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1. Introduction

Supervisory control (SC) concerns the design of an agent (called
the supervisor) that enforces forbidden state specifications on a 
discrete event system (DES). In the Petri net (PN) framework for-
bidden state specifications are often expressed in terms of linear 
state inequalities, called Generalized Mutual Exclusion Constraints 

way (i.e., enabling as many reachable states as possible), and in-
troducing the minimum number of monitors possible. Recent de-
velopments have shown that this problem can be optimally and 
efficiently solved in two steps, i.e. by calculating first the maximal 
subset of reachable states that guarantees the obtainment of the re-
quired properties, denoted L (the legal set), and then the monitor-
based supervisor that restricts the reachability set of the plant net 
(GMECs), which are amenable to a straightforward PN implemen-
tation, in the form of monitor places suitably connected to the 
transitions of the PN model of the plant and enforcing conser-
vative conditions on the state evolution (through corresponding 
P-invariants) (Giua, DiCesare, & Silva, 1992; Moody & Antsaklis, 
2000).

The supervisor design problem faces various objectives at the
same time, namely the enforcement of specific properties (live-
ness, reversibility, controllability, etc.) in a maximally permissive
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in closed loop exactly to L.
Regarding the first step, Basile, Cordone, and Piroddi (2013) in-

troduce a technique to calculate the legal set enforcing multiple 
specifications, both static and behavioral, the former being associ-
ated directly to individual states, while the latter depend on the 
structure of the reachability graph of the PN. Bounds on job and 
resource usage fall in the first category, whereas deadlock preven-
tion (DP), liveness enforcement (LE), reversibility, controllability, 
etc. are behavioral specifications. The approach is particularly use-
ful when multiple behavioral specifications, such as liveness and 
controllability, are formulated. Indeed, in such cases, it is inconve-
nient to enforce separately each behavioral property, since enforc-
ing one may jeopardize the other.

As for the second step of the methodology, Nazeem, Reveliotis, 
Wang, and Lafortune (2010, 2011) provide a complete framework 
for the characterization of the existence of optimal supervisors and 
their synthesis, formulating an ILP problem where the decision 
variables are the GMEC parameters and the constraints are
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expressed in terms of the legal and illegal markings. On similar 
lines, Chen, Li, Khalgui, and Mosbahi (2011) and Chen and Li 
(2011) concentrate the attention on the so-called First met Bad 
Markings (FBMs) and propose an iterative greedy ILP approach 
to find a GMEC that forbids one FBM at a time. A more efficient 
solution to the same problem, that systematically addresses the 
structural optimality of the supervisor, is suggested in Cordone and 
Piroddi (2013), where a simpler ILP formulation (addressing the 
prevention of a subset of illegal states with an individual GMEC) is 
used as the core element of a Branch and Bound (B&B) approach 
that solves the set covering problem of assigning optimally the 
illegal states to a minimum number of GMECs. Later developments 
extend these approaches to problems where a plain GMEC-
based supervisor does not exist and more complex (nonlinear) 
supervisors are required, (Cordone, Nazeem, Piroddi, & Reveliotis, 
2013, 2012; Nazeem & Reveliotis, 2012). The monitor redundancy 
issue has attracted much attention in the recent literature, with 
specific focus on the reduction of the number of control places 
as well as the supervisor structure. In Dideban and Alla (2008) 
the concept of over-state is introduced for safe PNs, and exploited 
to reduce the constraints for a given set of forbidden states, 
and this approach has been recently improved introducing the 
concept of quasi partial invariants and semi quasi partial invariants 
in Dideban, Zareiee, and Alla (2013). In Zareiee, Dideban, and Orouji 
(2014) ILP problems are used to obtain a small number of control 
places with small number of arcs. Another interesting approach 
for supervisor design enforcing behavioral properties, such as 
reversibility, is discussed in Reveliotis and Choi (2006). This work 
can also be extended to accommodate uncontrollable transitions.

The supervisor design problem becomes more involved in a de-
centralized setting. In that context, it is assumed that several local 
supervisors operate, each having authority only on a portion of the 
system (i.e., on a subset of the transitions), in the absence of central 
coordination and with mutual communication inhibited. Such con-
trol architecture becomes of crucial importance for plants having 
a wide geographic extension or a large number of devices such as 
in modern communication systems. In these cases, communication 
with all plant sensors or actuators is infeasible because of economic 
reasons or bandwidth limitations. Even where centralized control 
is possible, it is of interest to study decentralized control solutions 
to address temporary failures that prevent communication with a 
certain area of the plant, in order to robustify the design.

While there is a large literature on decentralized control with 
formal languages and automata (Barret & Lafortune, 2000; Lin & 
Wonham, 1990; Rudie & Wonham, 1992), relatively fewer works 
address this problem in the PN framework. In Guan and Holloway 
(1997) global specifications are implemented by local supervisors 
with communication. In Chen and Hu (1991) a central coordinator 
is also present but specifications are given from the beginning in 
a distributed form. The approach of Basile, Giua, and Seatzu (2007, 
2008) proposes an algorithm to optimize the permissiveness of the 
closed loop behavior under decentralized control by selecting with 
a heuristic rule the decentralized specifications that find a com-
promise between fairness among variables and the maximal car-
dinality of the set of legal markings under decentralized control. 
The controlled system is not guaranteed to be live or to satisfy 
any particular behavioral property. The mentioned works of Basile 
et al. (2007, 2008) employ a formalization of the decentralization 
specifications similar to the one adopted here, but for the fact that 
the control sites are expressed in terms of subsets of places rather 
than transitions. This design choice appears to be less intuitive and 
significant in practice since, while transitions are generally associ-
ated to events, places do not always have a clear physical meaning. 
In Iordache and Antsaklis (2006) global specifications without cen-
tral coordination are considered and a sufficient condition is given 
for a set of GMECs to be enforced in a decentralized setting (d-
admissibility). In addition, the transformation of inadmissible de-
centralized constraints into admissible ones is posed either in
terms of the minimization of communication costs or in terms of 
the transformation of the constraints into a set of more restrictive 
– but d-admissible – ones. D-admissible constraints can be imple-
mented by supervisors that detect and disable transitions of a sin-
gle site.

The decentralized supervisor design problem is formulated here 
in the framework of the two-step supervisory control methodology 
described above. The main idea is to look for legal state sets (i.e., 
compatible with all the requirements in the centralized setting) 
that are also exactly enforceable by decentralized supervisors. An 
optimization method is designed to find the maximal such set. No-
tice that, differently from Iordache and Antsaklis (2006), this paper 
focuses on the decentralized implementation of a set of legal mark-
ings by means of monitors, rather than the decentralization of a 
given set of constraints. The main difficulty in extending the two-
step approach to the decentralized case lies in the fact that the two 
steps are interdependent. Indeed, not all sets of legal states that are 
compatible with a centralized supervisor implementation are also 
enforceable by a decentralized one. In fact, the decentralization re-
quirement typically results in a reduction of the maximal legal set 
that can be actually allowed, compared to the centralized control 
case. Consequently, one cannot completely decouple the determi-
nation of the legal set L from the assessment of the existence of a 
decentralized supervisor that exactly enforces it.

This difficulty is here overcome by adopting a proposal-
acceptance mechanism, where a candidate legal set L (by con-
struction, included in or equal to the maximal set of legal states that 
can be allowed by a centralized supervisor), is first selected so as to 
guarantee the obtainment of all the desired static and behavioral 
requirements, and then tested for the existence of a decentralized 
supervisor that can exactly enforce it. In case of failure alternative 
smaller candidate legal sets are generated by a B&B algorithm by 
subsequent reductions of the global legal state set, guaranteeing a 
full exploration of its subsets. The B&B algorithm searches for the 
maximal such subset that provides all the required properties and 
is also enforceable in a decentralized way. Notice in passing that 
any existing decentralized controller can also be implemented in a 
centralized way, so that the existence of a centralized supervisor is 
in fact a pre-requisite for the existence of a decentralized one.

Two different procedures are proposed to deal with controlla-
bility from a structural and behavioral point of view, respectively. 
More in detail, structural controllability can be taken into account 
in the supervisor design phase alone by simply constraining the 
monitors introduced by the local supervisors not to have arcs 
directed towards uncontrollable transitions. On the other hand, 
behavioral controllability impacts on both the reachability pre-
processing phase and the supervisor design. Indeed, behavioral 
controllability allows the existence of arcs directed from a local 
controller to an uncontrollable transition, as long as the latter is 
never disabled by an exclusive action of the former. In other words, 
whenever the control place of the local supervisor connected with 
an arc to the uncontrollable transition is insufficiently marked to 
enable the transition, there must always exist another place (not 
belonging to the local supervisor) that disables the transition. To 
enforce this property, a specific condition is added to the super-
visor design phase, concerning every reachable marking where a 
partially controllable transition2 must be disabled. This additional 
constraint ensures the presence of arcs disabling such a transition 
under the above mentioned marking only from local supervisors 
acting on sites where the transition is controllable. The set of such 
markings must be determined in the reachability pre-processing 
phase. Observability is also considered in the design process, but 
only from a structural point of view, for reasons explained in the 
paper.

2 A partially controllable transition is a transition that can be used by multiple
control sites, but is not controllable by all of them.



Finally, notice that a preliminary version of this work,
considering only the simpler – and more conservative – case of
structural controllability, was presented in Basile, Cordone, and
Piroddi (2013). The present paper unfolds the more complex,
but also more permissive, behavioral case and provides a unified
framework for dealing with both approaches. It also provides
a detailed presentation and analysis of the branch and bound
algorithm, including a discussion on its computational complexity.
Finally, a more general simulation example with the comparison
between the structural and behavioral approaches is presented.

2. Preliminaries

2.1. Petri net basics

A marked PN (Murata, 1989) is a 5-tuple N = ⟨P, T , Pre, Post,
m0⟩, where P and T are the (finite and nonempty) sets of np places
and nt transitions, with P ∩ T = ∅, Pre, Post ∈ Nnp×nt are the
input and output matrices, and m0 ∈ Nnp is the (initial) marking
vector, N being the set of nonnegative integers. Places (graphically
represented as circles) are connected to transitions (represented
as bars) through directed weighted arcs. More precisely, Pre(k, j)
[Post(k, j)] represents the weight of an arc going from pk [tj] to
tj [pk] (0 if there is no such arc). In the absence of self-loops,
an equivalent information is given by the incidence matrix C =
Post−Pre. Themarking vectorm defines the distribution of tokens
in places. The pre-set of a set of places P ⊆ P is defined as
•P = {tj ∈ T | ∃pk ∈ P s.t. Post(k, j) > 0}, and the post-set as
P• = {tj ∈ T | ∃pk ∈ P s.t. Pre(k, j) > 0}.

A transition tj ∈ T is enabled in a marking m (denoted m[tj⟩)
iff m ≥ Pre ej, where ej is the jth versor of the Rnt coordinate
space (i.e., ejk = 1 if k = j and 0 otherwise). A transition tj such
thatm[tj⟩may fire atmarkingm, yielding themarkingm′ (denoted
m[tj⟩m′), where m′ = m + Cej. The reachability set R(N,m0) col-
lects the markings reachable fromm0 by way of enabled transition
sequences. The reachability graph is a digraph RG = (V , A), where
V = R(N,m0) is the set of vertices and A ⊆ (V × V ) the set of
arcs, associated to the PN transitions through a labeling function
h : A → T . The notation HA = {t ∈ T | ∃a ∈ A s.t. h(a) = t} will
also be used, where A ⊆ A.

A strongly connected component (SCC) of a digraph is a max-
imal subgraph, such that any two of its nodes are connected by a
directed path. An SCC may consist of a single vertex, if that ver-
tex does not belong to any directed cycle. Let (VS, AS) be an SCC of
RG. Then, if |VS | ≥ 2 the PN can evolve inside VS for an arbitrary
number of transition firings. (VS, AS) is characterized as a terminal
SCC if there does not exist any (m1,m2) ∈ A with m1 ∈ VS and
m2 ∈ V\VS .

A place pi ∈ P is bounded iff ∃k > 0 s.t.mi ≤ k, ∀m ∈ R(N,m0).
A PN is bounded iff all its places are bounded. A transition tj ∈ T
is live iff ∀m ∈ R(N,m0), ∃m′ ∈ R(N,m) s.t. m′[tj⟩. N is live
iff all its transitions are live. N is reversible iff ∀m ∈ R(N,m0),
m0 ∈ R(N,m). A marking m ∈ R(N,m0), s.t. @tj ∈ T enabled in
m, is called a dead marking and represents a (total) deadlock state.
Notice that it also constitutes a terminal SCC with a single vertex.
A PN with no reachable dead markings is called deadlock-free.

In terms of the structure of RG, a PN is (Fumagalli, Piroddi, &
Cordone, 2010):
(i) deadlock-free if all its terminal SCCs have cardinality strictly

greater than 1,
(ii) live if for any terminal SCC (VS, AS) it holds that |VS | ≥ 2 and

HAS = T , and
(iii) reversible if RG contains a single SCC (that coincides with it).

2.2. GMEC enforcement by means of monitors

Given a marked PN N with initial marking m0, a GMEC is a pair
(l, b), with l ∈ Nnp , b ∈ N, that defines an admissibility region
M(l, b) = {x ∈ Nnp | lTx ≤ b}. A set of GMECs (L, b), with
L = [lT1 lT2 . . . lTnc ]

T and b = [b1 b2 . . . bnc ]
T , defines an admis-

sibility region M(L, b) = ∩nc
i=1 M(li, bi). Provided m0 ∈ M(L, b)

holds, a control sub-net consisting of nc additional places (moni-
tors) connected to the existing PN transitions by way of the inci-
dence matrix CC = −LC and marked according tomC0 = b− Lm0
enforces the said constraints (Giua, Di Cesare, & Silva, 1993; Giua
et al., 1992; Yamalidou, Moody, Lemmon, & Antsaklis, 1996). The
designed controller is maximally permissive, in that it prevents
only transition firings leading to a violation of one of the GMECs.

Given a set L ⊆ R(N,m0) such that m0 ∈ L, there exists
a GMEC-based supervisor that exactly enforces it iff there exists
(L, b) such that L ⊆ M(L, b) and M(L, b) does not contain any
other reachable marking.

The problem of restricting the reachability set of a PN within
a set of legal markings L becomes somewhat more involved in
the presence of uncontrollable transitions. In the following, it is
assumed that T = Tc ∪ Tuc with Tc ∩ Tuc = ∅, where Tuc is the
set of uncontrollable transitions (represented as black bars), and
Tc is the set of controllable transitions (represented as white bars),
associated to uncontrollable and controllable events, respectively.

Definition 1. Consider a PN N with Tuc ≠ ∅. The sub-net Nuc ob-
tained from N eliminating every transition in Tc is denoted uncon-
trollable sub-net of N . �

It is immediate to see that R(Nuc,m) ⊆ R(N,m).

Definition 2. A legal marking set L ⊆ Nnp is behaviorally control-
lable w.r.t. a marked PN ⟨N,m0⟩ if


m∈L R(Nuc,m) ⊆ L, where

Nuc is the uncontrollable sub-net of N . �

In other words, L is controllable if no forbidden marking is
reachable fromanymarkingm ∈ L by firing a sequence containing
only uncontrollable transitions.

When the controller is modeled by a PN, a transition t enabled
under the net marking can only be disabled if there is an arc from
a control place to t and the control place is insufficiently marked.
Therefore, to enforce a behaviorally controllable legal marking set
by means of a PN controller, an arc directed from a control place
to an uncontrollable transition must be avoided if there exists
a reachable marking where the control place alone disables the
transition, which would otherwise be enabled by way of the plant
marking. A simple, but possibly restrictive condition that ensures
controllability is to avoid altogether arcs directed from monitor
places to uncontrollable transitions.

Definition 3 (Moody & Antsaklis, 2000). Let N be a PN with transi-
tion set T = Tc ∪ Tuc , where Tc ∩ Tuc = ∅. A set L of legal markings
is said to be structurally controllable iff there exists a set of GMECs
that exactly enforces it, such that for each monitor pc = 1, . . . , nc
it holds that pc • ∩Tuc = ∅. �

A transition is called unobservable if its firings cannot be di-
rectly detected or measured. As a consequence, a controller state
change cannot be triggered by the firing of an unobservable tran-
sition. Since in a PN supervisor both input and output arcs to the
plant transitions can trigger its state changes, no arcs directed to-
wards or coming from an unobservable transition are allowed. In
case of unobservable transitions, two strings of transitions (events)
cannot be distinguished if they become equal deleting unobserv-
able transitions. Behavioral observability requires that if it is not
possible to distinguish two different strings of events in a DES, then
the supervisor must produce the same action on the plant in re-
sponse to their firing (Cassandras & Lafortune, 2008). Behavioral
observability is necessarily tested on the reachability graph but it
does not influence the supervisor implementation, that is still con-
strained not to have any arc connectionswith unobservable transi-



tions independently from the approach adopted (either structural
or behavioral). Therefore, since in this paper the focus is on the
decentralized implementation of a legal marking set and not on
the behavioral observability test, behavioral observability will be
not considered. The reader can refer to the literature (Cassandras
& Lafortune, 2008) for further details.

Denote with To and Tuo the sets of observable and unobservable
transitions, respectively (correspondingly associated to observable
and unobservable events), where T = To ∪ Tuo and To ∩ Tuo = ∅.

Definition 4. Consider a PN N with Tuo ≠ ∅. The sub-net Nuo
obtained from N eliminating every transition in To is denoted as
unobservable sub-net of N . �

Definition 5 (Moody & Antsaklis, 2000). Let N be a PN with transi-
tion set T = To∪ Tuo, where To∩ Tuo = ∅. A set L of legal markings
is said to be structurally observable iff there exists a set of GMECs
that exactly enforces it, such that for each monitor pc = 1, . . . , nc
it holds that (pc • ∪ • pc) ∩ Tuo = ∅. �

2.3. GMEC optimization as a classification problem

A set of GMECs (L, k) can be envisaged as a linear classifier,
separating themarkings inM(L, k) from those outside. Conditions
for the existence of a linear classifier (L, k) that separates any two
given (disjoint) marking sets, L (the legal set) and U (the illegal
set), are discussed in Cordone et al. (2013, 2012).

Theorem 1 (Cordone et al., 2012). There exists a linear classifier for
marking sets L and U iff there does not exist a marking m ∈ U such
that m ∈ PL, where PL is the convex hull3 of L.

Cordone and Piroddi (2011, 2013) provide an efficient method
for the design of a maximally permissive GMEC-based supervisor
guaranteeing the correct state classification. The design of the
supervisor is reformulated as the search for an optimal covering
of the illegal set U with suitable subsets Ui, i = 1, . . . , nc , such
that for each subset there exists a GMEC that separates it from
L. Indeed, the resulting set of GMECs provides a linear classifier
that separates U from L. All feasible coverings of the illegal set
U can be systematically explored with the B&B method explained
in Cordone and Piroddi (2011, 2013).

The method can be extended to nonlinear classifiers, formu-
lated as disjunctions of linear classifiers, to deal with all cases that
do not fall into Theorem 1, albeit at an increased computational
cost, as discussed in Cordone et al. (2013, 2012).

3. Characterization of the legal set in a decentralized frame-
work

3.1. The decentralized setting

Let N be a (possibly unbounded) PN with initial marking m0,
and with transition set T = Tc ∪ Tuc and T = To ∪ Tuo, where
Tc ∩ Tuc = ∅, To ∩ Tuo = ∅, and Tc ⊆ To (all controllable transitions
are also assumed observable). Notice that any supervisor is con-
strained to operate only on observable transitions, and can disable
only controllable transitions. Let L be the maximal set of mark-
ings (denoted legal set in the sequel) compatible with all the static
and behavioral requirements of interest and realizable with a cen-
tralized supervisor. It is here assumed that the static requirements
include boundedness, so that L is a bounded set, and that the be-
havioral requirements include liveness, reversibility, and control-
lability. The mentioned set L can be determined exactly following

3 The convex hull of a set of points X in a vector space V is the minimal convex
set containing X .
the approach described in Basile et al. (2013) orwith other supervi-
sor design techniques that can guarantee the same properties. Let
also U be the corresponding set of boundary illegal states (states
outside L that can be reached from legal states with a single tran-
sition firing), briefly referred to as illegal set. The boundedness ofL
automatically implies that ofU (Basile et al., 2013). Finally, the B&B
methods of Cordone and Piroddi (2013) and Cordone et al. (2013)
can be invoked to compute the optimal supervisor enforcing L. In
the following it is assumed that such a centralized supervisor ex-
ists, which is a pre-requisite for the existence of a decentralized
supervisor.

Now, consider a decentralized setting where the sets of transi-
tions T1, . . . , Tν identify ν control sites such that any local super-
visor is allowed to act only on the transitions of one site. Subsets
Ti, i = 1, . . . , ν, do not necessarily form a partition nor a cov-
ering of T , so that the same transition might belong to different
subsets Ti, i = 1, . . . , ν. Let Ti = Tci ∪ Tuci , i = 1, . . . , ν, with
Tci ∩ Tuci = ∅, Tci collecting all (locally controllable) transitions as-
sociated to events whose firing can be disabled by the ith control
site Si. Similarly, let Ti = Toi ∪ Tuoi , i = 1, . . . , ν, with Toi ∩ Tuoi
= ∅, where Toi represents a set of (locally observable) transitions
associated to events whose firing can be detected from Si. Further
on, all transitions in T\Ti are assumed uncontrollable and unob-
servable by the ith control site. Conventionally, controllable transi-
tions are also expected to be observable, so that Tci ⊆ Toi . Note that
a globally controllable transitionmay become partially controllable
in a decentralized setting, i.e. controllable only by a fraction of the
sites which have authority over it.

In the decentralized setting, only a subset L ⊆ L of the legal
markings will generally be allowed (due to the decentralization
constraints). While this would still guarantee the obtainment of
all the static specifications, that depend only on the individual
states, the desired behavioral properties could be lost due to the
contraction of the reachable space (which implies a modification
of the behavioral characteristics of the system, as described by
the reachability graph). For this reason, two separate notions of
feasibility will be introduced, accounting for the achievement
of the required behavioral properties and the realizability of a
decentralized supervisor, respectively. Accordingly, an algorithm
will be illustrated that finds the largest subset of L that achieves
both properties at the same time.

3.2. B-feasibility

In the following, a set of markings L ⊆ L will be denoted
B-feasible (behaviorally feasible) iff the reachability subgraph
induced by L on the PN possesses all the required behavioral
properties. Without loss of generality, the required behavioral
properties are here restricted to liveness, reversibility, and
controllability. The definition of B-feasibility (and the overall
approach) can be extended also to other properties (e.g., DP).

Definition 6. A set L such that {m0} ⊂ L ⊆ L is denoted
B-feasible if a supervisor enforcing exactly L results in a live,
reversible and behaviorally controllable PN system. �

The following result provides a necessary and sufficient condition
for B-feasibility.

Lemma 1. Let {m0} ⊂ L ⊆ L and (L, A) be the subgraph induced
by L on the reachability graph RG = (V , A), i.e. A = {(m,m′) ∈ A :
m,m′ ∈ L}. Then, the set L is B-feasible iff
(i) the graph (L, A) has only one SCC (coinciding with the entire

graph);
(ii) HA = T ;
(iii) ∀a = (m,m′) ∈ A s.t. m ∈ L and h(a) ∉ Tc , where Tc =
∪
ν
i=1 Tci , it holds that m

′
∈ L as well. �



Proof. Assume that there exists a GMEC-based supervisor exactly
enforcing L.4 Such a supervisor will achieve reversibility, liveness,
and behavioral controllability. Reversibility follows immediately
upon observing that the reachability graph of a (bounded)
reversible PN has a unique SCC (coinciding with the entire graph
itself) (Fumagalli et al., 2010), so that any state is reachable from
any other. Deadlock-freeness is also automatically obtained since
the PN can evolve indefinitely in a SCC with cardinality greater
than 1 (as implied by assumption L ⊃ {m0}). The only additional
requirement for liveness is that ∀tj ∈ T there exists at least an arc
in the reachability graph associated to the firing of tj (Fumagalli
et al., 2010). This is ensured by condition (ii). Finally, condition (iii)
implies that there cannot be an arc a = (m,m′) ∈ A s.t. m ∈ L
andm′ ∈ L\L, with h(a) ∉ Tc . In otherwords, no illegalmarking is
reachable from within L by firing only uncontrollable transitions,
as required by Definition 2. �

B-feasibility can be tested based on the reachability graph alone,
and does not require the explicit calculation of the set of GMECs
enforcing the given set of states.

The following Lemma provides a useful necessary condition for
B-feasibility that can be employed to narrow down the search in
the state space.

Lemma 2. Let {m0} ⊂ L ⊆ L and (L, A) be the subgraph induced
by L on the reachability graph RG = (V , A). Let also (LS, AS) be
the (unique) SCC of (L, A) such that m0 ∈ LS . Then, any B-feasible
subset of L is contained in LS . �

Proof. By definition, (LS, AS) is the maximal strongly connected
subgraph of (L, A) containingm0. Any B-feasible set satisfying the
assumption induces a strongly connected subgraph of (L, A), and
containsm0. Therefore, it is necessarily contained in LS . �

3.3. D-feasibility

In the following, a subset of legal states will be denoted as D-
feasible (decentralization feasible) if it can be exactly enforced by a
decentralized supervisor, i.e. such that each local supervisor is not
connected with transitions of other control sites, and ensuring lo-
cal controllability and observability. Notice that the previously re-
called definition of d-admissibility given in Iordache and Antsaklis
(2006) refers to a set of GMECs, while D-feasibility refers to a set
of (globally) legal markings. In words, it is possible to claim that
a set of markings is D-feasible if there exists a set of d-admissible
GMECs that exactly enforce it. The concept of D-feasibility is con-
sidered more appropriate here, in that the developed decentral-
ized control design method described in the sequel operates on
state sets. The two local properties can be enforced in a structural
way or behavioralway, the latter beingmore complex but allowing
greater permissivity. For ease of reference, the notions of DS- and
DB-feasibility are introduced to identify the specific (structural or
behavioral) controllability condition considered, respectively.

The structural implementation allows outgoing arcs from
monitor places only towards locally controllable transitions, and
incoming arcs to monitor places only from locally observable
transitions.

Definition 7. A set L ⊆ L is denoted DS-feasible if there exists
a set of GMECs that exactly enforces it, such that for each pc =
1, . . . , ndc there exists i ∈ {1, . . . , ν} such that pc• ⊆ Tci
(local structural controllability) and •pc ⊆ Toi (local structural
observability). �

4 Such a supervisor always exists, though not necessarily in the form of a plain
set of GMECs. However, this is irrelevant to the current lemma.
Fig. 1. Monitor places pc1 and pc2 acting on the partially controllable transition t .
Monitor places and arcs are dashed.

Local behavioral controllability is enforced by ensuring that a
transition t is never disabled exclusively bymonitor places belong-
ing to control sites fromwhich t is uncontrollable. A transition dis-
abling by amonitor place occurs if its firing takes the system from a
boundary legal marking to an illegal one. In that case, the disabling
monitor must belong to a control site Si for which the associated
transition is accessible and controllable, i.e. t ∈ Tci (t cannot be
uncontrollable from all sites, otherwisem could not have been as-
sumed legal). Now, if such a monitor is present, there is no need
to prevent arcs from other control places to t , even if t is locally
uncontrollable from their control sites, since t is not disabled ex-
clusively by those control places. This additional degree of freedom
in the supervisor structuremay potentially increase its permissive-
ness, as opposed to supervisors enforcing structural controllability
conditions.

Consider the partially controllable transition t in Fig. 1, and two
monitor places pc1 and pc2 associated respectively to site S1 and
S2. Precisely, assume that t is controllable from site S1 and uncon-
trollable from site S2. From a structural point of view, the arc going
from pc2 to t is not admissible. On the other hand, if a behavioral ap-
proach is adopted, the arc is admissible provided that any marking
such as the one in Fig. 1(a) is forbidden. Indeed, in that case t turns
out to be disabled precisely by pc2. On the other hand, themarkings
in Fig. 1(b–c) are legal since t is disabled by pc1. Notice that once
m(pc1) = 0, the marking of pc2 is indifferent: even if m(pc2) = 0,
as in Fig. 1(c), the disabling action can be attributed to pc1.

Let Lb = {m ∈ L | m[t > m′,m′ ∉ L, t ∈ Tc} denote the
set of boundary legal markings, i.e. the legal markings from which
the illegal set can be reached in a single transition step. Notice
that the described marking evolution can only occur through the
firing of a controllable transition, otherwise m would not be legal.
By selectively forbidding the mentioned controllable transitions
enabled in markings belonging to Lb, no illegal marking will ever
be reached. For each boundary legal markingm ∈ Lb, let D(m) =
{t ∈ Tc | m[t > m′,m′ ∉ L} be the set of controllable transitions
that must be disabled in m. Finally, let Φ ∈ {0, 1}ν×nt be a binary
function defining the controllability of transitions from a certain
site, i.e. such that Φ(i, t) = 1 if t ∈ Tci , and 0 otherwise. Let
also k : {1, . . . , ndc} → {1, . . . , ν} map the individual GMECs to
the control sites (k(pc) = i indicates that the pcth GMEC operates
on the ith site, i.e. the corresponding monitor is connected only to
transitions in Ti).

Definition 8. Let {m0} ⊆ L ⊆ L and assume that there exists a
set of GMECs that exactly enforces L. Set L is denoted DB-feasible
iff

(i) For each pc = 1, . . . , ndc , there exists a control site Si such that
pc • ∪ • pc ⊆ Ti;

(ii) For each pair (m, t) with m ∈ Lb and t ∈ D(m) s.t.ν
i=1Φ(i, t) ≥ 1, it holds that m(pc) ≤ Prec(pc, t) −



1 (pc disables t), at least for one pc ∈ {1, . . . , ndc} with
k(pc) = i, where Prec is the input matrix associated to the
supervisor. �

Notice that DS-feasibility implies DB-feasibility.

4. A B&B approach for the design of an optimal decentralized
supervisor

Definition 9. A set of GMECs (L, b) results in an optimal decen-
tralized supervisor if it enforces a maximum cardinality B- and
D-feasible subset of the set L of (globally) legal states. �

In the preceding definition, the D-feasibility property can be
declined either in the structural or behavioral version, as preferred.

Notice that, trivially, if the set L of legal states for the cen-
tralized supervisor design setting is D-feasible, the decentralized
supervisor that enforces it is optimal, since L is B-feasible by def-
inition, and there does not exist a solution (decentralized or not)
that allows a larger number of states.

In the general case, in order to find the optimal decentralized
supervisor (if one exists), an implicit enumeration technique over
the subsets of L is proposed. Given a certain subset L ⊆ L,
its B-feasibility can be ascertained by analyzing the reachability
subgraph induced by L alongside Lemma 1. Verifying the D-
feasibility ofL is amuchmore complex issue, that involves solving
an ILP problem.

The systematic exploration of all possible subsets of L is based
on a branch-and-bound approach. For this purpose, a generic node
of the branching tree is associated to a specific partition of the set
L of (globally) legal states into three pairwise disjoint subsets:
L = L+ ∪L− ∪L×, (1)
where L+ identifies the legal states that must be included and
L− groups the legal markings that must not be included into any
feasible solution of the current node (and all its descendants). The
remaining legal states (L×) are still unassigned, and essentially
constitute the remaining decision variables of the current subprob-
lem. Briefly, since Eq. (1) implies that L× = L\(L+ ∪L−), a node
is fully characterized by the first two sets, namely:
Π = {L+,L−}.

The general outline of the B&B approach is provided below, as
Algorithm 1.

The branching process is initialized with a root node defined
as Π0 = {{m0},∅}, implying that the initial marking must be
allowed by any feasible solution (which can otherwise contain
any other legal state). Then, as long as there are open nodes, one
of them is extracted and processed as follows. A pre-processing
phase (see Section 4.1) extendsL+ andL− based on simple logical
conditions. Then, the largest B-feasible subsetLBF ofL compatible
with the node assignments (L+ ⊆ LBF ⊆ L\L−) is computed (see
Section 4.2). Any state outside of LBF cannot belong to a B-feasible
subset, and is therefore added to L−. Afterwards (see Section 4.3),
the largest D-feasible subset LDF included in LBF is found, that
also abides by the node assignments (L+ ⊆ LDF ⊆ LBF ). If
LDF is B-feasible, the decentralized supervisor that enforces it is
optimal for the current node, because no larger subset can enjoy
both properties. The algorithm stores in L

∗ the best B- and D-
feasible set found during the process, that provides a lower bound
on the optimum of the problem. In each phase, the current node
is immediately discarded if L∗ exceeds the size of a suitable upper
bound on the size of the optimum. In that case, in fact, no solution
of the node (and of its descendants) can improve the best one
found so far. If LDF is not B-feasible, LBF could still contain B-
and D-feasible subsets. Therefore, the current node is branched
producing two sub-nodes that inherit the state assignments from
the father node, plus additional ones that generate a partition of the
solution set. The sub-nodes are finally inserted in the list of open
sub-problems.
Algorithm 1 DecentralizedSupervisor
Require: N , RG, L, U.
Ensure: L

∗.
Π0 ← {{m0},∅}; ◃ Initial problem
Λ← {Π0}; ◃ List of open problems
L
∗
← ∅; ◃ Current best solution

whileΛ ≠ ∅ do
{L+,L−} ← Get(Λ); ◃ Pick current problem
if |L\L−| > |L

∗
| then ◃ Pre-processing

(L+,L−)← Pre-processing(N , RG, L, L+, L−);
if L+ ∩L− ≠ ∅ then L− ← L; end if

end if
if |L\L−| > |L

∗
| then ◃ B-feasibility

LBF ← B-feasibleSubset(N , RG, L, L+, L−);
L− ← L\LBF ;

end if
if |LBF | > |L

∗
| then ◃ D-feasibility

LDF ← D-feasibleSubset(N , L, U, L+, L−);
if @LDF then LDF ← ∅; end if

end if
if |LDF | > |L

∗
| then

if LDF ≡ LBF or LDF is B-feasible then
L
∗
← LDF ; ◃ Best solution update

else ◃ Branching
Pickm ∈ LBF\LDF ;
Π− ← {L+,L− ∪ {m}};
Π+ ← {L+ ∪ {m},L−};
Λ← Λ ∪ {Π−,Π+};
end if

end if
end while
Return L

∗;

The various phases of the algorithm are explained in detail in
the next subsections.

4.1. Node pre-processing

To reduce the tree expansion and simplify the overall computa-
tion, it is convenient to exploit all available information to assign
further states to either L+ or L−. This pre-processing greatly ac-
celerates the branching process by reducing the free states of the
node. The pseudo-code of the pre-processing procedure is given in
Algorithm 2.

First of all, let RG′ = (V ′, A′) be the subgraph induced by
V ′ = L\L− on RG. By Lemma 2, any B-feasible subset of V ′ is
certainly included in the SCC of RG′ that contains m0, denoted as
(VS, AS). So, this SCC is identified and all the states not belonging
to it are included into L−. If after this extension any state of L+
also belongs to L−, no B-feasible subset can fully include L+, and
the branching node can be discarded. The subproblem is unfeasible
also if VS includes only m0 or if HAS ⊂ T , because under these
circumstances liveness cannot be guaranteed.

The following property allows to extend subset L+: if a state in
L+ has only one successor [predecessor] state, the latter must also
belong to the solution. Therefore, the unique successor [predeces-
sor] state must be included into L+.

Lemma 3. Let G = (V , A) be a digraph and S = (VS, AS) an SCC of
G such that |VS | ≥ 2. Let also w ∈ VS and denote w• = {v ∈ V |
(w, v) ∈ A} [•w = {v ∈ V | (v,w) ∈ A}] be the set of succes-
sor [predecessor] nodes. Then, if |w • | = 1 [| •w| = 1], it holds that
w• ⊆ VS [•w ⊆ VS]. �

Proof. A node belonging to an SCC of cardinality greater than 1 has
at least one predecessor node and a successor node that also belong



Algorithm 2 Pre-processing
Require: N , RG = (V , A), L, L+, L−.
Ensure: L+, L−.

V ′ ← L\L−;
A′ ← {(m,m′) ∈ A | m,m′ ∈ V ′};
Let (VS, AS) be the SCC of (V ′, A′) s.t. m0 ∈ VS ;
L− ← L\VS ; ◃ Extend L−
if L+ ∩L− ≠ ∅ or |L\L−| = 1 or HAS ⊂ T then
L+ ← ∅; L− ← L; ◃ Discard the node
end if
for allm ∈ L+ s.t. •m = {m′}, withm′ /∈ L+ do
L+ ← L+ ∪ {m′}; ◃ Extend L+
end for
for allm ∈ L+ s.t. m• = {m′}, withm′ /∈ L+ do
L+ ← L+ ∪ {m′}; ◃ Extend L+
end for
if L+ ∩L− ≠ ∅ then
L+ ← ∅; L− ← L; ◃ Discard the node
end if
Return (L+,L−);

to the same SCC. Therefore, if it has only one predecessor/successor
node, then that node is necessarily included in the SCC. �

Once again, if after the extension L+ and L− intersect, the node is
unfeasible and can be discarded.

4.2. Finding the largest B-feasible subset

After the pre-processing, the reachability subgraph has been re-
duced to a single SCC, (VS, AS), but it is not necessarily B-feasible,
due to the uncontrollable transitions. The largest B-feasible sub-
set of VS is then determined using Algorithm 3, which is readapted
from Basile et al. (2013).

Algorithm 3 B-feasibleSubset
Require: N , RG = (V , A), L, L+, L−.
Ensure: LBF .
V ′ ← L\L−;
repeat
V ′old ← V ′;
A′ ← {(m,m′) ∈ A | m,m′ ∈ V ′};
Let (VS, AS) be the SCC of (V ′, A′) s.t. m0 ∈ VS ;
if L+ * VS or |VS | = 1, or HAS ⊂ T then

◃ Incompatibility with L+ or B-feasibility violation
Return LBF ← ∅;

else
V ′ ← VS ;

end if
if ∃m ∈ V ′, ∃t ∈ Tuc, ∃m′ /∈ V ′ s.t.m[t⟩m′ then
ifm ∈ L+ then
Return LBF ← ∅; ◃ Incompatibility with L+
else
V ′ ← V ′\{m};
end if

end if
until V ′ = V ′old
Return V ′;

Briefly, Algorithm 3 recursively prunes the SCC of any states
violating one of the required behavioral properties, i.e. states from
which an illegal state can be reached by firing only uncontrollable
transitions, terminal cyclic SCCs where not all transitions can be
fired, deadlock states, etc. This task is necessarily iterative since any
graph reduction may jeopardize one or more of such properties. If
during the process a state belonging to L+ is pruned, Algorithm 3
is stopped, and the node is eliminated, since no feasible solution
exists. Otherwise, let LBF be the B-feasible set returned by the
algorithm. If |LBF | ≤ |L

∗
|, the node is discarded, because none

of its solutions can improve the best one found so far.

4.3. Finding the largest D-feasible subset

At this point one has obtained a B-feasible subset LBF ⊇ L+
and such that |LBF | > |L

∗
|. Therefore such set could provide an

improving solution, should it be proved D-feasible as well.
The procedure D-feasibleSubset consists in solving an ILP prob-

lem, described in detail in the next section, that is designed to find
the largest D-feasible subset L+ ⊆ LDF ⊆ LBF . Now, if the ILP
problem is unfeasible, the node can be discarded. Otherwise,LDF is
a D-feasible subset and, being the largest one compatible with the
node assignments, its value |LDF | provides an upper bound on the
optimumof the current sub-problem. If |LDF | ≤ |L

∗
|, the node can

be discarded because no (B- and D-feasible) solution of the current
problem can improve over L

∗. Otherwise, better solutions could
exist, provided that they are also B-feasible. Therefore, LDF is an-
alyzed to verify a posteriori whether it is B-feasible (note that B-
feasibility automatically holds if LDF ≡ LBF ). In the affirmative
caseLDF provides a feasible solution for the overall problem,which
is more permissive than the current best. Therefore, it is stored in
its stead. Finally, if LDF is not B-feasible, the node is branched, be-
cause it could still contain a feasible solution with fewer states.

4.4. Branching

A binary branching policy is adopted. More precisely, two chil-
dren nodes are generated from Πi where a free marking m is ex-
tracted from L× and added to L− for the first child node and to
L+ for the second one, respectively:

Π− = {L+,L− ∪ {m}},
Π+ = {L+ ∪ {m},L−}.

The freemarkingm is chosen among those included inLBF and not
belonging to LDF . In this way, the first child node will necessarily
yield a B-feasible subset different fromLB, or none. Conversely, the
second child node will necessarily yield a D-feasible subset differ-
ent from LD, or none.

5. An ILP approach to find the decentralized supervisor

As discussed in the previous section, the proposed approach
operates by means of a proposal-acceptance mechanism, where
a B-feasible candidate legal set LBF is first computed, and then
tested for the existence of a decentralized supervisor that can
exactly (or partially) enforce it (D-feasibility). Such a test requires
solving an optimization problem formulated as an ILP problem,
thatmaximizes the number ofmarkings inLBF that can be allowed
by a decentralized supervisor.

The optimization problem solved in nodeΠ = {L+,L−} aims
to find the decentralized set of GMECs (if one exists) that allows
all the states in L+ and as many free legal states as possible, while
forbidding all the states in L− ∪U.

5.1. ILP formulation

5.1.1. Variables
The variables used in the ILP are listed below:



γ (m) ∈ {0, 1}, m ∈ L ∪U (2)

L(pc, p) integer, pc ∈ Pc, p ∈ P (3)
b(pc) integer, pc ∈ Pc (4)

L̃(pc, p) integer, pc ∈ Pc, p ∈ P (5)

b̃(pc) integer, pc ∈ Pc (6)
Postc(pc, t), Prec(pc, t) ≥ 0, pc ∈ Pc, t ∈ T (7)
δ(pc,m) ∈ {0, 1}, pc ∈ Pc, m ∈ L ∪U (8)

XPost(pc, t), XPre(pc, t) ∈ {0, 1}, pc ∈ Pc, t ∈ T (9)
k(pc, i) ∈ {0, 1}, pc ∈ Pc, i ∈ I (10)

where P = {1, . . . , np}, T = {1, . . . , nt}, Pc = {1, . . . , ndc},
I = {1, . . . , ν}, for ease of readability.

The binary variables γ ∈ {0, 1}|L|+|U| identify the states al-
lowed by the decentralized supervisor: γ (m) = 1 if m is allowed
and 0 otherwise. The γ variables are preset to 0 for illegalmarkings
(m ∈ L− ∪U), and to 1 for markings in L+.

γ (m) = 0, m ∈ L− ∪U (11)

γ (m) = 1, m ∈ L+. (12)

The integer variables L ∈ Nndc×np , b ∈ Nndc , define the GMECs
(L, b) to be determined (the maximum number of GMECs ndc is
a design parameter). L̃(pc, p) and b̃(pc) are real-valued auxiliary
variables which coincide with the absolute values of the GMEC
coefficients (see below). Post c and Prec are the output and input
matrices of the control subnet that define the supervisor net topol-
ogy (i.e., the weights of the arcs connecting the monitors to the PN
transitions). The binary variables δ(pc,m) associate each forbidden
marking m to the control place pc that forbids it. The binary vari-
ables XPost(pc, t) [resp., XPre(pc, t)] state whether there is an arc
from transition t to monitor pc [frommonitor pc to transition t] or
not. The binary variable k(pc, i) states whether monitor pc belongs
to the ith site (k(pc, i) = 1) or not (k(pc, i) = 0).

5.1.2. The objective function
The objective function implements a hierarchy of objectives:

max f =

m∈L

γ (m)− ϵ

pc∈Pc


p∈P

L̃(pc, p)+ b̃(pc)


. (13)

The primary objective maximizes the number of markings that are
allowed by the decentralized supervisor, while the secondary ob-
jectiveminimizes the absolute values of the GMEC coefficients. Co-
efficient ϵ provides the desired weighting of the two objectives (in
the following, ϵ = 0.01). The purpose of the secondary objective
is to prevent ill-conditioning of the optimization problem (GMECs
are defined up to a multiplicative constant). Furthermore, if there
exists a solution with fewer monitors than ndc , one or more of the
obtained GMECs will have null parameters, allowing the designer
to easily discard them a posteriori.

To ensure that the auxiliary variables L̃(pc, p) and b̃(pc) coincide
with the absolute values of the GMEC coefficients, the following
constraints are added:

L̃(pc, p) ≥ L(pc, p), pc ∈ Pc, p ∈ P (14)

L̃(pc, p) ≥ −L(pc, p), pc ∈ Pc, p ∈ P (15)

b̃(pc) ≥ b(pc), pc ∈ Pc (16)

b̃(pc) ≥ −b(pc), pc ∈ Pc . (17)

5.1.3. GMEC control policy constraints
The following constraints define the control policy exerted by

each GMEC on the states:

p∈P

L(pc, p)m(p)− b(pc) ≤ (1− γ (m))M,

pc ∈ Pc, m ∈ LB (18)
p∈P

L(pc, p)m(p)− b(pc) ≥ 1− (1− δ(pc,m))M,

pc ∈ Pc, m ∈ L ∪U (19)

γ (m)+

pc∈Pc

δ(pc,m) ≥ 1, m ∈ L ∪U. (20)

Constraint (18) ensures that all the legal states with γ (m) = 1 are
allowed by all monitors. Constraint (19) takes care of all markings
forbidden by some GMEC. By constraint (20) a marking is either
allowed (γ (m) = 1 and δ(pc,m) = 0 for all control places) or for-
bidden (γ (m) = 0 and δ(pc,m) = 1 for at least one control place).
Notice that, by way of constraint (19), when δ(pc,m) = 1, m vio-
lates the GMEC associated to monitor pc . The constantM is set to a
sufficiently large value (big-M parameter), so that constraint (18)
is always satisfied for γ (m) = 0 and constraint (19) automatically
holds if δ(pc,m) = 0. The big-M parameter is set toM = 10 in the
examples documented in the paper.

5.1.4. GMEC implementation constraints
Eq. (21) relates the weights of the arcs to the corresponding

GMEC parameters L, and (22) requires that the GMECs are satisfied
in the initial marking.

Postc(pc, t)− Prec(pc, t) = −

p∈P

L(pc, p)C(p, t),

pc ∈ Pc, t ∈ T (21)
p∈P

L(pc, p)m0(p)− b(pc) ≤ 0, pc ∈ Pc . (22)

The GMEC implementation must also account for the given decen-
tralization conditions (each monitor can operate only on the tran-
sitions associated to its control site).

Postc(pc, t) ≤ XPost(pc, t)M, pc ∈ Pc, t ∈ T (23)

Prec(pc, t) ≤ XPre(pc, t)M, pc ∈ Pc, t ∈ T (24)

XPost(pc, t)+ k(pc, i) ≤ 1, pc ∈ Pc, i ∈ I, t ∉ Ti (25)

XPre(pc, t)+ k(pc, i) ≤ 1, pc ∈ Pc, i ∈ I, t ∉ Ti (26)
i∈I

k(pc, i) = 1, pc ∈ Pc . (27)

Conditions (23) and (24) set to zero the weights of missing arcs.
Constraints (25) and (26) remove the arcs between a monitor pc
belonging to the ith site (k(pc, i) = 1) and all transitions t ∉ Ti. Fi-
nally, condition (27) specifies that each monitor must be assigned
exactly to one module.

5.1.5. Controllability and observability constraints
To enforce controllability and observability according to the

structural definition, it suffices to extend conditions (25)–(26) also
to the transitions that are not controllable or observable from a
particular site:

XPost(pc, t)+ k(pc, i) ≤ 1, pc ∈ Pc, i ∈ I, t ∈ Tuoi (28)

XPre(pc, t)+ k(pc, i) ≤ 1, pc ∈ Pc, i ∈ I, t ∈ Tuci . (29)
Behavioral controllability cannot be ensured in the decentraliza-
tion framework by analysis of the reachability graph alone, but
requires additional conditions on the structure of the supervisor.
Such conditions do not prevent the use of arcs frommonitor places
to transitions that they cannot control, as long the disabling of such
transitions does not occur exclusively due to an insufficient mark-
ing of such places (behavioral controllability).



Accordingly, to enforce behavioral controllability the following
equation is introduced into the ILP in place of (29).

γ (m2)+

pc∈Pc


i∈I

Φ(i, t)k(pc, i)δ(pc,m2) ≥ γ (m1),

m1,m2 ∈ L ∪U, t ∈ T s.t.m1[t⟩m2. (30)

Notice that the constraint is automatically satisfied for all possible
values of the decision variables k(pc, i) and δ(pc,m2) if γ (m2) = 1
or γ (m1) = 0 (for example when m1 ∈ L− ∪ U or m2 ∈

L+). In detail, the constraint requires that if m1 is allowed by the
solution (γ (m1) = 1) and m2 is not (γ (m2) = 0), the firing of a
transition leading fromm1 tom2 must be forbidden at least by one
control place acting on a site from which t is controllable. More
precisely, m2 is forbidden by pc (δ(pc,m2) = 1), pc belongs to site
Si (k(pc, i) = 1) and site Si controls transition t (Φ(i, t) = 1). For an
uncontrollable transition (


i∈I Φ(i, t) = 0), allowing m1 directly

implies that alsom2 must be allowed.
Notice that constraint (30) is nonlinear, since both k and δ are

decision variables. However, it can be easily linearized by replac-
ing product k(pc, i)δ(pc,m2) in expression (30) with an auxiliary
binary variable ψ(pc, i,m2), and writing:

ψ(pc, i,m) ≤ k(pc, i)
ψ(pc, i,m) ≤ δ(pc,m)
ψ(pc, i,m) ≥ k(pc, i)+ δ(pc,m)− 1

for pc ∈ Pc , i ∈ I , and m ∈ L ∪ U. For this reason, with a slight
abuse of terminology, the IP employing constraint (30) is referred
to as an ILP problem.

In the following, the ILP (2)–(29) is denoted as ILPS to emphasize
that it addresses the structural setting of the supervisor design.
Accordingly, ILPB is used to denote the problem (2)–(28), (30).

5.2. Supervisor optimality and final considerations

Any solution of ILPS identifies a DS-feasible subset, as proved by
the following Lemma.

Lemma 4. A set L ⊆ L is DS-feasible if problem ILPS initialized with
L− = L\L admits a feasible solution such that γ (m) = 1,∀m ∈
L. �

Proof. Thanks to constraints (23)–(27), any feasible solution of
the ILPS problem abides by the decentralization requirements, i.e.
(•pc ∪ pc•) ∩ Ti = ∅ for all pc not belonging to control site Si. The
optimal solution of ILPS will allow a subset of the states in L\L−.
However, since by assumption the obtained solution has γ (m) = 1
for each m ∈ L, the obtained decentralized supervisor enforces
exactly L.

In addition, condition (28) forces each monitor place assigned
to control site Si (k(pc, i) = 1) not to receive arcs from unob-
servable transitions. Similarly, constraint (29) forbids arcs from the
locally uncontrollable (and unobservable, since Tci ⊆ Toi implies
Tuci ⊇ Tuoi ) transitions to the monitor. �

The following result ensures that a solution to the ILPB problem
guarantees DB-feasibility.

Lemma 5. A set L ⊆ L is DB-feasible if problem ILPB initialized with
L− = L\L admits a feasible solution such that γ (m) = 1,∀m ∈ L.

�

Proof. As in Lemma 4, any feasible solution of the ILPB problem
will respect the decentralization requirements (Definition 8.i), and
the feasible solution considered in the assumption enforces exactly
L.

Further on, constraint (30) enforces condition (ii) of Defini-
tion 8. Indeed, observe that it is a non trivial constraint only if m1
is allowed by the solution (γ (m1) = 1) and the firing of t in m1
leads to a marking m2, that is forbidden (γ (m2) = 0) by the so-
lution. This makes m1 a boundary legal marking (m1 ∈ Lb and t a
transition belonging to D(m1). Now, themonitor pc forbiddingm2
(δ(pc,m2) = 1) will be actually disabling t in m1. For this to oc-
cur, its marking in correspondence to m1 will necessarily have to
be less than the weight of the arc (pc, t), as expressed by condition
(ii) of Definition 8. Also, by constraint (30), pc must operate on a
control site Si for which t is controllable (Φ(i, t) = 1). �

Lemma 6. For any feasible solution of the ILPS [ILPB] problem, the
values of variables L(pc, p) and b(pc) identify a set of GMECs (L, b)
which exactly enforce L = {m ∈ L | γ (m) = 1} in a decentralized
way. �

Proof. By construction, constraint (18) guarantees that Lm ≤ b,
∀m ∈ L. Conversely, by conditions (19)–(20), there exists at least
one GMEC that forbids a marking outside L. �

Theorem 2. Let L
∗ be the solution returned by Algorithm 1. Then, the

corresponding set of GMECs (L, b) obtained in the solution of the ILP
problem identifies a maximally permissive decentralized GMEC-based
supervisor. �

Proof. The set L
∗ is the maximum cardinality B- and D-feasible

subset of legal states that can be enforced by a decentralized
GMEC-based supervisor. Indeed, the branching mechanism guar-
antees that all possible subsets ofL are explored. The enumeration
scheme is implicit, since the subsets that provably cannot yield fea-
sible or optimal solutions are excluded from analysis. All the oth-
ers are evaluated and the maximum cardinality one is returned.
Finally, in view of Lemma 6, the associated ILP solution provides
the supervisor enforcingL

∗, which is thereforemaximally permis-
sive. �

Remark 1. For simplicity reasons, the size optimization of the su-
pervisor (in terms of the number ndc of GMECs) is not carried out in
this work, and ndc is a fixed design parameter. This implies that to
obtain a solution it might be necessary to increase ndc and repeat
thewhole procedure. Notice also, that, thanks to the secondary ob-
jective function, if ndc is selected larger than necessary, null GMECs
will be obtained. By repeating the procedure for increasing values
of ndc one can, in principle, ascertain the structural optimality of
the supervisor. �

The problem can be further simplified, if, besides providing a
tentative size for the supervisor, the designer should also pre-
define its structure, by assigning a priori the individual GMECs
to the control sites (i.e., pre-setting k). Notice that, in this case,
constraint (30) automatically reduces to a linear one.

Remark 2. A plain GMEC supervisor is not guaranteed to exist not
even in the centralized problem. However, it is shown in Cordone
et al. (2013) that a nonlinear supervisor (obtained as a disjunction
of GMECs) can always separate any two arbitrary legal and illegal
sets (with no state in common), in the centralized case with full
controllability and observability. To the authors’ knowledge there
are no equivalent results for the setting studied here (decentralized
case with partial controllability and observability), that could be
invoked to suggest a different class of supervisors than the plain
GMEC ones. For this reason, besides computational complexity, the
focus is here exclusively on this class of supervisors. �

6. Computational complexity

B&B methods are typically characterized by a large difference
between the theoretical worst-case complexity, which is intrin-



Fig. 2. Petri net of example.

sically exponential, and the practical average-case performance,
which can be reasonably efficient if the algorithm is endowedwith
smart pre-processing mechanisms and with tight bounds on the
objective function. In the following, a rough over-estimation of the
worst-case complexity of the presented algorithm is given, to com-
plement the experimental results discussed in Section 7.

The external cycle of the method (see Algorithm 1) is a B&B
over the legal markings. If the branching tree were explored ex-
haustively, the overall complexity would be of order O(2nV · (c2 +
c3+ cILP)), where c2, c3, and cILP are the worst-case complexities of
the pre-processing (Algorithm 2), B-feasibility (Algorithm 3) and
D-feasibility phases (see ILP problem of Section 5).

The pre-processing phase requires a full exploration of the
reachability graph, to build the initial SCC and to perform other
minor operations (Cormen, Leiserson, Rivest, & Stein, 2009). There-
fore, its complexity is O(nA). The B-feasibility phase requires re-
peated examinations of the reachability graph. This step has been
fully analyzed in Basile et al. (2013) and found to be in O(nVnA).
Finally, the ILP problem can be solved in polynomial time p(nc, np)
for each possible value of the binary variables, which are nbin =

(nc+1)nV +nc(2nt+ni), where ni = |I|. Therefore, its complexity
is O(2nbinp(nc, np)). Obviously, the complexity of the ILP problem
largely dominates that of the previous phases, so that the overall
complexity is of O(2nV+nbinp(nc, np)).

In practice, neither the external B&B, nor the ILP problem is
solved exhaustively. In particular, the rules implemented in Algo-
rithms 2–3, as well as the use of an upper bound for the solution
in Algorithm 1, allow to discard most of the branching nodes with-
out solving them explicitly. Similar mechanisms are also exploited
by the ILP solver to reduce the computational effort. The compu-
tational results discussed in Section 7 confirm that the number of
explored nodes is a small fraction of the theoretical estimate.

7. Simulation example

7.1. Centralized supervisor design

Consider the PN represented in Fig. 2 taken from Ghaffari, Rezg,
and Xie (2003), for which one wants to design a GMEC-based su-
pervisor that guarantees liveness, reversibility and controllability.
Resource (M1,M2,M3, and R) and idle (B1 and B2) places are consid-
ered part of the process. The PN has 331 reachable markings, only
300 of which are included in the initial SCC.

Consider first the centralized supervisor design problem and
assume that Tc = {t1, t2, t3, t5, t8} and Tuc = T\Tc (all transitions
are assumed observable). The resulting optimal solution using the
behavioral approach (i.e. employing ILPB for DB-feasibility) has 2
GMECs:
m4 +m6 ≤ 2 (31)
3m3 +m6 +m7 ≤ 6 (32)
and allows 295 states of the 300 maximum possible (5 states are
rejected for behavioral controllability reasons). The obtained solu-
tion is also structurally controllable (control places have outgoing
arcs only towards transitions in Tc): pc1• = {t5, t8} and pc2• =
{t3, t8}. Accordingly, reapplying the method with ILPS yields the
same solution. It is interesting to note that if t5 is not assumed con-
trollable, the optimal (behavioral) solution of the problem allows
280 markings only, using again (31) plus the following GMEC:
3m3 + 2m6 +m7 ≤ 6. (33)
As already commented, the monitor implementing (31) has an arc
towards t5, which is now an uncontrollable transition, but this is
fine in the behavioral setting, since it is never exclusively respon-
sible of its disabling. Indeed, there are 45markings inwhich two or
more places (among which the mentioned monitor) disable t5, but
none in which only the monitor disables it. As for GMEC (33), it is
a restriction of (32) that introduces arcs from the monitor place to
the controllable transitions t3 and t8. Using the structural approach
a different supervisor is obtained that allows the same 280 states.
It employs and (33) plus the following GMEC:
m3 +m4 + 2m6 ≤ 4. (34)
In all the analyzed cases, the optimal solution is found already at
the first node of the B&B procedure. Indeed, the largest B-feasible
subset contained in L has 295 and 280 markings, depending on
the controllability of t5. Since it also solves the ILP problem, it is
the maximal B- and D-feasible subset, which corresponds to the
optimal supervisor.

7.2. Decentralized supervisor design: part 1

Now, consider the same problem in a decentralized setting,
where one can employ monitors of two control sites, defined in
3 alternative scenarios (differing only for the role of t5) as follows:

case (a) S1 : T1 = [t5 t6 t8 t9], with Tc1 = [t8],
S2 : T2 = [t3 t5 t7 t8 t9 t10], with Tc2 = [t3 t8],

case (b) S1 : T1 = [t5 t6 t8 t9], with Tc1 = [t5 t8],
S2 : T2 = [t3 t5 t7 t8 t9 t10], with Tc2 = [t3 t8],

case (c) S1 : T1 = [t5 t6 t8 t9], with Tc1 = [t8],
S2 : T2 = [t3 t5 t7 t8 t9 t10], with Tc2 = [t3 t5 t8].

It is further assumed that Toi = Ti, i = 1, 2.
The B&B algorithm has been tested in all three scenarios us-

ing both the structural and behavioral approaches. The algorithm
performance is summarized in Table 1. Apparently, two GMECs
are sufficient to achieve the same performance of the centralized
supervisor (i.e., 295 or 280 allowed states, depending on the con-
trollability of t5), but the two controllability notions have a dif-
ferent impact on the efficacy of the control sites. For example in
scenario (a) the behavioral approach obtains the maximally per-
missive solution exploiting both control sites, whereas the struc-
tural approach cannot find any use for S1, given that it cannot
control any transition of the left side of the process. The behavioral
solution has a monitor in site S1 with an arc going to t5, which is
acceptable, since it is never responsible for an exclusive inhibitory
action on the firing of the (uncontrollable) transition. In scenario (c)
both the behavioral and structural approaches find it more conve-
nient to use S2 alone. Finally, the different degree of permissivity of
the two approaches is apparent when they are compared in iden-
tical conditions (same scenario and equal distribution of GMECs to
the control sites).



Table 1
Algorithm performance on the example: part 1.

Scenario GMECs in S1 GMECs in S2 |L| B&B nodes

Structural approach
a 1 1 259 1

0 2 280 1
b 1 1 295 1
c 1 1 259 1

0 2 295 1

Behavioral approach
a 1 1 280 1
b 1 1 295 1
c 1 1 280 1

0 2 295 1

Table 2
Algorithm performance on the example: part 2.

Scenario GMECs in S1 GMECs in S2 |L| B&B nodes

Structural approach
a 0 1 93 35
b 1 1 128 99
c 0 2 130 69

Behavioral approach
a 1 2 128 25
b 1 2 138 67
c 1 2 142 299

7.3. Decentralized supervisor design: part 2

An even more interesting case unfolds if one removes place R
from the PN, and adds the corresponding static constraint:

m4 +m7 ≤ 1 (35)

to the supervisor design requirements. In other words, our aim
here is to evaluate the cost of imposing the requirement corre-
sponding to place R (together with the behavioral properties of
liveness, reversibility, and controllability), which was previously
centralized, in a decentralized way.

Constraint (35) appears to be particularly hard to enforce in
a decentralized way, both with the structural and behavioral ap-
proaches, resulting in a non-trivial branching process with several
nodes examined, and a significantly lower permissivity compared
to the centralized case (see Table 2).

Increasing ndc to allow more GMECs per control site does not
provide solution improvements. In particular, the structural ap-
proach cannot fully exploit all the given degrees of freedom and is
only capable of producing quite conservative solutions (for which
few GMECs are sufficient). For example, the structural solution to
case (a) consists of a single GMEC:

m3 +m4 +m5 +m6 +m7 ≤ 1,

that essentially allows only one of the two processes (the left
downward sequence or the right upward sequence) to be active
at a time.

To give the reader a feel of the branching process, Fig. 3 provides
a picture of the branching tree relative to case (a), addressed with
the behavioral approach. Nodes are numbered in order of genera-
tion, and are accompanied by either the upper bound information
(|LDF |) or the reason for node elimination (violation of either B-
or D-feasibility). When a lower bound equal to the upper bound
is obtained, the latter is graphically emphasized with a square. The
initial problem has |L+| = 1, |L−| = 98, and |L×| = 149.When a
node is branched, two children nodes are generated, the first with
L− augmented by one state, and the second with L+ augmented
by one state. Further assignments are sometimes added in the pre-
processing phase. The branching process initially goes down the
left side, where a solution to the ILPB problem is obtained with
142 states for several nodes. More in detail, the states added to
Fig. 3. Branching tree: each node with UB or unfeasibility information (UB =

violation of B-feasibility, UD = violation of D-feasibility).

L− at nodes 2, 4, 6, 8, 10, 12, progressively reduce the size of LBF ,
whereas the same LDF is obtained. Conversely, at the nodes 5, 7, 9,
11, 13, 15, a state is added to L+ which is not allowed by the DB-
feasible solution obtained at the father node. Apparently no other
DB-feasible solution is compatible with the new state assignments.
Finally, at node 14 an important reduction of the size of LBF oc-
curs, which forces a different solution of the ILPB problem as well.
Since LDF = LBF , a candidate solution for optimality is obtained.
However, since there is still an open node (3) with an upper bound
higher than 128, a better solution could still exist and the B&B con-
tinues the exploration for an additional 10 nodes, before the opti-
mality of the solution can be definitively assessed.

8. Conclusions

A novel approach has been presented for the synthesis of 
compact and decentralized supervisors for PN systems. Both static 
and behavioral control specifications can be considered in the 
method, but the focus is here mainly on the latter, which pose the 
greater difficulties in the supervisor design. Particular emphasis is 
attributed to the controllability property, which is enforced in two 
different ways, based on structural and behavioral arguments. The 
method operates on the state space of the PN, searching for the 
maximal set of reachable markings that configures a subgraph of 
the reachability graph with all the required behavioral properties 
and that is also enforceable by a decentralized supervisor. For 
this reason, the two separate notions of B- and D-feasibility have 
been introduced, as well as conditions for their obtainment. In 
particular, B-feasibility is ascertained by graph theory tools on 
the reachability subgraph, whereas D-feasibility is established by 
solving an ILP which provides the supervisor GMECs. A branch 
and bound method has been developed to systematically and 
efficiently explore all possible subsets of the legal states of the 
centralized case to find the maximally permissive one that meets 
the constraints.
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