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Abstract

This paper proposes a continuous-time framework for the least-squares parameter estimation method through

evolution equations. Nonlinear systems in the standard state space representation that are linear in the unknown,

constant parameters are investigated. Two estimators are studied. The first one consists of a linear evolution equation

while the second one consists of an impulsive linear evolution equation. The paper discusses some theoretical aspects

related to the proposed estimators: uniqueness of a solution and an attractive equilibrium point which solves for the

unknown parameters. A deterministic framework for the estimation under noisy measurements is proposed using a

Sobolev space with negative index to model the noise. The noise can be of large magnitude. Concrete signals issued

from an electronic device are used to discuss numerical aspects.

Keywords: Evolution equations, parameter estimation, least squares, Sobolev spaces, estimation under noise.

1 Introduction

Least squares (LS) is by far the most popular method for parameter estimation. It has been developed under different
guises. Discrete and continuous-time approaches were proposed for discrete and continuous-time, linear and nonlinear
systems [7, 8, 9, 10, 11, 15, 16]. The present work is concerned with continuous-time frameworks for LS. It seems that
continuous-time LS estimators have been mainly developed in the context of adaptive control [7, 8, 9, 10, 15, 16]. In
general, such estimators consist of a set of ordinary differential equations fed by the system input and output data.
Major advantages of such estimators reside in the real time implementability and suitability to an adaptive control
loop. Nonetheless, during its convergence, the estimator should be continuously fed by the system data. Consequently,
depending on the convergence rate, the system data can be needed on a big interval of time1 which may not be possible
in some applications2. Typical examples are unstable plants or plants with restrictions on the state vector (linear
actuators for example) when a certainty equivalence controller or a primary stabilizing controller are not available.
Therefore, it is quite interesting to develop a continuous-time theoretical basis to account for LS estimation when the
data is available on a bounded interval of time. The present work proposes such a continuous time framework. The
approach relies on evolution equations (infinite dimension) and thus cannot be integrated in an adaptive control scheme.
In order to highlight the practical utility of the approach, a discrete implementation is given. The computation cost
is evaluated and shown to be carried out by low-cost real-time microcontrollers in order to accomplish fast parameter
estimation for online plants.

An underlying problem to the design of a continuous-time estimator resides in the unavailability of the derivative
of the state vector3. The standard solution [7, 8, 15] uses a filtered version of the system equations. The basics of
the approach can be seen on the scalar example y1pτq “ θypτq where θ denotes the unknown parameter. With y̌pλq to
denote the Laplace transform of ypτq, one has 1

λ`1
pλy̌ ´ y0q “ θ 1

λ`1
y̌. Then the algebraic equation Y1 ´ e´τy0 “ Y2θ

is used in the LS estimator with Y̌1 “ λ
λ`1

y̌ and Y̌2 “ 1
λ`1

y̌. A typical estimator is given by
9̂
θ “ Y 2pY1´e´τy0´Y2θ̂q?

κ`Y 2

2

where κ is a positive constant and the normalization p
a

κ` Y 2
2 q´1 enhances the convergence rate of the estimator. A

quite interesting approach that do not rely on estimating the state derivative is developed in [9]. An ingenious method
[4, 5] based on the algebraic derivative concept permits to obtain an estimator that do not depend neither on the state
derivative nor the initial condition. Let us illustrate the basics of this method on our scalar example. Differentiate

1This time interval is the whole positive real line in theory due to asymptotic convergence while in practice it can be considerably reduced
by an efficient tuning of the estimator.

2The same reasoning applies also to recursive discrete-time least squares [11] which are not addressed in this work.
3Assuming that the state vector is measured.
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λy̌ ´ y0 “ θy̌ once with respect to λ gives λ´2
”

y̌ ` λ d
dλ
y̌ ´ θ dy̌

dλ

ı

“ 0. Notice that y0 has disappeared. In addition,

the multiplication by λ´2 permit to obtain integrals in the time domain
şτ

0
pτ ´ 2τ1qydτ1 “ θ

şτ

0
pτ ´ τ1qp´τ1qydτ1.

The integrals offer a low-pass filtering effect. Thus one can solve for θ whenever the right hand side is different
from zero. The approach of [4, 5] has been specialized to noisy signal derivation in [12] and shown to admit a least
squares interpretation. The method offers a systematic approach to annihilate initial conditions as well as structured
perturbations. In order to deal with the state derivative in the present work, the computation technique summarized
in the scalar example ([4, 5]) is applied prior to the estimator design.

The contribution of this work is twofold. First, LS estimators are developed which are suitable when the systems
data are available on a bounded interval of time. Second, the proposed framework provides a simple deterministic
description for the LS estimation under noisy measurements where the noise can be of large magnitude. Note that
bounded unknown functions are usually used to model the noise in a deterministic context.

The paper is organized as follows. Two LS estimators, the first one based on a linear evolution equation, the second
one based on an impulsive evolution equation are proposed and discussed in section 3. The deterministic framework for
the estimation under noisy measurements is proposed in section 4 for linear input-output systems. Section 5 proposes a
numerical implementation of the estimators. Section 6 is dedicated to an experimental validation in order to discuss the
numerical aspect. Let us start in section 2 with a brief recall about evolution equations in order to clarify subsequent
developments.

2 Elementary notions about evolution equations

The content of this section can be found in any introductory textbook to the theory of evolution equations (see for
example [3, 13, 14, 17]). Let tSptq; t ě 0u be a family of linear operators defined on a Banach space B. Sptq is said to
be a linear semigroup on B if Sp0q “ I (I denotes the identity operator on B) and Spt1 ` t2q “ Spt2qSpt1q “ Spt1qSpt2q.
It is said to be a semigroup of contractions if, moreover, }Sptq} ď 1 where } ¨ } is an operator norm on B. In addition,

the semigroup is strongly continuous if limhÑ`0 Sphqξ “ ξ. The operator A defined by A :“ limhÑ`0
Sphq´I

h
is called

the infinitesimal generator of Sptq. The Hille-Yosida theorem provides necessary and sufficient conditions an operator
A should satisfy in order to be a generator of a semigroup of contractions. Let us denote by DpAq Ă B the domain of
definition of an operator A.

Theorem 2.1 (Hille-Yosida [17]) The linear operator A : DpAq Ă B ÞÑ B is the infinitesimal generator of a linear
semigroup of contractions if, and only if,

1. A is a densely defined (DpAq is dense in B) and closed operator in B,

2. @λ ą 0, λI ´A is a one-to-one and onto mapping,

3. }pλI ´Aq´1} ď 1
λ
.

A linear homogeneous evolution equation is a system given by ( 9̃Θ :“ dΘ̃
dt
):

9̃Θ “ AΘ̃; Θ̃t“0 “ ξ̃, ξ̃ P DpAq (1)

where A is the infinitesimal generator of a strongly continuous semigroup. A (Banach space valued) function Θ̃ptq :
r0,`8q ÞÑ B is said to be a solution of (1) if Θ̃ptq P C

1pr0,8q;DpAqq such that (1) is satisfied. C
1 represents the

space of continuously differentiable functions defined on B. The existence of a unique solution for (1) is ensured by the
following theorem4.

Theorem 2.2 (Existence and uniqueness) If A : DpAq Ă B ÞÑ B generates a strongly continuous semigroup of
contractions Sptq on B then @ξ̃ P DpAq, (1) admits a unique solution given by Θ̃ptq “ Sptqξ̃.

3 The estimators

3.1 Problem description and basic assumptions

Consider the nonlinear system which is linear in the parameter Θ:

x1pτq “ φpx, uq ` ϕpx, uqΘ (2)

where x and u are scalar real variables while Θ “ rθ1, ¨ ¨ ¨ , θpsT P R
p is the vector of unknown constant parameters.

The scalar field φpx, uq : R ˆ R ÞÑ R and the vector field ϕ “ rϕ1, ¨ ¨ ¨ , ϕps with ϕipx, uq : R ˆ R ÞÑ R, i “ 1, ¨ ¨ ¨ , p,
4Theorem 2.2 corresponds to proposition 6.2 page 145 of [13].

2



are known and satisfy standard assumptions about the existence of a unique classical solution for (2) for a given
initial condition. A scalar system is considered in order to simplify the presentation, the extension to multidimensional
systems can be done straightforwardly if the state vector is accessible for measurements. Let T be a bounded and
connected subset of R. Given a solution of (2) on T, it is legitimate to identify φpxpτq, upτqq and ϕpxpτq, upτqq with
functions depending on τ only. Thus the notations φpτq :“ φpxpτq, upτqq and ϕipτq :“ ϕipxpτq, upτqq, τ P T are adopted.
Moreover, the following is assumed.

Assumption 3.1 upτq, φpτq and ϕipτq P L2pTq. L2pTq is the space of square summable functions on T.

Let ǫ be a positive constant and denote by D the set D “ r´ǫ, ǫs. In order to deal with the derivative x1, let vpsq, s P D,
be a continuously differentiable function, supported on D such that vp´ǫq “ vpǫq “ 0. Introduce Tǫ, an ǫ-neighborhood
of T such that T Ď Tǫ Ă R and Tǫ “ T1 ` 2ǫ. Tǫ, T1 and 2ǫ are the Lebesgue measures of Tǫ, T and D respectively.
Define the convolutions x1

ǫ “ v ‹ x1, φǫ “ v ‹ φ and ϕǫ,i “ v ‹ ϕi. They are supported on Tǫ since x1, φ and ϕ are
supported on T. Moreover, notice that ´dv

ds
‹ x “ v ‹ x1. Such a vpsq can be given by

vpsq “ pǫ2 ´ s2qχD (3)

where χD is the indicator function of D. Convolving (2) with (3) leads to:

x1
ǫpτq “ φǫpτq ` ϕǫpτqΘ, τ P Tǫ. (4)

Remark 3.1 Equality v ‹ x1 “ ´dv
ds

‹ x can be linked to the notion of weak derivative (see [1, 3]). Moreover, x1
ǫ, φǫ

and ϕǫ,i can be seen as mollified versions of x1, φ and ϕi. Then, vpsq can be called a mollifier (For more details, see
[1] pages 36 and 66 and [3] page 629). In addition, vpǫsq given by (3) appears in Jacobi orthogonal polynomials and
vp2ǫs´ ǫq appears in [12].

In the sequel we use Tǫ “ r0, Tǫs and T “ rǫ, Tǫ ´ ǫs. The estimators are developed based on (4) which is supposed
to satisfy the following assumption.

Assumption 3.2 (Persistence of excitation) The sets

•
 

τ ; ϕǫpτqpΨ ´ Θq “ 0,Ψ “ pψ1, ¨ ¨ ¨ , ψpqT P R
p,

Ψ ‰ Θ, τ P Tǫu

• tτ ;ϕǫ,ipτq “ 0, i “ 1 ¨ ¨ ¨ p, τ P Tǫu,
have a zero Lebesgue measure (ψ1, ¨ ¨ ¨ , ψp are constants).

The first item of assumption 3.2 ensures the uniqueness of Θ up to sets of zero Lebesgue measure. An estimator
based on a linear homogeneous evolution equation is first presented. Then an estimator based on an impulsive evolution
equation is proposed in section 3.3.

3.2 LS estimator based on a linear evolution equation

Let
A “ A1 `A2, (5)

where A1 “ ´ϕT
ǫ ϕǫ, A2 “ cI B2

Bτ2 , B “ ´ϕT
ǫ pφǫ ´ x1

ǫq, c denotes a strictly positive constant and I denotes the identity
matrix. The domain of definition of A is given by:

DpAq “ tΘ̂ P
“

C
2pTǫq

‰p
; Θ̂1p0q “ Θ̂1pTǫq “ 0, τ P Tǫu. (6)

Introduce the system
9̂
Θ “ AΘ̂ `B, Θ̂t“0 “ ξ̂ (7)

where
9̂
Θ :“ dΘ̂

dt
. With Θ̃ “ Θ̂ ´ Θ, equation (7) transforms to

9̃Θ “ AΘ̃, Θ̃t“0 “ ξ̃. (8)

Remark 3.1 The right-hand-side of (7) corresponds to the minimum of the quadratic cost
ş

Tǫ
rpϕǫΘ̂`φǫ´x1

ǫq2`cΘ̂12sdτ
according to Euler-Lagrange equations.

Remark 3.2 A similar cost, involving a Taylor expansion, is frequently used in image processing for the optical flow
estimation problem [2, 6]. In contrast to our context, the unknown parameters are not constant (and can be discontin-
uous is some cases), however, the applicability of the method is motivated by heuristics and do not rely on a theoretical
basis.
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The following theorem describes the estimator (8).

Theorem 3.1 The operator A defined in (5), (6) generates a strongly continuous semigroup of contractions. Conse-
quently, (8) admits a unique solution for a given initial condition. Moreover, under assumptions 3.2, the equilibrium
Θ̃ “ 0 is unique and attractive.

proof 3.1 Notice first that DpAq given by (6) is dense in L2pTǫq. Rewrite (8) using the Laplace transform with the
Laplace variable λ P C:

λΘ̌ ´ ξ̃ “ A1Θ̌ ` cΘ̌2, Θ̃1p0q “ Θ̃1pTǫq “ 0. (9)

For each λ ą 0 (a positive real number), equation (9) is a linear boundary value problem (with Θ̌ and τ the dependent
and independent variables respectively) admitting a unique solution whenever ϕǫ,i are summable (the summability is

insured by assumption 3.1). Consequently, the operator λI ´A is invertible with Θ̌ “ pλI ´Aq´1ξ̃.

Multiply (9) with Θ̌T and integrate over Tǫ leads to
şTǫ

0
Θ̌T pλI ´ A1qΘ̌dτ ´ c

şTǫ

0
Θ̌T Θ̌2dτ “

şTǫ

0
Θ̌T ξ̃dτ . Note that

the spectrum of A1 is given by t0,´řp
i“1 ϕ

2
ǫ,iu. Next we use the identity e1|Θ̌| ă Θ̌T p´A1qΘ̌ ď e2|Θ̌| where e1 and e2

are the smallest and largest eigenvalues of ´A1 and | ¨ | denotes the Euclidean norm. Integrating by parts on the left
hand side and using Cauchy-Schwartz inequality on the right hand side leads to λ}Θ̌}2 ` c}Θ̌1}2 ď }Θ̌}}ξ̃}, consequently,
}Θ̌}

´

λ }Θ̌} ´ }ξ̃}
¯

ď ´c}Θ̌1} ď 0 then λ }Θ̌} ď }ξ̃}. Using Θ̌ “ pλI ´ Aq´1ξ̃ one obtains λ }pλI ´ Aq´1ξ̃} ď }ξ̃} from

which one deduces that }pλI ´ Aq´1} ď 1
λ
. Then, by theorem 2.1, A generates a strongly continuous semigroup of

contractions and, by theorem 2.2, (8) admits a unique solution for a given ξ̃ P DpAq.
Consider the functional V “ 1

2

şTǫ

0
Θ̃T Θ̃dτ ą 0. Its derivative along the trajectories of (8) gives 9V “ ´

şTǫ

0
Θ̃TϕT

ǫ ϕǫΘ̃dτ`
c
şTǫ

0
Θ̃T Θ̃2dτ . After integration by parts one obtains 9V “ ´

şTǫ

0
pϕǫΘ̃q2dτ ´ c

şTǫ

0
}Θ̃1}2dτ . 9V is negative definite when-

ever Θ̃ is different from a constant. Then by assumption 3.2, Θ̃ “ 0 is the only equilibrium of (7) and it is attractive.
This ends the proof. ˝

3.3 LS estimator based on an impulsive evolution equation

Let δ be a strictly positive constant and introduce the following impulsive system

$

&

%

9̃Θ “ A1Θ̃, nδ ă t ă pn` 1qδ
Θ̃` “ 1

apτq ` bpτq
şbpτq

´apτq Θ̃pt, τ ` sqds, t “ nδ
(10)

where n P N, apτq “ minpā, τq, bpτq “ minpā, Tǫ ´ τq and ā ď Tǫ is a strictly positive constant. A1 : rL2pTǫqsp ÞÑ
rL2pTǫqsp is a closed operator defined on the whole of rL2pTǫqsp. Its spectrum is given by t0,´řp

i“1 ϕ
2
ǫ,iu. It generates

thus a strongly continuous semigroup according to theorem 2.1 . System (10) admits a unique solution (in forward
time) satisfying Θ̃t“0 “ ξ̃ since, on nδ ă t ă pn ` 1qδ, the first equation of (10) admits, by theorem 2.2, a unique
solution. Moreover, on t “ nδ, the second equation of (10) permits to uniquely determine Θ̃` from Θ̃. The following
theorem describes the estimator (10).

Theorem 3.1 Under assumption 3.2, Θ̃ “ 0 is the unique equilibrium of (10) and it is attractive.

proof 3.2 Consider the functional V “ 1

2
Θ̃T Θ̃. Its derivative along the trajectories of (10) gives 9V “ ´pϕǫΘ̃q2. 9V

is negative definite whenever ϕǫΘ̃ ‰ 0. On the other hand, notice that if Θ̃ is not constant, the strict norm inequality

}Θ̃`} ă }Θ} is satisfied at t “ nδ. Consequently, at t “ nδ, the quadratic functional V ` “ 1

2
Θ̃`T Θ̃` satisfies V ` ă V .

On the other hand, assumption 3.2 states that Θ̃ being constant is possible for Θ̃ “ 0 only. This ends the proof.

Remark 3.3 The diffusion term Θ̃2 in (8) and the second equation of (10) both offer a smoothing effect. The smoothing
is more pronounced with (10) especially for ā “ Tǫ. This fact has a direct influence on the convergence rate of the
estimator as it is confirmed in the experimentation section 5.

4 Linear input-output systems under noise

Setting and identifying the parameters of a linearized model (around an operating point) of a nonlinear system often
arises in practice. We will be interested by the parameter estimation in linear systems since these systems offer a simple
framework to introduce a deterministic representation of big magnitude noise affecting the input and output. A noise
with big magnitude may be encountered in power electronics, telecommunications etc. With the aim of setting a deter-
ministic representation of such a noise, we introduce the Sobolev space with negative index W´1,2pTq which is the dual
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space of W1,2pTq , defined by W1,2pTq “ tω P L2pTq, Dω P L2pTq; }ω} ` }Dω} ă `8u where Dω is the weak derivative
of ω. W´1,2pTq is a Banach space under the norm (see [1]) }̟}W´1,2 “ supωPW1,2pTq,}ω}

W1,2ď1 |xω,̟y| where }ω}W1,2 “
p}w}2 ` }Dw}2q 1

2 . Consider V´1,2pTq, a subset of W´1,2pTq, given by V´1,2pTq “ t̟ P W´1,2pTq; }̟}W´1,2 ă Nu
where N is a positive constant. Roughly speaking, V´1,2 contains (but is not restricted to) large magnitude, rapidly
oscillating functions such that their integral is less than N . Consider now the linear input output system

xpqq “
q´1
ÿ

i“0

θix
piq ` θqu (11)

which can be written in the compact form XΘ “ xpqq; X “ rx, ¨ ¨ ¨ , xpq´1q, us, Θ “ rθ0, ¨ ¨ ¨ , θqsT and |θi| ą 0. Let y be
a noisy measurement of x such that y “ x`̟ where ̟ P V´1,2pTq. With

ρpsq “ pǫ2 ´ s2qqχD, (12)

define5 yǫ,i “ ρ ‹ Dpiqy and notice that yǫ,i “ p´1qiρpiq ‹ y and that yǫ,i, i “ 0, ¨ ¨ ¨ , q, are supported on Tǫ. Since
(11) is linear and for u P L2pTq, its solution x is square summable (it belongs in fact to the Sobolev space Wq,2pTq
since }x}Wq,2pTq “

`
řq

i“0 }Dpiqx}2
˘

1

2 ă `8). Let Yǫ be given by Yǫ “ ryǫ, ¨ ¨ ¨ , yǫ,pq´1q, uǫs, uǫ “ ρ ‹ u, Yǫ “ Xǫ ` Wǫ,

Wǫ “ r¨ ¨ ¨ , p´1qiρpiq ‹̟, ¨ ¨ ¨ , 0s and Xǫ “ rxǫ, ¨ ¨ ¨ , uǫs.
For simplicity sake, take ā “ Tǫ (see Remark 3.3) and set the impulsive evolution equation (similar to (10)):

$

&

%

9̂
Θ “ ´Y T

ǫ pYǫΘ̂ ´ y
pqq
ǫ q, nδ ă t ă pn` 1qδ

Θ̂` “ 1

Tǫ

şTǫ

0
Θ̂pt, τ ` sqds, t “ nδ.

(13)

System (13) can be transformed to
$

&

%

9̃Θ “ ´Y T
ǫ pYǫΘ̃ `Gǫq, nδ ă t ă pn` 1qδ

Θ̃` “ 1

Tǫ

şTǫ

0
Θ̃pt, τ ` sqds, t “ nδ

(14)

with Gǫ “ WǫΘ ´ ̟ǫ,q. Notice that ̟ǫ,i “
şǫ

´ǫ
diρ
dsi
̟ds is bounded since

ş

̟ is bounded by N and diρ
dsi

is polynomial.
Thus, there exist two constants k1 and k2 such that |Gǫ| ă KN with K “ k1|Θ| ` k2. The following assumption is
made.

Assumption 4.1 (Persistence of excitation) With x̄ǫ,i “ 1
Tǫ

şTǫ

0
xǫ,idτ and ηǫ,i “ xǫ,i ´ x̄ǫ,i, the positive definite

matrix

I “ 1

Tǫ

ż Tǫ

0

»

—

—

—

–

η2ǫ,i ηǫηǫ,1 . . . ηǫηǫ,p
ηǫηǫ,1 η2ǫ,2 ¨ ¨ ¨ ηǫ,1ηǫ,p

...
...

. . .
...

ηǫ,pηǫ ηǫ,pηǫ,1 . . . η2ǫ,p

fi

ffi

ffi

ffi

fl

dτ

has its smaller eigenvalue bigger than the positive constant L.

Assumption 4.1 ensures, in particular, that |XǫΘ̃
`|2 ě L|Θ̃`|2 at each application of the second equation of (14).

Theorem 4.1 Under assumption 4.1 with L ą pKNq2, the ball centered at zero, with radius kN?
L´kN

is attractive for

the system (14).

proof 4.1 Consider the functional V “ 1
2
Θ̃T Θ̃. Its derivative is given by 9V “ ´pYǫΘ̃q2´GǫYǫΘ̃ ď ´|YǫΘ̃|p|YǫΘ̃|´KNq.

According to assumption 4.1 one has at n “ tδ (i.e at each application of the second equation of (14)) that |XǫΘ̃
`| ě?

L|Θ̃`|. Consequently, |YǫΘ̃| ě p
?
L´KNq|Θ̃`|. Then 9V ` ď ´p

?
L´KNq|Θ̃`|rp

?
L´KNq|Θ̃`| ´KN s which ends

the proof.

5 Numerical implementation

In practice, the systems data are collected in a discrete form. Denote by d the sampling time such that T1 “ md,
m P N. Let ~y and ~u be discrete versions of y and u (~yrj` 1s “ ypjdq, ~urj` 1s “ upjdq, j “ 0, ¨ ¨ ¨ ,m). Moreover, let ~ρi
be a discrete version of ρpiq (~ρirjs “ ρpiqpjdq, j “ ´l, ¨ ¨ ¨ , l, l P N, ld “ ǫ). The convolutions are then approximated by
ρpiq ‹ y « ~ρi › ~y where › denotes the discrete convolution. Prior to the application of the estimators, ~yǫ,i, i “ 0 ¨ ¨ ¨ q ´ 1
and uǫ are generated by ~yǫ,i “ ~ρi › ~y and ~uǫ “ ~ρ0 › ~u. Notice that ~yǫ,i and ~uǫ consist of m` 2l ´ 1 elements.

5The weak derivative Dpiqy is used since ̟ can be weakly differentiable only.
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Figure 1: The experimental system

5.1 Implementation of estimator (7)

It can be implemented using standard finite elements or finite volume methods. We use here the basic forward Euler
method. It leads to the recursive system

~̂
Θk`1 “ rI ` δ1p ~A1 ` c

d2
Cqs~̂Θk ` δ1 ~B (15)

where C is a square matrix which permit to approximate Θ̃2. Cpi, iq “ 2, Cpi, i ´ 1q “ ´1, Cpi, i ` 1q “ ´1, for
i “ 2, ¨ ¨ ¨ ,m ´ 1, Cp1, 1q “ Cpm,mq “ 1 and Cpm,m ´ 1q “ ´1. All remaining entries of C are equal to zero. δ1 is a

positive constant, chosen such that the matrix I ` δ1p ~A1 ` c
d2Cq has its eigenvalues inside the unit circle.

5.2 Implementation of estimator (13)

We consider only the case where ā “ Tǫ (The implementation of estimator (10) is quite similar). The estimator (13) is
implemented by

~̂
Θk`1 “

#

~̂
Θk ´ δ1~Y

T
ǫ p~Yǫ ~̂Θk ` ~yǫ,qq, if modpk, rq ‰ 0

meanp~̂Θkq, if modpk, rq “ 0,
(16)

with r P N, r ą 1 and δ1 is chosen in order to insure the asymptotic stability of the first equation of (16). That is the

eigenvalues of I ´ δ1~Y
T
ǫ
~Yǫ lies within the unit circle.

6 An experimental validation

The linear system depicted, in figure 1, consists of four stages of first order low pass RC-circuits. With state variables
taken as the capacitors voltage, the state space representation is given by:

x1
1 “ ´2ω1x1 ` ω1x2 ` ω1u; x

1
2 “ ω1x1 ´ 2ω1x2 ` ω1x3

x1
3 “ ω3x2 ´ 2ω3x3 ` ω3x4; x

1
4 “ ιx3 ´ ιx4 (17)

where ω1 “ ω2 “ ω3 “ 1

RC
“ ω, ι “ 1

RC2

, R “ 100KΩ, C “ 430nF and C2 “ 100nF. The input-state data are

collected with a sampling time d “ 0.01 second.
Let us use a standard LS algorithm from the literature [7, 8, 15] and estimate ω from the third equation of (17).

The objective is to illustrate its operating principle. The estimator is given by

ω̂1 “ ´px̆2 ´ 2x̆3 ` x̆4qrpx̆2 ´ 2x̆3 ` x̆4qω̂ ` x̆1
3s

a

κ` px̆2 ´ 2x̆3 ` x̆4q2
(18)

where x̆2, x̆3, x̆4 and x̆1
3 are are low-pass filtered versions of x2, x3, x4 and x1

3 respectively. The experimental result is
depicted on figure 2. It appears that the estimator converges towards the true parameter value (ω “ 23.26) as time
goes on. Next we test our estimators, the estimators are normalized in order to increase the convergence rate.

Scalar estimators for ωωω and ιιι: The parameters ω and ι are estimated from the third and fourth equations of (17)
respectively. Let us start by the estimation of ω. With Θ̂ “ ω̂, A1 “ px2,ǫ ´ 2x3,ǫ ` x4,ǫq2, B “ px2,ǫ ´ 2x3,ǫ ` x4,ǫqx1

3,ǫ

where x2,ǫ, x3,ǫ, x4,ǫ and x1
3,ǫ result from the convolution of x2, x3, x4 and x1

3 with vpsq respectively. The estimators
(7) and (14) are implemented. vpsq is discretized using 31 samples while 30 samples of the system data are used
corresponding to a step response. This number of sample corresponds to 30 ˆ d “ 0.3 second (compare with figure 2).
Thus 30 ` 2 ˆ 31 ´ 1 “ 91 samples are used in the iterative systems (15) and (16). A reliable estimate (ω̂ « 24) is
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Figure 2: Estimation of ω from (18) versus time

obtained from (15) (resp. (16)) after 10 (resp. 4) iterations. The same scenario is used in the estimation of ι from the
fourth equation of (17). Roughly, 104 multiplication operations are needed in the estimation procedure.

Two dimensional estimator: Let us slightly increase the complexity by using a second order estimator. The
estimator is constituted with ϕ1,ǫ “ x1,ǫ ´ 4x2,ǫ ` 5x3,ǫ ´ 2x4,ǫ, ϕ2,ǫ “ x3,ǫ ´ x4,ǫ, ϕǫ “ rϕ1,ǫ ϕ2,ǫs, A1 “ ϕT

ǫ ϕǫ,

B “ ϕǫx
2
3,ǫ and Θ̂ “ rθ̂1, θ̂2sT with θ1 “ ω2 and θ2 “ ωι. The components of ϕǫ are obtained by convolution with

ρpsq ((12) with p “ 2). 50 samples are used for the discretization of ρpsq and 50 samples of the systems data are used
(0.5 second) corresponding to a step response. 40 iterations are needed in order to obtain a reliable estimate from (16)

(θ̂1 « 510, θ̂2 « 2150). The estimation needs 90 ˆ 104 multiplication operations.
discussions: The computation needed for both estimators can be realized in less than 0.1 second on a FPGA

Xilinx Spartan-6 which is a low-cost microcontroller. The computation time is less than the time needed to collect
the data (0.3 second and 0.5 second for previous tests). Consequently, the proposed estimator can be used without
difficulty with “slow” systems which is the case of many industrial systems.

7 Conclusion and future works

A continuous-time approach for LS estimation is proposed through evolution equations. The developed framework
provides estimators for systems whose data are available on a bounded interval of time. In addition, the measurements
can be corrupted by a large magnitude noise.

Extending this approach to the reconstruction of time varying (maybe discontinuous) parameters is an interesting
future research direction.
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