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Abstract

In this paper we consider the problem of global asymptotic stabi-
lization with prescribed local behavior. We show that this problem
can be formulated in terms of control Lyapunov functions. Moreover,
we show that if the local control law has been synthesized employing
a LQ approach, then the associated Lyapunov function can be seen
as the value function of an optimal problem with some specific local
properties. We illustrate these results on two specific classes of sys-
tems: backstepping and feedforward systems. Finally, we show how
this framework can be employed when considering the orbital transfer
problem.

1 Introduction

The synthesis of a stabilizing control law for systems described by nonlinear
differential equations has been the subject of great interest by the nonlinear
control community during the last three decades. Depending on the structure
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of the model, some techniques are now available to synthesize control laws
ensuring global and asymptotic stabilization of the equilibrium point.

For instance, we can refer to the popular backstepping approach (see
[11, 1] and the reference therein), or the forwarding approach (see [13, 8, 15])
and some others based on energy considerations or dissipativity properties
(see [10] for a survey of the available approaches).

Although the global asymptotic stability of the steady point can be
achieved in some specific cases, it remains difficult to address in the same
control objective performance issues of a nonlinear system in a closed loop.
However, when the first order approximation of the non-linear model is con-
sidered, some performance aspects can be addressed by using linear optimal
control techniques (using LQ controller for instance).

Hence, it is interesting to raise the question of synthesizing a nonlinear
control law which guarantees the global asymptotic stability of the origin
while ensuring a prescribed local linear behavior. This problem has been
addressed in [7]. In this paper local optimal control laws are designed for
systems which admits the existence of a backstepping.

In the present paper we consider this problem in a general manner. In a
first section we will motivate this control problem and we will consider a first
strategy based on the design of a uniting control Lyapunov function. We
will show that this is related to an equivalent problem which is the design
of a control Lyapunov function with a specific property on the quadratic
approximation around the origin. In a second part of this paper, we will
consider the case in which the prescribed local behavior is an optimal LQ
controller. In this framework, we investigate what type of performances is
achieved by the control solution to the stabilization with prescribed local
behavior. In a third part we consider two specific classes of systems and
show how the control with prescribed local behavior can be solved. With
our new context we revisit partially results obtained in [7]. Finally in the
fourth part of the paper, we consider a specific control problem which is the
orbital transfer problem. Employing the Lyapunov approach of Kellet and
Praly in [9] we will exhibit a class of costs for which the stabilization with
local optimality can be achieved.
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2 Stabilization with prescribed local behav-

ior

To present the problem under consideration, we introduce a general con-
trolled nonlinear system described by the following ordinary differential equa-
tion:

Ẋ = Φ(X , u) , (1)

with the state X in Rn and Φ : Rn × Rp → Rn is a C1 function such that
Φ(0, 0) = 0 and u in R

p is a control input. For this system, we can introduce
the two matrices A in Rn×n and B in Rn×p describing its first order approx-
imation : A := ∂Φ

∂X
(0, 0) , B := ∂Φ

∂u
(0, 0) . All along the paper hidden in our

assumptions, the couple (A,B) is assumed to be stabilizable.
For system (1), the problem we intend to solve can be described as follows:

Global asymptotic stabilization with prescribed local behavior: Let
a linear state feedback law u = KoX with Ko in R

p×n which stabilizes the
first order approximation of system (1) (i.e. A + BKo is Hurwitz) be given.
We are looking for a stabilizing control law u = αo(X), with αo : R

n → Rp, a
locally Lipschitz map differentiable at 0 such that:

1. The origin of the closed-loop system Ẋ = Φ(X , αo(X)) is globally and
asymptotically stable ;

2. The first order approximation of the control law αo satisfies the follow-
ing equality.

∂αo

∂X
(0) = Ko . (2)

This problem has already been addressed in the literature. For instance,
it is the topic of the papers [7, 17, 4]. Note moreover that this subject can
be related to the problem of uniting a local and a global control laws as
introduced in [20] (see also [16]).

In this paper, we restrict our attention to the particular case in which the
system is input affine. More precisely we consider systems in the form

Ẋ = a(X) + b(X)u , (3)

with the two C1 functions a : Rn → Rn and b : Rn → Rn×p. In this case we
get A = ∂a

∂X
(0) and B = b(0).
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Employing the tools developed in [2] it is possible to show that merg-
ing control Lyapunov function may solve the problem of stabilization with
prescribed local behavior. In the following, we show that working with the
control Lyapunov function is indeed equivalent to address this problem.

Theorem 1. Given a linear state feedback law u = KoX with Ko in Rp×n

which stabilizes the first order approximation of system (3). The following
two statements are equivalent.

1. There exists a locally Lipschitz function αo : Rn → Rp solution to the
global asymptotic stabilization with prescribed local behavior problem.

2. There exists a C2 proper, positive definite function V : Rn → R+ such
that the following two properties are satisfied.

• If we denote1 P := 1
2
H(V )(0), then P is a positive definite matrix.

Moreover this inequality holds.

(A+ BKo)
′P + P (A+ BKo) < 0 ; (4)

• Artstein condition is satisfied. More precisely, this implication
holds for all X in Rn \ {0},

LbV (X) = 0 ⇒ LaV (X) < 0, (5)

where LbV (·) = ∂V/∂X · b(·), and LaV is analogously defined.

Proof : 1) ⇒ 2) The proof of this part of the theorem is based on recent
results obtained in [2]. Indeed, the design of the function V is obtained
from the uniting of a quadratic local control Lyapunov function (denoted V0)
and a global control Lyapunov function (denoted V∞) obtained employing a
converse Lyapunov theorem.

First of all, employing the converse Lyapunov theorem of Kurzweil in
[12], there exists a C∞ function V∞ : Rn → R+ such that ∂V∞

∂X
(X)[a(X) +

b(X)αo(X)] < 0 , ∀ X 6= 0 . On the other hand, A + BKo being Hurwitz,
there exists a matrix P such that the algebraic Lyapunov inequality (4)

1In the following, given a C
2 function V : R

n → R, the notation H(V )(X) is the
Hessian matrix in Rn×n evaluated at X of the function V . More precisely, it is the matrix

(H(V ))i,j(X) =
∂2V

∂X i∂Xj
(X) .
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is satisfied. Let V0 be the quadratic function V0(X) = X′PX . Due to the
fact that Ko satisfies equation (2) it yields that the matrix A + BKo is the
first order approximation of the system (3) with the control law u = αo(x).
Consequently, it implies that there exists a positive real number ǫ1 such that
∂V0

∂X
(X)[a(X) + b(X)αo(X)] < 0 , ∀ 0 < |X | ≤ ǫ1 . This implies that the time

derivative of the two control Lyapunov functions V0 and V∞ can be made
negative definite with the same control law in a neighborhood of the origin.
Employing [2, Theorem 2.1], it yields the existence of a function V : Rn → R+

which is C2 at the origin and a positive real number ǫ2 such that the following
two properties hold.

• For all X in Rn \ {0}, ∂V
∂X

(X)[a(X) + b(X)αo(X)] < 0 . Hence, Equation
(5) is satisfied ;

• For all X in R
n such that |X | ≤ ǫ2, we have V (X) = V0(X) . Consequently

H(V )(0) = 2P .

2) ⇒ 1) Let Q be the positive definite matrix defined as, Q := −(A +
BKo)

′P +P (A+BKo) . Employing the local approximation of the Lyapunov
function V , it is possible to find r0 such that

LaV (X) + LbV (X)KoX < 0 , ∀X ∈ {0 < V (X) ≤ r0} .

This implies that the control Lyapunov function V satisfies the small control
property (see [19]). Hence, we get the existence of a control law α∞ (given
by Sontag’s universal formulae introduced in [19]) such that this one satisfies
for all X 6= 0

LaV (X) + LbV (X)α∞(X) < 0 .

A solution to the stabilization with prescribed local problem can be given by
the control law αo(X) = ρ(V (X))α∞(X) + (1− ρ(V (X)))KoX where ρ : R+ →
[0, 1] is any locally Lipschitz function such that ρ(s) =

{

0 , s ≤ r0
2
,

1 , s ≥ r0 .
Note

that with this selection, it yields that equality (2) holds. Moreover, we have
along the solution of the system (3)

V̇ (X)
∣

∣

∣

u=αo(X)
= ρ(V (X)) V̇ (X)

∣

∣

∣

u=α∞

+ (1− ρ(V (X))) V̇ (X)
∣

∣

∣

u=KoX

< 0

Hence, we get the result. ✷
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From this theorem, we see that looking for a global control Lyapunov
function locally assigned by the prescribed local behavior and looking for the
controller itself are equivalent problems.

3 Locally optimal and globally inverse opti-

mal control laws

If one wants to guarantee a specific behavior on the closed loop system, one
might want to find a control law which minimizes a specific cost function.
More precisely, we may look for a stabilizing control law which minimizes
the criterium

J(X ; u) =

∫ +∞

0

q(X(X , t; u)) + u(t)′r(X(X , t; u))u(t)dt, (6)

where X(X , t; u) is the solution of the system (3) initiated from X0 = X at
t = 0 and employing the control u : R+ → R

p, q : Rn → R+ is a continuous
function and r is a continuous function which values r(X) are symmetric
positive definite matrices.

The control law which solves this minimization problem (see [18]) is given
as a state feedback

u = −1

2
r(X)−1LbV (X)′ , (7)

where V : Rn → R+ is the solution with V (0) = 0 to the following Hamilton-
Jacobi-Bellman equation for all X in Rn

q(X) + LaV (X)− 1

4
LbV (X)r(X)−1LbV (X)′ = 0 . (8)

Given a function q and a function r, it is in general difficult or impossible
to solve the so called HJB equation. However, for linear system, this might
be solved easily. If we consider the first order approximation of the system
(3), and given a positive definite matrix R and a positive semi definite matrix
Q we can introduce the quadratic cost:

J(X ; u) =

∫ +∞

0

[X(X , t; u)′QX(X , t; u) + u(t)′Ru(t)] dt, (9)

In this context, solving the HJB equation can be rephrased in solving the
algebraic Riccati equation given as

PA+ A
′P − PBR−1

B
′P +Q = 0 . (10)
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It is well known that provided, the couple (A,B) is controllable, it is
possible to find a solution to this equation. Hence, for the first order approx-
imation, it is possible to solve the optimal control problem when considering
a cost in the form of (9).

From this discussion, we see that an interesting control strategy is to
solve the stabilization with prescribed local behavior with the local behavior
obtained solving LQ control strategy. Note however that once we have solved
this problem, one may wonder what type of performances has been achieved
by this new control law. The following Theorem addresses this point and is
inspired from [18] (see also [14]). Following Theorem 1, this one is given in
terms of control Lyapunov functions.

Theorem 2 (Local optimality and global inverse optimality). Given two
positive definite matrices R and Q. Assume there exists a C2 proper positive
definite function V : Rn → R+ such that the following two properties hold.

• The matrix P := H(V )(0) is positive definite matrix and satisfies the
following equality.

PA+ A
′P − PBR−1

B
′P +Q = 0 ; (11)

• Equation (5) is satisfied.

Then there exist q : Rn → R+ a continuous function, C2 at zero and r a con-
tinuous function whose values r(X) are symmetric positive definite matrices
such that the following properties are satisfied.

• The function q and r satisfy

H(q)(0) = 2Q , r(0) = R ; (12)

• The function V is a value function associated to the cost (6). More
precisely, V satisfies the HJB equation (8).

Proof : This proof is inspired from some of the results of [14].
First of all, there exists a positive real number r0 such that for all X such

that 0 < V (X) ≤ r0 we have −LfV (X) + 1
4
LgV (X)R−1LgV (X)′ > 0 . Now,

for all k in N, we consider Ck the subset of Rn defined as Ck = {X , kr0 ≤
V (X) ≤ (k + 1)r0} . Note that since the function V is proper, for all k the
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set Ck is a compact subset. Assume for the time being that for all k there
exists ℓk in R+ such that :

LaV (X)− ℓk
4
LbV (X)R−1LgV (X)′ < 0 , ∀X ∈ Ck . (13)

Let µ be any continuous function such that,

µ(s)







= 1 , s ≤ r0
2
,

≥ 1 , r0
2
≤ s ≤ r0 ,

≥ ℓk , kr0 ≤ s ≤ (k + 1)r0 .

Moreover, let r(X) := 1
µ(V (X))

R , and q(X) := −LaV (X)+1
4
LbV (X)r(X)−1LbV (X)′ .

With (13) and the definition of µ, it yields, q(X) > 0 , ∀X 6= 0 . Hence, V
is solution to the associated HJB equation. Note moreover that we have
r(0) = R and 1

2
H(q)(0) = A′P + PA− PBR−1B′P = Q . Hence, the result.

In conclusion, to get the result, we only need to show that for all k in N,
there exists ℓk such that (13) is satisfied. Assume this is not the case for a
specific k in N. This implies that for all j in N there exists xj in Ck such that
LaV (X j)− j

4
LbV (X j)R

−1LbV (X j)
′ ≥ 0 . The sequence xj being in a compact

set, we know there exists a converging subsequence denoted (X jℓ)ℓ∈N which
converges toward a cluster point denoted X∗ in Ck. The previous inequality

can be rewritten as:
LaV (Xjℓ

)

jℓ
≥ 1

4
LbV (X jℓ)R

−1LbV (X jℓ)
′ ≥ 0 . Letting jℓ goes

to infinity yields LaV (X∗) ≥ 0 and LbV (X∗) = 0. With (5), this implies that
LaV (X∗) < 0 hence a contradiction. This ends the proof. ✷

This Theorem establishes that if we solve the stabilization with a pre-
scribed local behavior, we may design a control law u = αo(X) such that
this one is solution to an optimal control problem and such that the local
approximation of the associated cost is exactly the one of the local system.
This framework has already been studied in the literature in [7]. In this pa-
per is addressed the design of a backstepping with a prescribed local optimal
control law. In our context we get a Lyapunov sufficient condition to design
a globally and asymptotically stabilizing optimal control law with prescribed
local cost function.
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4 Some sufficient conditions

In this section we give some sufficient conditions allowing us to solve the
stabilization with prescribed local behavior problem. The first result is ob-
tained from the tools developed in [2]. It assumes the existence of a global
control Lyapunov function and a sufficient condition is given in terms of a
matrix inequality. In the second and third results we give some structural
conditions on the vector field to avoid a matrix inequality.

4.1 Based on matrix inequalities

The first solution to solve the stabilization with prescribed local behavior is
to follow the result of [2] and to assume that there exists a global control
Lyapunov function which can be modified locally in order to fit in the context
of Theorem 1.

Assumption 1. There exists a positive definite and C2 function V∞ : Rn →
R+ such that the following holds.

1. The implication (5) is satisfied.

2. The function V∞ is locally quadratic. i.e. P∞ = H(V )(0) is a positive
definite matrix.

In this context the result obtained from [2] may be formalized as follows.

Theorem 3. ([2]) Let Assumption 1 be satisfied. Let Ko in Rp×n be a matrix
such that A + BKo is Hurwitz with A and B defined in (16). If there exists
Ku in Rp×n and a positive definite matrix P in Rn×n such that these matrix
inequalities are satisfied

(A+ BKo)
′P + P (A+ BKo) < 0 ,

(A+ BKu)
′P + P (A+ BKu) < 0 ,

(A+ BKu)
′P∞ + P∞(A+ BKu) < 0 ,

(14)

then there exists a smooth function αo : Rn → Rp which solves the global
asymptotic stabilization with prescribed local behavior.

Proof : The proof of this result is a direct consequence of the tools developed
in [2]. ✷
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In inequalities (14), P and Ku are the unknown. This implies that this
inequality is not linear. However by introducing some new variables, it is
possible to give a (conservative) linear relaxation which allows the use of the
tools devoted to solve linear matrix inequalities (see [3] for instance).

4.2 Strict feedback form

Following the work of [7], consider the case in which system (3) with state
X = (y, x) can be written in the following form

ẏ = h1(y) + h2(y)x , ẋ = f(y, x) + g(y, x)u . (15)

with y in Rny , x in R and g(y, x) 6= 0 for all (y, x).
In this case, the first order approximation of the system is

A =

[

H1 H2

F1 F2

]

, B =

[

0
G

]

, (16)

with H1 =
∂h1

∂y
(0), H2 = h2(0), F1 =

∂f

∂y
(0, 0), F2 =

∂f

∂x
(0, 0), G = g(0, 0).

For this class of system we make the following assumption.

Assumption 2. For all couples (Ky, Py) with Ky in R
ny and Py a positive

definite matrix in Rny×ny such that Py(H1 +H2Ky) + (H1 +H2Ky)
′Py < 0 ,

there exists a smooth function Vy : R
ny → R+ such that H(Vy)(0) = 2Py and

such that for all y 6= 0

Lh2
Vy(y) = 0 ⇒ Lh1

Vy(y) < 0 . (17)

With Theorem 1, this assumption establishes that the stabilization with
prescribed local behavior is satisfied for the y subsystem seeing x as the
control input.

For this class of system, we have the following theorem which can already
be found in [7] when restricted to locally optimal controllers.

Theorem 4 (Backstepping Case). Let Assumption 2 be satisfied. Let Ko in
Rp×n be a matrix such that A+BKo is Hurwitz with A and B defined in (16).
Then there exists a smooth function αo : Rn → Rp which solves the global
asymptotic stabilization with prescribed local behavior.

10



Proof : Let P be a positive definite matrix such that the algebraic Lyapunov

inequality (4) is satisfied. This matrix can be rewritten P =

[

P11 P12

P ′
12 P22

]

with P22, P12, P22 matrices respectively in Rny×ny ,Rny×n,R. Let T be the

matrix in R(ny+1)×ny defined as2 T =

[

Idny

−P ′

12

P22

]

. Note that this matrix

satisfies T ′P =
[

Py 0
]

, T ′PB = 0 , where Py = P11 − P12P
−1
22 P ′

12 is the
Schur complement of P .

By pre and post multiplying inequality (4) respectively by T ′ and T it
yields the following inequality.

Py

(

H1 −H2
P ′
12

P22

)

+

(

H1 −H2
P ′
12

P22

)′

Py < 0 . (18)

The matrix P being positive definite, its Schur complement Py is also positive
definite. Hence, inequality (18) can be seen as a Lyapunov inequality and
x = −P12

P22

y as a stabilizing local controller for the y subsystem with Py

as associated Lyapunov matrix. With Assumption 2, and Theorem 1 we
know there exist a smooth function αy : Rny → R and a smooth function
Vy : R

ny → R+ such that the following two properties hold.

• The origin of the system ẏ = h1(y)+h2(y)αy(y) is globally and asymp-
totically stable with associated Lyapunov function Vy. More precisely,
we have

∂Vy

∂y
(y) [h1(y) + h2(y)αy(y)] < 0 , ∀y 6= 0 ; (19)

• We have the local properties ∂αy

∂y
(0) = −P12

P22
, H(Vy)(0) = 2Py .

Consider now the function

V (X) = Vy(y) + P22(x− αy(y))
2 . (20)

Note that this function is proper and positive definite. Moreover, we have
LbV (X) = 2P22(x−αy(y))g(x, y) .Moreover, since it is assumed that g(x, y) 6=
0, this implies LbV (X) = 0, X 6= 0 ⇒ x = αy(y) . Note that when x = αy(y),

with (19) we have for all y 6= 0 LaV (X) = ∂Vy

∂y
(y)h(y, αy(y)) < 0 . Hence,

Equation (5) is satisfied. Finally, we have the following equality. H(V )(0) =

2Given a positive integer n, the notation Idn is the identity matrix in Rn×n.
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2P . Hence, with Theorems 1 we get the result. ✷

Note that with Theorem 2, this theorem establishes that given Q, a pos-
itive definite matrix in Rny×ny , and R, a positive real number, then there
exist q, r and αo which is solution to an optimal control problem with cost
J(X , u) defined in (6), with q and r which satisfy (12). In other words we
can design a globally and asymptotically stabilizing optimal control law with
prescribed local cost function as already seen in [7].

4.3 Feedforward form

Following our previous work in [4], consider the case in which the system
with state X = (y, x) can be written in the form

ẏ = h(x) , ẋ = f(x) + g(x)u , (21)

with y in R, x in R
nx . Note that to oppose to what has been done in the

previous subsection, now the state component y is a scalar and x is a vector.
Note moreover that the functions h, f and g do not depend of y. This
restriction on h has been partially removed in our recent work in [5].

The first order approximation of the system is denoted by

A =

[

0 H
0 F

]

, B =

[

0
G

]

, (22)

with H = ∂h
∂x
(0), F = ∂f

∂x
(0), G = g(0).

For this class of system we make the following assumption.

Assumption 3. For all couples (Kx, Px) with Kx in Rp×nx and Px a positive
definite matrix in Rnx×nx such that Px(F +GKx)+(F +GKx)

′Px < 0 , there
exists a smooth function Vx : Rnx → R+ such that H(Vx)(0) = 2Px and such
that for all x 6= 0

LgVx(x) = 0 ⇒ LfVx(x) < 0 . (23)

This assumption establishes that the stabilization with prescribed local
behavior is satisfied for the x subsystem. With this Assumption we have the
following theorem whose proof can be found in [4].
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Theorem 5 (Forwarding Case). Let Assumption 3 be satisfied. Let Ko in
Rp×n be a vector such that the matrix A + BKo is Hurwitz with A and B

defined in (22). Then there exists a smooth function αo : Rn → Rp which
solves the global asymptotic stabilization with prescribed local behavior.

Similarly to the backstepping case this theorem with Theorem 2 establish
that given Q, a positive definite matrix in Rn×n, and R, a positive real
number, there exists q, r and αo which is solution to an optimal control
problem with cost J(X , u) defined in (6), with q and r which satisfy (12).
Consequently, similarly to the backstepping case, we can design a globally
and asymptotically stabilizing optimal control law with prescribed local cost
function.

5 Illustration on the orbital transfer problem

As an illustration of the results described in the previous sections, we consider
the problem of designing a control law which ensures the orbital transfer of a
satellite from one orbit to another. In this section we consider the approach
developed in [9] where a bounded stabilizing control law was developed. More
precisely, we study the class of optimal control law (in the LQ sense) that
can be synthesized. This may be of interest since, as mentioned in [6], it is
difficult to consider performance issues with this control law.

Consider the example presented in [9]. Applying a suitable coordinate
change it yields























































Ẋ1 = η
√

X4(1 + X2)
2 − η − ν√

p3
0

X6

√
X

3

4

1+X2
uh

Ẋ2 = −η(1 + X2)
2X3

Ẋ3 = η[(1 + X2)
2
[

X4

p0
(1 + X2)− 1

]

+ νur

Ẋ4 = 2 ν√
p3
0

√
X

5

4

1+X2
uθ

Ẋ5 = η
√

X4(1 + X2)
2X6 + ν

1+X
2

5
−X

2

6

2
√

X4(1+X2)
uh

Ẋ6 = −η
√

X4(1 + X2)
2X5 + ν X5X6√

X4(1+X2)
uh,

(24)

where p0,

ν =
√

p0
µ
, η = 1

p0ν
,

ν = ν
√
p0, η = η√

p0
,
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are constants values. Concerning the states, in this new coordinate system, X1

is the true longitude, X2 and X3 are the x and y components of the eccentricity
vector, X4 is the parameter, X5 and X6 are the x and y components of the
momentum vector.

In compact form, the previous system is simply: Ẋ = a(X) + br(X)ur +
bθ(X)uθ + bh(X)uh . The first order approximation of this system around the

equilibrium is given asA = η

















0 2 0 1
2

0 0
0 0 1 0 0 0
0 1 0 1

p0
0 0

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

















and B = ν

















0 0 0
0 0 0
1 0 0
0 2p0 0
0 0 1

2

0 0 0

















.

Note that these matrices can be rewritten as A = diag{Ã, A1} , Ã =
[

A0 A2

013 0

]

and B = diag{B̃, B2} , B̃ =

[

B0 031
0 2

η

]

where A0 = η





0 2 0
0 0 1
0 1 0



 , A1 =

η

[

0 1
−1 0

]

, and, A2 = η





1
2

0
1
p0



 , B0 = ν





0
0
1



 , B2 = ν

[

1
2

0

]

.

The control strategy developed in [9] was to successively apply backstep-
ping, forwarding and dissipativity properties.

With the tools developed in the previous sections, we are able to solve
the locally optimal control problem for a specific class of quadratic costs as
described by the following theorem.

Theorem 6 (Locally optimal stabilizing control law). Given Q0 a positive
definite matrix in R3×3 and R0 in R+. Let P0 be the solution of the (partial)
algebraic Riccati equation:

A0P0 + P0A0 − P0B0R
−1
0 B′

0P0 = −Q0 . (25)

Then for all positive real numbers R0, R1, R2, ρ1, ρ2 such that the matrix Q =

diag{Q̃, ρ22B2R
−1
2 B′

2} , Q̃ =

[

Q0 P0A2

A′
2P0

4
η2
ρ21R

−1
1

]

is positive, there exists q

and r and a globally asymptotically stabilizing control law (ur, uθ, uh) = αo(X)
which is solution to an optimal control problem with cost J(X ; u) defined in
(6), with q and r which satisfy (12).
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Proof : First of all, when uθ = uh = 0 and when X4 = p0, then the dynamics
of the (X1, X2, X3) subsystem satisfies







Ẋ1 = η [(1 + X2)
2 − 1]

Ẋ2 = −η(1 + X2)
2X3

Ẋ3 = η(1 + X2)
2X2 + νur.

(26)

It can be noticed setting y := X3 and x := X2 the (X2, X3) subsystem is
in the strict feedback form (15). Note that employing Theorem 4, it yields
that for this system all locally stabilizing linear behaviors can be achieved.

Moreover, setting y := X1 and x := (X2, X3) the (X1, X2, X3) subsystem is
in the feedforward form (21). Note that employing Theorem 5, it yields that
for this system all locally stabilizing linear behaviors can be achieved.

Hence, with Theorem 1, it yields that given P0 which by (25) is a CLF
for the first order approximation of the system (26) there exists a smooth
function V0 : R

3 → R+ such that

• V0 is a CLF for the (X1, X2, X3) subsystem when considering the control
ur and when X4 = p0, i.e. for the system (26) ;

• V0 is locally quadratic and satisfies H(V0)(0) = 2P0 .

Let Ṽ : R4 → R+ be the function defined by Ṽ (X1, X2, X3, X4) = V0(X1, X2, X3)+
V1(X4) , with V1(X4) = ρ1(p0 − X4)

2. Note that this function is such that
H(Ṽ )(0, 0, 0, p0) = 2P̃ , P̃ = diag {P0, ρ1} . Employing (25), it can be
checked that P̃ satisfies the (partial) algebraic Ricatti P̃ Ã+Ã′P̃−P̃ B̃R̃−1B̃′P̃+
Q̃ = 0 , with R̃ = diag{R1, R2}. We will show that this function is also a
control Lyapunov function when considering the (X1, X2, X3, X4) subsystem
in (24) with the control inputs ur and uθ. Consider the set of point in R4

such that Lbr Ṽ (X) = Lbθ Ṽ (X) = 0. Note that Lbθ Ṽ (X) = 0 implies that
X4 = p0. With the CLF property for the system (26), it yields that in this
set LaV0(X) < 0 for all (X1, X2, X3) 6= 0. Consequently, La(Ṽ )(X) < 0 for
all (X1, X2, X3, X4 − p0) 6= 0 such that Lbr Ṽ (X) = Lbθ Ṽ (X) = 0. Hence with
Theorem 2 we get the existence of q̃ : R4 → R+ a continuous function, C2 at
zero and r̃ a continuous function which values r(X) are symmetric positive
definite matrices such that:

• The function q̃ and r̃ satisfy the following property

H(q̃)(0, 0, 0, p0) = 2Q̃ , r(0, 0, 0, p0) = R̃ . (27)
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• The function Ṽ is a value function associated to the cost (6) with q̃ and
r̃. More precisely, Ṽ satisfies the HJB equation (8) when considering
the (X1, X2, X3, X4) subsystem in (24).

Finally, let V : R6 → R+ be defined by V (X) = Ṽ (X1, X2, X3, X4) +
V2(X5, X6) , with V2(X5, X6) = ρ2(X

2
5 + X2

6). Moreover, consider q the positive
semi definite function q defined as q(X) = q̃(X1, X2, X3, X4)+

1
4
(LbrV (X))2R−1

2 ,
and r defined as r(X) = diag{r̃(X), R2} . Note that the following properties
are satisfied.

• The function q and r satisfy

H(q̃)(0) = 2Q , r(0) = diag{R1, R2, R3} ; (28)

• The function V is a value function associated to the cost (6) with q
and r.

Hence, the control law (7) makes the time derivative of the Lyapunov function
V nondecreasing and is also optimal with respect to cost defined from q and
r. Note however that we get a weak Lyapunov function, i.e., a proper positive
definite function whose derivative in direction of the vector field describing
(24) is negative semi-definite. Nevertheless, following [9], it can be shown that
employing this Lyapunov function in combination with LaSalle invariance
principle, global asymptotic stabilization of the origin of the system (24)
with the control law (7) is obtained. ✷

6 Conclusion

In this article we have developed a theory for constructing control laws having
a predetermined local behavior. In a first step, we showed that this problem
can be rewritten as an equivalent problem in terms of control Lyapunov func-
tions. In a second step we have demonstrated that when the local behavior
comes from an (LQ) optimal approach, we can characterize a cost with spe-
cific local approximation that can be minimized. Finally, we have introduced
two classes of system for which we know how to build these locally optimal
control laws.

All this theory has been illustrated on the problem of orbital transfer.
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