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a b s t r a c t

The identification of the spatially dependent parameters in Partial Differential Equations (PDEs) is
important in both physics and control problems. A methodology is presented to identify spatially
dependent parameters from spatio-temporal measurements. Local non-rational transfer functions are
derived based on three local measurements allowing for a local estimate of the parameters. A sample
Maximum Likelihood Estimator (SMLE) in the frequency domain is used, because it takes noise properties
into account and allows for high accuracy consistent parameter estimation. Confidence bounds on the
parameters are estimated based on the noise properties of themeasurements. Thismethod is successfully
applied to the simulations of a finite difference model of a parabolic PDE with piecewise constant
parameters.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Many processes in physics are described by partial differential
equations (PDEs). Typically, the parameters describing these PDEs
depend on the spatial coordinate. The estimation of these spatially
dependent parameters is important for understanding the physical
behavior of these PDEs.

The identification of PDEs is treated in the class of infinite di-
mensional systems or Distributed Parameter Systems (DPS). In
the DPS literature the problem of estimating parameters is ex-
tensively treated in the monograph by Banks and Kunisch (1989),

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised formbyAssociate Editor Alessandro Chiuso
under the direction of Editor Torsten Söderström.

E-mail addresses:m.v.berkel@tue.nl (M. van Berkel),
Gerd.Vandersteen@vub.ac.be (G. Vandersteen), egon.geerardyn@vub.ac.be
(E. Geerardyn), Rik.Pintelon@vub.ac.be (R. Pintelon), h.j.zwart@utwente.nl
(H. Zwart), M.R.deBaar@differ.nl (M. de Baar).
1 Tel.: +31 40 247 2058; fax: +31 40 2461418.

http://dx.doi.org/10.1016/j.automatica.2014.05.027
0005-1098/© 2014 Elsevier Ltd. All rights reserved.
and references therein. In addition, different methodologies exist
to identify spatially varying parameters in PDEs (Kravaris & Sein-
feld, 1985), of which a number focus specifically on parabolic PDEs
(Banks & Lamm, 1985; Kunisch & Peichl, 1991; Mochi, Pacelli, Rec-
chioni, & Zirilli, 1999). Their emphasis is on the regularization of
the least-squares cost-function used to estimate the parameters,
to assure well-posedness in Hadamard’s sense, i.e., to guarantee
the existence of its solution, the uniqueness of this solution and its
stability with respect to the measurement data (Vogel, 2002). In
addition, regularization is often used to make the optimization
problems convex and to constrain the solution in some sense (Ito &
Kunisch, 2008). Moreover, different methods for reducing the infi-
nite dimensional PDEs to finite dimension exist and are discussed
in the abovementioned references. Generally, they are using some
discretization of the spatial coordinate (Heath, 1997; Smith, 1985)
or basis functions (Banks, Crowley, & Kunisch, 1983; Canuto, Hus-
saini, Quarteroni, & Zang, 1988).

A different approach to estimate the parameters is to solve the
problem in the frequency domain via the Laplace Transform (Cur-
tain & Zwart, 1995). This reduces the PDE to an parameterized
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Ordinary Differential Equation (ODE). These ODEs can be approxi-
mated or sometimes even be solved analytically, thereby avoiding
approximation errors. The solutions are generally of non-rational
or fractional form Curtain and Morris (2009), of which the pa-
rameters can be identified using frequency domain identification
techniques (Gabano & Poinot, 2011; Jalloul, Jelassi, Melchior, &
Trigeassou, 2011; Pintelon, Schoukens, Pauwels, & Van Gheem,
2005; Valério & da Costa, 2007). The disadvantage of this approach
is that the non-rational form of themodel can complicate the iden-
tification significantly. On the other hand, the use of periodic exci-
tations enables the removal of the unexcited noisy frequency lines
from the measured data, hence high Signal-to-Noise ratios (SNR)
can be obtained at the excited frequency lines by averaging the sig-
nals over consecutive periods. In addition, it is no longer required
to use rational approximations in the frequency domain making
the identification easier.

In this paper, the following second order parabolic PDE with
spatially varying parameters on a one-dimensional domain is
considered

∂z
∂t

= fD (x, θ)
∂2z
∂x2

+ fV (x, θ)
∂z
∂x

+ fK (x, θ) z + Q (x, t) (1)

where the spatial coordinate is denoted by x. We assume that the
functions fD(x, θ), fV (x, θ), and fK (x, θ) depend on the unknown
parameters θ , which we want to identify.

A specific process described by (1) is the radial heat-transport
inside the tokamak plasma (Gentle, 1988), a toroidal nuclear
fusion device. For the optimization of this radial heat-transport,
which determines the efficiency, the different profiles need to be
identified, i.e. fD, and possibly fV and fK .

In the tokamak the initial conditions are unknown, hence
only measurements are considered for ‘‘t ≫ the dominant time
constant’’ such that the transients are negligible when compared
to the forced response. The source (microwave heating) term
periodically excites the plasma and is defined as

Q (x, t) =

q(x)
K

k=1

Ak cos (Ωkt + φk) x1 ≤ x ≤ x2

0 elsewhere

(2)

where Ak, φk, and Ωk are the amplitude, phase, and frequency re-
spectively. The spatial dependence of the source q(x) is unknown,
but q(x) ≠ 0. The plasma temperatures, z, can be measured lo-
cally by microwave radiation, which is prone to additive normally
distributed noise. Moreover, boundary conditions exist such that
(1) has a unique solution. However, these boundary conditions are
subject to debate and are assumed to be unknown. Thismeans that
for the parameter estimation only measurements are available.

The estimation of parameters from noisy measurements only
is known as an Errors-in-Variables problem (EIV). In the EIV
literature it is well known that the least-squares estimator is not
consistent (Söderström, 2007), i.e. the parameter estimates will be
biased. Moreover, this bias depends on the SNR, which decreases
with the distance to the source Q (x, t). This is caused by the low-
pass characteristic of (1), which also causes the higher frequencies
to be more noisier than the lower frequencies. This problem can
be partly overcome using a low-pass filter to suppress the noisy
‘‘high-frequency’’ components in the measurements (Söderström
&Halvarsson, 1999). However, the optimal cut-off frequency of this
filter depends on the unknown system parameters.

In this paper a frequency domain sample Maximum Likelihood
Estimator (SMLE) is used for this EIV problem. The SMLE is
based on the Probability Density Function of the noise, allowing
for a consistent estimate under weak assumptions (Pintelon &
Schoukens, 2012). Moreover, it naturally weights the different
frequency components avoiding the necessity of a low-pass filter.
In the SMLE framework the confidence bounds on the estimated
parameters can be calculated and model validation tests exist.
However, the SMLE requires knowledge about noise properties
of the measurements. A disadvantage of the SMLE is that its
optimization problem is more complex and is no longer convex in
contrast to linear least-squares estimators.

Here we choose to estimate a set of small sub-domains, instead
of modeling the entire domain. On each sub-domain a complex
valued non-rational analytic model description is used, hence
avoiding discretization errors (Bhikkaji & Söderström, 2001). The
advantage of this approach is that the decoupling in sub-domains
assures that the errors do not propagate from one sub-domain to
the others. In addition, the SMLE optimization problem remains
solvable, because only a few parameters need to be estimated.

A sub-domain needs to consist of at least three measurements.
The reason is that two measurements act as the boundary
conditions (inputs) as such defining the solution of the second
order PDE. Then, at least one measurement point between the
boundaries (output) is necessary to compare it with the solution of
the PDE at that location, which is determined by the parameters,
the model structure, and the boundary conditions. In principle the
number of measurements can be extended, but then a Multiple-
Input Multiple-Output system needs to be identified. Therefore,
in this paper three adjacent measurements are used to define a
sub-domain. Note, that we only consider sub-domains that are
outside the interval [x1, x2], i.e. domains that do not contain an
excitation source q(x) (see (1) and (2)). The reason is that the exact
dependency of q(x) on x is unknown.

A general framework for different spatial dependencies and
geometries is discussed, but results are only shown for sub-
domains on which parameters can be modeled as constants.
Consequently, only piecewise smooth profiles are identifiable,
which is generally true for the considered application.

An identification scheme consists of the following three
components: a model of the system, derived in Section 2; a cost
function minimization scheme based on a realistic noise model,
explained in Section 3; and simulations which are generated by
means of a finite difference model such that the result can be
validated. The latter is discussed in Section 4. Finally, a number of
conclusions are summarized and discussed.

2. Modeling

This section derives the transfer functions based on a smart
choice of the boundary conditions. The most important concept
is the replacement of boundary conditions by measurements.
In addition, derivations are done without specifying any spatial
dependency.

2.1. Considered partial differential equation

The one-dimensional, second-order linear PDE introduced in (1)
is excited by the local source term Q (x, t). The PDE is modeled by
the homogeneous form of (1) outside this source domain. It is also
possible to solve the inhomogeneous PDE, allowing the use of a
domainwith a source. However, the inhomogeneous PDE results in
a more complex relationships and therefore will not be discussed.

The Laplace transform of (1) simplifies the PDE towards a
complex valued Ordinary Differential Equation (ODE) of the form

0 = fD (x, θ)
d2Z
dx2

+ fV (x, θ)
dZ
dx

+ (fK (x, θ) − s) Z (3)

with Z = L{z} and s the Laplace variable. The functions fD(x, θ),
fV (x, θ), and fK (x, θ) depend on the spatial coordinate x and the
time-invariant unknown parameters θ . Inmany cases this ODE can
be solved analytically, with the general solution given by

Z (x, s) = C1(s)ξ (x, θ, s) + C2(s)ζ (x, θ, s) , (4)
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where C1(s) and C2(s) denote the free variables set by the boundary
conditions. The choice of the spatially dependent functions
fD(x, θ), fV (x, θ), and fK (x, θ) in (3) determine the solutions
ξ (x, θ, s) and ζ (x, θ, s), which are the complex eigenfunctions of
(3). Solutions for many different choices of fD(x, θ), fV (x, θ) and
fK (x, θ) exist, such as constant, and linear functions. An extended
list of these analytic solutions can be found in Polyanin and Zaitsev
(2003). The next step is to derive the local transfer functions.

2.2. Boundary condition description

This paper considers a set of small sub-domains, which pre-
vents the errors from propagating. Moreover, the boundary con-
ditions are no longer approximated but measured, in contrast to
other strategies such as the infinite domain boundary condition
reported in Curtain and Morris (2009). Every domain uses three
adjacent frequency spectra of the measurements z to estimate the
local parameters. The outer twomeasurements act as the boundary
conditions i.e. Z (xi−1, s) and Z (xi+1, s). These two boundary con-
ditions allow for the calculation of C1(s) and C2(s). Rearranging and
defining Z (xi, s) as the output measurement results in the follow-
ing Multiple-Input Single-Output system (θ and s are omitted):

Z (xi) =


ξ (xi+1) ζ (xi) − ζ (xi+1) ξ (xi)

ζ (xi−1) ξ (xi+1) − ζ (xi+1) ξ (xi−1)


Z (xi−1)

−


ξ (xi−1) ζ (xi) − ζ (xi−1) ξ (xi)

ζ (xi−1) ξ (xi+1) − ζ (xi+1) ξ (xi−1)


Z (xi+1) , (5)

with i = 2, . . . ,m − 1, where m denotes the number of sensors.
The inputs and outputs are defined as U1(s) = Z (xi−1, s) ,U2(s) =

Z (xi+1, s), and Y (s) = Z (xi, s) on the interval xi−1, xi+1:

Y (s) = G1 (θ, s)U1(s) − G2 (θ, s)U2(s). (6)

In (5), the choices of ξ (x, θ, s) and ζ (x, θ, s) are deliberately unde-
fined, as different dependencies of fD, fV , and fK can be used. Here,
we only consider constant parameters.

2.3. Constant parameters

This section derive the transfer functions in the case of constant
parameters over a small domain. Consequently, ξ (x, θ, s) and
ζ (x, θ, s) in (5) are constant over the domain. The local PDE
description is given by

∂z
∂t

= D
∂2z
∂x2

+ V
∂z
∂x

+ Kz, (7)

where D denotes the diffusivity, V the convective velocity, and K
the damping. The eigenfunctions are fixed by the choice of local
constant spatial dependencies i.e.

ξ (x, θ, s) = exp (λ1x) and ζ (x, θ, s) = exp (λ2x) , (8)

where λ1,2 are the eigenvalues of the underlying ODE:

λ1,2 =
−V ∓


V 2 + 4D (s − K)

2D
. (9)

As the combination of (5) and (9) result in a non-rational Multiple-
Input Single-Output system with complex exponents and square
roots, identifying the parameters is not straightforward. Therefore,
a change of variables is introduced to facilitate the parameter
estimation.

2.4. Change of variables

Theparameterswill be estimated byminimizing a cost function.
The computation time and possibly avoidance of local minima
can be improved by simplifying the equations to be evaluated.
Therefore, a substitution is introduced such that the eigenvalues
are simplified, avoiding parameter divisions, i.e.

λ1,2 = −a ∓


a2 + b + cs,

with a =
V
2D

, b = −
K
D

, and c =
1
D

. (10)

This parameter set will be denoted as θ =

a b c

T and the
estimated set by θ̂ . Although not discussed here, similar simplifi-
cations are possible for other choices of the spatial dependent func-
tions.

In the next section, not only the parameters are estimated, but
also their covariance. Consequently, the covariance matrix of the
estimated parameters can be recalculated using

Cov

D̂, V̂ , K̂


= JDCov


θ̂

JTD

with JD =
1
ĉ2

 0 0 −1
2ĉ 0 −2â
0 −ĉ b̂

 . (11)

3. Sample maximum likelihood estimator

In this section, the Errors-in-Variables (EIV) problem is
discussed, for which the sample Maximum Likelihood Estimator
(SMLE) offers a solution. It is also discussed how to minimize
the sample Maximum Likelihood cost function, how to construct
confidence bounds on the estimated parameters, and how to
validate the estimated models.

Maximum Likelihood Estimation is a method for estimating
parameters given some statistical properties, where the MLE
maximizes a known likelihood function. The likelihood function
can be interpreted as a Probability Density Function (PDF), but
with respect to the measured data. For example, if the difference
between the output and a predicted output based on the model
and input is studied, the remainder in the absence of model errors
is fully characterized by the likelihood function of the noise. The
sample likelihood function differs from the likelihood function in
the sense that the real noise (co-)variances are unknown. Hence,
they need to be replaced by sample variances, which can be
determined using a pre-processing step.

3.1. Error model: errors-in-variables

The transfer functions introduced in (6) are based on local
spatial measurements. This means that an EIV approach is
necessary to handle the noise on the measurements. In this paper,
the EIV problem is solved via the sample Maximum Likelihood
Estimator (SMLE) in the frequency domain. It is based on additive
circular complex normally distributed noise in the frequency
domain (Pintelon & Schoukens, 2012), which is the result of
Gaussian noise in the time domain (Goodman, 1963).

In the SMLE, the true unknown noise (co-)variances are re-
placed by sample estimates obtained from the periodic signal. This
is achieved by calculating the average over the different periods
and variances per frequency line resulting in the deterministic
spectra and the estimated noise spectra. A minimum number of 4
periods is necessary to make a parameter estimate, however, if at
least 7 periods are used other desirable properties of the SMLE are
also retained (see Schoukens, Pintelon, Vandersteen, & Guillaume,
1997 for the details). In principle, also measurements containing
transients can be used to obtain the (co-)variances using the lo-
cal polynomial method, but at the cost of a more complex pre-
processing step (see Pintelon, Schoukens, Vandersteen, & Barbé,
2010).
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There also exist different approaches to handle an EIV problem
often relying onmultiple experiments and specific assumptions on
the noise. An overview of the different methods can be found in
Söderström (2007). In contrast, to the frequency domain (sample)
MLE also MLEs in time domain exist (Åström, 1980; Diversi,
Guidorzi, & Soverini, 2007), which handle the spectral factorization
and possible transients differently (Söderström, 2007). Moreover,
MLEs can also be constructed for non-Gaussian noise distributions
(Goodwin & Payne, 1977). However, in contrast to the non-
Gaussian MLE, the MLE for Gaussian noise are extensively studied
in e.g. Pintelon and Schoukens (2012) and Söderström, Hong,
Schoukens, and Pintelon (2010).

3.2. Maximum likelihood cost

The sample MLE cost function is derived on the basis of the
system model and the error model. The sample log likelihood cost
function VSML is used (Pintelon & Schoukens, 2012). It has the same
global minimum as the SMLE for complex normally distributed
noise, but is computationally less intensive. It is defined as

VSML =
1
F

F
k=1

|e (Ωk, θ)|2

σ 2
e (Ωk, θ)

, (12)

with Ωk the excited frequencies and F the number of frequencies
used. The error e (Ωk, θ) is defined as

e (Ωk, θ) = Y (Ωk) − (G1 (θ)U1 (Ωk) − G2 (θ)U2 (Ωk)) , (13)

where the transfer functions G1 and G2 are evaluated at Ωk.
The variability, which takes the different noise contributions into
account, is given by (dependency on Ωk and θ are omitted)

σ 2
e (Ωk, θ) = σ 2

Y + σ 2
U1

|G1|
2
+ σ 2

U2
|G2|

2

− 2Re

G1σ

2
U1U2

G2 + σ 2
YU1

G1 − σ 2
YU2

G2

, (14)

where the variances and covariances are estimated for every Ωk
using M realizations (periods). The complex conjugate of G is
denoted as G. The parameters are estimated by minimizing VSML

θ̂ = argmin
θ

VSML (Ωk, θ) . (15)

Minimizing this cost function gives the estimated parameters. For
filtered white noise disturbances the minimizer of (12), based on
the non-rational transfer models, has exactly the same asymptotic
(F → ∞) properties as the SMLE for rational transfer function
models. For example, it is consistent and asymptotically normally
distributed (see Pintelon & Schoukens, 2012 for the details). The
cost function (12) can be naturally interpreted as aweighting of the
error with the uncertainty of the measurements. Measurements
with small noise variances have a higher weighting and vice versa.
If σe is constant for all Ωk, then (12) reduces to a non-linear least-
squares (NLS) estimator (output error).

3.3. Optimization and confidence bounds

The minimization of (12) is in principle non-convex. On
the other hand, only a few parameters need to be estimated.
Therefore, the entire relevant parameter space can easily be
searched for the cost function’s minimum. In addition, if the
noise levels are reasonable and the parameters are optimized
in terms of θ , gradient based algorithms converge to the global
minimum for many initialization values. These gradient methods
are computationally cheap, especially if an analytic Jacobian is
used.

The analytical Jacobian is also used to estimate the confidence
bounds on the parameters. Section 3.2 explains that minimizing
the cost function (12) provides the best parameter set. The
uncertainty of the parameters is determined using the Jacobian
from a first-order Taylor series expansion

Jθ =
∂

∂θ


e (Ωk, θ)

σe (Ωk, θ)


. (16)

The resulting covariance matrix on the different transformed
parameters is given by

Cov

θ̂


≈


M − 1
M − 3

 
Re


2JHθ Jθ

−1
, (17)

withM the number of realizations (periods) (Pintelon, Schoukens,
& Rolain, 2003). This correction is necessary, because estimated
sample variances are used instead of the real (but unknown)
variances. The uncertainty on the real valued parameters can be
calculated by (11).

3.4. Model validation

A cost function analysis is used to detect model errors. If the
noise is indeed normally distributed, no model errors are present,
and if a number of weak assumptions are fulfilled (Pintelon
& Schoukens, 2012), then the expected value of the sample
MaximumLikelihood cost function equals thenumber of frequency
lines F minus the number of free real-valued parameters nθ divided
by two i.e.

Vnoise =


F −

nθ

2


. (18)

In addition, the theoretical variance of the SMLE cost equals Vnoise.
However, as variances are estimated using M repeated experi-
ments, a correction is necessary to take this extra uncertainty into
account i.e. E {VSML} = (M − 1) / (M − 2) Vnoise and var {VSML} =

(M − 1)3 /

(M − 3) (M − 2)2


Vnoise. The estimated variance is

used to construct confidence bounds. Model errors generally lead
to a higher value of the cost function at the global minimum.

3.5. Input design and choice of domain

The SMLE developed in this paper always considers a domain
of three measurement points, of which the locations can be non-
uniformly distributed. In principle, the larger the domain the better
the estimate of the parameters. The reason is that the suppression
of the amplitude increases with the distance due to the source.
Hence, the amplitude difference between the inputs and output
is also larger. However, the larger the domain, the more stringent
the assumption of constant parameters becomes. Thismeans there
is a trade-off between the sensor distance and the assumption
of constant parameters. These considerations are more important
than the overall number of sensors used, because every domain
is treated separately in this approach. The validation test and
confidence bounds can be helpful inmaking a choice for the sensor
locations. If the model (of constant parameters) is rejected by the
validation test, the model assumption is incorrect. In that case the
sensor locations should be closer to each other. On the other hand,
if the confidence bounds are large then increasing the distance
between the sensors could improve the accuracy.

The other important aspect is the source defined in (2). The
theoretical minimum number of sinusoidal components in the
source should be F >

nθ

2 . However, every extra sinusoidal
component increases the accuracy of the estimated parameters.
The domain to be identified is preferably close to the source,
but should not contain the source. In case the domain has some
distance to the source, the diffusive process acts as a low-pass filter,
which generally reduces the optimal frequencies Ωk with respect
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to the parameter accuracy when compared with a similar domain
closer to the source. In addition, the (unknown) parameters on the
domain, andbetween the source and thedomain, directly influence
the choice of the optimal excitation frequency. This directly follows
from (9) if s = iω, ω → ∞ then V and K become negligible. On
the other hand,K can be estimated using sine components at a very
low-frequency, which follows from s → 0, and V is best identified
somewhere in the intermediate region.

It is clear, that selecting the optimized identification accuracy
is complex and depends on many factors. Moreover, it depends
on which parameter needs to be identified accurately and which
domains need to be identified accurately. The accuracy can be
evaluated using the Fisher information matrix. As such this matrix
plays an important role in designing optimal excitation signals
and sensor placement. However, the exact design of the optimal
excitation signal and sensor placement is complicated, andwill not
be considered in this paper. The reader is referred to Rafajlowicz
(1983) and Ucinski (2004) for a treatment of sensor placement and
excitation design in DPS. On the other hand, the design of optimal
excitation signals for transfer functions is treated in, e.g. Rojas,
Welsh, Goodwin, and Feuer (2007) and Schoukens and Pintelon
(1991). Note, that also the crest factor and randomness of the
excitation signal should be considered to reduce non-linear effects
(Pintelon & Schoukens, 2012).

4. Results

This section shows a number of analysis steps to validate the
estimation procedure presented in the previous sections through a
Monte Carlo Analysis. Then, a finite difference simulation presents
the estimation results for varying profiles of D and V . The models
estimated using a finite difference simulation are validated by
means of a cost function analysis.

4.1. Estimator and confidence bound validation

The possibility to construct confidence bounds on the estimated
parameters is an important advantage of the SMLE. However, the
implementation of any estimation algorithm can be error-prone.
Therefore, it is important to validate the implementation. This
especially holds for schemes which use an analytic Jacobian. A
number of trivial tests, such as FiniteDifferenceModel comparison,
convergence to the true minimum, and comparison of the Fourier
transforms were done.

Next to validating the model, the estimated confidence bounds
on the estimator need to be verified. The SMLE has a number of ad-
vantages when compared to the least-squares estimators. The es-
timates remain consistent if the additive complex circular normal
noise is filtered or the different noise sources are correlated (co-
variance), because the noise models are also estimated based on
the realizations of the periodic signals. Under the conditions of fil-
tered or colored noise, the estimator should find a consistent esti-
mate and should approximate the confidence bounds accordingly.
This can be tested by means of Monte Carlo simulations. The noise
sources have been filtered and have been correlated. The original
model is used and different noise realizations (10000) with the
same variance and mean are simulated. The confidence bounds
were validated under these conditions. It turned out that the pa-
rameter b = −K/D is extremely sensitive to noise. This is caused
by the necessity of excitation signals with very low Ωk and the
presence of V and D. Therefore, the damping K is fixed at zero in
the rest of this paper.

4.2. Finite difference simulations

Finite difference simulations are used to validate the method-
ology. Only the estimated diffusivity D and convective velocity V
Fig. 1. Comparison between the SMLE and the non-linear least-squares estimator
(NLS) (σe = 1). The true profiles (solid lines) end estimates of D and V are
presented including the 95% confidence bounds (SMLE only). Some NLS estimates
of V become very large, are not included. The estimate is always plotted at the
central measurement xi of the domain. The measurements are generated with
a finite difference model of 4000 grid points, time step of 0.1 ms, where the
boundary conditions are ∂z(x=0)

∂x = 0 and z (x = 1) = 0. The amplitude of the
ground frequency |Z (xi, Ω1)| and the amplitude of the highest excited frequency
|Z (xi, Ω20)| are shown. The other amplitudes of the excited frequencies are situated
in between. In addition, the standard deviation of the noise in the frequency
domain |σnoise (xi, Ωk)| = σy is presented, which is constant for all frequencies.
In comparison also the SNR in the time domain is presented, which is defined
as SNRtime(xi) = 20 log10


zrms(xi)

noiserms(xi)


. The crosses represent the measurement

locations.

are considered as the damping K is very uncertain for reasonable
excitation frequencies. Both the diffusivity profile and convective
profile contain a step (simulated by an erf function), but at differ-
ent locations. The reason for this choice of profiles is to show that
the domains can be identified independently from the profile out-
side the domain. The problem of identifying the parameters with
discontinuities is not treated here, but can be found in e.g. Lamm
(1987). In the specific example of tokamak plasmas the steps have
experimentally been observed and can be interpreted as transport
barriers (Hogeweij, Lopes Cardozo, de Baar, & Schilham, 1998).

The excitation source Q (x, t) is placed at x = 0.1 and
hence influences the estimates in the gray area. The sensors are
positioned at x = 0.1, 0.15, . . . , 0.95, only x = 0.75 is not
present. The source is a multi-sine with equal amplitude exciting
the harmonics from 20 to 400 Hz. In total 40 periods are observed
(2 s). Noise is added, which is normally distributed and is for 20%
uncorrelated and 80% correlated (over different xi), which is a
realistic situation. Although, gradient basedmethodsworkwell for
lower noise levels, at higher noise levels it sometimes converges
to a local minimum. Therefore, a simple grid search algorithm is
applied. The resulting local estimates are presented in Fig. 1.

The SMLE is compared to the non-linear least-squares (NLS)
estimator (12) with σe = 1, which is comparable to an output
error approach in the time-domain (Ljung, 1993) (Parseval’s the-
orem). At low noise levels their performance is very similar. If
the measurements become more noisy, due to a larger distance to
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(a) Log10(VSML) at x = 0.85 (m). (b) Model validation.

Fig. 2. (a) Contour plot of the cost function values as function of the transformed parameters a and c at a specific spatial location. Note, that the original parameters are
defined in terms of θ so D is plotted from 1 to 200 and a is a more complicated combination of D and V . (b) The values of the cost function at the global minimum (×), VSML
for the different spatial estimates (×). The dashed lines are the 95% confidence bounds based on the expected variance of VSML .
the source, the estimates diverge from the true values. However,
the confidence bounds for the SMLE still give correct confidence
bounds. On the other hand, at higher noise levels the NLS estimates
diverge significantly from the true values and perform worse than
the SMLE. Moreover, the estimated D seems relatively insensitive
for a step in fV (x). In addition, the estimates of the non-symmetric
domains using the measurements at x = [0.65, 0.7, 0.8] and x =

[0.7, 0.8, 0.85], which are plotted at x = 0.7 and x = 0.8 respec-
tively, perform as expected. Although, the performance at the steps
seems good, it needs to be decided on the basis of the validation
test.

4.3. Model validation of finite difference simulation

In Section 3.4 a model validation test is introduced, which
is used here to validate the estimates of the finite difference
simulation. The value of the cost function at the global minimum
should equal the degrees of freedom (18) within some confidence
region. This is verified in Fig. 2, where not only the values of the
cost function are plotted but also the cost function as function of
the parameters at one spatial location.

Fig. 2(a) shows the cost function, due to the parameter
transformation introduced in Section 2.4many initialization values
will allow for a gradient based method to converge to the global
minimum or its neighborhood. Fig. 2(b) shows that most models
describe the data well. However, at lower noise levels than the
noise level chosen here, the estimated models at the step in fD(x)
and to a lesser extend at the step in fV (x) are rejected by the
validation.

5. Conclusions and discussion

This paper presents a new methodology to identify the
spatial dependent parameters. The estimation is performed in
the frequency domain, allowing analytic models to be used for
simple dependencies. A transfer function is derived, based on three
measurement points such that unknown boundary conditions can
be handled. Moreover, a sample Maximum Likelihood Estimator
is used to estimate the parameters. It takes the noise into
account, which is present at the inputs and the output. This
allows for consistent estimates of the parameter values and their
uncertainties.

The SMLE performs better than the non-linear least squares
estimator at high noise levels. A validation is applied showing
that most estimates are accepted. The local estimation with three
parameters ensures a simple and robust minimization of the cost
function as only a few parameters need to be estimated. The local
estimates also overlap, resulting in some redundancy, which can
further improve the estimation procedure by using the overlap
information.

Extending the methodology to higher dimensions is not
straightforward. The main problem is foreseen in terms of the
boundary conditions of a domain. The out and inflow of energy
between two measurement locations needs to be described,
which probably would require some interpolation. In addition, the
required number of measurements increases to at least four in 2D.
This means that the SMLE needs to be extended accordingly.
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