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Abstract

This paper is concerned with the design of a linear control law for linear systems with stationary additive disturbances. The
objective is to find a state feedback gain that minimizes a quadratic stage cost function, while observing chance constraints
on the input and/or the state. Unlike most of the previous literature, the chance constraints (and the stage cost) are not
considered on each input/state of the transient response. Instead, they refer to the input/state of the closed-loop system in
its stationary mode of operation. Hence the control is optimized for a long-run, rather than a finite-horizon operation. The
controller synthesis can be cast as a convex semi-definite program (SDP). The chance constraints appear as linear matrix
inequalities. Both single chance constraints (SCCs) and joint chance constraints (JCCs) on the input and/or the state can be
included. If the disturbance is Gaussian, additionally to WSS, this information can be used to improve the controller design.
The presented approach can also be extended to the case of output feedback. The entire design procedure is flexible and easy
to implement, as demonstrated on a short illustrative example.
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1 Introduction

The problem of designing optimal linear controllers for
unconstrained linear systems is well understood. The
Linear Quadratic Gaussian (LQG) regulator is a center-
piece of modern control theory [2]. However, incorporat-
ing constraints on the system state or input significantly
complicates the mathematical design of regulators [3,4].

A practical, ad-hoc approach to this problem consists of
tuning the state and input cost weights appropriately.
In some cases, however, this becomes a complicated and
inefficient procedure, especially for systems of higher di-
mensions. Furthermore, the controller performance be-
comes suboptimal if the original cost function is physi-
cally meaningful.

⋆ This is an extended author’s version of a work that was
accepted for publication in Automatica. Changes resulting
from the publishing process, such as peer review, editing,
corrections, structural formatting, and other quality control
mechanisms may not be reflected in this document. A defini-
tive version is published in Automatica (volume 51, issue 1,
2015), doi: 10.1016/j.automatica.2014.10.096.

Email addresses: schildbach@control.ee.ethz.ch
(Georg Schildbach), paul.goulart@eng.ox.ac.uk (Paul
Goulart), morari@control.ee.ethz.ch (Manfred Morari).

Different approaches have been proposed for constrained
control design, including anti-windup control [17], ℓ1
control [14], and set invariance theory [6]. Recently, the
approach of finite-horizon optimal control (FHOC), e.g.
[4,13,24], has gained significant popularity, for two main
reasons: first, the increasing availability of powerful com-
putational hardware, and second, new advances in algo-
rithms for stochastic optimization.

The basic idea of FHOC is to solve a multi-stage
stochastic program by numerical optimization online,
repeatedly at each time step [4, 13, 24]. This stochastic
optimization approach offers great flexibility for han-
dling various cost functions and chance constraints on
the states and inputs. In particular, recently proposed
methods have improved the handling of joint chance
constraints of various types [5,11], and the computation
of distributionally robust solutions [10]. Nonetheless,
FHOC provides optimal control of the system only over
a finite time horizon. Or, if applied in a receding horizon
fashion, it fails to give any guarantees about constraint
satisfaction, optimality, or sometimes even feasibility.

This paper presents a new approach that differs from
the above. Its goal is to design a linear control law for a
linear time-invariant system that has additive stochas-
tic disturbances. Unlike FHOC, the presented method
does not solve a multi-stage stochastic program for opti-
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mizing the transient response of the system. Instead, the
method is concerned with the stationary regime, i.e., the
stationary distributions of the state and the input. These
distributions can be shaped by the decision variable (i.e.,
the linear feedback gain) according to a quadratic cost
function and chance constraints.

The focus on the stationary regime means that, in con-
trast to FHOC, the presented method entirely ignores
the system’s initial condition. Therefore the cost is op-
timized and the chance constraints are satisfied asymp-
totically in time, rather than point-wise in each time
step [21]. Unlike for FHOC, this implies that the state
feedback law can be defined over the entire state space.
As a consequence, the method is able to handle distur-
bances with possibly unbounded support. Moreover, the
computed feedback law is linear and therefore easy to
implement on a real system.

The mathematical problem for designing a linear con-
troller for the stationary regime can formulated as a
semidefinite program (SDP). The stationary joint distri-
butions of the state and the input (more precisely, only
their means and their variances) become additional de-
cision variables in the SDP. They vary in correspondence
with the primary decision variable, the linear feedback
gain. The quadratic cost function as well as a given set
of single and/or joint chance constraints on the state
and/or the inputs can be formulated using linear matrix
inequalities (LMIs) on the decision variables.

The presented approach covers two different cases for
the additive disturbances: wide-sense stationary (WSS)
processes with limited moment information and Gaus-
sian (NRM) processes. For WSS processes with known
mean and variance, the satisfaction of the chance con-
straints is robust with respect to all possible stationary
distributions consistent with the given moment informa-
tion; cf. [18, 28]. This design is generally conservative,
however, because the worst-case distribution of all pos-
sible stationary distributions is generally not achieved.
For NRM processes, it is shown that this conservatism
can be eliminated.

This paper extends the work of Zhou and Cogill [27] by
incorporating input constraints, improving their bounds
for single state constraints, considering also Gaussian
disturbances, and covering also output feedback. The
content of this paper is closely related also to the work
of van Parys et al. [26]. Their primary focus however
lies on constraining the conditional value-at-risk, treat-
ing it as a conservative approximation to chance con-
straints. Moreover, this paper is additionally concerned
with reducing conservatism by including single chance
constraints and Gaussian disturbances as special cases.

2 Problem Description

Consider the discrete time, linear time-invariant system

xt+1 = Axt +But + wt , (1a)

yt = Cxt + vt , (1b)

together with a fixed initial condition x0 ∈ R
n. The

variables xt ∈ R
n, ut ∈ R

m, yt ∈ R
p are used to denote

the state, the input, the output at time t ∈ N, while wt ∈
R

n and vt ∈ R
m represent random disturbances and

measurement noise, respectively. The following further
assumptions hold throughout; cf. [19, 20].

Assumption 1 (Control System) (a) The matrix
pair (A,B) is stabilizable. (b) The matrix pair (A,C)
is observable. (c) The disturbances {wt}t∈N and the
measurement noise {vt}t∈N are stationary white noise
processes. (d) All disturbances have zero mean E[wt] = 0
and the same finite covariance W := E[wtw

T
t ], which

is positive definite (W ≻ 0). (e) All measurement noise
has zero mean E[vt] = 0 and the same finite covariance
V := E[vtv

T
t ], which is positive definite (V ≻ 0).

Assumption 1 ensures that {wt}t∈N and {vt}t∈N are
wide-sense stationary (WSS) processes [25]. In partic-
ular, their terms need not be identically distributed
between time steps; only their first two moments are
assumed identical and known. However, the important
problem where both {wt}t∈N and {vt}t∈N follow Gaus-
sian processes (NRM), i.e. all terms are identically
normally distributed, is considered as an special case. It
will allow for sharper bounds to be obtained.

2.1 Stationary State and Input

Initially, assume that the state of (1) is measurable for
the purpose of state feedback. The treatment of output
feedback problems is deferred until Section 7. A basic
control objective is to design a linear feedback gain K ∈
R

m×n such that ut = Kxt stabilizes the system (1) and
regulates its state around the origin.

Due to the random disturbances, the closed-loop states
defined by

xt+1 =
(

A+BK
)

xt + wt (2)

constitute a sequence of random variables:

xt

(

x0, w0, w1, . . . , wt−1

)

∀ t = 1, 2, . . . . (3)

If the disturbances {wt}t∈N areWSS (or NRM) andK is
stabilizing, then the closed-loop states {xt}t∈N are also,
asymptotically, WSS (or NRM); see [23, Sec. 9.2], [21,
Thm. 17.6.2]. Indeed, the closed loop states converge to
a zero mean and a stationary covariance X̄ ∈ R

n×n as
t → ∞, as shown in Lemma 2 below.
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Lemma 2 (Stationary Variance) Let K be strictly
stabilizing for (A,B) and {wt}t∈N be WSS or NRM. The
covariance of the closed-loop states {xt}t∈N converge
to a unique stationary value X̄ ≻ 0 that satisfies the
discrete time Lyapunov equation

X̄ − (A+BK)X̄(A+BK)T −W = 0 . (4)

Proof. For any t ∈ N, let Xt denote the variance of xt.
The sequence of variances {Xt}t∈N satisfies the discrete
time Lyapunov equation

E
[

xt+1x
T
t+1

]

=

= E
[(

(A+BK)xt + wt

)(

(A+BK)xt + wt

)T]

= E
[

(A+BK)xtx
T
t (A+BK)T

]

+E
[

wtw
T
t

]

=⇒ Xt+1 = (A+BK)Xt(A+BK)T +W . (5)

Since A + BK is strictly stable, (5) has a unique fixed
point X̄ characterized by (4) [9]. By virtue of Assump-
tion 1(d), X̄ � W ≻ 0. �

Remark 3 (Notation) (a) The stationary covariance
X̄ is occasionally denoted X̄(K), when the dependency
on the controllerK should be emphasized. (b) Let x (with-
out time index) be a random variable with mean 0 and
covariance X̄. With some abuse of terminology, x shall
be called the stationary state of system (2); see [21]. (c)
Let u := Kx (without time index) be the according sta-
tionary input of system (2). Hence u a random variable
with mean 0 and covariance KX̄KT.

If the disturbances are WSS, the distributions of x and
u are not fixed; only their first two moments are fixed. If
the disturbances are NRM, both x and u follow a normal
distribution; cf. [21, Thm. 17.6.2].

2.2 Optimal Controller Design

A stabilizing feedback gain K is said to be feasible if it
satisfies a given set of chance constraint(s) on the sta-
tionary state and/or input:

P
[

x ∈ X
]

≥ 1− εx , (6a)

P
[

u ∈ U
]

≥ 1− εu . (6b)

Here X ⊂ R
n and U ⊂ R

m are non-empty polytopic
or ellipsoidal sets containing the origin, and εx ∈ (0, 1)
and εu ∈ (0, 1) indicate desired maximum levels of the
constraint violation probability.

A feasible feedback gain K is said to be optimal if it
minimizes the quadratic cost function

E
[

xTQx+ uTRu
]

(7)

among all feasible feedback gains. Here Q ∈ R
n×n and

R ∈ R
m×m are positive definite weighting matrices.

Note that the constraints (6) and the cost function (7) in-
volve the stationary state x and input u, which are inde-
pendent of the initial condition x0. This differs from the
standard LQR control problem, where the infinite sum
of (deterministic) stage costs for the transient response
of (2) is minimized; cf. [2]. By invoking a large num-
ber law, the chance constraints are hence satisfied and
the cost function is minimized asymptotically in time;
see [21, Cha. 17].

2.3 Paper Outline

The problem of finding an optimal feedback gain, as de-
scribed in Section 2.2, is referred to as the controller
synthesis problem (CSP). It will be shown that the CSP
can be formulated as a semidefinite program (SDP). It
solves, simultaneously, for the feedback gain K and the
stationary variance X̄(K).

To this end, the stationarity condition (Section 3), single
chance constraints (Section 4), joint chance constraints
(Section 5), and finally the objective function (Section
6) are reformulated as linear matrix inequalities (LMIs).
Then the approach is extended to the case of output
feedback (Section 7) and finally illustrated on a short
numerical example (Section 8).

3 Stationary Distribution

The following lemma characterizes the set of all stabi-
lizing feedback gains K and their associated stationary
covariances matrices X̄(K).

Lemma 4 (Stationarity Condition) If K ∈ R
m×n

and X ∈ R
n×n are chosen such that

[

X −W (A+BK)X

XT(A+BK)T X

]

� 0 , (8)

then (A+BK) is strictly stable and X � X̄(K).

Proof. Since W ≻ 0 by assumption, the upper left-hand
term in 8 ensures thatX ≻ 0. By a transformation using
Schur complements [7, Sec. 2.1], (8) is equivalent to

[

X −W (AX +BKX)

(AX +BKX)T X

]

� 0

m
[

X −W (A+BK)

(A+BK)T X−1

]

� 0

m

X − (A+BK)X(A+BK)T −W � 0 . (9)

Since both X and W are positive definite, this consti-
tutes a discrete time Lyapunov equation, so (A + BK)

3



is strictly stable. Define a matrix X̃ ∈ R
n×n such that

X = X̄(K)+X̃, and substitute this into (3). Since X̄(K)
satisfies (4) by Lemma 4,

X̃ − (A+ BK)X̃(A+BK) � 0 .

Because (A + BK) is stable, X̃ is itself a solution to a

discrete time Lyapunov equation, so X̃ � 0 and X �
X̄(K). �

Remark 5 (Partial Ordering) (a) The stationary
covariance X̄(K) is the minimal matrix (according to
the semidefinite partial ordering) that satisfies the ma-
trix inequality (8). (b) Therefore, the stationary covari-
ance X̄(K) can be computed directly for a given feedback
gain K, e.g. by minimizing Tr(X) subject to (8). It shall
be seen later in the paper that, in fact, X = X̄(K) for
the CSP as well.

Observe that the matrix inequality (8) contains the bi-
linear term KX . Since both K and X are decision vari-
ables of the CSP, the invertible change of variables

Y := KX =⇒ K = Y X−1 (10)

leads to a linear matrix inequality in Y and X .

4 Single Chance Constraints (SCCs)

Let g ∈ R
n and h ∈ R be a vector and a scalar, respec-

tively. An SCC on the state x can be either one-sided,
where X is a half space, or two-sided, where X is the par-
allel intersection of two half spaces:

P
[

gTx ≤ h
]

≥ 1− εx or P
[

|gTx| ≤ h
]

≥ 1− εx . (11)

Similarly, for a vector f ∈ R
n and e ∈ R, an SCC on the

input can be either one-sided, where U is a half space, or
two-sided, where U is the symmetric intersection of two
half spaces:

P
[

fTu ≤ e
]

≥ 1− εu or P
[

|fTu| ≤ e
]

≥ 1− εu . (12)

In the remainder of this section, the reformulation of
(11) and (12) into LMIs is described.

Recall from Remark 3 that the stationary state x and
the stationary input u are a random variables with
zero means and covariance X̄ and KX̄KT, respectively.
Hence gTx, fTKx are a scalar random variables with
zero means and variances gTX̄g, fTKX̄KTf . Viewed
as such, (11) and (12) become (one-sided or two-sided)
tail bounds on the distributions of gTx and fTKx.

If the disturbance is WSS and the first two moments
of x, u are available, this tail bound can be obtained
from Chebyshev’s inequality; cf. [22, Sec. 3]. If the dis-
turbance is NRM, the tail bound can be made exact by

inverting the cumulative standard normal distribution
function, denoted nrm : R → [0, 1]; cf. [1, Equ. 26.2.29].
This inverse is easy to compute numerically since nrm(·)
is monotonic.

Lemma 6 (SCC on the State) Let X be any matrix
such that X � X̄. Then the one-sided or two-sided SCC
on the state (11) with a WSS or NRM disturbance is
satisfied if

gTXg ≤ αh2 , (13)

where the appropriate value of α is given in Table 1.

Proof. First, consider the case of a WSS disturbance.
For the two-sided SCC, Chebyshev’s inequality [22,
Thm. 3.6] provides that

P
[

|gTx| > h
]

≤
gTX̄g

h2
≤

gTXg

h2
,

since gTX̄g ≤ gTXg for any g by assumption. Hence re-
quiring that the right-hand side be less than εx is suffi-
cient to satisfy the chance constraint, proving (13) with
α = εx. The condition with α = 2εx for a one-sided SCC
follows by symmetry.

Second, consider the case of a NRM disturbance. Since
the random variable gTx is normally distributed with

mean 0 and variance gTX̄g, it holds that gTx/
√

gTX̄g ∼
N (0, 1). Hence for the one-sided SCC

P
[

gTx > h
]

= 1− nrm
(

h/

√

gTX̄g
)

≤ 1− nrm(
(

h/
√

gTXg
)

,

where the inequality follows since nrm(·) is monotone.
Requiring that the right-hand side be less than εx yields
the corresponding value for α in Table 1, after some
algebraic manipulations. The case for a two-sided SCC
follows by symmetry. �

Lemma 7 (SCC on the Input) Let X be any matrix
such that X � X̄. Then the one-sided or two-sided SCC
on the input (12) with a WSS or NRM disturbance is
satisfied if

[

βe2 fTY

Y Tf X

]

� 0 , (14)

where the appropriate value of β is given in Table 1.

Proof.Using an argument identical to that in the proof of
Lemma 6, the one-sided or two-sided SCC on the input
with a WSS or NRM disturbance is satisfied if

fTKX̄KT ≤ fTKXKTf ≤ βe2. (15)

Inequality (15) is equivalent to (14) by [7, Sec. 2.1], using
the variable transformation (10). �
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Case Value

WSS, one-sided α = 2εx , β = 2εu

WSS, two-sided α = εx , β = εu

NRM, one-sided α =
(

nrm−1
(

1− εx
))

−2
,

β =
(

nrm−1
(

1− εu
))

−2

NRM, two-sided α =
(

nrm−1
(

1− εx/2
))

−2
,

β =
(

nrm−1
(

1− εu/2
))

−2

Table 1
Appropriate values of α, β in (13), (14), if the disturbances
are wide-sense stationary (WSS) or Gaussian (NRM) and
the chance constraint is either one-sided or two-sided.

Figure 1 compares the different bounds in Table 1.
Clearly, the two-sided bound is more restrictive on X
than the one-sided bound for the same probability level
εx. Furthermore, the condition on X is less restrictive
if the disturbances are assumed to be NRM rather than
general WSS. This difference becomes larger for higher
probability levels εx.

(a) One-sided SCC. (b) Two-sided SCC.

εx

α

εx

α

0.1 0.2 0.3

2

4

0.1 0.2 0.3

1

2

1

Fig. 1. Comparison of SCC bounds for WSS (solid line) and
NRM (dashed line) disturbances, according to Table 1.

5 Joint Chance Constraints (JCCs)

Joint Chance Constraints (JCCs) are of the form (6),
where the constraint set X or U is an ellipsoid that is
symmetric with respect to the origin:

P
[

xTG−1x ≤ d
]

≥ 1− εx , (16)

P
[

uTF−1u ≤ c
]

≥ 1− εu . (17)

Here G ∈ R
n×n and F ∈ R

m×m are positive definite
matrices and d, c ∈ R+ are positive scalars.

In the remainder of this section, the reformulation of
(16) and (17) into LMIs is described.

Remark 8 (Polytopic Constraints) JCCs can also
be used to accommodate polytopic sets X or U in a con-
servative manner, through an inner approximation by
a maximum inscribed ellipsoid [27, Thm. 1]. This ellip-
soid can be computed efficiently by a convex SDP, as
described by [8, Sec. 8.4.2].

In contrast to an SCC, a JCC requires the ‘tail bound’ of
a multivariate distribution, rather than a univariate one.
This problem has previously emerged in the theory of
robust control. Several approaches have been proposed
in the literature, e.g. [8, Sec. 7.4.1].

Here the generalized Chebyshev inequality of [12] shall
be invoked. To this end, let chin : R0+ → [0, 1] denote
the chi-squared cumulative distribution function with
parameter n [1, Equ. 26.4.1].

Lemma 9 (JCC on the State) Let X be any matrix
such that X � X̄. Then the JCC on the state (16) is
satisfied in the case of a WSS disturbance if

X �
dεx
n

G , (18)

and in the case of a NRM disturbance if

X �
(

d/ chi−1
n (1− εx)

)

G . (19)

Proof. First, consider the case of a WSS disturbance.
Since x is distributed with mean 0 and covariance X̄, the
generalized Chebyshev inequality [12, Thm. 2.1] gives

P
[

xTX̄−1x > n/εx
]

≤ εx ,

or P
[

(dεx/n)x
TX̄−1x > d

]

≤ εx . (20)

Now suppose that (18) is satisfied, thus

X̄ � X � (dεx/n)G =⇒ (dεx/n)X̄
−1 � G−1 .

Then the following set inclusion holds

{

x : xTG−1x > d
}

⊆
{

x : (dεx/n)x
TX̄−1x > d

}

,

and therefore

P
[

xTG−1x > d
]

≤ P
[

(dεx/n)x
TX̄−1x > d

]

≤ εx ,

so the state constraint (16) is satisfied.

Second, consider the case of a NRM disturbance. Define
the auxiliary random variable z := X̄−1/2x. As z ∼
N (0, I), the random variable

xTX̄−1x = zTz ∼ χ2(n) ,

where χ2(n) denotes the chi-squared distribution with
parameter n [1, Sec. 26.4]. With its cumulative distribu-
tion function,

P
[

zTz ≤ chi−1
n (1− εx)

]

= 1− εx

and therefore

P
[(

d/ chi−1
n (1− εx)

)

xTX̄−1x ≤ d
]

= 1− εx . (21)

5



Now suppose that (19) is satisfied, thus

X̄ � X �
(

d/ chi−1
n (1 − εx)

)

G

=⇒
(

d/ chi−1
n (1− εx)

)

X̄−1 � G−1 .

Then the following set inclusion holds

{

x : xTG−1x ≤ d
}

⊇
{

x :
(

d/ chi−1
n (1− εx)

)

xTX̄−1x ≤ d
}

and therefore

P
[

xTG−1x ≤ d
]

≥

P
[(

d/ chi−1
n (1− εx)

)

xTX̄−1x ≤ d
]

= 1− εx ,

so the state constraint (16) is satisfied. �

Lemma 10 (JCC on the Input) LetX be any matrix
such that X � X̄. The JCC on the input (17) is satisfied
in the case a WSS disturbance if

[

(cεu/m) · F Y

Y T X

]

� 0 , (22)

and in the case of a NRM disturbance if

[

c/ chi−1
m (1− εu) · F Y

Y T X

]

� 0 . (23)

Proof. Since X̄ � X implies KX̄KT � KXKT, the
same argument as in the proof of Lemma 9 can be em-
ployed to show that

KXKT �
dεu
n

F (24)

and
KXKT �

(

d/ chi−1
n (1− εu)

)

F (25)

are sufficient conditions to satisfy (17) in the cases of
a WSS and NRM disturbance, respectively. Note that
the implicit requirement that (KXKT)−1 is invertible
amounts to the assumption that K has full row rank.

The lemma then follows by another application of the
Schur complement [7, Sec. 2.1]. �

For a comparison of the bounds in Lemma 9 (analo-
gously, Lemma 10), consider the factor

γn =
εx
n

and γn = 1/ chi−1
n (1− εx) (26)

for WSS and NRM disturbances, respectively. This fac-
tor multiplies d ·G in (18) and (19). Note that it depends
on the dimension n of the JCC. Figure 2 compares these
factors for exemplary dimensions of n = 2 and n = 3,
showing again that the NRM assumption leads to less
restrictive bounds on X .

(a) Dimension n = 2. (b) Dimension n = 3.

εx

γ2

εx

γ3

0.1 0.2 0.3

1

4

1

2

0.1 0.2 0.3

1

4

1

2

Fig. 2. Comparison of JCC bounds for WSS (solid line) and
NRM(dashed line) disturbances, as defined in Equation (26).

6 Controller Synthesis Problem

In this section, the controller synthesis problem (CSP) is
assembled. In particular, twomain questions on the CSP
must be addressed. The first is about its feasibility: what
probability levels εx and/or εu of the chance constraints
(6) are achievable? The second is about its optimality:
provided that the CSP is feasible, which controller min-
imizes the objective function (7) while remaining con-
straint admissible?

6.1 Feasibility of the CSP

From (4), X̄(K) ≻ 0 is lower bounded by X̄(K) � W in-
dependent of the choice of K. Therefore the probability
level εx or εu that is achievable for a given constraint set
X or U is generally not arbitrarily small. It is therefore
important to obtain lower bounds on the probability lev-
els in the CSP that guarantee feasibility of the problem.

For simplicity, consider first the CSP with only a single
SCC or JCC on the state (or analogously, the input).
Then one can solve for the minimum probability level
ε̄x > 0 (or ε̄u > 0), as shown below.

Theorem 11 (Minimum Probability Level) Con-
sider a single chance constraint on the state (6a). The
solution ε̄x to

min
X,Y,εx

εx (27a)

s.t.

[

X −W (AX +BY )

(AX +BY )T X

]

� 0 , (27b)

(13), (18), or (19) (27c)
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represents a bound on the lowest feasible probability level
for this chance constraint. It is achieved by K = Y X−1,
where X and Y are the solution of (27).
Analogously, the minimum probability level ε̄u can be
found for single chance constraint on the input (6b): It
is the solution to (27) with εx replaced by εu, and (27c)
being either (14), (22), or (23).

Proof. The result is a straightforward application of
Lemmas 6, 7, 9 and 10. �

Remark 12 (Computation) In the case of NRM dis-
turbances, (27) cannot be solved directly for ε̄x or ε̄u. For
an SCC on the state or input, one should minimize α or
β instead; for a JCC on the state or input, one should
minimize γn instead. The minimal probability level ε̄x or
ε̄u is then found by inverting the corresponding (mono-
tonic) relationship from Table 1 or Equation (26).

The extension to a CSP with multiple constraints is
straightforward. To this end, the achievable probability
levels of multiple constraints generally conflict with each
other. For example, lower input usage by a lower proba-
bility level εu may increase the achievable lower bound
on the probability level εx for a state constraint.

In order to find a feasible combination of probability
levels, the constraints should be listed according to their
priority. Then their probability levels are fixed in the
order of that list. Each constraint whose probability level
has been fixed is added as an additional LMI to (27).

6.2 Optimality of the CSP

Theorem 13 (Optimal Unconstrained Feedback)
The optimal unconstrained feedback gain Klqr can be
computed as Klqr := Y X−1 from the solution X,Y to

min
X,Y,P

Tr
(

QX
)

+Tr
(

P
)

(28a)

s.t.

[

P (R1/2Y )

(R1/2Y )T X

]

� 0 , (28b)

[

X −W AX +BY

(AX +BY )T X

]

� 0 , (28c)

where P ∈ R
n×n is an auxiliary positive semidefinite

matrix.
Moreover, the solution X to this problem is exactly the
stationary covariance of the state with LQR feedback,
X = X̄(Klqr).

Proof. The cost function (7) can be reformulated into

(28a,b) by algebraic manipulations:

E
[

xTQx+uTRu
]

=

= E
[

Tr
(

xTQx
)]

+E
[

Tr
(

xTKTRKx
)]

= Tr
(

QX̄
)

+Tr
(

KTRKX̄
)

≤ Tr
(

QX
)

+Tr
(

KTRKX
)

= Tr
(

QX
)

+Tr
(

R1/2KXX−1XTKTR1/2T
)

= Tr
(

QX
)

+Tr
(

R1/2Y X−1Y TR1/2T
)

. (29)

Minimizing the second term in the above is equivalent
to solving

min
P

Tr
(

P )

s.t.

[

P (R1/2Y )

(R1/2Y )T X

]

� 0 ,

for an auxiliary variable P � 0 [7, Sec. 2.1]. This proves
the first part of the theorem, provided that X = X̄.

For the sake of a contradiction, suppose that X 6= X̄.
Since the solutionX is feasible for (28c), it satisfiesX �
X̄ by Lemma 15. IfX−X̄ � 0, then the inequality in (29)
becomes a strict inequality, because Q ≻ 0. However,
this means that the cost function value can be improved
by choosing the feasible solution X = X̄. �

Let the probability levels of all chance constraints be
fixed such that set of feasible controllers, according to
(27), is non-empty. The linear control law that minimizes
the expected quadratic cost (7) subject to the chance
constraints can hence be computed by including the re-
spective constraints in the CSP:

• in the WSS case (13), (14), (18), (22),

• in the NRM case (13), (14), (19), (23).

The chance constrained controller can then be computed
as Kcc := Y X−1, where X and Y are the solution to
the resulting constrained CSP. As in the unconstrained
case, the stationary covariance will satisfy X = X̄(Kcc)
by the same argument as in Theorem 13.

7 Output Feedback

So far, it has been assumed that the state of (1) can be
measured for the purpose of state feedback. For the case
of output feedback, all of the preceding results can be
extended by inclusion of an optimal state estimator :

xt =: x̂t + et , ut = Kx̂t , (30)

where x̂t represents the state estimate of xt at time t and
et the estimation error.
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7.1 Kalman Filter (KF)

For a generic state estimator, the dynamics of the esti-
mates {x̂t}t∈N are given by

x̂t+1 = Ax̂t +But + L(yt − ŷt) , (31a)

ŷt = Cx̂t , (31b)

where L ∈ R
n×p is the estimator gain. The particular

estimator gain of the Kalman Filter (KF) can be com-
puted directly from the system data A,B,C and the co-
variance matrices V,W .

The KF is known to provide state estimates that are
unbiased and minimum variance:

E
[

etx̂
T
t

]

= 0 ∀ t ∈ N , (32a)

min
L

υTE
[

ete
T
t

]

υ ∀ υ ∈ R
n, t ∈ N . (32b)

Equation (32b) means that the KF has the minimum
variance of all linear estimators, with respect to the
semidefinite partial ordering. If the disturbances are
NRM, the KF has the minimum variance of all possible
estimators [25, Cha. 5], [20, Sec. 9.3]. Analogous to the
separation principle in classical LQG control, for the
chance-constrained LQR the KF gain L can therefore
be assumed independently of the state feedback gain K.

Compared to state feedback, the chance constraints
must be adjusted for the additional variance introduced
by the estimation error. This is shown in the following.

7.2 Stationarity Conditions

In stationary operation with a stable estimator gain L,
the state estimate and the estimation error are station-
ary variables x̂ and e, whose first two moments are

E
[

x̂
]

= 0 , E
[

e
]

= 0 ,

S̄ := E
[

x̂x̂T
]

, E := E
[

eeT
]

.

The stationary error variance E is obtained, along with
the estimator gain L, from the design of the Kalman
Filter. For the case of output feedback, Lemmas 2, 15
are now replaced with the following results.

Lemma 14 (Stationarity Condition) Let K be sta-
bilizing for (A,B) and {wt}t∈N be WSS or NRM. The
covariance of the KF state estimate {x̂t}t∈N converges to
a unique stationary value S̄ � 0 that satisfies the discrete
time Lyapunov equation

S̄ = (A+BK)S̄(A+BK)T+

+ (LC)E(LC)T + LV LT . (34)

Moreover, the covariance of the state {xt}t∈N converges

to a unique stationary value X̄ ≻ 0 that satisfies

X̄ = S̄ + E . (35)

Proof. Substitute (1b), (31b), (30) into (31a) to obtain
the dynamics of the state estimate:

x̂t+1 = Ax̂t +But + L(yt − ŷt)

= (A+BK)x̂t + LCet + Lvt . (36)

Equation (34) now follows analogously to Lemma 2,
given that vt is independent of x̂t and et by assumption,
and that x̂t and et are uncorrelated by (32a).

Equation (35) follows from (30),

X̄ = E
[

xxT
]

= E
[

(x̂+ e)(x̂+ e)T
]

= S + E . (37)

using the fact that x̂t and et are uncorrelated (32a). �

Lemma 15 (Stationarity Condition) IfK ∈ R
m×n,

S ∈ R
n×n, and X ∈ R

n×n are chosen such that

[

S − (LC)E(LC)T − LV LT (A+BK)S

ST(A+BK)T S

]

� 0 ,

X � S + E ,

then (A+BK) is stable and S � S̄(K), X � X̄(K).

Proof. The stability of (A + BK) and S � S̄ follow
analogously to the proof of Lemma 15. The fact that
X � X̄(K) follows from (35) and S � S̄. �

For the case of output feedback, several changes to the
CSP with state feedback must be made. They are sum-
marized in the following remark.

Remark 16 (CSP for Output Feedback) (a) The
decision variables of the CSP with output feedback are
X, S, and

Z := KS =⇒ K = ZS−1 , (38)

as compared to X and Y := KX for the CSP with state
feedback. (b) In all input constraint reformulations (14),
(22), (23), X must be replaced with S and Y with Z. (c)
In the cost function reformulation, X must be replaced
with S and Y with Z in (28b).

For the same argument as in the proof of Theorem 13,
the optimal covariances of the CSP are not chosen any
bigger than necessary; i.e. S = S̄(Klqr), X = S̄(Klqr) in
the unconstrained case and S = S̄(Kcc), X = S̄(Kcc) in
the constrained case.
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8 Example

Consider the model of a spinning satellite [15, Sec. 10.2],
as depicted in Figure 3. It consists of two rotatingmasses:
the first mass with inertia J1 = 1 represents the satellite
body with thrusters, and the second mass with inertia
J2 = 0.1 carries the instruments.

The two masses are connected with a boom of low stiff-
ness k = 0.02 and damping b = 0.0001. Disturbing
torques act on both masses, while a torque on the first
mass can be applied for control of the satellite. Time is
discretized using a sampling period of ∆t = 0.1. The
objective is to maintain the instruments in a stable po-
sition, while using as little thrust as possible.

J1

J2

k, b

θ1

θ2

Fig. 3. Model of a spinning satellite.

Defining the state of the satellite as x = [θ2 θ̇2 θ1 θ̇1]
T

and the output y = [θ2 θ1]
T gives the following system

matrices:

A =















0.993 0.100 0.008 0.000

−0.150 0.992 0.150 0.008

0.002 0.000 0.999 0.100

0.030 0.002 −0.030 0.999















, B =















0.000

0.000

0.001

0.010















,

C =

[

1.000 0.000 0.000 0.000

0.000 0.000 1.000 0.000

]

.

In each step, the disturbance torques are normally dis-
tributed with variance 0.1, and the measurement noise is
normally distributed with variance 0.05. The quadratic
cost matrices

Q = 0.1 · I , R = 1 , (40)

reflect the expensiveness of thruster use in space.

First, consider a bound on the control torque:

P
[

|u| ≤ 1
]

≥ 1− εu , εu = 10% . (41)

The lower bound on εu, according to Theorem 11, is
ε̄u = 0% because the system is open-loop stable.

The optimal chance-constrained controller Kcc shall be
compared to the optimal unconstrained controller Klqr,
based on a numerical simulation of the two closed-loop
systems for 106 time steps. In particular, the empirical
violations observed in this simulation are ε̃u,cc = 9.18%
and ε̃u,lqr = 39.83%, respectively. Notice that Kcc keeps
the chance constraints quite exactly, that is with little
conservatism.

Second, for keeping the instruments steady, consider a
constraint on the position of the second mass:

P
[

|θ2| ≤ 5
]

≥ 1− εx , εx = 10% . (42)

In fact, the lower bound for εx is ε̄x = 0.00%. Here the
empirical violations amount to ε̃x,cc = 10.08% for the
chance-constrained LQR, compared to ε̃x,lqr = 28.59%
for the unconstrained LQR. Again, notice that there is
little conservatism for this constraint.

Finally, consider a constraint jointly on the position and
the velocity of the second mass:

P
[

θ22 +∆t · θ̇22 ≤ 5
]

≥ 1− εx , εx = 10% . (43)

Here (43) can be put in the form of (16) by choosing
G−1 as the diagonal matrix with the entries 1, ∆t, and
two artificial, very small numbers.

The lower bound for εx ≥ ε̄x = 14.11% lies above
the desired constraint level of 10%. However, if a con-
strained LQR controller is designed, the empirical viola-
tions amount to ε̃x,cc = 10.04% and ε̃x,lqr = 44.04%, re-
spectively. While there is little conservatism in this case,
in general there may be a discrepancy between the vio-
lation bound and the empirically observed violations.

Remark 17 (Conservatism) Conservatism in the
chance-constrained controller design may appear for
three reasons: (a) If the disturbance is WSS, the Cheby-
shev bounds of Lemmas 6, 7, 9, 10 not necessarily tight
for the stationary distribution. (b) The tail bounds on
multi-variate distributions in Lemmas 9, 10 are not
generally tight for both NRM and WSS disturbances. (c)
There may not exist a linear controller K that produces
stationary covariances that match the bounds of Lemmas
9, 10 exactly, even if they were tight.

9 Conclusion

In this paper, a design approach for a LQR was pre-
sented that is optimal with respect to a quadratic target
function, while respecting chance constraints on the in-
put and/or state in closed-loop operation. This problem
can be reformulated in terms of various LMIs, leading to
a linear SDP that can be solved efficiently by standard
toolboxes, such as CVX [16].

The approach offers three key advantages to existing
methods. First, its focus on the stationary operation
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of the system, as opposed to optimizing a transient
response. Second, the controller synthesis problem is
tractable in offline optimization, and then a simple
linear controller has to be implemented online. Third,
the approach can be extended to output feedback, in
which case the theory covers the controller-observer
combination.

Note that, compared to the standard LQG, the same
performance may be achieved by a proper choices of Q
and R; however, the tuning procedure may be tedious in
practice and does not bring about an optimality guar-
antee.
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