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Abstract

This paper constructs a framework to describe and study the coordinated output regulation problem for multiple heterogeneous linear
systems. Each agent is modeled as a general linear multiple-input multiple-output system with an autonomous exosystemwhich represents
the individual offset from the group reference for the agent. The multi-agent system as a whole has a group exogenous state which
represents the tracking reference for the whole group. Under the constraints that the group exogenous output is only locally available
to each agent and that the agents have only access to their neighbors’ information, we propose observer-based feedback controllers to
solve the coordinated output regulation problem using output feedback information. A high-gain approach is used and the information
interactions are allowed to be switched over a finite set of fixed networks containing both graphs that have a directed spanning tree and
graphs that do not. The fundamental relationship between the information interactions, the dwell time, the non-identical dynamics of
different agents, and the high-gain parameters is given. Simulations are shown to validate the theoretical results.
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1 Introduction

Coordinated control of multi-agent systems has recently
drawn large attention due to its broad applications in phys-
ical, biological, social, and mechanical systems [2–5]. The
key idea of “coordination” algorithm is to realize a global
emergence using only local information interactions [6, 7].
The coordination problem of a single-integrator network
is fully studied with an emphasis on the system robust-
ness to the input time delays and switching communication
topologies [6–9], discrete-time dynamical models [10, 11],
nonlinear couplings [12], the convergence speed evalua-
tion [13], the effects of quantization [14], and the leader-
follower tracking [15].

Following these ideas, the study of coordination of multiple
linear dynamic systems becomes an attractive and fruitful
research direction for the control community recently. For
example, the authors of [16] generalize the existing works on
coordination of multiple single-integrator systems to thecase
of multiple linear time-invariant single-input systems. For a
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network of neutrally stable systems and polynomially un-
stable systems, the author of [17] proposes a design scheme
for achieving synchronization. The case of switching com-
munication topologies is considered in [18] and a so-called
consensus-based observer is proposed to guarantee leader-
less synchronization of multiple identical linear dynamic
systems under a jointly connected communication topology.
Similar problems are also considered in [19] and [20], where
a frequently connected communication topology is studied
in [19] and an assumption on the neutral stability is im-
posed in [20]. The authors of [21] propose a neighbor-based
observer to solve the synchronization problem for general
linear time-invariant systems. An individual-based observer
and a low-gain technique are used in [22] to synchronize a
group of linear systems with open-loop poles at most poly-
nomially unstable. In addition, the classical Laplacian matrix
is generalized in [23] to a so-called interaction matrix. A D-
scaling approach is then used to stabilize this interactionma-
trix under both fixed and switching communication topolo-
gies. Synchronization of multiple heterogeneous linear sys-
tems has been investigated under both fixed and switching
communication topologies [24–26]. A similar problem is
studied in [27,28], where a high-gain approach is proposed
to dominate the non-identical dynamics of the agents. The
cases of frequently connected and jointly connected com-
munication topologies are studied in [29] and [30], respec-
tively, where a slow switching condition and a fast switch-
ing condition are presented. Recently, the generalizations of
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coordination of multiple linear dynamic systems to the co-
operative output regulation problem are studied in [31–33].
In addition, the study on the synchronization of homoge-
nous or heterogeneous networks with nonlinear couplings
also attracts extensive attention [34–37].

In this paper, we generalize the classical output regulation
problem of an individual linear dynamic system to the co-
ordinated output regulation problem of multiple heteroge-
neous linear dynamic systems. We consider the case where
each agent has an individual offset and simultaneously there
is a group tracking reference. The individual offset and the
group reference are generated by autonomous systems (i.e.,
systems without inputs). Each individual offset is available
to its corresponding agent while the group reference can be
obtained only through constrained communication among
the agents,i.e., the group reference trajectory is available to
only a subset of the agents. Our goal is to find an observer-
based feedback controller for each agent such that the out-
put of each agent converges to a given trajectory determined
by the combination of the individual offset and the group
reference. Motivated by the approach proposed in [27], we
propose a unified observer to solve the coordinated output
regulation problem of multiple heterogeneous general linear
dynamics, where the open-loop poles of the agents can be
exponentially unstable and the dynamics are allowed to be
different both with respect to dimensions and parameters.
This relaxes the common assumption of identical dynam-
ics [17,18,20,21,29] or open-loop poles at most polynomi-
ally unstable [18,20,26]. The main contribution of this work
is that the information interaction is allowed to be switching
from a graph set containing both a directed spanning tree
set and a disconnected graph set for the case of heteroge-
neous linear systems. This extends the existing works on the
case of fixed communication topologies [17,21,27,31]. The
high-gain technique is used and the relationships between
the dwell time [38], the non-identical dynamics among dif-
ferent agents and the high-gain parameters are also given.

The remainder of the paper is organized as follows. In Sec-
tion 2, we give some basic definitions on network model.
In Section 3, we formulate the problem of coordinated out-
put regulation of multiple heterogenous linear systems. We
then propose the state feedback control law with a unified
observer design in Section 4. Two case studies are given in
Section 5. Numerical studies are carried out in Section 6
to validate our designs of observer-based controllers and a
brief concluding remark is drawn in Section 7.

2 Network Model

We use graph theory to model the communication topol-
ogy among agents. A directed graphG consists of a pair
(V,E), whereV = {ν1,ν2, . . . ,νn} is a finite, nonempty set
of nodes andE ⊆ V ×V is a set of ordered pairs of nodes.
An edge(νi ,ν j) denotes that nodeν j can obtain informa-
tion from nodeνi . All neighbors of nodeνi are denoted as
Ni := {ν j |(ν j ,νi) ∈ E}. For an edge(νi ,ν j) in a directed

graph,νi is the parent node andν j is the child node. A di-
rected path in a directed graph is a sequence of edges of
the form (νi ,ν j),(ν j ,νk), . . .. A directed tree is a directed
graph, where every node has exactly one parent except for
one node, called the root, which has no parent, and the root
has a directed path to every other node. A directed graph
has a directed spanning tree if there exists at least one node
having a directed path to all other nodes.

For a leader-follower graphG := (V,E), we haveV =
{ν0,ν1, . . . ,νn}, E ⊆ V ×V, where ν0 is the leader and
ν1,ν2, . . . ,νn denote the followers. The leader-follower ad-
jacency matrixA= [ai j ] ∈R(n+1)×(n+1) is defined such that
ai j is positive if (ν j ,νi) ∈ E while ai j = 0 otherwise. Here
we assume thataii = 0, i = 0,1, . . . ,n, and the leader has
no parent,i.e., a0 j = 0, j = 0,1, · · · ,n. The leader-follower
“grounded” Laplacian matrixL = [l i j ] ∈ Rn×n associated
with A is defined asl ii =∑n

j=0ai j andl i j =−ai j , wherei 6= j.

In this paper, we assume that the leader-follower communi-
cation topologyGσ(t) is time-varying and switching from a
finite set{Gk}k∈Γ, whereΓ = {1,2, . . . ,δ} is an index set
andδ ∈N indicates its cardinality. We impose the technical
condition thatGσ(t) is right continuous, whereσ : [t0,∞)→Γ
is a piecewise constant function of time. That is to say,
Gσ(t) remains constant fort ∈ [tℓ, tℓ+1), ℓ = 0,1, . . . and
switches att = tℓ, ℓ = 1,2, . . . . In addition, we assume that
infℓ(tℓ+1 − tℓ) ≥ τd > 0, ℓ = 0,1, . . . , with limℓ→∞ tℓ = ∞,
whereτd is a constant known as the dwell time [38].

Let the sets{Ak}k∈Γ and {Lk}k∈Γ be the leader-follower
adjacency matrices and leader-follower grounded Laplacian
matrices associated with{Gk}k∈Γ, respectively. Conse-
quently, the time-varying leader-follower adjacency matrix
and time-varying leader-follower grounded Laplacian ma-
trix are defined asAσ(t) = [ai j (t)] andLσ(t) = [l i j (t)].

Other notation in this paper:λmin(P) and λmax(P) denote,
respectively, the minimum and maximum eigenvalues of a
real symmetric matrixP, PT denotes the transpose ofP, and
In denotes then×n identity matrix.

3 Problem Formulation

3.1 Agent Dynamics

Suppose that we haven agents modeled by the linear MIMO
systems:

ẋi = Aixi +Biui , (1)

wherexi ∈ Rni is the agent state,ui ∈ Rmi is the control
input, Ai ∈ Rni×ni , andBi ∈ Rni×mi .

Also suppose that there is an individual autonomous exosys-
tem for eachνi ∈ V,

ω̇i = Siωi , (2)
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Fig. 1. Control architecture for agentνi

whereωi ∈ Rqi andSi ∈Rqi×qi .

In addition, there is a group autonomous exosystem for the
multi-agent system as a whole:

ẋ0 = A0x0, (3)

wherex0 ∈Rn0 andA0 ∈ Rn0×n0.

3.2 Control Architecture

The control of each agent is supposed to have the structure
shown in Fig. 1. More specifically, for the individual au-
tonomous exosystem tracking, available output information
for agentνi ∈ V is

ysi =Csixi +Cwiωi ,

whereCsi ∈ Rp1×ni , andCwi ∈ Rp1×qi .

For the group autonomous exosystem tracking, only
neighbor-based output information is available due to the
constrained communication. This means that not all the
agents have access toy0. The available information is the
neighbor-based sum of each agent’s own output relative to
that of its’ neighbors,i.e.,

ζi =
n

∑
j=0

ai j (t)(ydi − yd j)

is available for each agentνi ∈V, whereai j (t), i = 0,1, . . . ,n,
j = 0,1, . . . ,n, is entry(i, j) of the adjacency matrixAσ(t)

associated withGσ(t) defined in Section 2 at timet, ydi can
be represented byydi =Cdixi , i = 1,2, . . . ,n andyd0 =C0x0,
whereCdi ∈R

p2×ni , i = 1,2, . . . ,n andC0 ∈R
p2×n0. Also, the

relative estimation information is available using the same

communication topologies,i.e.,

ζ̂i =
n

∑
j=0

ai j (t)(ŷi − ŷ j)

is available for each agentνi ∈ V, whereŷi is an estimation
produced internally by each agentνi ∈ V.

Fig. 2 gives an example of information flow among the
agents and the group autonomous exosystemν0 for n = 3
agents.

3.3 Switching Topologies

For the communication topology set{Gk}k∈Γ, we assume
that Gk, ∀k ∈ Γc is a graph containing a directed span-
ning tree withν0 rooted. Without loss of generality, we
relabel Γc := {1,2, . . . ,δ1} (1 ≤ δ1 ≤ δ ), where δ1 ∈ N.
The remaining graphs are labeled asGk, ∀k ∈ Γd, where
Γd := {δ1 + 1,δ1 + 2, . . . ,δ}. Denote the graph setGc =
{Gk}k∈Γc and the graph setGd = {Gk}k∈Γd , respectively. We
also denoteTd

t0
(t) andTc

t0
(t) the total activation time when

Gσ(ς) ∈Gd and total activation time whenGσ(ς) ∈Gc dur-
ing ς ∈ [t0, t) for t0 ≥ t0.

Assumption 1 The dwell timeτd is a positive constant.

Assumption 2 Given a positive constantκ , there exists a
t0 ≥ t0 such that Tct0

(t)≥ κTd
t0
(t) for all t ≥ t0.

Remark 1 Note that a sufficient condition satisfying As-
sumption 2 is thatGc is non-empty and given a T> 0 and
τd > 0, for any t≥ t0, the switching signalσ(t) satisfies
{t|Gσ(t) ∈ Gc}∩ [t, t +T] 6= /0. Such a condition is also re-
ferred as “frequently connected” condition (i.e., the com-
munication topology that contains a directed spanning tree
is active frequently enough [19, 23]). Note that this condi-
tion implies that there exists a time sequence0= T0 < T1 <
· · ·< Tℓ . . . such that{t|Gσ(t) ∈Gc}∩ [Tℓ,Tℓ+1] 6= /0, for all
ℓ= 0,1, . . . , where Tℓ+1−Tℓ ≤ 2T. Therefore, there exists a
t0 ∈ [t0, t0+2T] such that Tct0(t)≥

τd
2T Td

t0
(t) for all t ≥ t0.

3.4 Control Objective

The control objective of each agent is to track a given trajec-
tory determined by the combination of the group reference
x0 and the individual offsetωi , i = 1,2, . . . ,n. Such a com-
bination is captured by the coordinated output regulation
tracking error (i.e., the total tracking error representing the
combination of both individual tracking and group tracking
of each agent):

ei = Dsixi +Dwiωi +D0x0. (4)
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Fig. 2. Information flow associated with three agentsν1, ν2, ν3,
the individual autonomous exosystemsω1, ω2, ω3, and the group
autonomous exosystemν0

Thus, our objective is to guarantee that limt→∞ ei(t) = 0.
We design an observer-based controller with available indi-
vidual output information and neighbor-based group output
information to solve this problem.

For the system shown in Fig. 2, the overall control can cor-
respond to a formation control problem, whereωi encodes
the relative position between each agent and the leader while
the leaderx0 defines the overall motion of the group.

4 Coordinated Output Regulation with Unified Ob-
server Design

As suggested by Fig. 1, the design procedure to solve the
coordinated output regulation problem includes two main
steps: the first one is the state feedback control design and the
second one is the observer design for the group autonomous
exosystem, the individual autonomous exosystem, and in-
ternal state information for each agent.

4.1 Redundant Modes

Before designing state feedback control and distributed ob-
server, we need first to remove the redundant modes that
have no effect onysi andydi − yd0.

We impose the following assumptions on the structure of
the systems.

Assumption 3

•
(

Ai ,

[
Csi

Cdi

])
, i = 1,2, . . . ,n is observable.

• (Si ,Cwi), i = 1,2, . . . ,n is observable.
• (A0,C0), i = 1,2, . . . ,n is observable.

We first write the state and output of each agent in the com-
pact form




ẋi

ω̇i

ẋ0


=




Ai 0 0

0 Si 0

0 0 A0







xi

ωi

x0


+




Bi

0

0


ui,

[
ysi

ydi − yd0

]
=

[
Csi Cwi 0

Cdi 0 −C0

]



xi

ωi

x0


 .

Given that Assumption 3 is satisfied, we can perform the
state transformation given in Step 1 of [27] by consideringωi

andx0 together. We can construct a new statexi =Wi




xi

ωi

x0




with the dynamics

ẋi = Aixi +Biui =

[
Ai Ai12

0 Ai22

]
xi +

[
Bi

0

]
ui , (6a)

[
ysi

edi

]
=Cixi =

[
Csi Ci21

Cdi Ci22

]
xi . (6b)

where edi = ydi − yd0, and the details designs onWi , Ai ,
Bi , Ci are given in [27]. It was shown that pair(Ai ,Ci) is
observable and the eigenvalues ofAi22 are a subset of the
eigenvalues ofSi andA0, i = 1,2, . . . ,n.

4.2 Regulated State feedback Control Law

We now design a controller to regulateei to zero for each

agent based on the state informationxi =

[
xi1

xi2

]
, wherexi1 ∈

Rni .

We impose the following assumptions on the structure of
the systems.

Assumption 4
• (Ai ,Bi) is stabilizable, i= 1, . . . ,n.
• (Ai ,Bi ,Dsi) is right-invertible, i= 1, . . . ,n.
• (Ai ,Bi ,Dsi) has no invariant zeros in the closed right-half
complex plane that coincide with the eigenvalues of Si or
A0, i = 1, . . . ,n.

Lemma 1 Let Assumption 4 hold. Then, the regulator equa-
tions(7) are solvable and the state-feedback controller ui =
Fi(xi1 − Πixi2) + Γixi2 ensures thatlimt→∞ ei(t) = 0, i =
1,2. . . ,n, whereΠi , Γi are the solutions of the following
regulator equations

ΠiAi22 = AiΠi +Ai12+BiΓi , (7a)

0= DsiΠi +
[

Dwi D0

]
, i = 1,2. . . ,n, (7b)

and Fi is chosen such that Ai +BiFi is Hurwitz.

Proof: It follows from [39] and the similar analysis of proof
of Lemma 3 in [27], we can show that the regulator equations
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(7) are solvable given that Assumption 4 is satisfied. Then,
by considerinġxi2 =Ai22xi2 as the exosystem and ˙xi =Aixi +
Biui as the system to be regulated for the classic output
regulation result [40], we know thatui = Fi(xi1 −Πixi2)+
Γixi2 ensures that limt→∞ ei(t) = 0, i = 1,2. . . ,n, whereΠi
andΓi are the solutions of the regulator equations (7).

We next design observers to estimatexi based on output
informationysi andζi for each agent.

4.3 Pseudo-identical Linear Transformation

Note that the individual offsetωi can be estimated byysi and
the group referencex0 can be estimated bŷζi . In contrast, the
internal state informationxi for each agent can be obtained
by eitherysi or ζ̂i . In this section, we use the combination
of ysi andζ̂i to give a unified observer design.

We defineχi = Tixi ∈ Rpn, i = 1,2, . . . ,n, wheren = n0+
maxi=1,2,...,n(ni +qi), p= p1+ p2, and

Ti =




Ci

...

CiA
n−1
i


 .

Note that Ti is full column rank since the pair(Ai ,Ci),
i = 1,2, . . . ,n is observable. This implies thatTT

i Ti is non-
singular. Therefore, it follows that

χ̇i = (A +Li)χi +Biui, (8a)
[

ysi

edi

]
= C χi , i = 1,2, . . . ,n, (8b)

whereA =

[
0 Ip(n−1)

0 0

]
∈Rpn×pn, Li =

[
0

Li

]
, Bi = TiBi ,

C =
[

Ip 0
]
∈ Rp×pn for some matrixLi ∈ Rp×pn.

4.4 Unified Observer Design

Motivated by [27], based on the available output information
ysi and the neighbor-based group output informationζi , the
distributed observer is proposed for (8) as

˙̂χ i = (A +Li)χ̂i +Biui +S(ε)PC
T

×
([

ysi

∑n
j=0ai j (t)(ydi − yd j)

]
−
[

ŷsi

∑n
j=0ai j (t)(ŷi − ŷ j)

])
,

i = 1,2. . . ,n, (9)

whereai j (t), i = 0,1, . . . ,n, j = 0,1, . . . ,n, is entry(i, j) of
the adjacency matrixAσ(t) associated withGσ(t) defined in

Section 2 at timet, ŷsi = C1χ̂i , ŷi = C2χ̂i , i = 1, . . . ,n, C1 is
first p1 rows of C , C2 is the remainingp2 rows of C , and
ŷ0 = 0. In addition,S(ε) = diag(Ipε−1, Ipε−2, . . . , Ipε−n),
whereε ∈ (0,1] is a positive constant to be determined, and
P = PT is a positive definite matrix satisfying

A P +PA
T −2PC

T

[
Ip1 0

0 θ Ip2

]
CP + Ipn = 0, (10)

where θ = mink∈Γc βk and βk will be determined later.
Note that the existence ofP is due to the fact that(

A ,

[
Ip1 0

0
√

θ Ip2

]
C

)
is observable.

Lemma 2 • All the eigenvalues of Lk are in the closed
right-half plane with those on the imaginary axis being
simple, where Lk is associated withGk defined in Section
2, and someGk ∈ {Gk}k∈Γ.

• Furthermore, all the eigenvalues of Lk are in the open
right-half plane forGk ∈ {Gk}k∈Γc.

Proof: See Theorem 4.29 in [41] and Lemma 1.6 in [42].

Lemma 3 Let Assumptions 1, 2, 4, and 3 hold and assume

that κ ≥ α+4max{θ ,1}λ 2
max(P)

1−α , whereα ∈ (0,1). Then, there
exists anε∗ ∈ (0,1] 1 such that, ifε ∈ (0,ε∗], limt→∞(χi(t)−
χ̂i(t)) = 0, i = 1,2. . . ,n, for systems(9).

Proof: Note that for all i = 1,2, . . . ,n, ∑n
j=0ai j (t)(ydi −

yd j) = ∑n
j=1 l i j (t)((yd j − yd0) = ∑n

j=1 l i j (t)ed j. Define χ̃i =

χi − χ̂i. It then follows from (8) and (9) that

˙̃χ i =(A +Li)χ̃i −S(ε)PC
T

([
ysi− ŷsi

∑n
j=1 l i j (t)(ed j − ŷ j)

])
,

i = 1,2. . . ,n,

wherel i j (t), i = 1, . . . ,n, j = 1, . . . ,n, is the(i, j)th entry of
the adjacency matrixLσ(t) associated withGσ(t) defined in
Section 2 at timet. It follows that

˙̃χ i =(A +Li)χ̃i −S(ε)PC
T

([
C1χ̃i

C2 ∑n
j=1 l i j (t)χ̃ j

])
,

i = 1,2. . . ,n.

1 The upper bound of the high-gain parameter may be conserva-
tive. We can use an empirical approach to derive a feasibleε∗ in
the practical applications.
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By introducingξi = ε−1S−1(ε)χ̃i and after some manipula-
tion, we have that

εξ̇i = (A +Liε)ξi −PC
T

([
C1ξi

C2 ∑n
j=1 l i j (t)ξ j

])
,

i = 1,2. . . ,n,

whereLiε =

[
0

εn+1LiS(ε)

]
= O(ε).

Note that

[
C1ξi

C2ξi

]
= C ξi , for all i = 1,2, . . . ,n. The overall

dynamics can be written as

εξ̇ =
(
In⊗A +Lε − (In⊗PC

T)

×
(

In⊗
[

Ip1 0

0 0

]
+Lσ ⊗

[
0 0

0 Ip2

])
(In⊗C )

)
ξ ,

(11)

whereξ = [ξ T
1 ,ξ

T
2 , . . . ,ξ

T
n ]

T andLε = diag(L1ε ,L2ε , . . . ,
Lnε).

Note that−Lk, k ∈ Γc is a Hurwitz stable matrix accord-
ing to Lemma 2. Therefore, we can always guarantee that
−Lk+βkIn is also a Hurwitz stable matrix by choosingβk
sufficiently small. In particular, we chooseβk as a posi-
tive constant satisfyingβk < minℜ{λ (Lk)}, k ∈ Γc, where
minℜ{λ (Lk)} denote the minimum value of all the real
parts of the eigenvalues ofLk. Then, we define piecewise
Lyapunov function candidateVk = εξ T(Pk⊗P−1)ξ , where
Pk is positive definite matrix satisfying

Pk(−Lk+βkIn)+ (−Lk+βkIn)
TPk =−In < 0, k∈ Γc,

Pk(−Lk)+ (−Lk)
TPk ≤ 0, k∈ Γd,

where the second inequality is due to Lemma 2.

It then follows that for allk∈ Γc,

V̇k ≤ 2ξ T (Pk⊗P
−1

A
)

ξ +2ξ T (Pk⊗P
−1)

Lεξ

−2ξ T

(
Pk⊗

(
C

T

[
Ip1 0

0 0

]
C

))
ξ

−2ξ T

(
PkLk⊗

(
C

T

[
0 0

0 Ip2

]
C

))
ξ

≤ ξ T

(
Pk⊗

(
P

−1
A +A

T
P

−1−2θC
T

[
0 0

0 Ip2

]
C

−2C
T

[
Ip1 0

0 0

]
C

))
ξ +2ξ T(Pk⊗P

−1)
Lε ξ

− ξ T

(
(2PkLk−2θPk)⊗ (C T

[
0 0

0 Ip2

]
C )

)
ξ

≤ ξ T(Pk⊗
(
P

−1(
A P +PA

T

−2PC
T

[
Ip1 0

0 θ Ip2

]
CP

)
P

−1

))
ξ

− ξ T

(
(
PkLk+LT

k Pk−2βkPk
)
⊗ (C T

[
0 0

0 Ip2

]
C )

)
ξ

+2λmax(Pk)λmax(P
−1)‖Lε‖‖ξ‖2

≤− ξ T (Pk⊗ (P−1
P

−1)
)

ξ

− ξ T

(
In⊗ (C T

[
0 0

0 Ip2

]
C )

)
ξ

+
2λmax(Pk)λmax(P

−1)‖Lε‖
ελmin(Pk)λmin(P−1)

Vk

≤− ξ T (Pk⊗ (P−1
P

−1)
)

ξ ,

+
2λmax(Pk)λmax(P

−1)‖Lε‖
ελmin(Pk)λmin(P−1)

Vk

≤−
(

λmin(P
−1)

ε
− 2λmax(Pk)λmax(P

−1)‖Lε‖
ελmin(Pk)λmin(P−1)

)
Vk,

where we have used (10) and the fact thatθ ≤ βk, k ∈
Γc. It then follows thatV̇k ≤ − 1

ε λkVk, ∀k ∈ Γc, if ‖Lε‖ <
λmin(Pk)λmin(P)

4λmax(Pk)λ 2
max(P)

, whereλk =
1

2λmax(P)
, ∀k∈ Γc.

On the other hand, for allk∈ Γd, we have that

V̇k ≤ 2ξ T (Pk⊗ (P−1
A )
)

ξ +2ξ T (Pk⊗P
−1)

Lε ξ

−2ξ T

(
Pk⊗

(
C

T

[
Ip1 0

0 0

]
C

))
ξ

−2ξ T

(
PkLk⊗

(
C

T

[
0 0

0 Ip2

]
C

))
ξ

≤ ξ T (Pk⊗ (P−1(A P +PA
T)P−1)

)
ξ

+2λmax(Pk)λmax(P
−1)‖Lε‖‖ξ‖2

≤ 2ξ T

(
Pk⊗

(
C

T

[
Ip1 0

0 θ Ip2

]
C

))
ξ − λmin(P

−1)

ε
Vk

+
2λmax(Pk)λmax(P

−1)‖Lε‖
ελmin(Pk)λmin(P−1)

Vk,

where we have used (10). Note thatλmax

(
C T

[
Ip1 0

0 θ Ip2

]
C

)

= max{θ ,1}. It follows that V̇k ≤ 1
ε λkVk, ∀k ∈ Γd, if

‖Lε‖< λmin(Pk)λmin(P)
2λmax(Pk)λ 2

max(P)
, whereλk = 2max{θ ,1}λmax(P),

∀k∈ Γd.
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Following the similar analysis of [38,43], we letσ = p j on
[t j−1, t j) for p j ∈ Γ. Then, for anyt satisfyingt0 < t1 < · · ·<
tℓ < t < tℓ+1, defineV = εξ T(Pσ(t)⊗P−1)ξ for (11). We
have that,∀ζ ∈ [t j−1, t j),

V(ζ )≤ e−
1
ε λpj (ζ−t j−1)V(t j−1)

≤ e−
1
ε λ c(ζ−t j−1)V(t j−1), p j ∈ Γc,

V(ζ )≤ e
1
ε λpj (ζ−t j−1)V(t j−1)

≤ e
1
ε λ d(ζ−t j−1)V(t j−1), p j ∈ Γd,

where λ c = mink∈Γc λk = 1
2λmax(P) , λ d = maxk∈Γd λk =

2max{θ ,1}λmax(P). Definea= λmax(P)
λmin(P)

maxk, j∈Γ
λmax(Pk)
λmin(Pj )

.

We then know thatV(t j) ≤ alimt↑t j V(t). Thus, it follows
that

V(t)≤ aρe
1
ε λ dTd

t0
(t)− 1

ε λ cTc
t0
(t)

V(t0),

whereρ denotes times of switching during[t0, t). Note that

ρ ≤ t−t0
τd

. Given thatκ ≥ κ∗ = λ d+λ
λ c−λ , for someλ ∈ (0,λ c),

it follows from Assumption 2 thatTc
t0
(t) ≥ κ∗Td

t0
(t) for all

t ≥ t0. This implies thatλ dTd
t0
(t)−λ cTc

t0
(t) ≤−λ (Td

t0
(t)+

Tc
t0
(t)), for all t ≥ t0 and we therefore know that

V(t)≤ aρe−
1
ε λ (t−t0)V(t0)

≤ e
t−t0
τd

lna− 1
ε λ (t−t0)V(t0)

= e
−
(

1
ε λ− lna

τd

)
(t−t0)V(t0).

Furthermore, setλ = αλ c, where someα ∈ (0,1). We then

have thatκ∗ = α+4max{θ ,1}λ 2
max(P)

1−α , and

V(t)≤ e
−
(

α
2ελmax(P)

− lna
τd

)
(t−t0)V(t0).

It follows that if ε <
ατd

2λmax(P) lna, we have for (11) that

‖ξ (t)‖ ≤ c∗e
− 1

2

(
α

2ελmax(P)
− lna

τd

)
(t−t0)‖ξ (t0)‖,

wherec∗ =
√

λmax(P)maxk∈Γ λmax(Pk)
λmin(P)mink∈Γ λmin(Pk)

.

Therefore, we chooseε∗ satisfying ε∗ <
ατd

2λmax(P) lna

and ‖Lε∗‖ < mink∈Γ
λmin(Pk)λmin(P)

4λmax(Pk)λ 2
max(P)

. It then follows that

limt→∞(χi(t)− χ̂i(t)) = 0, i = 1,2. . . ,n.

Remark 2 Note that the condition ofκ is necessary when
the communication topology is switching. Roughly speak-
ing, we need to guarantee that the influence of “the good

topology” beats that of “the bad topology” since the states
of open-loop systems might diverge very fast due to the ex-
istence of unstable modes. The parameterκ is used to de-
scribe the relationship between Tc

t0
(t) and Td

t0
(t), i.e., the

remaining times of “good topology” and “bad topology”,
respectively. The derived upper bound onκ might not be
tight. However, we would like to emphasize that the signif-
icance is on the qualitative effects instead of quantitative
effects. In practical applications, we can use an empirical
approach to derive a feasibleκ , as illustrated in Section 6.

From the unified observer design, we then have that

x̂i = (TT
i Ti)

−1TT
i χ̂i = [̂x

T
i1, x̂

T
i2]

T, i = 1,2, . . . ,n, (14)

which will be used in the control input design.

4.5 Main Results

In this section, we show that the observer architecture in-
troduced in the previous sections provide an asymptotically
stable closed-loop system, as presented in Theorems 1 be-
low. The observer-based controller is proposed as

ui = Fi x̂i1+(Γi −FiΠi)x̂i2, (15)

whereΠi andΓi are the solutions of the regulator equation
(7), andx̂i1 andx̂i2 can be obtained from (9).

Theorem 1 Let Assumptions 1, 2, 3 and 4 hold and assume

that κ ≥ α+4max{1,θ}λ 2
max(P)

1−α , whereα ∈ (0,1), θ and P

are given by(10). Then, there existsε∗ ∈ (0,1] such that, if
ε ∈ (0,ε∗], (15) ensures thatlimt→∞ ei(t) = 0, i = 1,2. . . ,n,
for the multi-agent system(1)-(4).

Proof: Follows from Lemmas 1 and 3, and the separation
principle.

Remark 3 If the leader-follower communication topology
G is time-invariant, Assumptions 1 and 2 are not needed,
and therefore the high-gain parameter only depends on the
non-identical dynamics of the agents.

5 Case Studies

We notice that (9) give a unified way usingysi and ζi to
estimatexi , ωi , and x0. One drawback of such a general
approach is that the dimension of the observerχ̂i may be
unnecessarily large for some cases with special structures.
We next give particular structural designs on two special
cases,i.e., the case when(Ai ,Csi) is observable and the case
when(Ai ,Cdi) is observable2 .

2 These two cases are special cases of the first item of Assumption
3.
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Fig. 3. Control architecture for agentνi

5.1 Case I:(Ai ,Csi) is observable

In this section, we useysi to estimate bothxi andωi and use
ζi to estimatex0. The control of each agent has the structure
shown in Fig. 3.

We replace the first item of Assumption 3 with that(Ai ,Csi),
for all i = 1,2, . . . ,n is observable.

Step I: redundant mode remove

We first write the state and output ofxi andωi for each agent
in the compact form

[
ẋi

ω̇i

]
=

[
Ai 0

0 Si

][
xi

ωi

]
+

[
Bi

0

]
ui ,

ysi =
[

Csi Cwi

][ xi

ωi

]
.

We can then construct a new statexi =Wi

[
xi

ωi

]
and perform

the state transformation such that

ẋi = Aixi +Biui =

[
Ai Ai12

0 Ai22

]
xi +

[
Bi

0

]
ui ,

ysi =Cixi =
[

Csi Ci12

]
xi .

Similar to Section 4.1, we can show that the pair(Ai ,Ci) is
observable and the eigenvalues ofAi22 are a subset of the
eigenvalues ofSi , i = 1,2, . . . ,n.

Step II: agent observer

Based on the information of the individual output informa-
tion ysi, the following individual observer for each agentνi
is proposed

˙̂xi = Ai x̂i +Biui +Kai

(
Ci x̂i − ysi

)
, (18a)

[x̂T
i , ω̂T

i ]
T =W−1

i x̂i , i = 1,2, . . . ,n, (18b)

whereKai is chosen such thatAi +KaiCi is Hurwitz stable,
i = 1,2. . . ,n.

Step III: group observer

We transform (3) into its canonical form. Defineχ0 =T0x0 ∈
Rpn0, where

T0 =




C0

...

C0An0−1
0


 .

Therefore, it follows that

χ̇0 = (A0+L0)χ0,

y0 = C0χ0,

whereA0 =

[
0 Ip(n0−1)

0 0

]
∈ R

pn0×pn0, L0 =

[
0

C0An0
0 (TT

0 T0)
−1TT

0

]
, C0 =

[
Ip 0

]
∈ Rp×pn0.

Then, based on the neighbor-based group output information
ζi , the distributed observer is proposed

˙̂χ0i = (A0+L0)χ̂0i −S(ε)PC
T
0

(
n

∑
j=0

ai j (t)(ydi − yd j)

−
n

∑
j=0

ai j (t)(ŷi − ŷ j)

)
, (20a)

x̂0i = (TT
0 T0)

−1TT
0 χ̂0i, i = 1,2. . . ,n, (20b)

where ai j (t), i = 0,1, . . . ,n, j = 0,1, . . . ,n, is entry (i, j)
of the adjacency matrixAσ(t) associated withGσ(t) de-
fined in Section 2 at timet, the relative estimation informa-
tion ∑n

j=0ai j (t)(ŷi − ŷ j) is obtained using the communica-
tion infrastructure witĥyi =Cdix̂i −C0χ̂0i , i = 1,2, . . . ,n and
ŷ0 = 0. In addition,S(ε) = diag(Ipε−1, Ipε−2, . . . , Ipε−n0),
whereε ∈ (0,1] is a positive constant, andP = PT is a
positive definite matrix satisfying

A0P +PA
T

0 −2θPC
T
0 C0P + Ipn0 = 0, (21)
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andθ is a positive constant satisfyingθ < 1
2 minGk∈Gc

minℜ{λ (Lk)}.

Step IV: controller design

The observer-based controller is proposed as

ui = Fi x̂i +(Γ1i −FiΠ1i)ω̂i +(Γ2i −FiΠ2i)x̂0i , (22)

whereΠ1i, Γ1i , Π2i , andΓ2i are the solutions of the following
regulator equations

Π1iSi = AiΠ1i +BiΓ1i , (23a)
0= DsiΠ1i +Dwi, (23b)

Π2iA0 = AiΠ2i +BiΓ2i , (23c)
0= DsiΠ2i +D0, i = 1,2. . . ,n, (23d)

andFi is chosen such thatAi +BiFi is Hurwitz.

Corollary 2 Let Assumptions 1, 2, 3 (the first item is re-
placed by that(Ai ,Csi) is observable), and 4 hold and as-

sume thatκ ≥ α+4θλ 2
max(P)

1−α , whereα ∈ (0,1), θ andP are
given by(21). Also, letx̂i andω̂i be obtained in(18), andx̂0i
be obtained in(20). Then, there existsε∗1 ∈ (0,1] such that, if
ε ∈ (0,ε∗1 ], (22) ensures thatlimt→∞ ei(t) = 0, i = 1,2. . . ,n,
for the multi-agent system(1)-(4).

Proof: The proof is straightforward following the similar
analysis given in Lemmas 1 and 3.

5.2 Case II:(Ai ,Cdi) is observable

In this section, we useysi to estimateωi and useζi to estimate
bothxi andx0. The control of each agent is supposed to have
the structure shown in Fig. 4.

We also replace the first item of Assumption 3 with that
(Ai ,Cdi), for all i = 1,2, . . . ,n is observable.

Step I: redundant mode remove

We first write the state and output ofxi andx0 for each agent
in the compact form

[
ẋi

ẋ0

]
=

[
Ai 0

0 A0

][
xi

x0

]
+

[
Bi

0

]
ui,

edi = ydi − yd0 =
[

Cdi −C0

][ xi

x0

]
.

We can then construct a new statexi =Wi

[
xi

x0

]
and perform

Agent  

ζi

ωi

ei

ui

Individual 

observer

Coupled

observer

ysi

ω̂i

x̂i

x̂0i

Controller

Agent  j

i

Fig. 4. Control architecture for agentνi

the state transformation such that

ẋi = Aixi +Biui =

[
Ai Ai12

0 Ai22

]
xi +

[
Bi

0

]
ui ,

edi =Cixi =
[

Cdi Ci12

]
xi .

Similarly, we can show that pair(Ai ,Ci) is observable and
the eigenvalues ofAi22 are a subset of the eigenvalues ofA0,
i = 1,2, . . . ,n.

Step II: coupled observer

We next defineχi = Tixi ∈ Rpn, i = 1,2, . . . ,n, wheren =
n0+maxi=1,2,...,nni , and

Ti =




Ci

...

CiA
n−1
i


 .

Therefore, it follows that

χ̇i = (A +Li)χi +Biui , (26a)

edi = C χi , i = 1,2, . . . ,n, (26b)

whereA =

[
0 Ip(n−1)

0 0

]
∈Rpn×pn, Li =

[
0

Li

]
, Bi = TiBi ,

C =
[

Ip 0
]
∈ Rp×pn for some matrixLi ∈ Rp×pn.

Based on the neighbor-based group output informationζi ,
the distributed observer is proposed for (26) as

˙̂χ i =(A +Li)χ̂i +Biui +S(ε)PC
T
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×
(

n

∑
j=0

ai j (t)(ydi − yd j)−
n

∑
j=0

ai j (t)(ŷi − ŷ j)

)
, (27a)

[x̂T
i , x̂

T
0i ]

T =W−1
i (TT

i Ti)
−1TT

i χ̂i , i = 1,2, . . . ,n, (27b)

whereai j (t), i = 0,1, . . . ,n, j = 0,1, . . . ,n, is entry(i, j) of
the adjacency matrixAσ(t) associated withGσ(t) defined in
Section 2 at timet, ŷi =C χ̂i, i = 1,2, . . . ,n, ŷ0 = 0. In addi-
tion, S(ε) = diag(Ipε−1, Ipε−2, . . . , Ipε−n), whereε ∈ (0,1]
is a positive constant, andP = PT is a positive definite
matrix satisfying

A P +PA
T −2θPC

T
C P + Ipn = 0, (28)

whereθ is a positive constant satisfyingθ < 1
2 minGk∈Gc

minℜ{λ (Lk)}.

Step III: individual observer

Based on the information of̂xi and the individual output
informationysi, the following individual observer for each
agent is proposed

˙̂ω i = Siω̂i +Ksi(Csix̂i +Cwiω̂i − ysi) , i = 1,2. . . ,n, (29)

whereKsi is chosen such thatSi +KsiCwi is Hurwitz stable.

Step IV: controller design

The observer-based controller is proposed as

ui = Fi x̂i +(Γ1i −FiΠ1i)ω̂i +(Γ2i −FiΠ2i)x̂0i , (30)

whereΠ1i, Γ1i , Π2i , andΓ2i are the solutions of the following
regulator equations

Π1iSi = AiΠ1i +BiΓ1i , (31a)
0= DsiΠ1i +Dwi, (31b)

Π2iA0 = AiΠ2i +BiΓ2i , (31c)
0= DsiΠ2i +D0, i = 1,2. . . ,n. (31d)

andFi is chosen such thatAi +BiFi is Hurwitz.

Corollary 3 Let Assumptions 1, 2, 3 (the first item is re-
placed by that(Ai ,Cdi) is observable), and 4 hold and as-

sume thatκ ≥ α+4θλ 2
max(P)

1−α , whereα ∈ (0,1), θ andP are
given by(28). Also, letx̂i andx̂0i be obtained in(27), andω̂i
be obtained in(29). Then, there existsε∗2 ∈ (0,1] such that, if
ε ∈ (0,ε∗2 ], (30) ensures thatlimt→∞ ei(t) = 0, i = 1,2. . . ,n,
for the multi-agent system(1)-(4).

Proof: See [1].

6 Simulation Results

In this section, we illustrate the theoretical results. Consider
a network of three agents as shown in Fig. 2. We assume that
the adjacency matrixAσ(t) associated withGσ(t) is switching
periodically. Denoteℓ= 0,20,40. . . .

A=








0 0 0 0
1 0 1 0
0 1 0 0
0 0 1 0


 , when t ∈ [ℓ,ℓ+6),




0 0 0 0
1 0 0 0
0 1 0 1
0 0 1 0


 , when t ∈ [ℓ+6, ℓ+12),




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


 , when t ∈ [ℓ+12, ℓ+18),




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , when t ∈ [ℓ+18, ℓ+20).

Example 1

We give an example to validate Theorem 1, the dynamics of

the agents are described asA1 =




0 3 0

0 0 2

0 −1 0


, B1 =




0

0

1


,

Cs1=Cd1 =Ds1 =
[

1 1 1
]
, A2=

[
1 0

0 0

]
, B2 =

[
1

1

]
,Cs2 =

[
1 0

]
, Cd2 =

[
0 1

]
, Ds2 =

[
1 1

]
, A3 =

[
0 1

−2 −2

]
, B3 =

[
0

1

]
, Cs3 = Cd3 = Ds3 =

[
1 0

]
. The dynamics of the in-

dividual autonomous exosystems are described asSi = 0,
Cwi = Dwi = −1, i = 1,2,3, andω1(0) = −2, ω2(0) = −4,
and ω3(0) = −6. The dynamics of the group autonomous

exosystem are described asA0 =

[
0 1

−1 0

]
, C0 =

[
1 0

]
,

D0 =−C0.

Following the design scheme proposed in Section 4, for
the solutions of regulator equations (7), we have that

F1 =
[
−1 −4.5 −6

]
, Π1 =




1 1.0345 −0.4138

0 0.1379 0.3448

0 −0.1724 0.0690


,
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Fig. 5. Output convergence of system (1), (2), and (3) under the
observer-based controller (15) for Theorem 1
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Fig. 6. Error convergence of system (1), (2), and (3) under the
observer-based controller (15) for Theorem 1

Γ1 =
[

0 0.0690 0.1724
]

for agent ν1, F2 =
[
−2 −6

]
,

Π2 =

[
0 0.4 −0.2

1 0.6 0.2

]
, Γ2 =

[
0 −0.2 0.6

]
for agent ν2,

F3 =
[

0 −1
]
, Π3 =

[
1 1 0

0 0 1

]
, Γ3 =

[
2 1 2

]
for agent

ν3. We also haveε = 0.2 for (9) andθ = 0.1 for (10).

Figs. 5 and 6 show, respectively, the state convergence and
the error convergence of system (1), (2), and (3) under the
observer-based controller (15). We see that coordinated out-
put regulation is realized even when there exists multiple
heterogenous dynamics and the information interactions are
switching. This agrees with Theorem 1.

Example 2

We next give an example to validate Corollary 2. In
this section, the dynamics of the agents are described as

A1 =




0 3 0

0 0 2

0 −1 0


, B1 =




0

0

1


, Cs1 =Cd1 = Ds1 =

[
1 1 1

]
,

A2 =

[
0 1

0 0

]
, B2 =

[
0

1

]
, Cs2 = Cd2 = Ds2 =

[
1 0

]
,

A3 =

[
0 1

−2 −2

]
, B3 =

[
0

1

]
, Cs3 = Cd3 = Ds3 =

[
1 0

]
.

The dynamics of the individual autonomous exosystem are
described asω1(t) = 0, ω2(t) = 0, andω3(t) = 0. The dy-
namics of the group autonomous exosystem are described

asA0 =

[
0 1

−1 0

]
, C0 =

[
1 0

]
, D0 =−C0.

Following the design scheme proposed in Section 5.1,
for the solutions of regulator equations (23), we have

that F1 =
[
−1 −4.5 −6

]
, Π21 =




1.0345 −0.4138

0.1379 0.3448

−0.1724 0.0690


,

Γ21 =
[

0.0690 0.1724
]

for agent ν1, F2 =
[
−2 −3

]
,

Π22=

[
1 0

0 1

]
, Γ22=

[
−1 0

]
for agentν2, F3 =

[
0 −1

]
,

Π23 =

[
1 0

0 1

]
, Γ23 =

[
1 2

]
for agentν3. We also have

Ka1 = [−0.75,−4,−1.25]T, Ka2 = [−3,−2]T, Ka3 = [−1,2]T

for (18), ε = 0.2 for (20) andθ = 0.1 for (21).

Figs. 7 and 8 show, respectively, the state convergence and
the error convergence of system (1), (2), and (3) under the
observer-based controller (22). We see that coordinated out-
put regulation is realized even when there exists multiple
heterogenous dynamics and the information interactions are
switching. This agrees with Corollary 2.

Example 3

We give an example to validate Corollary 3, the dynam-

ics of the agents are described asA1 =




0 3 0

0 0 2

0 −1 0


, B1 =




0

0

1


, Cs1 = Cd1 = Ds1 =

[
1 1 1

]
. A2 =

[
0 1

0 0

]
, B2 =
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Fig. 7. Output convergence of system (1), (2), and (3) under the
observer-based controller (22) for Corollary 2
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Fig. 8. Error convergence of system (1), (2), and (3) under the
observer-based controller (22) for Corollary 2

[
0

1

]
, Cs2 = Cd2 = Ds2 =

[
1 0

]
. A3 =

[
0 1

−2 −2

]
, B3 =

[
0

1

]
, Cs3 = Cd3 = Ds3 =

[
1 0

]
. The dynamics of the in-

dividual autonomous exosystems are described asSi = 0,
Cwi = Dwi = −1, i = 1,2,3, andω1(0) = −2, ω2(0) = −4,
and ω3(0) = −6. The dynamics of the group autonomous

exosystem are described asA0 =

[
0 1

−1 0

]
, C0 =

[
1 0

]
,

D0 =−C0.

Following the design scheme proposed in Section 5.2,
for the solutions of regulator equations (31), we have

that F1 =
[
−1 −4.5 −6

]
, Π11 =




1

0

0


, Γ11 = 0, Π21 =




1.0345 −0.4138

0.1379 0.3448

−0.1724 0.0690


, Γ21 =

[
0.0690 0.1724

]
for agent

ν1, F2 =
[
−2 −3

]
, Π12 =

[
1

0

]
, Γ12 = 0, Π22 =

[
1 0

0 1

]
,

Γ22 =
[
−1 0

]
for agentν2, F3 =

[
0 −1

]
, Π13 =

[
1

0

]
,

Γ13 = −2, Π23 =

[
1 0

0 1

]
, Γ23 =

[
1 2

]
for agentν3. We

also haveε = 0.2 for (27), θ = 0.1 for (28), andKsi = 1,
i = 1,2,3 for (29),

Figs. 9 and 10 show, respectively, the state convergence and
the error convergence of system (1), (2), and (3) under the
observer-based controller (30). We see that coordinated out-
put regulation is realized even when there exists multiple
heterogenous dynamics and the information interactions are
switching. This agrees with Corollary 3.

7 Conclusions

This paper studied the coordinated output regulation prob-
lem of multiple heterogeneous linear systems. We first for-
mulated the coordinated output regulation problem and spec-
ified the information that is available for each agent. A high-
gain based distributed observer and an individual observer
were introduced for each agent and observer-based con-
trollers were designed to solve the problem. The information
interactions among the agents and the group autonomous
exosystem were allowed to be switching over a finite set
of fixed networks containing both the graph having a span-
ning tree and the graph having not. The relationship of the
information interactions, the dwell time, the non-identical
dynamics of different agents, and the high-gain parameters
were also given. Simulations were given to validate the the-
oretical results. Future directions include relaxing the dwell-
time assumption.
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