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Abstract

This paper addresses the discrete-time finite-horizon linear quadratic (LQ) optimal control problem in the case in which the quadratic
forms in the performance index are not assumed to be positivesemidefinite, but only symmetric. We provide a necessary andsufficient
condition for the existence of an optimal control.

1 Introduction

This paper is concerned with the discrete-time finite-horizon
LQ problem, which, loosely speaking, consists in finding
a sequenceut , with t ∈ {0,1, . . . ,T − 1} that minimizes a
quadratic performance index

Jx0,u,T =
T−1

∑
t=0

[ x⊤
t u⊤

t ]

[

Q S

S⊤ R

][

xt

ut

]

+ x⊤
T W xT , (1)

whereW and

Π =

[

Q S

S⊤ R

]

are symmetric matrices,1 subject the the constraint

xt+1 = Axt +But , (2)

where the initial statex0 ∈ Rn is given.

Most of the literature deals with the so-calledpositive
semidefinite case, in which bothΠ andW are assumed to be
positive semidefinite matrices. Quoting even only a fraction
of the relevant references in this area would be impossible;
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1 There is no loss of generality in assumingW and Π to be
symmetric, as only the symmetric part of these matrices is relevant
for the optimisation problem.

thus, we refer the readers to the monographs [7,1,9]. In the
positive semidefinite case, no problems of existence of an
optimal solution exists, sinceJx0,u,T ≥ 0. The so-calledin-
definite case, i.e., where there are no sign constraints on the
symmetric matricesW and Π, has received far less atten-
tion in the literature. The infinite-horizon LQ problem with
an indefinite quadratic form in the performance index was
thoroughly investigated in [10]. In addition to presentinga
characterization of the set of all symmetric solutions of the
discrete-time algebraic Riccati equation, [10] also presented
necessary and sufficient conditions for the existence of an
optimal control. In [2], the finite LQ problem with indefi-
nite terminal weight has been considered. Some results on
the finite-horizon LQ problem were also presented in [6]
for the indefinite case, as discussed in more detail below.

In this paper, we address the finite-horizon case in which
all penalty matrices in the performance cost function are
allowed to be indefinite. The fundamental tool used in this
paper for the solution of the indefinite LQ problem is the
generalized Riccati difference equation

Xt = Q+A⊤Xt+1A− (S+A⊤Xt+1B)

×(R+B⊤Xt+1B)†(S⊤+B⊤Xt+1A), (3)

which has to be iterated backward starting from the termi-
nal conditionXT = W. Notice that in the generalized Ric-
cati equation (3) the Moore-Penrose pseudo inverse(R+
B⊤Xt+1B)† appears in place of the inverse. Unlike the pos-
itive semidefinite case, the finite-horizon LQ problem may
not admit solutions because the performance index can be
made arbitrarily negative by means of suitable control ac-
tions. Consider for example the problem of minimizing (1)
subject to (2), whereA=−1, B= Q= S=W = 0, R=−1
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andT = 0. In this case, the cost function to be minimized,
regardless of the initial condition, isJx0,u =−u2

0, which can
obviously be made arbitrarily negative by choosingu0 suit-
ably.

As already anticipated, some results on indefinite finite-
horizon LQ problems have also been presented in [6]. In
particular, Theorem 9.2.1 in [6] gives a condition for the
solvability of such problem by considering the standard Ric-
cati recursion that differs from (3) only as the matrix in-
verse term(R+B⊤Xt+1B)−1 appears in place of the Moore-
Penrose pseudo inverse term(R+B⊤Xt+1B)†. In the positive
semidefinite case, it appears to be rather natural to consider
the matrix inverse in the Riccati recursion (3). Indeed, by
just adopting some additional mild assumptions (for exam-
ple, by assumingR> 0 instead of simplyR≥ 0) it is easy to
guarantee the invertibility of the matrixR+B⊤XtB at each
step of the iteration. Things are different in the indefinite
case, because there appear to be no natural assumptions on
the problem data that guarantee the invertibility of the ma-
trix R+B⊤XtB at each step of the iteration. This means that
the assumption det(R+B⊤XtB) 6= 0 for all t ∈ {0, . . . ,T}
can only be tested by iterating the Riccati equation, and it
is therefore an assumption on the solution of the problem
and not on the problem data. For this reason, the generalized
Riccati equation (3) seems to represent a more natural tool
in the context of indefinite LQ problems than the standard
Riccati difference equation.

Another (rather counterintuitive) aspect that is peculiarto
the indefinite case is the fact that the optimal control may
fail to exist (i.e., for a certainx0, the index (1) can be made
arbitrarily negative) for a problem with dataA,B,Π,W and
time horizonT, while for a problem with the same data
A,B,Π,W and time horizonT1 > T, an optimal control does
exist. Consider e.g. the problem of minimizing (1) subject

to (2), whereA=
[

0 0
0 0

]

, B=
[

1
0

]

, Q =
[

10 0
0 10

]

, S=
[

0
1

]

,

W =
[

0 0
0 0

]

andR= 0. In this case, partitioningx0 asx0 =
[x0,1

x0,2

]

, if T = 1 we find

Jx0,u,1 = [ x⊤
0 u⊤

0 ]

[

Q S

S⊤ R

][

x0

u0

]

= 10x2
0,1+10x2

0,2+2x0,2u0,

which, for anyx0 such thatx0,2 6= 0, can be made arbitrarily
small by suitably choosingu0 ∈ R. On the other hand, if
T = 2, we find

Jx0,u,2 = 10x2
0,1+9(x2

0,2+u2
0)+ (x0,2+u0)

2 ≥ 0,

whose minimum cannot be made arbitrarily negative.

This consideration completes the picture drawn in [6, The-
orem 9.2.1], and highlights the fact that the indefinite case
is much richer than the semidefinite case.

From this discussion, we can also conclude that a fundamen-
tal problem in the context of indefinite finite-horizon LQ
problems, which is the problem considered in this paper, is
the following.

Problem 1.1 Let T∈ N. Let A∈ Rn×n and B∈ Rn×m, and
consider the linear state difference equation (2) with x0 ∈
Rn. Find necessary and sufficient conditions under which,
for any time horizon{0, . . . ,N} ⊆ {0, . . . ,T}, there exists a
sequence ut , with t ∈ {0,1, . . . ,N−1} which minimizes the
performance index Jx0,u,N in (1). Under such conditions, find
all the control trajectories optimizing the index (1).

2 Main result

In the positive semidefinite case, i.e., whenΠ = Π⊤ ≥ 0 and
W=W⊤ ≥ 0, Problem 1.1 always admits solutions, and such
solutions are given by

ut =−Kt xt +Gt vt , (4)

whereXt is the solution of the generalized Riccati recur-

sion (3) with the terminal conditionXT = W, Kt
def
= (R+

B⊤Xt+1B)†(S⊤+B⊤Xt+1A), Gt
def
= [Im− (R+B⊤Xt+1B)†(R+

B⊤Xt+1B)] andvt is arbitrary, see e.g. [11]. MatrixGt is the
orthogonal projector onto the linear space of vectors that
can be added to the optimal controlut without affecting op-
timality. It is easily seen that, whenW andΠ are both posi-
tive semidefinite, for allt ∈ {0,1, . . . ,T} the following facts
automatically hold:

• Xt is positive semidefinite;
• R+B⊤XtB is positive semidefinite;
• ker(R+B⊤Xt B)⊆ ker(S+A⊤ Xt B),

see also Remark 2.1 below. In the indefinite case, none of
these facts hold in general. Consider for example Problem

1.1 withA=
[

0 −3
0 0

]

, B= Q=
[

0 0
0 0

]

, S=
[

1 0
0 1

]

, R=
[

−4 0
0 0

]

and W =
[

−1 −1
−1 0

]

. At t = T, we haveXT = W, which is

indefinite; moreover,R+ B⊤ XT B = diag{−4,0} is neg-

ative semidefinite and span
{[

0
1

]}

= ker(R+ B⊤ XT B) *

ker(S+A⊤ XT B) = {0}.

In order to establish the main result of this paper, we need
the following simple technical result.

Lemma 2.1 Let R be symmetric. Matrix M=
[

SR† S⊤ S
S⊤ R

]

is

positive semidefinite if and only if R≥ 0 andkerR⊆ kerS.

Proof: If R≥ 0 and kerR⊆ kerS, we can write

M =

[

S
R

]

R†[ S⊤ R ],

2



where we have used the fact that kerR⊆ kerS. SinceR≥ 0,
such is alsoR†, which impliesM ≥ 0.

If M ≥ 0, it admits a factorizationM =
[

SR†S⊤ S
S⊤ R

]

=
[

C⊤

D⊤

]

[C D ] in terms of two matrices of suitable sizes

C and D, so thatR = D⊤ D is positive semidefinite. To
prove that kerR⊆ kerS, take ω ∈ kerR. This implies that
ω ∈ ker(D⊤ D) = kerD, so that alsoSω =C⊤ Dω = 0.

We are now ready to present the main result of this paper.

Theorem 2.1 Let {Xt}t∈{0,1,...,T} be the sequence of matri-
ces arising from (3) with XT =W. Problem 1.1 admits solu-
tions for any initial state x0 ∈ Rn if and only if

R+B⊤Xt B≥ 0 (5)

and
ker(R+B⊤Xt B)⊆ ker(S+A⊤ Xt B) (6)

for all t ∈ {0,1, . . . ,T}. In the case in which Problem 1.1
admits solutions, the optimal control is parameterized in
terms of the arbitrary vector vt by

ut =−Kt xt +Gt vt , (7)

where Kt = (R+B⊤Xt+1B)†(S⊤+B⊤Xt+1A) and Gt = [Im−
(R+B⊤Xt+1B)†(R+B⊤Xt+1B)], and the optimal cost is

J∗ = x⊤
0 X0 x0. (8)

Proof: We begin by proving sufficiency. Let{Xt}t∈{0,1,...,T}
be the sequence of matrices obtained iterating (3) withXT =
W, and such that (5) and (6) hold for allt ∈ {0,1, . . . ,T}.
Since

T−1

∑
t=0

(

x⊤
t+1Xt+1 xt+1− x⊤

t Xt xt
)

+x⊤
0 X0 x0−x⊤

T XT xT = 0, (9)

adding (9) to (1) and using (2) yields

Jx0,u,T =
T−1

∑
t=0

[x⊤
t u⊤

t ]

[

Q+A⊤Xt+1A−Xt S+A⊤Xt+1B

S⊤+B⊤Xt+1A R+B⊤Xt+1B

][

xt

ut

]

+ x⊤
T (W−XT)xT + x⊤

0 X0 x0, (10)

and, in view of (3),

Mt+1
def
=

[

Q+A⊤Xt+1A−Xt S+A⊤Xt+1B

S⊤+B⊤Xt+1A R+B⊤Xt+1B

]

=

[

St R†
t S⊤

t St

S⊤
t Rt

]

is positive semidefinite, whereSt
def
= S+A⊤Xt+1B andRt

def
=

R+B⊤Xt+1B. Since kerRt ⊆ kerSt in view of (6), Mt+1

admits a factorization of the form

Mt+1 =

[

St

Rt

]

R†
t [ S⊤

t Rt ] (11)

and Rt is positive semidefinite for allt ∈ {0,1, . . . ,T}.
Hence, (10) takes the form

Jx0,u,T =
T−1

∑
t=0

‖ [R1/2
t ]†S⊤

t xt +R1/2
t ut ‖

2
2 +x⊤

0 X0x0. (12)

Since the control only appears in the sum, which is a non-
negative quantity, and does not affect the termx⊤

0 X0x0, Prob-
lem 1.1 admits a solution because the sum can be annihilated
choosing

[R1/2
t ]†S⊤

t xt +R1/2
t ut = 0,

whose solutions are parameterized invt by the feedback
control (7). The optimal state trajectory is now given by the
closed-loop dynamics

xt+1 = (A−BKt)xt +BGtvt . (13)

Now we prove necessity of conditions (5) and (6). We show
that when either of these two conditions does not hold, it
is always possible to findN ≤ T and x0 ∈ Rn such that
Jx0,u,N can be made arbitrarily negative by suitably selecting
the input sequence. Lets represent the largest value oft ∈
{0, . . . ,T} in which eitherR+B⊤XtB becomes indefinite or
(6) ceases to hold. In view of Lemma 2.1, this means that
Ms in (11) for t+1= s is indefinite. LetT1

def
= T −s+1, and

consider the indexJx0,u,T1, which may be written as

Jx0,u,T1 = x⊤
0 Xs−1x0+[ x⊤

0 u⊤
0 ]Ms

[

x0
u0

]

+
T−s

∑
t=1

[ x⊤
t u⊤

t ]Mt+s
[ xt

ut

]

.

Since Mt+s is positive semidefinite, it can be written in
the form (11), and by using the same control as in (12),

we can make∑T−s
t=1 [ x⊤

t u⊤
t ]Mt+s

[ xt
ut

]

equal to zero (for

any u0). On the other hand,x⊤
0 Xs−1x0 is bounded from

below by λmin(Xs−1)‖x0‖
2, whereλmin(Xs−1) denotes the

smallest eigenvalue ofXs−1. Hence, it is sufficient to show
that for at least one initial conditionx0 ∈ Rn, the quan-

tity [ x⊤
0 u⊤

0 ]Ms

[

x0
u0

]

can be made arbitrarily negative by

suitably selectingu0 ∈ Rm. We have

[ x⊤
0 u⊤

0 ]Ms

[

x0

u0

]

= [x⊤
0 u⊤

0 ]

[

SsR†
s S⊤

s Ss

S⊤
s Rs

][

x0

u0

]

,

Suppose that kerRs * kerSs. Thus, there exists ˜u0 ∈ kerRs
but ũ0 /∈ kerSs. Let x0 = Ssũ0. Finally, let u0 = α ũ0. With

3



these definitions, we find

[ x⊤
0 u⊤

0 ]Ms

[

x0
u0

]

= x⊤
0 SsR†

s S⊤
s x0+u⊤

0 Rsu0+2x⊤
0 S⊤

s u0

= x⊤
0 SsR†

s S⊤
s x0+2α ũ⊤

0 S⊤
s Ssũ0,

which can be made arbitrarily small for the chosen initial
conditionx0, by choosing the parameterα accordingly, since
ũ⊤

0 S⊤
s Ssũ0 6= 0.

Now, suppose thatRs is not positive semidefinite. Then, it
is clear that, for any given initial conditionx0 ∈ Rn,

[ x⊤
0 u⊤

0
]Ms

[

x0
u0

]

= x⊤
0 SsR†

s S⊤
s x0+u⊤

0 Rsu0+2x⊤
0 S⊤

s u0

can be made arbitrarily negative by suitably selectingu0.
We can conclude that there exists a horizon{0, . . . ,T1} with
T1 ≤ T for which the optimal control does not exist.

Remark 2.1 Now we are in a position to better understand
the observation that we made earlier concerning the differ-
ence with the positive semidefinite case. WhenW and Π
are positive semidefinite, it is easy to see by induction that
{Xt}t∈{0,...,T} is a sequence of positive semidefinite matri-
ces. Indeed,XT ≥ 0. Moreover,

[

Q+A⊤Xt+1A−Xt St

S⊤
t Rt

]

= Π+

[

A⊤

B⊤

]

Xt+1 [ A B ]≥ 0. (14)

Since the right hand-side of (3) is exactly the Schur gen-
eralized complement of the matrix in the left hand-side of
the latter, we find thatXt ≥ 0 as well. Thus,{Xt}t∈{0,...,T}
is a sequence of positive semidefinite matrices, and such is
therefore also{R+B⊤XtB}t∈{0,...,T}. The positive semidefi-
niteness of the matrix in (14) implies that

ker(R+B⊤XtB)⊆ ker(S+A⊤XtB),

for all t ∈ {0, . . . ,T}, which is now a consequence of (14)
and automatically holds. �

Consider now the so-called generalized discrete algebraic
Riccati equation GDARE(Σ), defined as

X = AT X A− (AT X B+S)(R+BT X B)†(BT X A+ST)+Q.

This algebraic equation, subject to the constraint

ker(R+BT X B)⊆ ker(AT X B+S), (15)

is usually referred to as constrained generalized discreteal-
gebraic Riccati equation CGDARE(Σ). The properties of this
equation in relation to optimal LQ problems have been dis-
cussed in the positive semidefinite cases in [3–5,8]. Some
important properties of CGDARE(Σ) – but not within the
framework of optimal control problems – were studied in
[12] also in the indefinite case.

We observe the following important facts:

• If W = X, whereX is a solution of CGDARE(Σ) such
that R+BT X B is positive semidefinite, from the itera-
tion (3) we have thatXt = X for any t ∈ {0, . . . ,T} and
any T > 0. Thus, in this case an optimal control ex-
ists in any horizon, and is stationary. In other words, for
any T > 0, the optimal control isut = −KX xt +GX vt ,
whereKX = (R+B⊤XB)†(S⊤ +B⊤XA) and GX = [Im−
(R+B⊤XB)†(R+B⊤XB)]. The optimal cost equalsJ∗ =
x⊤

0 X x0, and does not depend on the length of the time
horizon;

• if W ≥ X, whereX is a solution of CGDARE(Σ) such
thatR+BT X B is positive semidefinite, an optimal control
exists in any horizon. Indeed, in such case the cost is
bounded from below by the cost that corresponds to the
case in whichW is itself a solution of CGDARE(Σ) such
thatR+BTW B≥ 0, which as we already noticed cannot
be made arbitrarily negative; as a particular case, ifW= 0
and CGDARE(Σ) admits a negative semidefinite solution
X such thatR+BT X B is positive semidefinite, Problem
1.1 admits an optimal control in any horizon.
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