+1)/2, αhk} = {1/3, 1/3, 1/3}. For our

experiments, the simulation budget within a partition is allocated in accordance with D-opt

and we will equally allocate to each partition.

The final method that we will compare against is a direct use of the OSD method [5]. The

simulation budget within a partition is allocated in accordance with the OSD conditions,

while different partitions receive an equal amount of the computing budget. We will

initialize as described in [5] with Nh1 = Nh,(k+1)/2 = Nhk = n0 = 20 and then use the OSD

conditions to allocate 99 additional runs within each partition.

For the POSD method, we initialize as described in the previous section with Nh1 =

Nh,(k+1)/2 = Nhk = n0 = 20. We then used the algorithm described in Section 4.1 to allocate an

additional 84 runs between each partition and within each partition.

5.2 Testing Framework

In this subsection, we present the four experiments we will conduct. The first experiment

considers a function with three local minima on a domain with 60 design locations and

compares the results of using POSD against the other methods described in subsection 5.1.

The second experiment uses the same domain and underlying function as the first

experiment but the simulation noises are not normally distributed. The last two experiments

also use the same domain and underlying function as the first experiment but portions of the

domain have much higher simulation noises than the rest of the domain. Based upon

heuristics that exploit the adaptive nature of the first two cases of (B1) [4], we partitioned

the domains of 60 design locations of the experiments into six disconnected partitions.

We conducted all four experiments using a total computing budget of 10,000 runs. The

results will show that these amounts are sufficient to compare the performance of the

methods and then determine the sensitivity of the POSD to the assumption of normally

distributed noises. We repeat this whole procedure 10,000 times and then calculate the PCS

obtained for each method after these 10,000 independent applications.

5.3 Experiment 1 (three local minima, 60 design locations)

This experiment is taken from the global optimization literature [22] and uses the following

function: f (xi) = sin (xi) + sin (10xi/3) + ln (xi) − 0.84xi + 3 + N (0, 1). We used a domain

consisting of 60 evenly spaced design locations where x ∈ [3, 8] such that the global

minimum is x27 ≈ 5.20 and y(x27) ≈ −1.60. This function also has two local minima at x6 ≈

3.42 with y(*x6) ≈ 0.16 and x47 ≈ 7.07 with y(*x47) ≈ −1.27.

As mentioned in subsection 5.2, we partitioned the domain for the regression based methods

into six partitions and each of the local minimums are in a separate partition. Fig. 1 contains

the simulation results. POSD clearly performs the best since it uses a regression equation to

capture the information and then efficiently allocates both between and within the partitions.
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The OSD and D-opt methods are the next best methods. They are regression-based methods

that at least allocate efficiently within the partitions. As a point of comparison, OSD

achieves a 95% PCS after about 2,200 runs and D-optimal achieves the same PCS after

3,300 runs. POSD achieves the same PCS after about 1,000 runs or about 45% of those

required by OSD and 30% of those required by D-opt. EA-RS requires 5,700 runs to achieve

a 95% PCS and the other two methods are even less competitive. After 10,000 runs, OCBA

achieves an 83% PCS and EA only achieves a 49% PCS.

5.4 Experiment 2 (Different noise distributions)

This experiment uses the same underlying function and domain used in Experiment 1 f (xi) =

sin (xi) + sin (10xi/3) + ln (xi) − 0.84xi + 3. We varied the type of the distribution for the

noise terms of the simulation output while ensuring that each experiment used a distribution

with a mean equal to zero and the variance is the same as that in Experiment 1. In addition

to εh ~ N(0, 1), we used:

•  where θ1 and θ2 are the lower and upper limits

of the distribution,

• εh ~ Exponential(μ = 1) − 1 where μ is the mean of the distribution, and

• εh ~ Binomial(N = 2, p = 0.5) − 1 where N is the number of trials and p is the

probability of success.

The results of the experiment demonstrate that for this problem POSD is robust and

performs relatively similar when assuming that the noise distribution terms are normally

distributed even if the noise terms are actually from one of the other three distributions.

Table 1 below provides a sample of the results.

5.5 Experiment 3 (High noise in non-best partitions)

This experiment again uses the same underlying function and domain used in Experiment 1.

We varied the distribution for the noise terms of the simulation output such that εh ~ N (0, 1)

when xi ≤ x40; otherwise εh ~ N (0, 10).

This distribution of the noise terms provides a much higher variance in the last two

partitions, one of which includes the most competitive local minimum. The results are

generally consistent with the first experiment and are shown in Fig. 2. D-optimal achieves a

90% PCS after about 4,500 runs and OSD achieves the same PCS after only 3,700 runs.

POSD achieves a 90% PCS after about 1,370 runs or about 37% of those required by OSD

and 30% of those required by D-opt. Notably different than the results from Experiment 1,

OCBA is much more competitive with EA-RS and performs almost identically (and slightly

better at times) until about 2,300 runs. The efficient allocation of OCBA competes well

against the set of inefficient response surfaces generated by EA-RS. After 10,000 runs, EA-

RS achieves an 89% PCS, OCBA achieves a 75% PCS, and EA only achieves a 41% PCS.
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5.6 Experiment 4 (High noise, including the best partition)

This experiment is similar to Experiment 3 and uses the same underlying function and

domain. We varied the distribution for the noise terms of the simulation output such that εh

~ N (0, 1) when x21 ≤ xi ≤ x40; otherwise εh ~ N (0, 10).

This distribution of the noise terms provides a much higher variance in the two middle

partitions, one of which includes the global minimum. The results as shown in Fig. 3 are

generally consistent with the first experiment and third experiment. D-optimal achieves a

70% PCS after about 9,200 runs and OSD achieves the same PCS after only 6,000 runs.

POSD achieves a 70% PCS after about 2,400 runs or about 40% of those required by OSD

and 26% of those required by D-opt. As with Experiment 3, OCBA is more competitive.

The performance is almost identical with D-opt until about 1,500 runs and it outperforms

EA-RS until about 4,700 runs. After 10,000 runs, EA-RS achieves an 89% PCS, OCBA

achieves a 75% PCS, and EA only achieves a 41% PCS.

6 Conclusions

This paper explores the potential of further enhancing R&S efficiency by incorporating

simulation information from across a partitioned domain into a regression based metamodel.

We have developed a POSD method that can further enhance the efficiency of the

simulation run allocation for selecting the best design. Our new method uses a heuristic

based upon approximately optimal rules for between and within partitions that determine the

number of samples allocated to each design location. Numerical experiments demonstrate

that our new approach can dramatically enhance efficiency over existing efficient R&S

methods.

Though the use of regression metamodels can dramatically enhance simulation efficiency,

the regression-based methods are constrained with some typical assumptions such as an

underlining quadratic function for the means and homogeneous simulation noise. As shown

in our numerical experiments, these assumptions can be alleviated if we can efficiently

partition the domain so that we focus only on a small local area of the domain where the

assumptions will hold. The integration of the POSD method with intelligent search or

partitioning algorithms for general simulation optimization problems is an ongoing research.

If the function is highly nonlinear, more partitions may be needed in order to have a good

fitting, which leads to more testing points. However, this issue can be alleviated if we have a

smarter partition scheme. Similar to the idea of our optimal simulation allocation, we want

to have more partitions near the optimal point in order to have good fitting. On the other

hand, the quality of fitting can be significantly lowered if an area is much worse than a good

one, i.e., it has a low chance to contain an optimal point. For such an area, we may require

fewer partitions. Ideally, we want to have an ”optimal partition” scheme which can

maximize the overall efficiency or the probability of correct selection. Other possible

extensions include incorporating the work in Yang (2010) that extends the de la Garza

phenomenon to other nonlinear forms such as exponential and log-linear models [23].

Yang’s effort provides the minimum number of support points and the optimal locations for

some of the support points for these and other non-linear forms.
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The dimensional curse is inherently a big challenge faced by any regression like procedures,

including our approach. The focus of this paper is to enhance the efficiency of regression

through a smarter computing budget allocation. We have shown that our proposed method

offers a significant improvement over the well-known D-optimality approach in DOE

literature (by 70~74% reduction). However, smarter computing budget allocation alone is

not enough to tackle the dimensional issue. One promising approach we are taking as an

ongoing research is to integrate our POSD method with some multi-dimensional search

methods such as the stochastic trust region gradient-free method [7].
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A Proof of Approximately Optimal Allocations

Proof of Theorem 2:We will examine the three cases that are delineated in (20a) and (20b).

The first case in (20) is a general case where PBM ≥ PΩ. The second case is a special case

that addresses where PBM < PΩ but there are no between partition comparisons in the lower

and upper bounds of the APCS (such that h ∈ Ψ ∀h and M = A,Z ∀h). The third case is a

general case where PBM < PΩ, except for the special case addressed by the second case. As

such, our proof will establish the first and third cases and then address the special case.

Case 1: PBM ≥ PΩ

When PBM ≥ PΩ, we will not use the quadratic bound formulation for any of the non-best

comparisons (such that h ∉ Ψ for every n ≠ B). Therefore, our APCS from (14) simplifies to

To establish the upper bound, we show that 1 − max [P{ỹ(xBb) ≥ ỹ(xBA)},

.

For the lower bound, given PBM ≥ P{− δ̃(xhi) ≥ 0} ∀h ≠ B, i = 1, …, k, we know that

.

Therefore, when PBM ≥ PΩ, we can use the lower and upper bounds shown in equation (A.

1).
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(A.1)

Since L and U only contain within comparisons for the best partition, we obtain NB· = T and

Nh· = 0 for h ≠ B. For the proof of the within allocation of αBi in accordance with the OSD

conditions, see Lemma 4 in Appendix B.

Case 3: PBM < PΩ (except for the special case addressed by Case 2 below)

When PBM < PΩ, the lower and upper bounds shown in (A2) can be established using a very

similar approach as used for when PBM ≥ PΩ.

(A.2)

For the within partition allocations, see Lemma 4 in Appendix B for when PhM = P{− d̃

(xhA) ≥ 0} or when PhM = P{−d̃(xhZ) ≥ 0}. Lemma 5 in Appendix B addresses when PhM =

P{−δ̃(xhi) ≥ 0} which occurs when h ∉ Ψ or when h ∈ Ψ and PhM = P{−δ̃(xhb) ≥ 0}. For the

allocations within the best partition, except for the special case, see Lemma 6 in Appendix

B. The proof for the between partition allocations closely follows those presented in [11,15].

See Lemma 7 and Lemma 8 in Appendix C.

Case 2: PBM < PΩ, h ∈ Ψ, ∀h and M = A, Z, ∀h

For the special case when PBM < PΩ but there are no between partition comparisons in the

APCS (such that h ∈ Ψ, ∀h and M = A,Z, ∀h), we also use the lower and upper bounds

presented in (A.2). However, the allocations for the best partition are obtained using the

same approach presented in Lemma 7 in Appendix C for the non-best partitions.

B Within Partition Allocations

Lemma 4 When PhM = P{−d̃(xhA) ≥ 0} or when PhM = P{−d̃(xhZ) ≥ 0}, the within partition

comparisons are determined by the OSD conditions as expressed below in (B.1).

(B.

1)

Proof: Setting ∂U / ∂αhj = 0, we obtain

Using the fact that αh1 + αhs + αhk = 1, we obtain the result that
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For the proof of the optimal support point location, see [5]. The same results are obtained for

the lower bound of the APCS when PhM = P{−d̃(xhA) ≥ 0} and for the case when PhM =

P{−d̃(xhZ) ≥ 0}.

Lemma 5 When PhM = P{−δ̃(xhi) ≥ 0} and h ≠ B, the within partition comparisons are

determined by the c-optimality criterion where xhi is selected as one of the three support

points and αhi = 1.0.

Proof: Setting ∂U / ∂αhj = 0, we obtain

(B.2)

Therefore,

Given a property of the Lagrange polynomial coefficients where Ehi,1 + Ehi,s + Ehi,k = 1 (see

[6]), we know that  for at least one of the support points. Using the symmetry of

solutions and the fact that αh1 +αhs + αhk = 1 and, assuming for example that , we

obtain the general result that

(B.3)

The same results are obtained for the lower bound of the APCS also. For the optimal support

point location, we must consider three cases.

Case A-I: xhi = xh1. For this case, we obtain that Ehi,1 = 1, Ehi,s = 0, Ehi,k = 0. Substituting

these results into equation (B.3), we obtain αh1 = 1.0.

Case A-II: xhi = xhk. For this case, we obtain that Ehi,1 = 0, Ehi,s = 0, Ehi,k = 1 resulting in αhk

= 1.0.

Case A-III: xhi ≠ xh1 and xhi ≠ xhk. From (17), when xhs = xhi, we obtain that Ehi,1 = 0, Ehi,s =

1, Ehi,k = 0. Substituting these results into (B.3), we obtain αhs = 1.0. In order to show that

xhs = xhi is an optimal selection of xhs, we can use the chain rule to establish that
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Substituting (B.3) into (17), we obtain

(B.4)

Using again the property where Ehi,1 + Ehi,s + Ehi,k = 1 (see [6]), we know that |Ehi,1| + |Ehi,s|

+ |Ehi,k| ≥ 1. Thus, when xhs > xhi, ∂ξhi / ∂xhs ≥ 0 such that ∂U / ∂xhs ≤ 0. Similarly, when xhs

< xhi, ∂ξhi / ∂xhs ≤ 0 such that ∂U / ∂xhs ≥ 0.

Lemma 6 When PBM < PΩM, the within partition comparisons for the best partition are

determined by the c-optimality criterion where xBb is selected as one of the three support

points and αBb = 1.0 (for future allocations after initial runs so that we do not have a

singular solution).

Proof: When PBM < PΩM, setting ∂U / ∂αBj = 0, we obtain ,

where

The rest of the proof follows the proof from Lemma 5.

C Between Partition Allocations

Lemma 7 When PBM < PΩM, the between partition allocations for i ≠ B and j ≠ B are

obtained by .

Proof: We consider three cases.

Case B-I:

When PhM = P{−d̃(xhA) ≥ 0} or when PhM = P{−d̃(xhZ) ≥ 0} and h ≠ B for both

comparisons, setting ∂U / ∂Nh· = 0, we obtain
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Chen et al. (2000) [11] provide using an asymptotic allocation rule where T → ∞ and Glynn

and Juneja (2004) [15] provide using a large deviation approach that d̂2 (xiM)/ζiM =

d ̂2(xjM)/ζjM. Substituting the results from Lemma 4, we know that

We can then show

Note that these results are very similar to the OCBA results with the major difference being

that the Lagrange coefficients serve as an efficiency factor for the within partition

allocations.

Case B-II:

When PhM = P{−δ̃(xhM) ≥ 0} and h ≠ B for both comparisons,

Substituting the results from Lemma 5,

Using the assumption that NB· ≫ Nh· [11,15]. . The rest of the proof

follows Case B-I such that

Case B-III:

When PhM = P{−d̃(xhA) ≥ 0} or when PhM = P{−d̃(xhZ) ≥ 0} and h ≠ B for one comparison

and PhM = P{−δ̃(xhM) ≥ 0} and h ≠ B for the other comparison, this case follows from the

results for Case B-I and Case B-II such that
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Lemma 8 When PBM < PΩM, the between partition allocations for h = B are obtained by

Proof: This proof closely follows the one provided in [11]. Setting ∂U / ∂NB· = 0, we obtain

Using the results from Lemma 5 and (B.2), it can be shown that for h ≠ B

Using the results from Lemma 6, we know that

Substituting these results, we obtain
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Fig. 1.
Results of Experiment 1
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Fig. 2.
Results of Experiment 3
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Fig. 3.
Results of Experiment 4
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Table 1

Results from Experiment 2

Total
Runs

PCS
(Normal)

PCS
(Uniform)

PCS
(Exp)

PCS
(Bin)

528 69.84% 70.06% 71.14% 70.70%

1536 99.14% 99.09% 98.97% 99.19%

2544 99.89% 99.93% 99.72% 99.88%
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