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Nonparametric Time-Variant Frequency Response Function Estimates Using Arbitrary
Excitations
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Abstract

The time-variant frequency response function (TV-FRF) uniquely characterizes the dynamic behaviour of a linear time-
variant (LTV) system. This paper proposes a method for estimating nonparametrically the dynamic part of the TV-FRF
from known input, noisy output observations. The arbitrary time-variation of the TV-FRF is modelled by Legendre
polynomials. In opposition to existing solutions, the proposed method is applicable to arbitrary inputs.

Keywords: time-variant frequency response function, nonparametric estimates, arbitrary excitations, time-variant
systems, Legendre polynomials

1. Introduction

Time-variant dynamics are present in all kinds of engin-
eering applications, and they can be classified according to
the nature of the time-variation. Either the time-variation
is due to a physical phenomenon or a (scheduling) para-
meter that varies smoothly as a function of time (class A),
or it is induced by the switching between a finite number of
linear time-invariant systems (class B). Examples of class
A dynamics are, thermal drift in power electronics (Chen
and Yuang, 2011); fatigue, aging and mortification in bio-
medical measurements (Aerts and Dirckx, 2010); pit corro-
sion of metals (Van Ingelgem et al., 2008); control of crane
dynamics (Abdel-Rahman et al., 2003); airplane dynam-
ics during take off and landing (Dimitriadis and Cooper,
2001); and impedance measurements for determining the
state-of-charge of batteries (Rodrigues et al., 2000; Pop
et al., 2005). Examples of class B dynamics are, regime
switching in power electronics (Aguilera et al., 2014), eco-
nometrics (Hamilton, 1990), and control applications (Yin
et al., 2009); and more general, hybrid systems (see Paoletti
et al., 2007 and the references therein).

In this paper we consider class A dynamics only. The
time-variant frequency response function (TV-FRF) intro-
duced in Zadeh (1950a,b) provides deep insight into the
time-variant behaviour of class A dynamics. Hence, there is
a need for methods that estimate the TV-FRF from input-
output data. According to the parametrisation used, one
can distinguish four model classes for describing the class
A dynamics:
1. Parametric in both the dynamics and the time-

variation: a lot of estimation algorithms are avail-
able, see Niedzwiecki (2000); Poulimenos and Fassois
(2006); Tóth et al. (2012) and the references therein.
The time- or parameter-variant system is modelled us-
ing a differential, difference, or state space equation
where the (matrix) coefficients are affine functions of
time- or parameter-dependent basis functions, for ex-
ample, wavelets in Li and Billings (2011), polynomials

in Lataire and Pintelon (2011), sines and cosines in
Allen (2008) and Louarroudi et al. (2013), or integ-
rated white noise in Kitagawa and Gersch (1985).

2. Parametric in the dynamics and nonparametric in
the (slow) time-variation: see Georgiev (1989); Liu
(1997); and Niedzwiecki and Kaczmarek (2005).

3. Nonparametric in the dynamics and parametric in the
(slow) time-variation: periodic time-variation in Sams
and Marmarelis (1988) and Louarroudi et al. (2012)
parametrised by sines and cosines; and arbitrary time-
variation in Lataire et al. (2012) parametrised by
polynomials.

4. Nonparametric in both the dynamics and the (very)
slow time-variation: the TV-FRF is estimated using
the short-time Fourier transform (Allen and Rabiner,
1977). The basic assumption made is that the system
is time-invariant within the short sliding time window:
see, for example, Spiridonakos and Fassois (2009) for
noise power spectra and Sanchez et al. (2013) for
FRFs.

Model classes 1 and 2 require a parametric model for de-
scribing the system dynamics, which is not the case for
model classes 3 and 4. The latter are natural extensions
of the nonparametric FRF representation of linear time-
invariant systems. The three disadvantages of paramet-
rising the system dynamics w.r.t. to a nonparametric rep-
resentation are the following: (i) the type of dynamic model
must be chosen: differential equation (s-domain), differ-
ence equation (z-domain), fractional differential equation
(e.g.,

√
s-domain), or partial differential equation; (ii) the

dynamic model order must be chosen (orders time-domain
derivatives or time-domain shifts of the input and output
signals); and (iii) estimating the model parameters mostly
involves a nonlinear minimisation. The latter requires the
generation of initial estimates and includes possible prob-
lems with local minima. The main advantages of para-
metric models are the compact description and the smal-
ler estimation uncertainty. Nonparametric estimation tech-
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niques are very helpful to get an idea of the complexity of
the parametric modelling step and to validate the estimated
parametric system model.
Compared with the algorithms for model class 3, the meth-
ods developed for model class 4 have the disadvantage that
they require a trade-off between accurate tracking of the
time-variation (the sliding time window should be as small
as possible) and sufficiently large frequency resolution of
the estimated dynamics (the sliding time window should
be as large as possible). In addition, at the cost of a more
complicated estimation algorithm, the methods for model
class 3 result in TV-FRF estimates with a much larger fre-
quency resolution.

This paper considers the third model class with non-
parametric dynamics and arbitrary time-variation para-
metrised by Legendre polynomials. The approach presen-
ted in Lataire et al. (2012) – called the direct method in
the sequel of this paper – has the disadvantages that a lot
of signal periods are needed and that it is not applicable
to random excitations. In this paper an indirect method is
proposed that is applicable to arbitrary excitations and a
few (less than one) period(s) of periodic inputs.

The paper is organised as follows. First, the class of
linear time-variant systems considered and the stochastic
framework are defined (Sections 2 and 3). Next, an indir-
ect method for estimating nonparametrically the TV-FRF
of this class of systems is developed and analysed in de-
tail (Section 4). Further, the proposed indirect method is
compared with the direct approach (Section 5). Finally,
the whole procedure is illustrated via measurements on a
time-variant electronic circuit (Section 6).

2. The Time-Variant Frequency Response Function

First, we recall the definition and the properties of the
time-variant frequency response function (TV-FRF). Next,
a nonparametric-in-the-dynamics and parametric-in-the-
time-variation representation for a class of (slowly) time-
varying systems is given.

2.1. Definition and Properties of the TV-FRF
The dynamic behaviour of a linear time-variant (LTV)

system is uniquely characterised by its response g(t, τ) to
a Dirac impulse applied at time instant t = τ (Zadeh,
1950a,b). Taking the Fourier transform of the shifted time-
variant impulse response g(t, t − τ) defines the TV-FRF,
called the system function in Zadeh (1950a,b),

G (jω, t) =

ˆ +∞

−∞
g (t, t− τ) e−jωτdτ. (1)

For causal systems (g(t, τ) = 0 for t < τ) the lower integra-
tion boundary in (1) is replaced by zero. The time-variant
FRF (1) has the following properties:

1. The steady state response to sin(ω0t) equals

|G(jω0, t)|sin(ω0t+ ∠G(jω0, t)) (2)

which is an amplitude and phase modulated sine wave.
Note that the Fourier spectrum of (2) is non-zero in
the close neighbourhood of ω0, resulting in a skirt-like
spectrum around ω0 (see Lataire et al., 2012).

... ...

Figure 1: Block diagram of the slowly time-varying system (6) – direct
model.

2. Assuming zero initial conditions, the transient re-
sponse y0(t) to an input u(t) is found as

y0 (t) = L−1 {G (s, t)U (s)} (3)

with U(s) the Laplace transform of u(t), and
L−1{} the inverse Laplace transform.

Note that properties (2) and (3) are natural extensions of
the linear time-invariant (LTI) case.

2.2. Nonparametric Representation of the TV-FRF
The nonparametric representation of the dynamics of the

TV-FRF is obtained in two steps.
First, the TV-FRF (1) is expanded in series w.r.t. time

G (jω, t) =

∞∑
r=0

Gr (jω) fr (t) t ∈ [0, T ] (4)

with fr(t), r = 0, 1, . . . , a complete set of basis functions,
and T the experiment time. Gr (jω), r = 0, 1, . . . , are the
complex coefficients of the series expansion which can be
interpreted as FRFs of LTI systems. Note that the basis
functions can always be chosen such that the constraints

f0 (t) = 1 and
1

T

ˆ T

0

fr (t) dt = 0 for r > 0 (5)

are satisfied.
In a second step, the infinite sum (4) is approximated by

a finite sum

G (jω, t) =

Nb∑
r=0

Gr (jω) fr (t) t ∈ [0, T ] (6)

Representation (6) is parametric in the time-variation (the
basis functions fr(t) are known), and nonparametric in the
unknown FRFs Gr(jω), r = 0, 1, . . . , Nb. Note that in
practise Nb is unknown and, hence, should also be estim-
ated from the data.

Eq. (6) motivates the following assumption:

Assumption 1. (Slow time-variation) The TV-FRF (1)
of the linear time-variant system can be written as (6),
where fr(t) , r = 0, 1, . . . , Nb, are polynomials of order
r satisfying (5).

The term “slow time-variation” in Assumption 1 is jus-
tified as follows. For the Legendre polynomials used in
the indirect method (see Section 3), the spectral content
of fr(t) is concentrated around DC. However, this does not
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... ...

Figure 2: Block diagram of a slowly time-varying system (6) with
polynomial basis functions fr(t) – indirect model. This block diagram
is a multiple-input u(t), u1(t), . . . , uNb

(t), single-output y0(t) LTI
equivalent of the single-input u(t), single-output y0(t) LTV system
shown in Fig. 1.

exclude that the time-variation can be strong (large), which
is the case if at least one of the amplitudes of Gr(jω), r > 1,
is not much smaller than that of G0(jω).

3. Stochastic Framework

The indirect method for estimating the TV-FRF (6) is
developed within the following stochastic setting.

Assumption 2. (Generalised output error framework)
The input u(t) of the slowly time-variant system (6) is
known exactly and the output y0(t) is disturbed by station-
ary noise ny(t) (y(t) = y0(t) + ny(t)), where ny(t) is inde-
pendently distributed of u(t).

If ny(t) is solely due to measurement noise, then the sta-
tionarity assumption is exact without any approximation.
However, if ny(t) is dominated by the process noise, then
the stationarity assumption is an approximation because
the process noise is affected by the time-variant system dy-
namics. Nevertheless, weakly time-variant disturbing out-
put noise can be approximated very well by its best (in least
squares sense) linear time-invariant approximation (Pinte-
lon et al., 2012), which justifies Assumption 2. Simultan-
eous nonparametric estimation of the system and disturb-
ing noise dynamics is a challenging unsolved problem that
is out of the scope of this paper.

4. The Indirect Method for Estimating the Time-
Variant Frequency Response Function

Under Assumption 1, a direct method for estimating non-
parametrically the FRFs Gr(jω) in (6) from several periods
of the response to a periodic excitation, has been developed
in Lataire et al. (2012). It requires a large number of sig-
nal periods and cannot handle arbitrary excitations. In
this section a new approach – called the indirect method
– is presented that does not suffer from these drawbacks.
It is based on a multiple-input, single-output LTI equival-
ent model – called the indirect model – of the single-input,
single-output LTV system.

4.1. The Indirect Model
In Theorem 2 of Pintelon et al. (2012) it has been shown

that for any polynomial basis fr(t), r = 0, 1, . . . , Nb, there
exist transfer functions Hr(s), r = 0, 1, . . . , Nb, such that

the response of the time-variant system in Fig. 1 with TV-
FRF (6) can be written as

y0 (t) =

Nb∑
r=0

L−1 {Gr (s)U (s)} fr (t) (7)

= L−1

{
Nb∑
r=0

Hr (s)L {u (t) fr (t)}

}
(8)

Eq. (8) is called the indirect model of the slowly time-
varying system (6), and the corresponding block diagram
is shown in Fig. 2. The following theorem establishes ex-
plicitly the relationship between Gr(s) and Hr(s), r = 0,
1, . . . , Nb, for Legendre polynomials as basis functions (in
Pintelon et al., 2012 only the relationship between G0(s),
the best linear time-invariant approximation of (6), and
Hr(s), r = 0, 1, . . . , Nb, has been proven). No assumption
about the initial conditions is made.

Theorem 3. Let pr(2t/T − 1), t ∈ [0, T ], be Legendre
polynomials of order r (Abramowitz and Stegun, 1970).
Choosing fr(t) = pr(2t/T − 1) as basis functions, the
relationship between the Gr(s) (7) and the Hr(s) (8)
transfer functions is given by

Gr (s) = Hr (s) +
2

T
(2r + 1)

⌊
Nb−r−1

2

⌋∑
i=0

H
(1)
2i+1+r (s) +

4

T 2

⌊
Nb−r

2

⌋∑
i=1

β2i,rH
(2)
2i+r (s) +O

(
T−3

)
(9)

with bxc the largest integer smaller than or equal to x,
H

(m)
r (s) the m-th order derivative of Hr(s) w.r.t. s,

β2i,r the following coefficients

β2i,r = γr + δr (i− 1) + µr (i− 1)
2 (10)

γr = 1.5 + 4r + 2r2

δr = 2.5 + 6r + 2r2

µr = 1 + 2r

and where O(T−n) with n > 0 means that
limT→∞ TnO(T−n) < ∞. The O

(
T−3

)
bias term in

(9) depends on the higher order derivatives H
(m)
q (s),

with Nb > q > r + 3, and where m ranges from
3 + (q+ 1 + r) mod 2 to q− r in steps of 2 (mod stands for
modulo).

Proof. See the Appendix.

There is an important conceptual difference between
Eq. (7), visualized in Fig. 1, and Eq. (8), visualized
in Fig. 2. Indeed, Eq. (7) represents a single-input
u(t), single-output y0(t) LTV system, while Eq. (8) can
be interpreted as a multiple-input u(t), u1(t), . . . , uNb

(t),
single-output y0(t) (MISO) LTI system (the basis functions
fr(t) are known). The transfer functions H0(s), H1(s), . . . ,
HNb

(s) in the MISO LTI representation (8) are identifiable
for persistently exciting inputs u(t) because u(t), u1(t), . . . ,
uNb

(t) are linearly independent.
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Lemma 4. The Nb + 1 inputs u(t), u1(t), . . . , uNb
(t) are

linearly independent for non-zero inputs u(t).

Proof. Since fr(t), r = 0, 1, . . . , Nb, are linearly inde-
pendent (they form a basis), and since u(t) 6= 0, the linear
combination

∑Nb

r=0 αrur(t) = u(t)
∑Nb

r=0 αrfr(t) can only
be zero for all t ∈ [0, T ] if and only if αr = 0, r = 0, 1, . . . ,
Nb.

The important consequence of these observations is that
standard (non)parametric LTI techniques can be used for
estimating the dynamics Hr(jω), r = 0, 1, . . . , Nb.

4.2. The Indirect Method

4.2.1. Identifiability
A persistence of excitation condition on u(t) is sufficient

to guarantee the identifiability of the parametric transfer
functions Hr(s), r = 0, 1, . . . , Nb (see Lemma 4). The
nonparametric estimation of the FRFs Hr(jω), r = 0, 1,
. . . , Nb, however, imposes additional conditions on the ex-
citation u(t): in the frequency band of interest the input
discrete Fourier transform (DFT) spectrum U(k) of u(t)

U (k) = DFT (u (t)) =
1√
N

N−1∑
n=0

u (nTs) e
−j2πkn/N (11)

with Ts the sampling period (NTs = T ), should vary
“wildly” enough over the frequencies to ensure identifi-
ability. For example, the spectral analysis method re-
quires a “roughness” condition on the input DFT spec-
trum: |diff(m)(U(k))| = O(N0) in probability, with
diff(m)(U(k)) = diff(diff(m−1)(U(k))) and diff(U(k)) =
U(k + 1)− U(k), see Schoukens et al. (2009).

In this paper the local polynomial method (LPM) is used
because it delivers nonparametric FRF estimates at the full
frequency resolution 1/T of the experiment, while suppress-
ing better the leakage (transient) errors than the spectral
analysis approach (Pintelon and Schoukens, 2012; Pintelon
et al., 2010). For the LPM, the identifiability condition on
the input DFT spectrum U(k) is formulated in the follow-
ing assumption.

Assumption 5. (Identifiability condition) The
(R+ 1)(Nb + 2)× (2n+ 1) regression matrix Kn(k)

Kn(k) =
[
K (k − n) · · ·K (k) · · ·K (k + n)

]
(12)

K(k + r) =

[
K̃ (r)⊗ Uall (k)

K̃ (r)

]
K̃ (r) =

[
1 r · · · rR

]T
Uall (k) = [U (k)U1 (k) · · ·UNb

(k)]
T

with R the order of the local polynomial approximation of
the FRFs and the leakage (transient) error in the local fre-
quency band [k − n, k + n], Ur(k) = DFT(fr(t)u(t)) (see
Eq. (11)), and ⊗ the Kronecker matrix product, is of full
row rank at all frequencies k of interest.

It can be verified that Assumption 5 is fulfilled for filtered
white noise and random phase multisine excitations.

4.2.2. Algorithm
The algorithm is a two step procedure that is valid for

any initial condition. First, under Assumptions 1, 2, and 5
the FRFs in the indirect model (8) are estimated and, next,
using Theorem 3, the indirect model (8) is transformed into
the direct model (7).
Step 1

Taking the DFT (11) of (8) gives

Y0 (k) =

Nb∑
r=0

Hr (jωk)Ur (k) + TH (jωk) (13)

with Ur (k) defined in Assumption 5, Y0(k) = DFT(y0(t)),
and where TH(jωk) = O(T−1/2) is a rational function of
the frequency modelling the sum of the leakage (transi-
ent) error and the residual alias error. The leakage error is
due to the difference between the initial (t = 0) and final
(t = T ) conditions of the experiment, while the residual
alias error originates from the time-limited observation of
a band-limited signal (see Pintelon and Schoukens, 1997;
and Theorem 5 of Pintelon et al., 2012). Starting from
N known input, N noisy output samples u(nTs), y(nTs),
n = 0, 1, . . . , N − 1, the FRFs Hr(jωk), r = 0, 1, . . . , Nb,
the transient term TH(jωk) and their noise covariances
are estimated nonparametrically using the local polyno-
mial method (Pintelon et al., 2010; Pintelon and Schoukens,
2012).

The local bandwidth 2n+ 1 and the order R of the local
polynomial approximation of Hr(jωk), r = 0, 1, . . . , Nb,
and TH(jωk) are chosen such that 1) the bias error of the
FRF estimates is below the variance error, and 2) the noise
covariance estimate has the required quality. The latter is
quantified by the degrees of freedom

dof = 2n+ 1− (R+ 1)(Nb + 2) (14)

which is the difference between the number of frequencies
in the local frequency band [k − n, k + n] and the number
of estimated local parameters. Requirement 1) is satisfied
when the mean square error of the residuals of the local
polynomial approximation does not decrease any-more for
increasing values of R.

In practise the number of time-variant branches Nb in
(13) is unknown and should also be estimated from the
data. This is done as follows. We start with Nb = 0 and
increase its value until |Hp(jωk)| ∼ std(Hp(jωk)) over the
whole frequency band for p > Nb.
Step 2

Using (9), a nonparametric estimate of the FRFs
Gr(jωk), r = 0, 1, . . . , Nb, in the direct model (7) is ob-
tained as

Ĝr (jωk) = Ĥr (jωk) +
2

T
(2r + 1)

⌊
Nb−r−1

2

⌋∑
i=0

Ĥ
(1)
2i+1+r (jωk)

(15)
where the first-order derivatives are replaced by first-order
central differences

Ĥ(1)
m (jωk) =

Ĥm (jωk+1)− Ĥm (jωk−1)

jωk+1 − jωk−1
(16)

4



The estimate (15) can be improved as

ˆ̂
Gr (jωk) = Ĝr (jωk) +

4

T 2

⌊
Nb−r

2

⌋∑
i=1

β2i,rĤ
(2)
2i+r (jωk) (17)

where the second-order derivatives are replaced by second-
order central differences

Ĥ(2)
m (jωk) =

Ĥm (jωk+2)− 2Ĥm (jωk) + Ĥm (jωk−2)

(jωk+1 − jωk−1)
2

(18)
Finally, replacing Gr(jωk) in (6) by (15) or (17) gives the

nonparametric TV-FRF estimate Ĝ(jωk, t) and ˆ̂
G(jωk, t)

respectively. Since the correlation length over the frequency
of the LPM estimates Ĥr(jωk) is ±2n (Pintelon et al.,
2010); the correlation length of the estimates Ĝ(jωk, t) and
ˆ̂
G(jωk, t) is, respectively, ±(2n+ 1) and ±(2n+ 2).

4.2.3. Stochastic Properties
Bias Error

Since the central differences (16) and (18) equal the true
derivatives within an O(T−2) bias error (Ralston and Ra-
binowitz, 1984); and since the bias error of the LPM es-
timate is an O(T−(R+1)), with R the order of the local
polynomial approximation (Pintelon et al., 2010; Pintelon
and Schoukens, 2012); it follows from (9), (15) and (17)
that the biases bĜr

(jωk) = E{Ĝr(jωk)} − Gr(jωk) and
b ˆ̂
Gr

(jωk) = E{Ĝr(jωk)} −Gr(jωk) are given by

bĜr
(jωk) =

4

T 2

⌊
Nb−r

2

⌋∑
i=1

β2i,rH
(2)
2i+r (jωk) +O

(
T−3

)
(19)

b ˆ̂
Gr

(jωk) = O
(
T−3

)
(20)

respectively. The first term in the right hand side of (19)
is an O(T−2) that can be estimated using (18).

Finally, replacing Gr(jωk) in (6) by bĜr
(jωk) (19) and

b ˆ̂
Gr

(jωk) (20) gives the bias of Ĝ(jωk, t) and ˆ̂
G(jωk, t) re-

spectively.
Variance Error

The variance of the estimated TV-FRF Ĝ(jωk, t) (6) de-
pends on the covariances of Ĝr(jωk), r = 0, 1, . . . , Nb. It
follows from (15) that these covariances depend on the co-
variances Ĥr(jωk), r = 0, 1, . . . , Nb, and the covariances
between Ĥr(jωk) and Ĥm(jωl) for k− l = −2,−1, 1, 2. The
latter are estimated from the residuals of the LPM estim-
ates of the indirect model (follow the same lines of Pinte-
lon et al., 2010). To calculate the variance of ˆ̂

Gr(jωk),
also the covariances between Ĥr(jωk) and Ĥm(jωl) for
k − l = −4,−3, 3, 4 are needed (see Eqs. (17) and (18)).

Note that the variance of the nonparametric TV-FRF
estimates decreases with increasing values of the degrees of
freedom dof (14), at the cost of an increased correlation
length over the frequency (see Section 4.2.2). In addition,
the dof value cannot be chosen too large for a fixed value of
R; otherwise the bias will dominate the mean square error
of the LPM estimates.

5. Comparison with the Direct Method

5.1. The Direct Method
The direct method starts from the steady state response

to a random phase multisine excitation

u (t) =

k2∑
k=k1

Aksin (2πkf0t+ φk) (21)

consisting of the sum of F = k2−k1+1 harmonically related
sinewaves with user defined deterministic amplitudes Ak,
and randomly selected phases φk such that E{ejφk} = 0.
The DFT spectra (11) of P consecutive periods of the
input-output signals satisfy

Y0 (k) = G0 (jωk)U (k) +

Nb∑
p=1

Ỹp (k) (22)

Ỹp (k) =

F∑
r=−F,r 6=0

Gp (jωrP )U (rP )
Fp (k − rP )√

N
(23)

where Fp(k) = DFT(fp(t)), ωrP = 2πrf0, and f0 =
Pfs/N (proof: take the DFT of the direct model (7) using
the fact that U (k) is different from zero for k = rP , r =
±1,±2, . . . ,±F only and that U(−k) = U(k) = U(N−k)).
Eqs. (22) and (23) show that the response to a random
phase multisine excitation consists of the sum of scaled and
frequency-shifted copies of the DFT spectra Fp(k) of the
time-varying gains fp(t).

Since Y0(k) (22) is coupled with Y0(k′) for any k′ via
(23), estimating the frequency response functions (FRFs)
Gp(jωr), p = 0, 1, . . . , Nb and r = k1, k1 + 1, . . . , k2, results
in a (very) large set ((N/2) × (N/2)) of equations. To
circumvent this bottleneck, the sum in (22) is approximated
in a limited frequency band k ∈ [(r−1)P −P/2, (r+1)P +
P/2] around the excited frequency k = rP as

Nb∑
p=1

Ỹp(k) ≈
Nb∑
p=1

r+1∑
r1=r−1,

Gp (jωr1P )U (r1P )
Fp (k − r1P )√

N
+

I (jωk) (24)

where I(jω) =
∑ni

m=0 im(jω)m is a polynomial of order
ni modelling the skirts originating from the excited fre-
quencies in (22) that have been neglected in (24). Com-
bining (22)–(24) in the frequency band k ∈ [(r − 1)P −
P/2, (r+ 1)P + P/2] gives a set of 3P + 1 linear equations
in 3(Nb + 1) + ni + 1 unknowns Gp(jωr1), p = 0, 1, . . . , Nb
and r1 = r − 1, r, r + 1, and im, m = 0, 1, . . . , ni. These
equations can be solved in least squares sense if

3P + 1 > 3(Nb + 1) + ni + 1 (25)

is satisfied. The whole procedure is repeated for all excited
frequencies k.

5.2. Bias Error
The bias of the direct method (see Section 5.1) is due

to the polynomial approximation of the skirts of the out of
band excited frequencies in Eq. (24). It depends on the
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local bandwidth 3P + 1 and the order ni of the polynomial
approximation

O
(

(3P/N)
ni+1

)
(26)

where the number of periods P should be chosen such that
(25) is satisfied. Increasing ni decreases the bias (26).

The bias of the indirect method (see Section 4.2.3) is
mainly due to the local polynomial approximation of the
FRFs in the indirect model (13), and the bias in the trans-
formation of the indirect to the direct model (9)

O
(
N−3

)
+O

(
(nP/N)

R+1
)

(27)

where n is chosen such that dof (14) is strictly positive.
Increasing the order R of the local polynomial approxim-
ation, or decreasing the number of signal periods P for a
fixed measurement time, decreases the bias (27).

5.3. Variance Error
The indirect method imposes a smoothness condition

over the frequency on the TV-FRF (6) via a local poly-
nomial approximation of the FRFs in the indirect model
(13). Since no smoothness condition over the frequency is
imposed on the direct TV-FRF estimate, the variance of
the indirect estimate will be smaller than that of the dir-
ect estimate for a comparable number of local equations
and parameters. The drawback of the smoothing is that
it introduces a correlation over the frequency (see Section
4.2.2).

5.4. Identifiability
The identifiability condition (25) of the direct method

imposes the number of observed signal periods P to be suf-
ficiently large. This is not the case for the indirect method:
it also works for one observed signal period or less (P 6 1).

5.5. Choice Basis Functions
For the direct method any basis satisfying (5) can be

used, e.g. splines that are localised in time (Eq. (24) re-
mains valid). This is not the case for the indirect method:
relationship (10) is valid for Legendre polynomials only.

6. Measurement Example

Although formulas (9) and (10) have extensively been
verified on simulations examples satisfying Assumption 1,
we prefer to report the results of a measurement example
where condition (6) has not been imposed by construction.

6.1. Experimental Set Up
The time-variant electronic circuit is a second order

bandpass filter where the time-variation originates from the
varying gate voltage p(t) of the JFET transistor (see Fig.
3). It is excited by a random phase multisine u(t) (21)
consisting of F = 33387 harmonically related sinewaves in
the band [200 Hz, 40 kHz], where f0 = fs/N0, N0 = 217,
fs = 156.25 kHz, k1 = 168, and k2 = 33554. The amp-
litudes Ak, k = k1, k1 + 1, . . . , k2, are constant and chosen
such that rms value of u(t) is 93 mV, while the phases φk,
k = k1, k1 + 1, . . . , k2, are randomly selected according to a

Figure 3: Second order bandpass filter with time-varying reson-
ance frequency and damping ratio. The electronic circuit with in-
put u(t) and output y(t) consists of a high gain operational ampli-
fier (CA741CE), a JFET transistor (BF245B) with gate voltage p(t),
three resistors (R1 = R2 = 10 kΩ and R3 = 470 kΩ), and two capa-
citors (C1 = C2 = 10 nF).

uniform [0, 2π) distribution. Only N = 7N0/8 data points
of the input u(t) and the noisy response y(t) (see Fig. 3)
are used for estimating nonparametrically the TV-FRF (6).
Over the measurement time T = NTs, with Ts = 1/fs, the
gate voltage varies between -1.54 V and -2.14 V (see Fig.
3, and the bottom right plot of Fig. 6).

6.2. Estimation Results
Starting from the N known input and N noisy output

samples u(nTs) and y(nTs), n = 0, 1, . . . , N − 1, the time-
variant FRF (6) is estimated for increasing values of Nb fol-
lowing the procedure of Section 4.2.2, with R = 4 and
dof = 200. For Nb > 9, the estimated FRFs Ĥr(jωk),
k = 10, 11, . . ., are of the same order of magnitude as
their standard deviation in the band [200 Hz, 40 kHz], viz.
|Ĥr(jωk)| ∼ std(Ĥr(jωk)). Therefore, the number of sig-
nificant time-variant branches in the indirect model of Fig.
2 equals Nb = 9, and the corresponding FRFs are shown
in Fig. 4. From this figure it can be seen that the fre-
quency band where the estimated FRF Ĥr(jωk) is signific-
antly above the noise level decreases for increasing values
of r.

Using Eqs. (15)–(18), the FRFs Gr(jωk), r =
1, 2, . . . , Nb, in the direct model of Fig. 1 are estimated (see
Fig. 5). Compared with the indirect estimates Ĥr(jωk) in
Fig. 4, the uncertainty of ˆ̂

Gr(jωk) in Fig. 5 is slightly lar-
ger. Combining the ˆ̂

Gr(jωk) estimates with (6) gives the
time-variant frequency response function shown in the top
row of Fig. 6. As expected, it can be seen from the bottom
row of Fig. 6 that the time-dependency of the resonance fre-
quency (the largest amplitude in the time-frequency plot)
has the same shape as the gate voltage p(t).

Note that ˆ̂
G0(jωk), shown in the top left plot of Fig. 5,

is an estimate of the best – in least squares sense – linear
time-invariant approximation of the time-variant electronic
circuit (see Pintelon et al., 2012 for the details). It is also
the mean value of the TV-FRF over the interval [0, T ] (com-
bine (5) and (6)).

7. Conclusions

This paper has presented an indirect method for es-
timating nonparametrically the dynamics of the TV-FRF
of linear time-variant systems, where the arbitrary time-
variation is modelled by Legendre polynomials. The key
idea consists in transforming the single-input, single-output
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Figure 4: Estimated indirect model (8) of the electronic circuit (see
also Fig. 2): FRFs Hr(jωk) (black) and their variance (grey).
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Figure 5: Estimated direct model (7) of the electronic circuit (see also
Fig. 1): FRFs Gr(jωk) (black) and their variance (grey).

linear time-variant problem (direct model) into an equi-
valent multiple-input, single-output linear time-invariant
problem (indirect model). Proceeding in this way, stand-
ard multiple-input, single output nonparametric methods
for LTI systems can be used for estimating the TV-FRF.
In opposition to the existing direct method, the proposed
solution can handle arbitrary excitations and a very few
(less than one) periods of a periodic input.
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Appendix. Proof of Theorem 3

We prove the theorem by induction. First, we show that
the theorem is valid for Nb = 1, 2, . . . , 11. Next, via an
induction step we show that the theorem is valid for any
value of Nb.

Derivation of Equations (9) and (10)

First note that the Legendre polynomials pr(2t/T − 1),
t ∈ [0, T ] satisfy (5), see Abramowitz and Stegun (1970).
To simplify the notations, we replace without any loss in
generality the interval [0, T ] by [−T/2, T/2]. The basis
functions fr(t) are then related to the Legendre polyno-
mials pr(x), x ∈ [−1, 1], as fr(t) = pr(αt), with t ∈
[−T/2, T/2] and α = 2/T . Hence, the basis functions
fr(t) satisfy the following recurrence formula

(r + 1) fr+1 (t) = (2r + 1)αtfr (t)− rfr−1 (t) (28)

for r > 1, with f0 (t) = 1 and f1(t) = αt, and where
f2r(t) and f2r+1(t) are, respectively, even and odd func-
tions of t (Abramowitz and Stegun, 1970).

We will prove the equivalence of the Laplace transforms
of the outputs of the direct (7) and indirect (8) models.
Since we shifted the time interval from [0, T ] to [−T/2, T/2],
the two-sided Laplace transform (Kwakernaak and Sivan,
1991) of the windowed signals is used, viz.

Y0 (s) = L {y0 (t)} =

ˆ +T/2

−T/2
y0 (t) e−stdt (29)

Applying the two-sided Laplace transform (29) to the in-
direct model (8) gives

Y0 (s) =

Nb∑
r=0

Hr (s)Ur (s) + TH (s) (30)

with Ur(s) = L{u(t)fr(t)}, and where TH(s) depends on
the difference between the initial (t = −T/2) and final
(t = T/2) conditions of the experiment (proof: follow the
same lines of Pintelon and Schoukens, 1997). At the DFT

frequencies ωk = 2πk/N , TH(jω) is a rational function of
the frequency. A similar result is valid for the two-sided
Laplace transform of the direct model (7)

Y0 (s) =

Nb∑
r=0

L
{
fr (t)L−1 {Gr (s)U (s)}

}
+ TG (s) (31)

(proof: see Appendix A of Lataire et al., 2012).
The proof consists in rewriting (30) under the form (31).

In order to simplify the notations and calculations, the bor-
der effect terms TH(s) and TG(s) in (30) and (31) are dis-
carded in the remainder of the proof. The equalities should
be interpreted as being exact within a border effect term
that is accounted for by TH(s) and TG(s). The key prop-
erty used for calculating Ur(s) = L{u(t)fr(t)} in (30) is
that L{tpx(t)} = (−1)pX(p)(s), where X(p)(s) is the p-th
order derivative of X(s) w.r.t s (Kwakernaak and Sivan,
1991). In the sequel of this appendix we elaborate expli-
citly the first three terms in the sum (30).

Since f0(t) = 1, it follows immediately from (30) and
(31) that H0(s) contributes to G0(s). Using f(s)g(1)(s) =
(f(s)g(s))(1) − f (1)(s)g(s) the second term in (30) can be
written as

H1(s)U1(s) = αH
(1)
1 (s)U(s)− α (H1(s)U(s))

(1)

= αH
(1)
1 (s)U(s) + L {f1(t)z1(t)} (32)

with z1(t) = L−1{H1(s)U(s)}. Comparing (31) to (32)
shows that αH

(1)
1 (s) and H1(s) contribute to, respect-

ively, G0(s) and G1(s). Proceeding in the same way, using
f(s)g(2)(s) = (f(s)g(s))(2)−2(f (1)(s)g(s))(1) +f (2)(s)g(s),
we find an expression for the third term in (30)

H2(s)U2(s) = 1.5α2H
(2)
2 (s)U(s) + 3αL {f1(t)w2(t)}+

L {f2(t)z2(t)} (33)

with w2(t) = L−1{H(1)
2 (s)U(s)} and z2(t) =

L−1{H2(s)U(s)}. Comparing (31) to (33) shows that
1.5α2H

(2)
2 (s), H(1)

2 (s) and H2(s) contribute to, respect-
ively, G0(s), G1(s) and G2(s).

Following the same lines for Nb = 5, we find (for nota-
tional simplicity we dropped the arguments)

G0 = H0 + α

2∑
i=0

H
(1)
2i+1 + α2

(
3

2
H

(2)
2 + 5H

(2)
4

)
+

α3

(
5

2
H

(3)
3 +

35

2
H

(3)
5

)
+ α4 35

8
H

(4)
4 + α5 63

8
H

(5)
5 (34)

G1 = H1 + 3α

2∑
i=1

H
(1)
2i + α2

(
15

2
H

(2)
3 + 21H

(2)
5

)
+

α3 35

2
H

(3)
4 + α4 315

8
H

(4)
5 (35)

G2 = H2 + 5α

2∑
i=1

H
(1)
2i+1 +α2 35

2
H

(2)
4 +α3 105

2
H

(3)
5 (36)
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G3 = H3 + 7αH
(1)
4 + α2 63

2
H

(2)
5 (37)

G4 = H4 + 9αH
(1)
5 (38)

G5 = H5 (39)

which reveals the structure (9) and its bias term. Continu-
ing the calculations till Nb = 11, gives the following α0, α
and α2 contributions to Gr, r = 0, 1, . . . , 3

G0 = H0 + α

5∑
i=0

H
(1)
2i+1 + α2

(
1.5G

(2)
2 + 5G

(2)
4 + . . .

10.5G
(2)
6 + 18G

(2)
8 + 27.5G

(2)
10

)
(40)

G1 = H1 + 3α

5∑
i=1

H
(1)
2i + α2

(
7.5G

(2)
3 + 21G

(2)
5 + . . .

40.5G
(2)
7 + 66G

(2)
9 + 97.5G

(2)
11

)
(41)

G2 = H2 + 5α

5∑
i=1

H
(1)
2i+1 + α2

(
17.5G

(2)
4 + 45G

(2)
6 + . . .

82.5G
(2)
8 + 130G

(2)
10

)
(42)

G3 = H3 + 7α

5∑
i=2

H
(1)
2i + α2

(
31.5G

(2)
5 + 77G

(2)
7 + . . .

136.5G
(2)
9 + 210G

(2)
11

)
(43)

and similarly for G4, G5, . . . , G11. It can be seen that
the coefficients of the first order derivatives depend on the
index r = 0, 1, . . . as 2r + 1, which is consistent with (9).
Differencing twice the coefficients of the second order de-
rivatives in (40) gives the constant value two. Hence, the
coefficients are a quadratic function of the coefficient index
i = 1, 2, . . .. Since the same is valid for the coefficients of
the second order derivatives in (41)–(43), the corresponding
coefficients in (40)–(43) can be written as

β2i,0 = 1.5 + 2.5(i− 1) + (i− 1)2 (44)
β2i,1 = 7.5 + 10.5(i− 1) + 3(i− 1)2 (45)
β2i,2 = 17.5 + 22.5(i− 1) + 5(i− 1)2 (46)
β2i,3 = 31.5 + 38.5(i− 1) + 7(i− 1)2 (47)

with i = 1, 2, . . .. Differencing twice the coefficients of (i−
1)0, (i − 1) and (i − 1)2 in (44)–(47) gives the constant
values four, four and zero, respectively. It shows that these
coefficients are, respectively, quadratic and linear functions
of the coefficient index r = 0, 1, . . ., which motivates (10).
Note that the special structure of Eqs. (34)–(47) is solely
due to the particular recurrence formula (28), suggesting
that it is valid for any value of Nb. To complete the proof
an induction step is needed.

Induction Step
From the calculations in the previous section follows a

general expression for the term Hr(s)Ur(s) in the sum (30)

HrUr = L
{
fr (t)L−1 {HrU}

}
+

α

b r−1
2 c∑
i=0

ζr−2i−1L
{
fr−2i−1 (t)L−1

{
H(1)
r U

}}
+

α2

b r
2c∑
i=1

β2i,r−2iL
{
fr−2i (t)L−1

{
H(2)
r U

}}
+O

(
α3
)

(48)

with ζn = 2n + 1, β2i,m defined in (10), and where the
arguments have been dropped for notational simplicity.
Assuming that (48) is valid for r, r − 1, . . . , 0, we will
show that it is valid for r + 1. Combining Hr+1Ur+1 =
Hr+1L {u(t)fr+1(t)} with (28) gives

Hr+1Ur+1 = −α2r + 1

r + 1
Hr+1U

(1)
r − r

r + 1
Hr+1Ur−1

= −α2r + 1

r + 1
(Hr+1Ur)

(1)
+ α

2r + 1

r + 1
H

(1)
r+1Ur

− r

r + 1
Hr+1Ur−1 (49)

where the second equality uses Hr+1U
(1)
r = (Hr+1Ur)

(1) −
H

(1)
r+1Ur. Applying (48) to Hr+1Ur, and calculating the

derivative (Hr+1Ur)
(1) using X(1)(s) = −L{tL−1{X(s)}},

one finds

−α (Hr+1Ur)
(1)

= L
{
αtfr (t)L−1 {Hr+1U}

}
+

α

b r−1
2 c∑
i=0

ζr−2i−1L
{
αtfr−2i−1 (t)L−1

{
H

(1)
r+1U

}}
+

α2

b r
2c∑
i=1

β2i,r−2iL
{
αtfr−2i (t)L−1

{
H

(2)
r+1U

}}
+O

(
α3
)
(50)

Applying (48) to αH(1)
r+1Ur and Hr+1Ur−1 gives, respect-

ively,

αH
(1)
r+1Ur = αL

{
fr (t)L−1

{
H

(1)
r+1U

}}
+

α2

b r−1
2 c∑
i=0

ζr−2i−1L
{
fr−2i−1 (t)L−1

{
H(2)
r U

}}
+O

(
α3
)

(51)

Hr+1Ur−1 = L
{
fr−1 (t)L−1 {Hr+1U}

}
+

α

b r−2
2 c∑
i=0

ζr−2i−2L
{
fr−2i−2 (t)L−1

{
H

(1)
r+1U

}}
+

α2

b r−1
2 c∑
i=1

β2i,r−2i−1L
{
fr−2i−1 (t)L−1

{
H

(2)
r+1U

}}
+O

(
α3
)

(52)
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Finally, collecting (49)–(52), taking into account that
αtfr (t) = r+1

2r+1fr+1(t) + r
2r+1fr−1(t) (see (28)), and simil-

arly for αtfr−2i−1 (t) and αtfr−2i (t), gives after some cal-
culations (48) where r is replaced by r + 1.
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