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Abstract

Recently, a max-plus dual space fundamental solution semigroup for a class of difference Riccati
equation (DRE) has been developed. This fundamental solution semigroup is represented in terms
of the kernel of a specific max-plus linear operator that plays the role of the dynamic programming
evolution operator in a max-plus dual space. In order to fully understand connections between this
dual space fundamental solution semigroup and evolution of the value function of the underlying
optimal control problem, a new max-plus primal space fundamental solution semigroup for the
same class of difference Riccati equations is presented. Connections and commutation results
between this new primal space fundamental solution semigroup and the recently developed dual
space fundamental solution semigroup are established.

Keywords. Difference Riccati equations, Max-plus algebra, Fundamental solution semigroup.

1 Introduction

The difference Riccati equation (DRE) is of fundamental importance in the study and solution of
optimal control and filtering problems formulated in discrete time [1], [2]. In the control context,
a solution of the DRE (or of the corresponding differential Riccati equation in continuous time)
characterises the controller that solves the associated optimal control problem, and the optimal cost
associated with that solution. One of the important topics in the investigation of both difference and
differential Riccati equations is the characterisation and representation of all solutions via some form
of fundamental solution [4], [8]. For example, in the (continuous time) differential Riccati equation
case, the well-known Davison-Maki fundamental solution [4] exploits the solution of the corresponding
Hamiltonian differential equation via a Bernoulli substitution technique. Alternatively, a max-plus
fundamental solution developed in [10] exploits the linearity of the dynamic programming evolution
operator associated with the attendant optimal control problem, with respect to the max-plus algebra.
It has been demonstrated that continuous and discrete time formulations of this max-plus fundamental
solution facilitate efficient solution of the differential and difference Riccati equations respectively [5],
[6], [7], [10], [12]. In the latter case, this max-plus fundamental solution has also been recently applied
in investigating existence of solutions and finite escape properties of DRE solutions [13].

In the development of this max-plus fundamental solution for either continuous [10] or discrete
time [12], a specific duality pairing is employed that uniquely identifies the value function on a given
horizon, which resides in a primal space, with a corresponding element of a max-plus dual space, via
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the Legendre-Fenchel transform. This dual space element is used to define the kernel of a max-plus
linear max-plus integral operator indexed with the same time horizon. By virtue of the aforementioned
duality pairing, max-plus linearity of the dynamic programming evolution operator, and the semigroup
property enjoyed by this dynamic programming evolution operator, it is shown that the set of all such
time horizon indexed max-plus linear max-plus integral operators defines a semigroup in the dual
space. In particular, the value function corresponding to any terminal payoff can be evolved to longer
time horizons in the dual space by application of elements of this semigroup of max-plus linear max-
plus integral operators. As evolution of the value function is equivalent to evolution of the difference or
differential Riccati equation solution from an initial condition specified by the Hessian of the terminal
payoff, and this terminal payoff may be selected arbitrarily from a large set of semiconvex functions, the
aforementioned semigroup may be regarded as a max-plus dual space fundamental solution semigroup
for the corresponding difference or differential Riccati equation.

In view of the existing max-plus dual space fundamental solution developed for difference Riccati
equations [12], the aim of this paper is to explore the existence, and subsequent properties, of a max-
plus primal space fundamental solution semigroup for the same DRE. In principle, the construction
of such a primal space fundamental solution semigroup involves the representation of the dynamic
programming evolution operator for each time horizon in terms of a specific max-plus linear max-
plus integral operator indexed by the same time horizon. The resulting class of time horizon indexed
operators takes the same form as in the dual space case, but with each element defined entirely on
the primal space. It is shown that the primal and dual space fundamental solution semigroups are in
fact isomorphic.

In terms of organisation, Section 2 introduces the class of DREs and associated discrete-time linear
quadratic optimal control problem of interest. Section 3 defines the max-plus primal and dual spaces.
Section 4 summarises the existing max-plus dual space fundamental solution semigroup [12], followed
by an analogous development of the new max-plus primal space fundamental solution semigroup in
Section 5. Section 6 includes a detailed analysis of the connection between the max-plus primal and
dual space fundamental solution semigroups.

In terms of notation, R,N,Z≥0 denote the sets of reals, natural numbers, and non-negative integers
respectively. Two sets of extended reals are denoted by R

− .
= R ∪ {−∞} and R

+ .
= R ∪ {∞}. The

set of n× n real, symmetric matrices is denoted by M
n×n .

= {P ∈ R
n×n|P = P T }. Given P ∈ M

n×n,
P > 0 (respectively P ≥ 0) denotes positive (nonnegative) definiteness of P . The triple (R−,⊕,⊗)
denotes a semiring, representing the max-plus algebra, with addition and multiplication operations
defined respectively by a ⊕ b

.
= max{a, b} and a ⊗ b

.
= a + b. The max-plus integral of a function

f : Rn → R
− is defined as

∫ ⊕

Rn f(x) dx
.
= supx∈Rn f(x).

2 The difference Riccati equation and optimal control

Attention is restricted to DREs of the form

Pk+1 = R(Pk), P0 ∈ M
n×n, (1)

with the Riccati operator R : Mn×n → M
n×n defined by

R(P )
.
= Φ+ATPA+ATPB(γ2 I −BTPB)−1BTPA. (2)

Here, A ∈ R
n×n, B ∈ R

n×m, n ≥ m, Φ ∈ M
n×n,Φ > 0 are real matrices, and γ ∈ R, γ > 0, is fixed.

DRE (1) is an example of the indefinite difference Riccati equation [11], [14] as the so-called Popov

matrix Π =

[
Φ 0
0 −γ2 I

]
is indefinite. For k ∈ N, define Rk iteratively by

Rk+1 = R ◦Rk, (3)
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so that Rk = R ◦R ◦ · · · ◦ R︸ ︷︷ ︸
k times

. A matrix Pk ∈ M
n×n is a solution of DRE (1) at step k ∈ N corre-

sponding to initial condition P0 if γ2 I −BTRi(P0)B > 0 for i = 0, 1, · · · , k − 1. This solution can be
expressed as Pk = Rk(P0). DRE (1) arises in the study of linear quadratic regulator (LQR) [1], where
the underlying linear system dynamics are given by

xk+1 = Axk +B wk , x0 = x. (4)

The value function Wk : R
n → R, k ∈ Z≥0 of interest is defined by

Wk(x)
.
= sup

w0,k−1∈(Rm)k
Jk(x; w0,k−1) (5)

via the total payoff

Jk(x;w0,k−1)
.
=

k−1∑

i=0

(
1

2
xTi Φxi −

γ2

2
|wi|

2

)
+

1

2
xTk P0xk .

Here, w0,k−1 ∈ (Rm)k denotes an input sequence for system (4) on interval [0, k − 1]. It is well known
[1] that Wk is a quadratic function of form Wk(x) = 1

2x
T Pk x, x ∈ R

n, in which Pk ∈ M
n×n is the

solution at time k of the DRE (1) with initial condition P0.
Define the (one-step) dynamic programming evolution operator S by

(S φ)(x)
.
= sup
w∈Rm

{1
2x

TΦx− γ2

2 |w|2 + φ(Ax+Bw)}, (6)

and k-step dynamic programming evolution operator Sk, k ∈ N, iteratively by

Sk+1 φ
.
= S (Sk φ) . (7)

As a matter of convention, define S0
.
= I to be the identity operator. Dynamic programming implies

that the set {Sk, k ∈ Z≥0} defines a semigroup of operators, see [12], and an element Sk propagates
the terminal payoff W0 : R

n → R
− defined by

W0(x) =
1

2
xTP0x, x ∈ R

n, (8)

to the value function via Wk = SkW0. A fundamental property of the operator Sk is that it is linear
over the max-plus algebra, that is, Sk(a⊗ φ1 ⊕ φ2) = a⊗ Skφ1 ⊕ Skφ2, see [9], [12].

3 Max-plus primal and dual space

In order to introduce the existing max-plus dual space fundamental solution semigroup [12], and
subsequently develop a new max-plus primal space fundamental solution semigroup, it is necessary to
first introduce the max-plus primal and dual spaces, and the associated duality pairing.

Definition 3.1 ([9], [10]) Given K ∈ M
n×n, a function φ : Rn → R

− is uniformly semiconvex with
respect to K if the function x 7→ φ(x) + 1

2x
TKx : Rn → R

− is convex on R
n. Analogously, a function

φ : Rn → R
− is uniformly semiconcave with respect to K if the function x 7→ φ(x)− 1

2x
TKx : Rn → R

−

is concave on R
n.
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The spaces of uniformly semiconvex and semiconcave functions are defined with respect to K ∈ M
n×n

by

SK+ (Rn)
.
=

{
φ : Rn → R

−

∣∣∣∣
φ is uniformly

semiconvex w.r.t. K

}
, (9)

SK− (Rn)
.
=

{
φ : Rn → R

−

∣∣∣∣
φ is uniformly

semiconcave w.r.t. K

}
. (10)

As per [9], [12], define a pair of operators Dψ and D−1
ψ for a given M ∈ M

n×n by

Dψ φ = (Dψ φ) (·)
.
= −

∫ ⊕

Rn

ψ(x, ·) ⊗ (−φ(x)) dx , (11)

D−1
ψ φ̂ =

(
D−1
ψ φ̂

)
(·)

.
=

∫ ⊕

Rn

ψ(·, z) ⊗ φ̂(z) dz , (12)

where the function ψ : Rn × R
n → R is a quadratic function defined for all x, z ∈ R

n by

ψ(x, z)
.
=

1

2
(x− z)T M (x− z). (13)

Assume the following restrictions on M ∈ M
n×n throughout.

Assumption 3.2 Given γ ∈ R>0 and B ∈ R
n×m as per (2) and (4), the matrix M ∈ M

n×n in (13)
satisfies the inequalities

γ2 I −BTRk(M)B > 0, ∀ k ∈ Z≥0, (14)

R(M)−M > 0, (15)

MB(γ2 I −BTMB)−1BTM > 0. (16)

Inequality (14) requires that a particular solution Pk = Rk(M) of DRE (1) with initial condition
P0 = M exists for all k ∈ N. Inequality (15) implies (see Theorem 3.7) that this particular solution
Rk(M) is nondecreasing in k ∈ Z≥0 and satisfies Rk(M) > M for all k ∈ N. Inequality (16) is useful
in deriving the max-plus primal space fundamental solution semigroup in Section 5.

The following result shows that the operators Dψ of (11) and D−1
ψ of (12) can be used to define a

duality between the spaces S−M
+ (Rn) and S−M

− (Rn) of (9) and (10), where M ∈ M
n×n is as per (13).

Theorem 3.3 The operator Dψ of (11) is a bijection from S−M
+ (Rn) to S−M

− (Rn) with inverse oper-
ator D−1

ψ given by (12).

Proof: It is first shown that

φ ∈ S−M
+ (Rn) =⇒ Dψφ ∈ S−M

− (Rn), (17)

φ̂ ∈ S−M
− (Rn) =⇒ D−1

ψ φ̂ ∈ S−M
+ (Rn). (18)

For any φ ∈ S−M
+ (Rn), by Definition 3.1 of uniform semiconvexity with respect to −M , the function

φ+ : Rn → R
− defined by φ+(x)

.
= φ(x)− 1

2x
TMx is convex on R

n. By convex duality (e.g., [3]), the
convex conjugate φ∗+ : Rn → R

+ defined by

φ∗+(η) =

∫ ⊕

Rn

ηTx⊗ (−φ+(x)) dx (19)
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is convex on R
n. Hence, by (11),

(Dψφ)(z) = −

∫ ⊕

Rn

ψ(x, z) ⊗ (−φ(x)) dx

= −max
x∈Rn

{
−zTMx+ 1

2x
TMx− φ(x)

}
− 1

2z
TMz

= −max
x∈Rn

{
−zTMx− φ+(x)

}
− 1

2z
TMz

= −φ∗+(−Mz)− 1
2z
TMz.

Thus, the function φ̃ : Rn → R
− defined by φ̃(z)

.
= (Dψφ)(z) +

1
2z
TMz = −φ∗+(−Mz), z ∈ R

n, is

concave from (19). That is, Dψφ ∈ S−M
− (Rn) by Definition 3.1.

To show that (18) holds, fix any φ̂ ∈ S−M
− (Rn). By Definition 3.1 of uniform semiconcavity with

respect to −M , the function φ̂− : Rn → R
+ defined by φ̂−(z)

.
= −(φ̂(z) + 1

2z
TMz), z ∈ R

n, is convex

on R
n. By convex duality, the convex conjugate φ̂∗− : Rn → R

− defined by

φ̂∗−(ξ)
.
=

∫ ⊕

Rn

ξT z − φ̂−(z) dz (20)

is a convex function on R
n. Hence, by (12),

(D−1
ψ φ̂)(x) =

∫ ⊕

Rn

ψ(x, z) ⊗ φ̂(z) dz

= max
z∈Rn

{
−xTMz + 1

2z
TMz + φ̂(z)

}
+ 1

2x
TMx

= max
z∈Rn

{
−xTMz − φ̂−(z)

}
+ 1

2x
TMx

= φ̂∗−(−Mx) + 1
2x

TMx.

Thus, the function φ̄ : Rn → R
− defined by φ̄(x)

.
= (D−1

ψ φ̂)(x) − 1
2x

TMx = φ̂∗−(−Mx), x ∈ R
n, is

convex. That is, D−1
ψ φ̂ ∈ S−M

+ (Rn) by Definition 3.1.

The assertion that the operator D−1
ψ is the inverse of Dψ is proved in [9, Theorem 2.9]. Thus, for

any φ̂ ∈ S−M
− (Rn), there exists an element φ

.
= D−1

ψ φ̂ ∈ S−M
+ (Rn) such that Dψφ = Dψ(D

−1
ψ φ̂) = φ̂.

This, together with (17), proves that Dψ is bijection from S−M
+ (Rn) to S−M

− (Rn). �

For the purpose of studying solutions of the DRE (1), the domain of operator Dψ can be restricted
to a space of quadratic functions specified by

Q−M
+ (Rn)

.
=

{
φ : Rn → R

∣∣∣∣
φ(x) = 1

2x
TΩx,

Ω ∈ M
n×n,Ω > M

}
. (21)

Given any φ ∈ Q−M
+ , the function φ̌ : Rn → R defined by φ̌(x)

.
= φ(x) + 1

2x
T (−M)x = 1

2x
T (Ω −

M)x, x ∈ R
n, is convex on R

n. This shows that Q−M
+ (Rn) ⊂ S−M

+ (Rn). Define the range of operator

Dψ over the space Q−M
+ (Rn) by ran(Dψ)

.
=

{
Dψφ |φ ∈ Q−M

+ (Rn)
}
. In order to explicitly characterise

ran(Dψ), define a matrix operation Υ : Mn×n → M
n×n by

Υ(Ω)
.
=M(M − Ω)−1M −M (22)

for Ω ∈ M
n×n such that Ω > M . It can be verified directly that the inverse of Υ is

Υ−1(Ω)
.
= −M(M +Ω)−1M +M = −Υ(−Ω) (23)
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for all Ω ∈ M
n×n such that Ω < −M . Define

Q−M
− (Rn)

.
=

{
φ : Rn → R

∣∣∣∣
φ(x) = 1

2x
TΥ(Ω)x

Ω ∈ M
n×n,Ω > M

}
. (24)

Theorem 3.4 The set Q−M
− (Rn) is the range of the operator Dψ over the space Q−M

+ (Rn). That is,

Q−M
− (Rn) = ran(Dψ).

Proof: For any φ ∈ Q−M
+ (Rn), let Ω ∈ M

n×n,Ω > M , be such that φ(x) = 1
2x

TΩx for all x ∈ R
n.

From (11), (22),

(Dψφ)(z) = −

∫ ⊕

Rn

ψ(x, z) ⊗ (−φ(x)) dx

= −max
x∈Rn

{1
2 (x− z)TM(x− z)− 1

2x
TΩx} = 1

2z
TΥ(Ω)z.

Thus, each element in ran(Dψ) corresponds to an element in Q−M
− (Rn). That is, Q−M

− (Rn) = ran(Dψ).
�

The following result is an immediate consequence of Theorems 3.3 and 3.4.

Corollary 3.5 The operator Dψ of (11) is a bijection from Q−M
+ (Rn) to Q−M

− (Rn) with inverse D−1
ψ

given by (12).

In view of definitions (11) and (12), Theorem 3.4, and Corollary 3.5, Q−M
+ (Rn) is referred to as a max-

plus primal space and Q−M
− (Rn) is referred to as a max-plus dual space. The dynamic programming

evolution operator Sk of (7) propagates the value function Wk of (5) in the max-plus primal space
Q−M

+ (Rn). The domain of Sk, k ∈ N, is defined by

dom(Sk)
.
=

{
φ ∈ Q−M

+ (Rn)
φ(x) = 1

2x
TΩx

∣∣∣∣
Ω ∈ M

n×n such
that Rk(Ω) exists

}
. (25)

In order to show that the value function Wk stays in Q−M
+ (Rn) for any horizon k ∈ N and any

terminal payoff W0 ∈ Q−M
+ (Rn), the following monotonicity property of the Riccati operator Rk from

[13] is useful.

Lemma 3.6 Suppose that solutions P 1
k

.
= Rk(P

1
0 ), P

2
k

.
= Rk(P

2
0 ) of DRE (1) exist at time k ∈ Z≥0

corresponding to initial conditions P 1
0 , P

2
0 ∈ M

n×n . Then,

P 1
0 ≤ P 2

0 =⇒ P 1
k = Rk(P

1
0 ) ≤ Rk(P

2
0 ) = P 2

k . (26)

Theorem 3.7 Suppose that Assumption 3.2 holds. Fix any k ∈ Z≥0, and any initial value function
W0 ∈ dom(Sk) of the form (8), with P0 > M . Then, the value function Wk = SkW0 satisfies
Wk ∈ Q−M

+ (Rn).

Proof: From the definition (25) of dom(Sk), the solution Rk(P0) exists at time k and the value
function Wk(x) = 1

2x
TRk(P0)x, x ∈ R

n. Since P0 > M , it follows that Rk(P0) ≥ Rk(M) from the
monotonicity of the operator Rk from Lemma 3.6. Applying the Riccati operator R to both sides of
the inequality R(M) > M yields R2(M) = R(R(M)) ≥ R(M) > M by Assumption 3.2 and Lemma
3.6. Repeating the process yields Rk(M) > M . Hence, Rk(P0) ≥ Rk(M) > M . Thus, the value
function Wk(x) =

1
2x

TRk(P0)x, x ∈ R
n, belongs to Q−M

+ (Rn) according to (21). �

Remark 3.8 Theorem 3.7 implies that Wk ∈ Q−M
+ (Rn) at horizon k ∈ Z≥0 if W0 ∈ dom(Sk) ⊂

Q−M
+ (Rn). Consequently, Theorem 3.3 implies that the max-plus dual Ŵk

.
= DψWk exists. Theorem

3.4 subsequently implies that Ŵk ∈ Q−M
− (Rn) with a representation Ŵk(z) =

1
2z
TΥ(Rk(P0))z, for all

z ∈ R
n, where the operator Υ : Rn×n → R

n×n is as defined in (22).
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4 Max-plus dual space fundamental solution semigroup

Inspired by the continuous time analysis of [10], and the infinite dimensional analysis of [5], [6], [7], a
new max-plus dual space fundamental solution semigroup for the corresponding discrete time DRE (1)
has recently been developed, see [12]. With the aim of providing context for the new max-plus primal
space fundamental solution semigroup presented in this paper, the development in [12] is summarised
below.

Define an auxiliary value function Ŝk : R
n ×R

n → R by applying the operator Sk to the functions
ψ(·, z)

Ŝk(x, z)
.
= (Skψ(·, z)) (x). (27)

From [12, Theorem 3.1], Ŝk is a quadratic of the form

Ŝk(x, z) =
1

2

[
x

z

]T
Qk

[
x

z

]
, (28)

in which the Hessian Qk may be expressed in block form by Qk =

[
Q11
k Q12

k

Q21
k Q22

k

]
∈ M

2n×2n. Theorem

3.1 in [12] shows that the matrices Qk may be generated iteratively for all k ∈ Z≥0 by

Q11
k+1 = R(Q11

k ), (29)

Q12
k+1 = ATQ12

k +ATQ11
k B(γ2I −BTQ11

k B)−1BTQ12
k ,

Q21
k+1 = (Q12

k+1)
T ,

Q22
k+1 = Q22

k +Q21
k B(γ2I −BTQ11

k B)−1BTQ12
k ,

with initial condition Q0 =

[
M −M
−M M

]
. From the first equation in (29), each element of {Q11

k , k ∈

Z≥0} satisfies DRE (1) with Q11
0 = M . That is, Q11

k = Rk(M) for any k ∈ Z≥0. Inequality (14) in
Assumption 3.2 implies that Q11

k exists for all k ∈ N. Hence Qk exists for all k ∈ N by (29). As shown
in Theorem 3.7, it follows that Q11

k > M for k ∈ N, from inequality (15) in Assumption 3.2. This

implies that the operator Dψ of (11) can be applied to Ŝk(·, z) of (27), for each z ∈ R
n, to yield a

function Bk(·, z) : R
n → R defined by

Bk(y, z)
.
= (DψŜk(·, z))(y) (30)

= −

∫ ⊕

Rn

ψ(x, y)⊗ (−Ŝk(x, z)) dx

for all y ∈ R
n. In [10], [12], the function Bk : Rn×R

n → R is used to define a max-plus linear max-plus
integral operator Bk by

(Bk a)(y)
.
=

∫ ⊕

Rn

Bk(y, z)⊗ a(z) dz (31)

for all y ∈ R
n. It may be shown [10] that Bk and Sk of (7) are related by

Bk = Dψ SkD
−1
ψ (32)

for all k ∈ N. From Corollary 3.5 and Theorem 3.7, Dψ is a bijection from Q−M
+ (Rn) to Q−M

− (Rn)

with inverse D−1
ψ , and Sk is a map from Q−M

+ (Rn) to Q−M
+ (Rn). Consequently, (32) implies that Bk

7



is a map from Q−M
− (Rn) to Q−M

− (Rn). Since {Sk, k ∈ N} defines a semigroup [12], it follows that

{Bk, k ∈ Z≥0} also defines a semigroup by inspection of (32). Let Ŵk = DψWk, k ∈ Z≥0, be the
max-plus dual of the value function Wk. Applying (32),

BkŴ0 = Bk(DψW0) = (Dψ SkD
−1
ψ )(DψW0) (33)

= Dψ(SkW0) = DψWk = Ŵk.

That is, {Bk, k ∈ Z≥0} defines a semigroup of max-plus linear max-plus integral operators that propa-
gate the max-plus dual of the value function with respect to the time horizon k ∈ Z≥0. This provides
an alternative way of propagating any terminal payoff W0 ∈ Q−M

+ (Rn) to its corresponding value
function Wk at time k ∈ Z≥0. This is summarised via the commutation diagram of Figure 1 and the
following steps:

❶ Map the terminal payoff W0 into the dual
space Q−M

− (Rn) by Ŵ0 = DψW0.

❷ Propagate Ŵ0 via Bk to Ŵk = BkŴ0.

❸ Recover the value function Wk = D−1
ψ Ŵk

via the inverse dual operator D−1
ψ of (12).

W0 Wk

Ŵ0 Ŵk

Dψ

Sk

Bk

D−1
ψ

Figure 1: Commutation diagram for propagation of Wk by Sk of (7) or by Bk of (31).

By inspection of (31) and (32), the set of kernels {Bk, k ∈ N} defined via (30) also define a
semigroup. In this case, the associate binary operation used for propagation to longer time horizons
is the max-plus convolution

Bk1+k2(y, z) =

∫ ⊕

Rn

Bk1(y, ρ)⊗ Bk2(ρ, z) dρ (34)

for any k1, k2 ∈ N and y, z ∈ R
n. Furthermore, it has been shown [12] that Bk is a quadratic of the

form

Bk(y, z) =
1

2

[
y

z

]T
Θk

[
y

z

]
, (35)

in which the Hessian Θk may be expressed in block form by Θk =

[
Θ11
k Θ12

k

Θ21
k Θ22

k

]
∈ M

2n×2n. By inspec-

tion of (34) and (35), the set of Hessians {Θk, k ∈ N} also defines a semigroup, with a corresponding
associative binary operation specified by a matrix operation ⊛ defined by

Θk1+k2 = Θk1 ⊛Θk2 (36)

8



.
=

[
Θ11
k1

−Θ12
k1
Π−1

(k1,k2)
Θ21
k1

−Θ12
k1
Π−1

(k1,k2)
Θ12
k2

−Θ21
k2
Π−1

(k1,k2)
Θ21
k1

Θ22
k2

−Θ21
k2
Π−1

(k1,k2)
Θ12
k2

]
,

for all k1, k2 ∈ N, in which Π(k1,k2)
.
= Θ22

k1
+Θ11

k2
(see [12]). Conditions that guarantee that Π(k1,k2) > 0

for all k1, k2 ∈ N are given in Theorem 4.2 of [12]. Hessian propagation via (36) is initialised with

Θ1 =

[
Θ11

1 Θ12
1

Θ21
1 Θ22

1

]
, where an explicit calculation of B1 via (30), and an application of (35), yields

Θ11
1 =M(M −Q11

1 )−1M −M, (37)

Θ12
1 =M(M −Q11

1 )−1Q12
1 ,

Θ21
1 = Q21

1 (M −Q11
1 )−1M,

Θ22
1 = Q21

1 (M −Q11
1 )−1Q12

1 +Q22
1 .

Here, Q1 =

[
Q11

1 Q12
1

Q21
1 Q22

1

]
is as per (29), with

Q11
1 = Φ+ATMA+ATMB(γ2 I −BTMB)−1BTMA,

Q12
1 = −ATM −ATMB(γ2 I −BTMB)−1BTM,

Q21
1 = −MA−MB(γ2 I −BTMB)−1BTMA, (38)

Q22
1 =M +MB(γ2 I −BTMB)−1BTM.

The semigroup {Θk, k ∈ N} defined via (36) is referred to here as the max-plus dual space fundamental
solution semigroup for the DRE (1).

From Remark 3.8, the max-plus dual of the value function Ŵk is a quadratic Ŵk(z) =
1
2z
TΥ(Pk)z, z ∈

R
n, where Pk = Rk(P0). Denote the Hessian of Ŵk by Ok

.
= Υ(Pk). Applying (31) and (33) yields

Ŵk(z) =
1
2z
TOkz =

∫ ⊕

Rn

Bk(z, ρ) ⊗ Ŵ0(ρ) dρ

=

∫ ⊕

Rn

1

2

[
z

ρ

]T [
Θ11
k Θ12

k

Θ21
k Θ22

k

] [
z

ρ

]
⊗

1

2
ρTO0ρ dρ

=
1

2
zT (Θ11

k −Θ12
k (O0 +Θ22

k )−1Θ21
k )z

for all z ∈ R
n and k ∈ N. Thus, the Hessian Ok of the max-plus dual Ŵk can be computed for any

k ∈ N via the max-plus dual space fundamental solution semigroup {Θk, k ∈ N} by

Ok = Ψd
k(O0), (39)

where the operation Ψd
k : M

n×n → M
n×n for each k ∈ N is defined by

Ψd
k(Ω)

.
= Θ11

k −Θ12
k (Ω + Θ22

k )−1Θ21
k . (40)

Note that O0 + Θ22
k < 0 is necessary for the representation (39), see [13]. From Remark 3.8, Ok

and Pk are related by the operation Υ of (22) and Υ−1 of (23) via Ok = Υ(Pk) and Pk = Υ−1(Ok),
respectively. The representation of solution Pk = Rk(P0) of DRE (1) via the max-plus dual space
fundamental solution semigroup {Θk, k ∈ N} is then given by

O0 = Υ(P0), Ok = Ψd
k(O0), Pk = Υ−1(Ok) (41)

9



for all k ∈ N. The max-plus dual space fundamental solution semigroup {Θk, k ∈ N} can be computed
using the propagation rule (36) initialised with Θ1 given in (37). After {Θk, k ∈ N} is computed, a
solution Pk = Rk(P0) of DRE (1) corresponding to any allowable initial condition P0 > M can be
obtained directly using formula (41). Note that {Θk, k ∈ N} only needs to be computed once, and its
computation is independent of the initial condition P0.

5 Max-plus primal space fundamental solution semigroup

Equation (41) provides a representation of solutions Pk = Rk(P0) of DRE (1) via the max-plus dual
space fundamental solution semigroup {Θk, k ∈ N}. In this section, a new max-plus fundamental
solution semigroup is developed that allows a simpler representation of the solution Pk = Rk(P0).

From (29), matrices Q22
k , k ∈ Z≥0, satisfy the iteration

Q22
k+1 = Q22

k +Q21
k B(γ2I −BTQ11

k B)−1BTQ12
k

with initial condition Q22
0 = M . Since Q11

k = Rk(M), k ∈ Z≥0, it follows that γ
2 I −BTQ11

k B > 0 by
inequality (15) for all k ∈ Z≥0. Thus, Q

22
k+1 ≥ Q22

k , for all k ∈ Z≥0. Inequality (14) implies that

Q22
1 = Q22

0 +Q21
0 B(γ2I −BTQ11

0 B)−1BTQ12
0

=M +MB(γ2 I −BTMBT )−1BTM (42)

> M.

Here, Q21
0 = Q12

0 = −M is used, as per (29). Thus, Q22
k > M for all k ∈ N. Consequently, the operator

Dψ of (11) can be applied to the function Ŝk(x, ·) of (27), for each x ∈ R
n, to yield a new function

Sk(x, ·) : R
n → R

Sk(x, y)
.
=

(
DψŜk(x, ·)

)
(y) (43)

= −

∫ ⊕

Rn

ψ(z, y) ⊗ (−Ŝk(x, z)) dz

for all x, y ∈ R
n and k ∈ N. Applying the inverse dual operator D−1

ψ of (12) to Sk(x, ·) yields a

representation of Ŝk in terms of Sk, with

Ŝk(x, z) =
(
D−1
ψ Sk(x, ·)

)
(z) =

∫ ⊕

Rn

ψ(z, y) ⊗ Sk(x, y) dy. (44)

Define a max-plus integral operator by

(S̃kφ)(x)
.
=

∫ ⊕

Rn

Sk(x, y)⊗ φ(y) dy (45)

for all x ∈ R
n, k ∈ N, and φ ∈ Q−M

+ (Rn) such that the max-plus integral in (45) is finite. The

next theorem shows that S̃k coincides with the dynamic programming evolution operator Sk of (7) on
dom(Sk), see (25).

Theorem 5.1 Suppose that dom(Sk) 6= ∅ at horizon k ∈ N. Then, for any φ ∈ dom(Sk),

Skφ = S̃kφ. (46)

10



Proof: It is shown first that

(
Ŝkφ̂

)
(x) =

∫ ⊕

Rn

Ŝk(x, z)⊗ φ̂(z) dz (47)

for any x ∈ R
n, k ∈ N, and φ̂ ∈ Q−M

− (Rn) such that D−1
ψ φ̂ ∈ dom(Sk). By max-plus linearity of the

operator Sk,

(Ŝkφ̂)(x) = (SkD
−1
ψ φ̂)(x)

=

(
Sk

∫ ⊕

Rn

ψ(·, z) ⊗ φ̂(z) dz

)
(x)

=

∫ ⊕

Rn

(Skψ(·, z)) (x)⊗ φ̂(z) dz

=

∫ ⊕

Rn

Ŝk(x, z) ⊗ φ̂(z) dz.

Then, for any x ∈ R
n, φ ∈ dom(Sk) ⊂ Q−M

+ (Rn), (43), (44), and (47) imply that

(Skφ) (x) = (SkD
−1
ψ )(Dψφ)(x)

=

∫ ⊕

Rn

Ŝk(x, z) ⊗ (Dψφ)(z) dz

=

∫ ⊕

Rn

(∫ ⊕

Rn

Sk(x, y)⊗ ψ(z, y) dy

)
⊗ (Dψφ)(z) dz

=

∫ ⊕

Rn

Sk(x, y)⊗

(∫ ⊕

Rn

ψ(y, z) ⊗ (Dψφ)(z) dz

)
dy

=

∫ ⊕

Rn

Sk(x, y)⊗ φ(y) dy = (S̃kφ)(x),

where the third equality uses the fact that ψ(x, z) = ψ(z, x) for all x, z ∈ R
n. �

Theorem 5.1 and (45) show that the dynamic programming evolution operator Sk is a max-plus
linear max-plus integral operator with kernel Sk defined by (43).

Corollary 5.2 For any φ ∈ dom(Sk) ⊂ Q−M
+ (Rn), k ∈ N, the dynamic programming evolution opera-

tor Sk of (7) satisfies

(Skφ)(x) =

∫ ⊕

Rn

Sk(x, y)⊗ φ(y) dy (48)

for all x ∈ R
n.

Using (48), the value function Wk = SkW0 defined with respect to W0 ∈ dom(Sk) can be expressed by

Wk(x) =

∫ ⊕

Rn

Sk(x, y)⊗W0(y) dy (49)

for all x ∈ R
n and k ∈ N. Analogous to Bk of (30), the function Sk, k ∈ N, is a quadratic function of

the form

Sk(x, y) =
1

2

[
x

y

]T
Λk

[
x

y

]
(50)
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for all x, y ∈ R
n, in which the Hessian Λk is defined in block form by Λk =

[
Λ11
k Λ12

k

Λ21
k Λ22

k

]
∈ M

2n×2n.

Analogous to the propagation rules for Bk and its Hessian Θk specified in (34) and (36), Sk and its
Hessian Λk follow similar propagation rules.

Theorem 5.3 For any k1, k2 ∈ N, the functions Sk1 ,Sk2 defined by (43) satisfy

Sk1+k2(x, y) =

∫ ⊕

Rn

Sk1(x, ρ)⊗ Sk2(ρ, y) dρ (51)

for all x, y ∈ R
n and the matrices Λk1 ,Λk2 of (50) satisfy

Λk1+k2 = Λk1 ⊛ Λk2 , (52)

where the ⊛ operation is defined as per (36).

Proof: For any x ∈ R
n, k1, k2 ∈ N and φ ∈ dom(Sk1+k2), from (46),

(Sk1+k2φ)(x) =

∫ ⊕

Rn

Sk1+k2(x, y)⊗ φ(y) dy

= (Sk1(Sk2φ))(x) =

∫ ⊕

Rn

Sk1(x, ρ) ⊗ (Sk2φ)(ρ) dρ

=

∫ ⊕

Rn

Sk1(x, ρ)⊗

(∫ ⊕

Rn

Sk2(ρ, y)⊗ φ(y) dy

)
dρ

=

∫ ⊕

Rn

(∫ ⊕

Rn

Sk1(x, ρ)⊗ Sk2(ρ, y) dρ

)
⊗ φ(y) dy.

Since φ ∈ dom(Sk1+k2) is arbitrary, (51) follows. Applying the quadratic form (50) of Sk1+k2 ,Sk1 , and
Sk2 , and evaluating the quadratic maximisation with respect to ρ ∈ R

n in (51) explicitly yields (52).
�

Similar to Θ1 in (37), the initial condition Λ1 =

[
Λ11
1 Λ12

1

Λ21
1 Λ22

1

]
can be obtained from definition

(43), with

Λ11
1 = Q12

1 (M −Q22
1 )−1Q21

1 +Q11
1 ,

Λ12
1 = Q12

1 (M −Q22
1 )−1M,

Λ21
1 =M(M −Q22

1 )−1Q21
1 , (53)

Λ22
1 =M(M −Q22

1 )−1M −M,

where Q1 is as per (38).
Recalling that the set {Sk, k ∈ N}, along with operator composition, defines a semigroup of

operators, the sets {Sk, k ∈ N} and {Λk, k ∈ N} define semigroups, with respective associative binary
operations defined by the max-plus convolution (51) and the ⊛ operation (52). The semigroup {Λk, k ∈
N} is referred to here as the max-plus primal space fundamental solution for the DRE (1). Using
representation (49), the semigroup {Λk, k ∈ N} can be used to derive a new representation of the
solution Pk = Rk(P0) of the DRE (1).

Theorem 5.4 Given the semigroup {Λk, k ∈ N} of (50) and (52), for any P0 ∈ M
n×n such that

Λ22
k + P0 < 0, the solution Pk = Rk(P0) at horizon k ∈ N of the DRE (1) is given by

Pk = Ψp
k(P0), (54)
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where Ψp
k : M

n×n → M
n×n is defined by

Ψp
k(Ω)

.
= Λ11

k − Λ12
k (Ω + Λ22

k )−1Λ21
k , (55)

for any Ω ∈ M
n×n satisfying Ω+ Λ22

k < 0.

Proof: Fix k ∈ N and an arbitrary P0 ∈ M
n×n such that P0+Λ22

k < 0. The solution Pk = Rk(P0) of the
DRE (1) is the Hessian of the value function Wk of (5) with terminal payoff W0(x) =

1
2x

TP0x, x ∈ R
n.

Applying (49) yields for any x ∈ R
n,

1
2x

TPkx =Wk(x) = (SkW0)(x)

=

∫ ⊕

Rn

Sk(x, y)⊗
1
2y

TP0y dy

= max
y∈Rn

{
1

2

[
x

y

]T [
Λ11
k Λ12

k

Λ21
k Λ22

k

] [
x

y

]
+

1

2
yTP0y

}

= 1
2x

T (Λ11
k − Λ12

k (P0 + Λ22
k )−1Λ21

k )x.

Since this holds for all x ∈ R
n, (54) follows. �

Remark 5.5 It has been shown [13] that the condition Λ22
k + P0 < 0 is a necessary and sufficient

condition for the existence of the solution Pk = Rk(P0) of DRE (1) at time k ∈ N.

The commutation diagram for computation of Pk = Rk(P0) via the max-plus primal and dual
fundamental solution semigroup is shown in Figure 2.

P0 Pk

O0 Ok

Υ

Ψp
k

Ψd
k

Υ−1

Figure 2: The commutation diagram for computation of Pk = Rk(P0) via max-plus dual and primal space fundamental
solution semigroups.

Comparing (41) and (54), the representation of the DRE solution Pk = Rk(P0) in terms of the
max-plus primal space fundamental solution semigroup {Λk, k ∈ N} via (54) has a simpler form than
the representation of (41) via the max-plus dual space fundamental solution semigroup {Θk, k ∈ N}.
Here, {Λk, k ∈ N} is developed directly in the max-plus primal space, and avoids transformation Υ
and Υ−1 between the max-plus primal and dual spaces.

6 Connections between the max-plus dual space and primal space

fundamental solution semigroups

A solution Pk = Rk(P0) of the DRE (1) can be represented either by the max-plus dual space
fundamental solution semigroup {Θk, k ∈ N} via (41) or by the primal space fundamental solution
semigroup {Λk, k ∈ N} via (54). This suggests that there exists a correspondence between elements
of these two semigroups. This section explores the relationship between these two semigroups.
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Note that functions Bk, Sk of (30), (43) are derived from Ŝk of (27) via the operator Dψ of (11).

Thus, both Θk and Λk, the Hessians of Bk and Sk, are related to Qk, the Hessian of Ŝk. In order to
find the connection between Θk and Λk, the connections between Θk and Qk, and connections between
Λk and Qk are established first. To this end, define an operator Γ : M2n×2n → M

2n×2n by

Γ(Ω)
.
= Γ

([
Ω11 Ω12

Ω21 Ω22

])
(56)

=

[
M −M(M+Ω11)−1M M(M+Ω11)−1Ω12

Ω21(M+Ω11)−1M Ω22 − Ω21(M+Ω11)−1Ω12

]

for Ω ∈ M
2n×2n such that Ω11 +M < 0. It can be verified directly that the inverse of Γ is

Γ−1(Ω)
.
= Γ−1

([
Ω11 Ω12

Ω21 Ω22

])

=

[
M(M−Ω11)−1M−M M(M − Ω11)−1Ω12

Ω21(M−Ω11)−1M Ω21(M−Ω11)−1Ω12 +Ω22

]

= −Γ(−Ω) (57)

for Ω ∈ M
2n×2n such that M − Ω11 < 0. It has been shown in Theorem 3.8 of [12] that Θk and Qk

are connected by

Qk = Γ(Θk), Θk = Γ−1(Qk), (58)

for any k ∈ N. Note that Q11
k = Rk(M) > M and Θ11

k = M(M − Q11
k )−1M −M < −M by (29).

Thus, both operations Γ(Θk) and Γ−1(Qk) are well defined. To establish the connection between Λk
and Qk, define an operator ∆ : M2n×2n → M

2n×2n by

∆(Ω)
.
= ∆

([
Ω11 Ω12

Ω21 Ω22

])
.
=

[
Ω22 Ω21

Ω12 Ω11

]
(59)

for any Ω ∈ M
2n×2n, and a second operation Π : M2n×2n → M

2n×2n via the composition

Π
.
= ∆Γ∆, (60)

where Γ,∆ are as per (56) and (59). By inspection of (59), ∆−1 = ∆. Consequently, for any
Ω ∈ M

2n×2n such that M − Ω22 < 0,

Π−1(Ω) = (∆Γ∆)−1(Ω) = (∆−1Γ−1∆−1)(Ω) (61)

= ∆(−Γ(−∆(Ω))) = −(∆Γ∆)(−Ω) = −Π(−Ω).

The matrix operations Π and Π−1 characterise the connection between Qk of (28) and Λk of (50) for
any k ∈ N.

Theorem 6.1 The matrices Qk of (28) and Λk of (50) satisfy

Qk = Π(Λk), Λk = Π−1(Qk) (62)

for any k ∈ N.
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Proof: From (29), (42), Q22
k is strictly increasing with respect to k with Q22

0 = M . Consequently,
Q22
k > M for all k ∈ N. Thus, Π−1(Qk) is well defined for all k ∈ N. Fix any x, y ∈ R

n, k ∈ N. From
the definition (60) of Π,

Sk(x, y) =
1

2

[
x

y

]T
Λk

[
x

y

]
=

(
DψŜk(x, ·)

)
(y)

= −

∫ ⊕

Rn

ψ(z, y) ⊗ (−Ŝk(x, z)) dz

= −max
z∈Rn

{
ψ(z, y)−

1

2

[
x

z

]T [
Q11
k Q12

k

Q21
k Q22

k

] [
x

z

]}

= −max
z∈Rn

{
ψ(z, y) +

1

2

[
z

x

]T
∆(−Qk)

[
z

x

]}

= −
1

2

[
y

x

]T
Γ(∆(−Qk))

[
y

x

]

=
1

2

[
x

y

]T
(−∆Γ∆)(−Qk)

[
x

y

]

=
1

2

[
x

y

]T
Π−1(Qk)

[
x

y

]
.

That is, Λk = Π−1(Qk). Since Π is an invertible operator, it follows that Qk = Π(Λk). �

Combining (58) and (62) yields a correspondence between Λk and Θk for any k ∈ N. Define a
matrix operation Ξ : M2n×2n → M

2n×2n by

Ξ
.
= Π−1Γ. (63)

The inverse Ξ−1 is given by

Ξ−1(Ω) = (Π−1Γ)−1(Ω) = (Γ−1Π)(Ω) = −Γ(−Π(Ω))

for all Ω ∈ M
2n×2n such that Ω22 +M < 0.

Theorem 6.2 Elements Λk and Θk of the max-plus primal and dual space fundamental solution
semigroups {Λk, k ∈ N} and {Θk, k ∈ N} (respectively) satisfy

Λk = Ξ(Θk) (64)

for any k ∈ N.

Proof: Fix any k ∈ N. From (58) and (62),

Λk = Π−1(Qk) = Π−1(Γ(Θk)) = (Π−1Γ)(Θk) = Ξ(Θk).

�

Connections among matrices Λk, Qk,Θk follow (58), (62) and (64) and are shown by the commu-
tation diagram Figure 3.
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Λk

Qk Θk

Ξ

Ξ−1

Π Π−1

Γ−1

Γ

Figure 3: Commutation diagram describes connections between matrices Qk,Θk, and Λk of (28), (35), and (50).

7 Conclusions

A new max-plus fundamental solution semigroup is developed for a class of difference Riccati equations
(DREs). This max-plus fundamental solution semigroup admits computation of all solutions of a DRE
in a specified class, without invocation of duality via the Legendre-Fenchel transform. Connections
between this new primal space fundamental solution semigroup, and the previously known dual space
fundamental solution semigroup, are established.
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