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Abstract

Block-oriented nonlinear models are popular in nonlinear modeling because of their advantages to be quite simple to understand
and easy to use. To increase the flexibility of single branch block-oriented models, such as Hammerstein, Wiener, and Wiener-
Hammerstein models, parallel block-oriented models can be considered. This paper presents a method to identify parallel
Wiener-Hammerstein systems starting from input-output data only. In the first step, the best linear approximation is estimated
for different input excitation levels. In the second step, the dynamics are decomposed over a number of parallel orthogonal
branches. Next, the dynamics of each branch are partitioned into a linear time invariant subsystem at the input and a linear
time invariant subsystem at the output. This is repeated for each branch of the model. The static nonlinear part of the model
is also estimated during this step. The consistency of the proposed initialization procedure is proven. The method is validated

on real-world measurements using a custom built parallel Wiener-Hammerstein test system.
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1 Introduction

Nonlinear models are much needed these days to improve
plant control performance, to gain better insight in the
behavior of the system under test, or to compensate for
a potential nonlinear behavior. Due to the separation of
the nonlinear dynamic behavior into linear time invari-
ant (LTI) dynamics and the static nonlinearities (SNL),
block-oriented nonlinear models are quite simple to un-
derstand and easy to use.

A wide variety of block-oriented models has been studied
over the last years including Hammerstein (Nonlinear
static - Linear dynamic or N-L connection) and Wiener
models (L-N) [11]. This type of single branch models can
be extended to Hammerstein-Wiener models (N-L-N)
[1,7,21], or Wiener-Hammerstein models (L-N-L) [4,24,
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29,31,32]. To increase the flexibility of the single branch
block-oriented models even more, parallel block-oriented
models can be considered such as parallel Hammerstein
[10,23], and parallel Wiener models [13,22,25].

This paper presents a method to identify parallel
Wiener-Hammerstein systems, whose structure is shown
in Figure 1. Previously published methods [2, 5, 33]
studied a subclass of the parallel Wiener-Hammer-
stein structure that is called the Sp; model structure.
Identification methods based on repeated sine measure-
ments [2,33], or white Gaussian inputs [5] are available
for this model structure. In [14, 15] it is shown that
a wide class of Volterra systems can be approximated
arbitrary well using a parallel Wiener-Hammerstein
model structure. However, no method is presented there
to identify such models.

The Sps identification method presented in [5] uses
Gaussian excitation signals, like the method presented
in this paper. However, the Sj; method is a generaliza-
tion of a Wiener-Hammerstein identification algorithm
based on a parametrized version of higher order cor-
relation functions between input and output [4]. This
approach has been compared in [24] with two other
approaches [24,32], and it was outperformed by these
alternatives. The main problem of the method seems to
be the noise sensitivity.
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Figure 1. A 3-branch parallel Wiener-Hammerstein system:
a parallel connection of Wiener-Hammerstein systems. The
static nonlinear block f# of the i-th branch is sandwiched in
between the LTT blocks H!"(q) and Sl(g). The noise source
v(k) is additive colored noise.

The parallel Wiener-Hammerstein identification ap-
proach proposed here combines the parallel Hammer-
stein and parallel Wiener identification methods pre-
sented in [23,25] with a specific initialization approach
for Wiener-Hammerstein systems presented in [29]. This
paper hereby extends the results of [27]. In the paper
presented here, the consistency of the proposed initial-
ization procedure is proven, the computational aspects
of the proposed method are discussed, the positive effect
of the initialization method is shown, and the method
is applied to a real-world measurement example.

The outline of the paper is as follows. Section 2 intro-
duces the system and signal classes, and the stochastic
framework used. Section 3 discusses the identifiability of
a parallel Wiener-Hammerstein system. Next, the best
linear approximation (BLA) of a parallel Wiener-Ham-
merstein system is studied in Section 4. The identifica-
tion algorithm for parallel Wiener-Hammerstein systems
is explained in Section 5. Section 6 discusses the per-
sistence of excitation, Section 7 proves the consistency
of the proposed identification method. A final, jointly
nonlinear least squares optimization with respect to all
the parameters of all the blocks is performed in Sec-
tion 8. Some computational aspects of the method are
discussed in Section 9. Finally, the good performance
of the proposed method is illustrated in Section 10 on
real-world measurements using a custom built parallel
Wiener-Hammerstein test system. The positive effect of
the proposed initialization method on the performance
of the optimized model is also shown in this section.

2 System, signals and stochastic framework

This section describes the system and signal classes, and
introduces the stochastic framework considered in this

paper.

Definition 1. Riemann equivalence class of
asymptotically normally distributed excitation
signals. Consider a signal v with a power spectrum
Su(jw), which is piecewise continuous, with a finite
number of discontinuities. A random signal belongs to
the Riemann equivalence class of u if it obeys by any of
the following statements:

(1) Tt is a Gaussian noise excitation with power spec-
trum Sy (jw).

(2) It is a random multisine or random phase multisine
[17] such that:
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with wy = k271r\;‘57 keN,0<wg <wg, <7fs, and

fs the sample frequency.

Assumption 1. The excitation signal u(k) is stationary
and belongs to the Riemann equivalence class of asymp-
totically normally distributed excitation signals.

Assumption 2. An additive, colored zero-mean noise
source v(k) with a finite variance is present at the output
of the system only:

y(k) = yo(k) + v(k), (1)

where y(k), yo(k) and v(k) are scalars. The noise v(k) is
assumed to be independent from the known input u(k).

Assumption 2 excludes that the system operates in
closed loop.

The class of parallel Wiener-Hammerstein systems is
considered. A parallel Wiener-Hammerstein system
consists of a parallel connection of different Wiener-
Hammerstein systems that share the same input signal.
The output of the total system is obtained as the sum of
the outputs of the different branches. A parallel Wiener-
Hammerstein system with three parallel branches is
shown in Figure 1.

The noiseless output yo(k) of a parallel Wiener-Ham-
merstein system is given by:

o) = (1), @)
yi(k) = S (q)rs(k) (3)

where ny, is the number of parallel branches in the paral-
lel Wiener-Hammerstein system, H(q) and S1(q) are
the front and back discrete time representations of the
LTI blocks present in branch i, fI/(z;(k)) is the static
nonlinear block present in branch ¢, and the signals are
as shown in Figure 1.

All the LTI blocks are considered to be modeled by stable
infinite impulse response (IIR) filters, parameterized by

> oGt} = 5 [ svwarro (),



a rational function in the backwards shift operator ¢—':
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where ny,, ; and n,,, ; are respectively the finite orders of
the numerator and denominator of the front dynamics
of the i-th parallel branch, and ny, ; and n,, ; are the
orders of the numerator and denominator of the back
dynamics of the i-th parallel branch.

The static nonlinear function (! (z;(k)) contained in the
ith branch is described by a linear combination of ny
nonlinear basis functions:

nr

F @) = 7 B £ (@a(k)). (8)
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Each basis function fj[-l] (x) is assumed to have a finite
output for any finite input . Examples of such nonlin-
ear functions are polynomial functions, piecewise linear
functions or radial basis function networks.

Assumption 3. The true system is a discrete time par-
allel Wiener-Hammerstein system, as described by eq.

(1) to (8).

The parallel Wiener-Hammerstein system class that is
used here is a more general system class than the S,
system class that is used in [2,5,33]. The Sj; model has
M parallel branches, and the m-th branch contains a
monomial nonlinearity equal to (.)™. This restricts the
model to have a polynomial nonlinearity only, and to
contain only one branch for each degree of this polyno-
mial nonlinearity. Thus a parallel Wiener-Hammerstein
system containing two parallel branches, each with dif-
ferent LTI subsystems, and with different polynomial
nonlinearities can, in general, not be modeled by a Sy,
model. The method that is presented in this paper also
makes some extra assumptions on the parallel Wiener-
Hammerstein system in the following sections. However,
even when these assumptions are met, the considered
system class still allows for a much more complicated
nonlinear system behavior.

3 Identifiability

The problem of identifying a parallel Wiener-Hammer-
stein system inherits all the identifiability issues that are
present in the identification of a Wiener-Hammerstein
system [24,27]: a gain exchange between the LTI blocks
and the static nonlinear block leads to a degeneracy in
the parameter space. There can also be a delay exchange
between the front LTI blocks and the back LTI blocks,
but only a finite number of delay exchanges values are
possible when a parametric transfer function model is
used to model the LTI blocks. A degeneration in the pa-
rameter space results in multiple parameterizations that
lead to the same input-output behavior of the system.
The rank of the Jacobian matrix of the model is reduced
by one for each degeneration.

An additional identifiability issue appears due to the
parallel nature of the parallel Hammerstein, the paral-
lel Wiener, and the parallel Wiener-Hammerstein sys-
tems [25,27]. Starting from input-output data only, in-
finitely many equivalent models can be obtained by lin-
ear transformation of one of the models. This introduces
a full rank linear transformation between the outputs of
the front dynamic blocks H!(g) and the inputs of the
static nonlinearities of the different branches. A similar
full rank linear transformation can be introduced be-
tween the outputs of the static nonlinearities and the
inputs of the back LTI blocks SI(g). Such a full rank
transformation results in a model structure that differs
from the model structure presented in Figure 1. The full
rank linear transformations that can be present between
the front LTI blocks and the static nonlinear blocks,
and between the static nonlinear blocks and the back
LTT blocks, can be incorporated in the static nonlinear
blocks. This transforms the SISO static nonlinearities
of each branch into one MIMO static nonlinearity, as is
shown in Figure 2.

The number of degenerations n4ey present in the model
is quantified by:

Ndeg = 2n§m 9)

where ny, is the number of parallel branches in the
model. Each full rank linear transform (which includes
also the gain exchanges) introduces niT degenerations in
the model.

The model is intended to describe the system, and has
to overcome all of the identifiability issues. The gain and
delay exchanges can be accounted for by using an ap-
propriate normalization and parameterization [24]. The
full rank linear transformations, on the other hand, re-
quire some attention. As a consequence of the full rank
linear transformations, the model with one SISO static
nonlinearity for each branch is transformed into a model
with one MIMO static nonlinearity that describes the
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Figure 2. A 3-branch parallel Wiener-Hammerstein model.
A MIMO static nonlinear block § is sandwiched in between
the LTI blocks H(q) and Sl(q).

nonlinear behavior of the system. This modified model
structure is shown in Figure 2. In a later step, the MIMO
static nonlinearity can be decoupled again to yield one
SISO static nonlinearity for each branch [26, 30] hereby
eliminating cross-coupling between branches. The iden-
tified LTT blocks will be a linear combination of the am-
plitude scaled and/or delayed versions of the exact but
unknown LTT blocks that are present in the system.

4 The best linear approximation

The best linear approximation (BLA) approximates the
output of a nonlinear system with the response of an
LTT model in mean square sense. The BLA depends on
the system, on the probability density function of the
chosen input signal, and on the input power spectrum
(rms value and coloring).

Definition 2. Best linear approximation (BLA).
The BLA of a nonlinear system is the linear system
Gia(q) that minimizes the mean square error [8,9,17]:

Guialg) = arg min B { (§(k) — G(q)(k))*}

G(a)
(k) = u(k) = E{u(k)}, (10)
y(k) = y(k) = E{y(k)},
where the expectation F {.} is taken with respect to the
random realization of u(k).

The BLA of a parallel Wiener-Hammerstein system ob-
tained under Assumption 1 is a simple function of the
dynamic blocks that are present in the parallel Wiener-
Hammerstein system under test [6,8,17]. The static non-
linearity f[?(z;) of branch i in a parallel Wiener-Ham-
merstein system can be approximated by a constant gain
alll [6,8]. This results in Theorem 1.

Theorem 1. The BLA of a parallel Wiener-Hammer-
stein system (Assumption 3) excited by inputs satisfying
Assumption 1 is given by:

Npr
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where ) depends on the subsystems in the ith branch,
the power spectrum of the input signal u, and hence as
well on the variance of the input signal u.

Proof. 1t is shown in Section 3.4.3.5 of [17] that the BLA
of the i-th branch of a parallel Wiener-Hammerstein sys-
tem is given by ol HI(q)Sl(g). Since the output of
a parallel Wiener-Hammerstein system is given by the
sum of the different Wiener-Hammerstein branches, the
BLA of a parallel Wiener-Hammerstein system is given
by eq. (11). O

Assumption 4. The BLA ol!H!

branch i has a non-zero gain all.

(q)St(q) of every

It can happen that the BLA of one of the branches of the
parallel Wiener-Hammerstein system is equal to zero,
or in other words al! = 0. This is the case when the
nonlinear function f(z;) is even around the expected
value of x;. In this case, a BLA of a reduced order is
obtained that does not contain the dynamics of branch
1. This assumption excludes that the static nonlinearity
fU(z;) of branch i is symmetric with respect to the DC
setpoint of the signal ;. Different DC setpoints can be
tried to avoid a zero gain ol

Assumption 5. The combined dynamics H"(q)S!(q)
of the 7th branch do not contain any pole-zero cancella-
tion for any branch 1.

A pole that appears in the front LTI block of a branch,
can be canceled by a zero that is present in the back LTI
block of the same branch. They will not be detected dur-
ing the parametrization of the BLA. This assumption
is quite common for Wiener-Hammerstein identification
algorithms, see for example the two identification algo-
rithms presented in [28]. However, there exist different
Wiener-Hammerstein and Sy, identification algorithms
that do not need this assumption [2,5,24,33]. This is pos-
sible using a more advanced correlation analysis [5,24],
or a more restrictive class of input signals [2,33].

An important observation with respect to eq. (11) is

that the input dependent gain ol only appears in the
numerator:
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where
Bl (q) = Bl (¢)BI(g), (13)
Al (q) = Al () Al (g). (14)

This means that under Assumptions 4 and 5, the poles
of the identified BLA are also the poles of the LTI blocks



that are present in the system. The zeros of the BLA of a
parallel Wiener-Hammerstein system may change when
the amplitude, power spectrum, or the offset (DC value)
of the input signal changes.

5 Estimating the parameters of a parallel
Wiener-Hammerstein system

The approach presented in [23,25] to decompose the dy-
namics over the different branches of a parallel Ham-
merstein and parallel Wiener systems is combined with
an initialization approach that splits the dynamics into
the front and back LTT blocks of a Wiener-Hammerstein
system as presented in [29].

Other approaches to split the dynamics of a Wiener-
Hammerstein system exist in the literature [4,24,32], but
are more complex to implement and seem to be more
sensitive to noisy data. An initial version of this method
was presented in [27].

The proposed approach starts with an estimation of the
BLA of the considered system for different operating
conditions (Section 5.1). The different operating con-
ditions are obtained using input signals with different
power spectra. This includes the use of different magni-
tudes, different offsets, or different coloring of the power
spectra. A consistent estimate of the overall dynamics
that are present in the nonlinear parallel Wiener-Ham-
merstein system results.

Next, the measured BLAs are parameterized (Section
5.2) using a different LTI model for each operating con-
dition. A common denominator model is used for all op-
erating conditions simultaneously. This is indeed possi-
ble, as Theorem 1 assures that the poles of the different
measured BLAs are the same.

Starting from the parameterized BLAs, a decomposi-
tion of the overall dynamics at the different operat-
ing conditions is calculated in Section 5.3. It uses the
singular value decomposition (SVD) of a matrix con-
structed using the numerator coefficients of the param-
eterized BLAs obtained at the different operating con-
ditions. This step results in an estimate of the number
of branches that is present in the parallel Wiener-Ham-
merstein system. The number is obtained based on the
estimated rank of the decomposed matrix. The dynam-
ics HU(q)S(q) that are present in each branch are es-
timated next, up to the identifiability issues presented
in Section 3.

Finally, a modified version of the algorithm proposed
in [29] is proposed in Section 5.4 to partition the dynam-
ics H1(q)Sl(q) over the different blocks of the parallel
Wiener-Hammerstein model, and to estimate the static
nonlinearity that is present in the model.

5.1 Estimating a BLA for different operating conditions

The nonparametric frequency response function (FRF)
estimate of the BLA at operating condition i, is labeled
GUrl(jwr). Tt is obtained by the robust BLA estima-
tion method proposed in [17,20]. Both the FRF and the
sample variance &é[ir] (jwg) of the BLA are obtained at

each excited frequeflléy. The latter is used to determine
the weighting factor used during the parameterization
of the BLA. This process is explained in more detail
in [17,20, 27].

5.2  Parameterizing the BLAs

The measured nonparametric BLAs C;'l[fl;] (Jwk) at the
R different operating conditions are parameterized si-
multaneously using a common denominator model. To
perform the estimation, a weighted total least squares
initialization is used [16]. It is followed by a sample
maximum likelihood estimation [17,18]. The frequency
dependent estimation weights for the FRF are in-
versely proportional to the estimated sample variances
&é[ir](jwk.) of the BLAs for the R different operating

bla
conditions of the system. This results in a parameterized
version of the different BLAs Gy (q, 91,1@):
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where the denominator coefficients are shared by the
BLAs for the different operating conditions 4,, while
the numerator coefficients vary with the input operat-
ing condition %,. ébla contains all the denominator co-

efficients ¢;, and all the numerator coefficients ciglr] of
the BLASs for the different operating conditions i,.. The
model order of the parametrized BLAs can be selected
using standard model structure selection techniques [12].

Remark 1. Assumption 3 considers discrete time lin-
ear time-invariant systems. The proposed method works
equally well for continuous time systems, estimating a
continuous time model. Instead of parameterizing the
LTT blocks using a rational function of finite order in
the backwards shift operator ¢~ !, a continuous time s-
domain parameterization can be used.

5.8 Decomposing the BLAs

The overall frequency dynamics need to be distributed
over the different LTI systems that are present in the
branches at the front and the back of the parallel Wiener-
Hammerstein model. This section presents a decomposi-
tion of the numerator coefficients of the overall dynam-
ics of the BLA into a set of basis vectors that describe



the space spanned by the numerator vectors. These basis
vectors are an estimate of the dynamics of each parallel
branch.

A difference with the previous approaches in [23, 25]
is that the numerators of the estimated BLAs are de-
composed, rather than the nonparametric BLA transfer
functions. This is possible and adequate since a common
denominator model is used for the parameterized BLAs.
This new method avoids a frequency sampling step of
the parametric BLAs, and a re-parameterization of the
decomposed BLA dynamics. The process is explained
next.

First, a matrix D is constructed containing the stacked
estimated numerator coefficients of the BLAs at the dif-
ferent operating conditions:

din g g
21 ;l2] 712]
d d oL dy,
o v (16)
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The underlying distortion free version of this matrix, D),
is of low rank. The maximum rank of the matrix D, for
R, ng > np, is np,-. Using eq. (12), one can write the D
matrix as:

D= AB, (17)
_a[ll] a[12] . alln'”]
1] 12 [nor]
(0% (07 Q
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where ol is the gain of the j-th branch of the i-

th BLA, and bgj] is the i-th degree coefficient of
Bis (@) TT;0 s Afla(@) (see eq. (12).

The matrix B depends only on the dynamics that are
present in the different branches of the system. The ma-
trix A depends both on the system and on the input
signal.

Assumption 6. The rank of the BLA numerator matrix
D is equal to the number of parallel branches in the
system.

The proposed identification method is based on a decom-
position of the BLA over the different branches of the
parallel Wiener-Hammerstein model. For the method
to work, this decomposition should be able to sepa-
rate the dynamics of each branch. This implies that
the numerator of the combined dynamics of one branch
(H"(q)S1(q)) of one branch is linearly independent
from the numerators of the combined dynamics of the
other branches of the parallel Wiener-Hammerstein sys-
tem. This assumption also excludes the particular case
of a parallel Wiener-Hammerstein system that consists
of two LTT or two static nonlinear blocks placed in par-
allel, or for example a parallel Wiener-Hammerstein sys-
tem where H!Y(q) = SP(q) and HP(q) = SM(q).

The SVD of D yields an orthonormal basis for the space
spanned by the D-matrix:

D =UpaZpaVig, (20)

where superscript .7 denotes the transpose of a matrix,
Vpie contains the right singular vectors which act as
an orthonormal basis for the right hand side space D-
matrix, 3y, is a diagonal matrix containing the singular
values, and Uy, contains the basis for the left hand side
space.

The column vectors in V', provide an estimate of the
numerator coefficients for each branch:

G (g = B B
tor Co + 61(]_1 + ...+ éncq_nc

where 5[-1' or] is the element of the j-th row and 4p.-th

column of the matrix V.

The rank of the matrix D corresponds to the number
of parallel branches ny, that is necessary to describe
the system. This rank can be obtained by applying a
rank estimation algorithm on the singular value matrix
Yo [19], that is obtained from the noisy matrix D.
To do so, the column covariance matrix Cp of D is
needed. This column covariance matrix is obtained from
the covariance of the parameters estimated in the BLA
parametrization step. The whitened matrix D pite i
given by:

thite = b051/2 (22)

The estimated rank of the noisy matrix D corresponds to
the number of singular values of D ;e that are higher
than 1 [19]. The reader is referred to [19] for more details
about the rank estimation method and its hypotheses.



5.4 Partitioning the poles and zeros

This section presents an algorithm to partition the dy-

namics of each branch Gy, (¢) over the front and the
back dynamics. The basic idea is pretty simple: try every
partition of poles and zeros in the different LTI blocks,
estimate the static nonlinear block with a fixed set of
nonlinear basis functions, and finally select the model
that minimizes the simulation error.

5.4.1 Generating all pole and zero partitions

Assumption 7. The front dynamic block of branch 4
(¢ = 1...np) and the back dynamic block of branch j
(j = 1...np.) have no common poles, wherever i # j.

This Assumption allows one to assign each estimated
BLA pole to either the front or the back dynamics. A
pole that is present in two different branches only ap-
pears once in the BLA. This does not pose a problem,
if that pole is originating from either the front or the
back LTI blocks due to the common denominator ap-
proach. However, this creates a problem when that pole
is present once in the front LTI block of one branch and
once in the back LTI block of another branch since it
can only be assigned to either the front or the back LTI
blocks.

A first step in the algorithm is to generate all possible
pole and zero partitions for the different LTI blocks. The
poles and zeros to be distributed are the ones obtained
from the branch dynamic estimated before. Let Gy, (¢)
be the dynamics of branch 4, of the parallel Wiener-
Hammerstein model. Under Assumption 7, every pole
and zero of G, (¢) has to be assigned to either the front
or the back LTI block of the i,,.-th branch. Some of the
computational aspects of this approach are discussed in
Section 9. Complex pole and/or zero pairs are allocated
pairwise to impose real coefficients in the transfer func-
tion model. The common denominator approach is pre-
served during the partitioning procedure. The construc-
tion of the front and the back dynamic systems of the
branch 7y, is then:
. {yibr L [ ibr
s B wE @
Gibr(q)_’yibr “{pi} Api}
A (q) A (q)

(23)

for all possible pole partitions {p;}, and for all possible
zero partitions {z;b’"} of branch i,. In eq. (23) subscript
h denotes the front dynamic block, and subscript s de-
notes the back dynamic block. v denotes a gain factor
that depends on the particular pole and zero partition.

5.4.2 Estimating the static nonlinearity

The static nonlinearity is estimated for every possible
pole-zero partition {p;, z;-br} of every branch y,..

This estimation is linear in the parameters when the
nonlinearity is expressed as a linear combination of non-
linear basis functions (such as multivariate polynomial
basis functions, piecewise linear basis functions, or ra-
dial basis function networks with a fixed width and a
fixed center):

MNw
Filk) = D g gi (@1 (R), o dy, (), (24)
=1
where 12/1[1]) is the coefficient belonging to the i,,-th basis
function g;,, for the i-th output 7;(k) of the MIMO static
nonlinearity, £;(k) is the j-th input of the MIMO static
nonlinearity, and n,, is the number of nonlinear basis
functions that is selected by the user.

First, the intermediate signals &P%#} for pole partition
{pi} and every possible zero partition {z""} of every

branch 7, are obtained:

. {zi,br}
R B, (q)
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Next, the MIMO nonlinearity is estimated from the in-
termediate signals glpi=sl generated through the out-
put filters of all the branches iy, to the measured output.
A regressor matrix K (P#i} is constructed using a fixed,
user selected set of nonlinear basis functions ¢; to gn,,
For one partition of poles and zeros {p;, z; } one obtains:

K lorpiizi}

RER! _{=bry

B, 7 (a) ~{pi,zj} B, 7 (a) ~{pi,zj}
AT () g1(2 (1) ... AT () In, (2 (1)
Jlor _{stbr
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AlPid () Al (g T

KPizid — | g{ipizd K{n’”’pi’z"}} ) (27)

where N is the total number of data points used.

The coefficients of the nonlinear basis functions for
the partition {p;, z;} are obtained using a linear least
squares estimation:

wiri=it — (K{pi’zj}TK{pi7Zj})_l K{m,zj}% (28)



Cy(N)]T (29)

In practice, the solution is obtained using a QR decom-
position. To improve the numerical conditioning of the
matrix, the columns of K (P23} are normalized. Each
column is therefore divided by its [?-norm.

5.4.3 Pole-zero pattern selection

The simulation error €%} present between the mod-
eled output and the measured output is computed. The
partition that results in the lowest root mean square er-
ror is selected. From this point on, the front and the back
LTI blocks, H"(g,8) and S'(q,8), and the coefficients

of the static nonlinearity wz[’j are all estimated.

The modeled output g(k, @) is obtained as follows:

#:(k.0) = H1)(q, 8)u(k), (30)

Pk 0) = S 0l gi (81(k,0), .y, (1,0)), (31)
Tw=1

§(,6) = > 50(q,0)74 (k. ), (32)
=1

where the signals are as in Figure 2. The parameters of
the model are stored in the parameter vector 6.

5.5  Improving the estimated nonlinearity

The number of parameters used by a MIMO static non-
linear model that is linear in the parameters tends to
grow very fast. It grows combinatorially in the case of
a multivariate polynomial for an increasing number of
inputs and outputs, and for an increasing model com-
plexity (e.g. the degree of the multivariate polynomial).
Static nonlinear models that are nonlinear in the pa-
rameters, such as neural networks, can be less sensitive
to this problem if properly tuned. For a standard feed-
forward neural network with one hidden layer and a lin-
ear output layer, the number of parameters grows lin-
early with the number of input and outputs, and linearly
with the complexity (number of neurons) of the neural
network.

An initial estimate of the nonlinear behavior and the
LTT blocks that are present in the parallel Wiener-Ham-
merstein model can be obtained using one set of nonlin-
ear basis functions resulting in a model that is linear in
the parameters, e.g. using multivariate polynomials. In a
second step, the static nonlinearity can be re-estimated
using another MIMO static nonlinear model, e.g. using
a neural network, to increase the model flexibility with-
out increasing the number of parameters too much. The
decision whether or not to perform this refinement step
is left to the user. This step is easily performed as the

intermediate signals Z; and 7;, defined in Figure 2, can
be obtained using the model estimated in Section 5.4.3.
The initial guess of the parameters of this second param-
eterization can then be further refined in a final complete
optimization step, as described in Section 8.

6 Persistence of excitation

Assumption 8. The input signal u(k) is assumed to be
persistently exciting the system.

The assumption that the excitation is persistent is a
very common assumption in system identification. This
section discusses what persistence of excitation means
for the proposed identification procedure.

The first step in the identification algorithm is to identify
the parametric BLA of the nonlinear parallel Wiener-
Hammerstein system. It is important that the BLA iden-
tifies the dynamics that are present in the system cor-
rectly. Therefore, the number of excited frequencies in

the input signal u(k) needs be equal or higher than
ng+ne+1
g

Also the MIMO static nonlinearity needs to be es-
timated. For this identification to work, the ma-
trix K%} in eq. (27) needs to be of full rank.
Put in other words, the nonlinear basis functions
9i,, (&1(k), ..., Tp,, (k) need to be linearly indepen-
dent over the domain of the intermediate signals
Z1(k),...,&n,, (k). A consequence is that the range of
amplitudes present in Z(k),..., &y, (k) needs to be
sufficiently large.

Furthermore, Assumption 6 does not only have conse-
quences for the system. It also determines the choice of
the different setpoints of the input signals. The setpoints
are chosen to ensure that the rank of the matrix D is
equal to ny,..

7 Consistency of the initial estimates

This section shows the consistency of the proposed es-
timator when a linear-in-the-parameters nonlinearity
model is used to describe the MIMO static nonlinearity.

Assumption 9. The data is generated by a parallel
Wiener-Hammerstein system that lies in the model set.

Theorem 2. The parameterized BLA Géll’j (q, 9bla) m

eq. (15) is a consistent (convergence with probability 1)
estimate of eq. (11) when the number of samples N tends
to infinity, and the number of input signal realizations
M > 4 under Assumptions 1, 2, 9.



Proof. See Section 10.7 and Theorems 10.3 and 9.21 in
[17] combined with Theorem 1. O

Since a nonparametric noise model is used during the
identification, a minimum of 4 realizations M is required
to obtain convergence of the parametric BLA estimate
to its expected value (see Theorem 10.3 in [17]). This can
be relaxed if a parametric rather than a nonparametric
noise model is estimated.

Theorem 3. The proposed estimator is a consistent
(with probability 1 for N — o0) estimator of the class
of parallel Wiener-Hammerstein systems defined by As-
sumptions 3, 4, 5, and 7 for the Riemann equivalence
class of asymptotically normally distributed excitation
signals (Assumption 1), under the standard assumption
of zero-mean additive noise at the output only (Assump-
tion 2), and the persistence of excitation condition (As-
sumption 8). Furthermore, the system should be con-
tained in the reachable model set (Assumption 9) for the
estimated parameters to converge to the true parameters
of the system, up to the degenerations of the model.

Proof. Due to Assumptions 4, 5, and 8 and Theorems 1
and 2, the matrix D defined in eq. (16) is of low rank.

The rank of the matrix D is a consistent estimate of the
number of parallel branches that is present in the system.
The columns of the matrix V', that correspond to the
significant singular values are a consistent estimate for
the numerators, hence the zeros that are present in each
branch, up to the degeneration of the model structure
that is explained in Section 3.

In the last step of the estimation algorithm, the MIMO
static nonlinearity is estimated (eq. (28)) for every pos-
sible pole-zero allocation. This problem is linear in the
parameters, and it is solved with a linear least squares
approach. Under Assumption 7, the poles and zeros that
are allocated in this step are consistent estimates of the
true poles and zeros that are present in the system, up
to the degenerations of the model structure, as discussed
in the previous paragraphs.

The estimate of the static nonlinearity is consistent for
the pole-zero allocation that corresponds to the pole-
zero allocation of the true system under Assumption 3.
A bias error will be present for the other pole-zero allo-
cations, since the selected pole-zero allocation does not
correspond to the exact pole-zero allocation of the sys-
tem. Thus, this step results in a consistent estimate of
the LTT blocks and the static nonlinearity when consid-
ering the pole-zero allocation that results in the smallest
estimation error.

The estimated parameters are consistent and converge
to the true parameters under Assumption 9 up to the de-
generations of the model structure as explained in Sec-
tion 3. O

Remark 2. It has been observed that in practice the
rank determination still works well for small values of R
(smaller than ng, larger than ny,)and a finite number of
samples N and realizations M.

8 Final optimization

Joining all the previous estimation steps allows one to
obtain the model parameters as a succession of estima-
tions of subsets of the parameter vector. Although this
results in a consistent estimate when the number of data
points N tends to infinity, this typically yields a sub-
optimal estimate for a finite number of data samples. To
increase the efficiency of the estimator, one can fine-tune
all the parameters simultaneously in a final nonlinear-in-
the-parameters estimation step. The optimized param-
eters are obtained by calculating:

0 =g min Y (y(k) ~ (k. 0", (33)
k=1

where §(k, ) is the modeled output, depending on the
parameters 6. Note that the parameter vector 8 contains
all the parameters of the model.

This cost function unfortunately is non-convex with re-
spect to the parameters 8. A Levenberg-Marquardt al-
gorithm [17] is used to minimize the cost function in a
numerically stable and reliable way. This algorithm con-
verges to the local minimum of the cost function that
is “closest’ to the initial parameter values. Hence, good
initial values of the parameters are very important to
ensure the good quality of the final estimates. The posi-
tive effect of the proposed estimation method is studied
in Section 10.5.

9 Computational aspects

The major part of the workload of the proposed estima-
tion algorithm lies in the partitioning of the poles and
zeros. Remember that all possible pole-zero partitions
are tried in this step (Section 5.4). For each partition,
a linear least squares estimation needs to be performed.
This can be quite demanding with respect to the com-
putation time. To be more specific, consider a BLA with
n poles and n zeros. The number of combinations 7 comp
that needs to be scanned is bounded by:

2727 % < gy < 272707, (34)

where nyp, is the number of parallel branches of the
model.

The upper limit is reached when only real poles and
zeros are present in the decomposition of the BLA, while
the lower limit is reached when all poles and zeros of



the BLA decomposition appear in complex conjugate
pairs. Typically, most poles and zeros appear as complex
conjugate pairs. In practical cases, the actual number of
combinations to be scanned will therefore be closer to
the lower limit.

For example, consider a BLA of order ng = n. = 10
in both numerator and denominator, and a 2-branch
model. This results in a maximum number of combi-
nations equal to 2'° x 220  which is about one billion
combinations. Fortunately, the minimum number is only
32768. Scanning all possible combinations in the upper
limit is clearly not feasible. Scanning all possible com-
binations for the lower limit of this example is possible,
although it remains expensive.

The number of combinations that needs to be scanned
can be reduced further by making some extra assump-
tions or by including prior knowledge about the system.
A common assumption is that the linear subsystems
should be proper. This reduces the number of combina-
tions to be scanned significantly:
' Npr
k)!)

n N n |
2 <n < (n
1(n _ '> > Mecomb > | —
. (k.(2 0! kZ:O Kl(n
(35)

w3

k

Considering the same example as above, this results in
maximum of 184756, and minimum of 252 combinations.
Scanning all possible combinations in the upper limit is
feasible in about a day (considering that trying one pos-
sibility takes about 0.5 seconds). Scanning all possible
combinations of the lower limit of is fortunately done in
a couple of minutes.

The order of the separate LTI-blocks can be fixed at
front, and this also reduces the number of combinations
that need to be tested. Also, the speed of the algorithm
can be improved further by using parallel computing
techniques that are nowadays present in, for instance,
Matlab and Mathematica.

10 Measurement example

A real-world measurement based identification is per-
formed to illustrate the good performance of the pro-
posed method. First, the measurement setup is intro-
duced. Next, the different steps of the model estimation
procedure are shown. Finally, the validation results are
discussed.

10.1 Measurement setup

The device under test (DUT) is a 2-branch parallel
Wiener-Hammerstein system. The front and back LTI
blocks of each branch are third order continuous time
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IIR filters. The static nonlinearity of each branch is
realized with a diode-resistor network.

The rest of the measurement setup is similar to the
setup described in [25]. The signals are generated by an
arbitrary waveform generator (AWG), the Agilent/HP
E1445A, sampling at 625 kHz. An internal low-pass filter
with a cut-off frequency of 250 kHz is used as a recon-
struction filter for the input signal. The in- and output
signals of the DUT are measured by the alias protected
acquisition channels (Agilent/HP E1430A) sampling at
78 kHz. The AWG and acquisition cards are clocked by
the AWG clock, and hence the acquisition is phase co-
herent to the AWG. Leakage errors are hereby easily
avoided. Finally, buffers are added between the acquisi-
tion cards and the in- and output of the DUT to avoid
that the measurement equipment would distort the mea-
surements.

10.2  Input design

The generated input signal u(k) is a random phase mul-
tisine [17] containing N = 131072 samples with a flat
amplitude spectrum. The excited band ranges from fﬁ
t0 frnaz = 20 kHz, viz.:

_ Nmazx fs
u(k)=A Z cos(27me + ¢n), (36)
n=1
where 1,4, 1s the integer number closest to N fi —. The

phases ¢,, are independent uniformly distributed ran-
dom variables ranging from [0, 27 [. Twenty independent
random phase realizations of the multisines are used at
each input level to determine the BLA using the robust
method. The input signal is applied at 5 different rms
values that are linearly distributed between 100 mV and
1V.

The signals are measured at a sampling frequency of 78
kHz, which is 8 times slower than the sampling frequency
at the generator side. This results in measured input
and output signals that contain N = 16384 measured
samples per period.

10.8 Model estimation

This section shows how the different steps of the estima-
tion algorithm are applied on the measurement example.
First, the BLA of the system is measured and parameter-
ized. Next, the estimated dynamics are distributed over
the different LTI blocks that are present in the model.
Finally, the nonlinearity is estimated and a nonlinear
optimization of all the parameters of the model is per-
formed.
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Figure 3. The parameterized BLA for the different excitation
rms values. The FRF of the BLAs for the different rms values
is shown by the full lines. The total variance on the BLAs is
shown with the triangles. The noise variance on the BLAs is
shown with the circles.

10.3.1 BLA estimation and parameterization

The BLA is estimated and parameterized as discussed in
Sections 5.1 and 5.2. The BLAs are parameterized with
a discrete time rational transfer function model, with a
common denominator. The numerators and denomina-
tor are both of order 12. The FRF's of the parameterized
BLAs are shown in Figure 3. Figure 3 also shows the
noise variance and the total variance on the estimated
BLAs. The total variance is the variance that is gener-
ated by the nonlinear behavior of the system and by the
noise that is present in the measurements [17,20]. The
small variation that can be observed in the shape of the
FRF of the BLAs will prove to be sufficiently informative
to decompose the dynamics over the parallel branches.

10.3.2 Splitting the dynamics

The estimated dynamics are decomposed over the dif-
ferent parallel branches. Two parallel branches are re-
trieved by the SVD of the numerator matrix to model
the system under test. The decomposed dynamics are
then partitioned over the front and the back LTI blocks
of the parallel Wiener-Hammerstein model. To do so, all
the possible pole-zero combinations are scanned. It is as-
sumed that all the LTI-blocks in the model are proper
to reduce the number of possible combinations. As a re-
sult, a total of 140817 combinations are scanned. The
mean square simulation error is used as an error crite-
rion. The error is evaluated using one realization of both
the lowest and the highest input excitation level of the
estimation data.

The lowest error after the pole-zero allocation scan is
obtained with a model that has 4 poles and 4 zeros in the
front LTI blocks, and 8 poles and 8 zeros in the back LTI
blocks. This candidate model did not converge to a good
local minimum after the final optimization step that is
described in Section 8. The second lowest error after the
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initial pole-zero scan (before the optimization step) is
obtained with a model that has 6 poles and 6 zeros in
the front LTI blocks, and 6 poles and 6 zeros in the back
LTI blocks. This corresponds to the hardware realization
of the system under test. This model is selected to be
refined further in the next steps.

10.3.8 FEstimating the static nonlinearity

A multivariate polynomial nonlinearity of order 7 is es-
timated during the partitioning of the dynamics to the
front and the back LTI blocks. To increase the modeling
power of the static nonlinear block, this polynomial non-
linearity is replaced by a 2-input 2-output neural net-
work after the separation of the dynamics. The neural
network has one hidden layer that contains 10 tanh(.)
activation functions, and a linear output layer. A tanh(.)
nonlinear function captures the saturation behavior in
the system very well. Afterwards, a final simultaneous
optimization of all the parameters is performed to fur-
ther refine the estimated model.

10.4 Model validation

The estimated model is validated using two different sig-
nal types: random phase multisines of different magni-
tudes, and a growing envelope filtered Gaussian noise
signal.

10.4.1 Multisine validation

The model is validated with a random phase multisine
realization that is not used in the identification. The
experiments are taken at 5 different rms values that are
linearly distributed between 0.1 V and 1 V. The quality
of the model is shown in Table 1 using three figures of
merit: the rms value of the simulation error rms(e), the
absolute mean value of the simulation error p., and the
standard deviation of the simulation error o, as defined
below:

rms(e) = (37)
He = (38)
oo = (39)

where e(k) is the difference between the measured output
y(k) and the simulated output g (k).

The obtained model outperforms the BLA for every rms
value of the input, as can be seen from Table 1. Note that



Table 1

Validation error on a multisine signal

Validation error (mV)

rms(u) | 100 325 | 550 | 75 1000

Parallel WH | 0.30 030 0.02 | 050 032 038 | 038 038 003 | 057 057 008 ] 110 1.06 0.30
WH 291 290 031 | 7.36 725 132 | 1043 1041 0.60 | 15.11 15.08 1.02 | 20.24 20.20 1.28
NARX 320 3.00 1.10 | 6.86 6.85 028 | 9.92 992 039 | 1519 1516 0.92 | 26.42 26.41 0.77
NOE 263 262 024 | 490 489 0.13 | 444 444 003 | 554 554 010 | 18.55 18.54 0.59
BLA 134 0.82 107 | 13.66 9.36 9.94 | 30.92 19.86 23.69| 48.86 30.61 38.08| 60.12 37.63 46.88

a different BLA is used for every rms value of the input,
while only one parallel Wiener-Hammerstein model is
used for all the different rms values of the input. The rms
error is a combination of the standard deviation of the
simulation error, and the mean value of the simulation
error. The BLA is a linear approximation of the system,
and cannot model the nonlinearities that are present in
the system. The BLA can therefore not model the rms
dependent constant contribution to the output that is
generated by the nonlinearities. This explains the much
larger mean error p,. of the model output obtained with
the BLA. Also the varying nonlinear contributions in
the output cannot be explained by a linear model, and
will contribute to the standard deviation of the simula-
tion error. This explains the higher standard deviation
of the simulation error. The parallel Wiener-Hammer-
stein model approximates the static nonlinearities that
are present in the system quite well. Figure 4 shows that,
indeed, the error on the modeled output of the BLA is
coinciding with the level of the total variance on the
measured output. This total variance is a measure for
the nonlinear behavior of the system [17,20].

The parallel Wiener-Hammerstein model output is com-
pared with the results obtained by a Wiener-Hammer-
stein model in Table 1. This Wiener-Hammerstein model
is estimated similarly to the parallel Wiener-Hammer-
stein model, and uses a neural network with one hidden
layer that contains 10 tanh(.) activation functions and a
linear output layer as a static nonlinearity. The Wiener-
Hammerstein model is able to obtain a model error that
is lower than the BLAs at the different excitation lev-
els, but the errors are still 10 to 20 times larger than the
errors of the parallel Wiener-Hammerstein model.

The parallel Wiener-Hammerstein model is also com-
pared with a neural network NARX model in Table 1.
The NARX input-output relationship is given by [3]:

y(k) = f (u(k),...
+ e(k),

sulk—ng),y(k—=1),...,y(k —ng))
(40)

where ny,n, = 12, f(.) is a static nonlinear function,
and e(k) is white additive noise. Here, f(.) is described
by a neural network with one hidden layer that con-
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tains 25 tanh(.) activation functions and a linear output
layer. The estimation of the NARX model is performed
using the Matlab Neural Network Toolbox using the
so-called series-parallel architecture. The NARX model
performs quite well, similar to the Wiener-Hammerstein
model. The error obtained with the parallel Wiener-
Hammerstein model is still 10 to 20 times smaller than
the errors of the NARX model.

The result that is obtained with the NARX model is
further improved using a nonlinear output error model
(NOE in Table 1). Here, the delayed instances of the
measured (noisy) outputs are no longer used in the re-
gressor matrix, they are replaced by delayed instances
of the noiseless output:

g(k) = f (u(k),...,ulk —np),g(k —1),...,9(k —ng))
y(k) = 9(k) + e(k), (41)

where g denotes the noiseless output. This corresponds
to the parallel architecture in the Matlab Neural Net-
work Toolbox. The estimation of the parameters is per-
formed using the Matlab Neural Network Toolbox. This
results in an error which is over 30% smaller than the er-
ror of the NARX model. However, the parallel Wiener-
Hammerstein model still outperforms the NOE model
(see Table 1).

The model error of the parallel Wiener-Hammerstein
model is 30 to 40 dB lower than the total variance on
the output (see Figure 4), and it is only 10 dB higher
than the output noise variance level. This shows that the
proposed identification method captures the nonlinear
behavior of the system very well. Therefore, it results in
a high quality model.

10.4.2  Growing envelope validation

A second validation signal is used to assess the model
quality over a broad amplitude range of the input in one
signal. The input is a filtered Gaussian noise signal with
an envelope that grows linearly over time:

u(k) = < [H(g)r(k)]; (42)

2k
N
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Figure 4. Measured and simulated output spectrum of a
validation dataset. The measured output is shown in blue.
The model error of the parallel Wiener-Hammerstein model
is shown with the green plus symbols. The model error of
the BLA is shown with the red plus symbols. The noise level
at the system output is shown with the bottom black circles.
The total distortion level at the output is shown with the
top black triangles.
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Figure 5. Time domain output of the growing envelope val-
idation. The measured output is shown in blue. The model
error of the parallel Wiener-Hammerstein model is shown
with the green stars. The model error of the BLA is shown
with the red stars.

where r(k) is zero-mean white Gaussian noise with a
standard deviation equal to one, and H(g) is a 6th or-
der low-pass Chebychev filter with a cut-off frequency
located at 20 kHz and a passband ripple of 0.5 dB. Note
that this is a generalization of the input signals that are
used during the estimation. During the last part of the
growing envelope input signal, the excitation amplitude
is higher than the magnitude of the signals used in the
estimation of the model. The rms value of the last por-
tion of the growing envelope input signal is 1.4 V, where
the maximum rms value during the estimation step was
1 V. This shows that the obtained model is even capable
of extrapolating, although it is not advisable to rely on
this property.

The parallel Wiener-Hammerstein model outperforms
the BLA again. The results obtained for the different
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models are shown in Table 2 and in Figure 5. The BLA
is obtained for an input rms value of 0.775 V. It is also
clear from the obtained results that the model still per-
forms well in the last quarter of the growing envelope
input (after 0.15 seconds). This is the region where the
model extrapolates. This proves the robustness of the ob-
tained parallel Wiener-Hammerstein model with a neu-
ral network nonlinearity for this specific example. The
rms errors of the BLA are about 10 to 20 times larger
(20 to 26 dB) than the errors of the parallel Wiener-
Hammerstein model. The Wiener-Hammerstein model,
the NARX model and the NOE model are again able to
obtain model errors that are lower than the model error
of the BLA, but the errors are still about 5 to 10 times
larger (20 dB) than the errors of the parallel Wiener-
Hammerstein model.

10.5 Study of the initialization procedure

A good initial estimate is a key factor to start the further
optimization of the parameters if a high quality model is
to be obtained. In this section we run the proposed algo-
rithm until it arrives at the model selection step that is
described in Section 5.4.3. The models that correspond
to the 100 best pole-zero allocations are optimized, and
the models corresponding to 100 random pole-zero allo-
cations are also optimized separately. All the pole-zero
allocations that are considered have 6 poles and 6 ze-
ros in the front LTI blocks and 6 poles and 6 zeros in
the back LTI blocks to match with the system under
test. The Levenberg-Marquardt optimization algorithm
is stopped after 500 iterations, or sooner when conver-
gence is reached.

It is clear from the results shown in Figure 6 that the
chance to obtain a good final model is higher when the
best initial estimates are selected to be optimized fur-
ther. The median error is more then 4 dB lower when
the best initial estimates are selected (this is almost a
factor 2 in rms error), compared with just picking ran-
domly a pole-zero allocation set. Also, the variability of
the final result is much lower when we start from the 100
best initial estimates.

11 Conclusion

An identification method for parallel Wiener-Hammer-
stein systems starting from input-output data only is
presented. In the first step, the best linear approxima-
tion is estimated for different input excitation levels.
In the second step, the dynamics are decomposed over
a number of parallel orthogonal branches. Next, the
dynamics of each branch are partitioned into a linear
time-invariant subsystem at the input and a linear time-
invariant subsystem at the output of each branch of
the model. The static nonlinear block is also estimated
during this step using a model that is linear in the pa-
rameters. This linear-in-the-parameters model can be



Table 2
Validation error on a growing envelope signal

Validation error (mV)

total quarter 1 quarter 1 quarter 1 quarter 1
rms(u) 822.30 179.07 522.89 889.42 1268.1
Parallel WH | 2.66 2.64 036 | 036 030 0.19 | 0.78 0.74 024 | 1.86 1.84 0.28 | 492 486 0.74
WH 20.20 20.20 0.03 | 444 436 0.82 | 10.22 10.21 0.47 | 17.32 17.29 1.02 | 34.77 34.77 0.15
NARX 18.77 1853 3.01 | 3.52 3.00 183 | 860 860 0.20 | 17.76 17.54 2.80 | 31.75 30.93 7.22
NOE 2293 2232 0.82 | 198 180 082 | 6.28 581 239 | 17.50 1545 821 | 41.89 40.76 9.69
BLA 55.74 46.70 30.44| 11.19 11.10 1.49 | 31.08 22.42 21.53| 55.78 33.12 44.89| 90.70 72.99 53.86
Ran‘dom vs best initialization selec‘tion References
10} . ]
[1] E.W. Bai. An optimal two-stage identification algorithm
20l ] for Hammerstein-Wiener nonlinear systems. Automatica,
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Figure 6. Boxplot of the rms error obtained after optimiza-
tion using different initialization schemes. The boxplot on
the left is obtained using a random pole-zero allocation over
the LTI blocks of the model. The boxplot on the right uses
the 100 pole-zero allocation resulting in the best candidate
models.

replaced afterwards to increase the model flexibility.
Finally, a nonlinear least squares optimization of the
parameters of all blocks together is performed to refine
the estimates. The consistency, and the computational
complexity of the proposed initialization approach
are discussed. The good performance of the proposed
method, and the importance of a good initial estimate
is illustrated on a measurement example.
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