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Abstract

We consider the computation of H-infinity norms for Single-Input-Single-Output (SISO) time-delay systems, which are de-
scribed by delay differential algebraic equations. Unlike the iterative level set methods in the literature, we present a novel
numerical method to compute the H-infinity norm. This method requires solving one eigenvalue problem of at most twice the
size of the eigenvalue problem in every iteration of a level set method, but in practice often considerably lower. We first show
that the computation of extrema of the transfer function can be turned into the computation of the imaginary axis zeros of
a transcendental function. We compute these zeros by a predictor-corrector type algorithm. It is known that the H-infinity
norm of delay differential algebraic systems, which can model both retarded and neutral type systems, might be sensitive with
respect to arbitrarily small delay perturbations. This recently led to the concept of strong H-infinity norms, which explicitly
take into account such small delay perturbations. We present a direct numerical method to compute the strong H-infinity
norm of SISO time-delay systems. Our algorithm is applicable to the closed-loop system of interconnections (series, parallel,
feedback, junctions) of time-delay systems and/or controllers.
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1 Introduction

The availability of robust methods to compute H∞
norms is essential in a computer aided control system
design [15]. The common approaches for computing
H∞ norms for finite-dimensional linear systems, which
belong to the class of level set methods, are based on
the relation between the intersections of singular value
curves of the transfer function with a constant function
(the level) and the presence of imaginary axis eigenval-
ues of a corresponding Hamiltonian matrix [6]. In [6,2]
linearly converging bisection based algorithms have been
proposed. Quadratically convergent algorithms, relying
on an alternating search in two directions, have been
described in [1,5]. In [12] a level set algorithm for com-
puting H∞ norms of a class of retarded type time-delay
systems has been outlined. The main complication with
respect to the delay-free case is that the intersections
between the singular value curves and a level set are no
longer related to the spectrum of a Hamiltonian matrix,
but to an infinite-dimensional operator. Therefore, the

algorithm of [12] adopts a predictor-corrector approach,
where in the first step the operator is discretized using a
spectral method, followed by local corrections to remove
the effect of the discretization on computed peak values
in the frequency response. For the sake of complete-
ness, it should be mentioned that for systems without
delay, H∞ norms can also be computed by a parameter
sweep, thereby checking the feasibility of linear matrix
inequalities, see, e.g., [13]. However, since these methods
implicitly construct a Lyapunov function, and in the
infinite-dimensional, time-delay case, fixing the form of
the Lyapunov functional to a tractable form involving
finitely many free parameters typically introduces con-
servatism, only potentially conservative bounds on the
H∞ norm can be aimed at in the latter case.

Inherent to level set methods, whether for systems with
or without delay, is that the H∞ norm is computed in
an iterative way, by updating the level in every iteration
step until convergence to the dominant peak in the sin-
gular value plot is achieved. In every iteration step the
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imaginary axis eigenvalues of a Hamiltonian matrix or
operator need to be computed. As a first main contribu-
tion of the paper, we present a novel numerical algorithm
to compute H∞ norms of SISO time-delay systems re-
quiring solving only one eigenvalue problem.

The second main contribution is that our method admits
a system description in a standard form, described by a
set of delay differential algebraic equations (DDAEs). As
we will see, this form contains a large set of systems, in-
cluding interconnections of time-delay systems and con-
trollers in complex configurations, and including both
retarded and neutral type systems.

Recently, we analyzed in [9] the properties of the H∞
norm of time-delay systems. We illustrated that theH∞
norm of DDAEs may be sensitive with respect to arbi-
trarily small delay perturbations. Due to this sensitiv-
ity, we introduced the strongH∞ norm, which explicitly
takes into account small delay perturbations, inevitable
in any practical control application, and we outlined
the computation using a level set approach. The derived
theory of strong H∞ norms can be considered as the
dual of the theory of strong stability for neutral systems
and DDAEs, as, e.g., elaborated in [10,11] and the ref-
erences therein. As a third, main contribution, the pre-
sented algorithm in this paper takes the potential sen-
sitivity problem into account, by computing the strong
H∞ norm. In control problems without feed through at
infinity along the loops, this strong H∞ norms reduces
to the standard H∞ norm.

The remainder of the paper organizes as follows. Sec-
tion 2 describes the standard form on time-delay systems
on which the algorithms rely. Section 3 presents the com-
putation of extrema of the transfer function of a SISO
time-delay system. In particular, §3 shows that the lo-
cal maximum and minimum can be computed by finding
the imaginary axis zeros of a transcendental function. In
§3.1 these zeros are computed by a predictor-corrector
algorithm. Based on this computation and and a char-
acterization of the high-frequency behavior, we present
a non-iterative numerical algorithm for the strong H∞
norm computation in Section 4. Numerical examples and
concluding remarks are given in Sections 5 and 6.

Notation: The sets of complex, real and integer num-
bers are C,R,Z and the set of strictly positive and
nonnegative real numbers are R+,R+

0 . Zero and identity
matrices are 0, I. The transpose of the matrix A is AT .
Complex conjugate transpose, ith maximum singular
value and derivative of transfer function G(s) are shown
as G∗(s), σi(G), G′(s) respectively. The function con-
structing block diagonal matrix from input arguments
is blkdiag.

2 Standard form for time-delay systems

We consider a general representation for a time-delay
system described by the delay differential algebraic equa-
tions,

G :

{
E ˙̄x(t) = A0x̄(t) +

∑m
i=1Aix̄(t− τi) +Bu(t),

y(t) = Cx̄(t),

(1)
where E, Ai ∈ Rn×n for i = 0, . . . ,m, B ∈ Rn×nu and
C ∈ Rny×n are real valued matrices with appropriate
dimensions. The time-delays τi for i = 0, . . . ,m are non-
negative real numbers. Let matrix E in (1) satisfy

rank(E) = n− ν,

with 0 ≤ ν < n. In case ν ≥ 1, i.e., matrix E is singular,
we let the columns of matrix U ∈ Rn×ν , respectively
V ∈ Rn×ν , be a (minimal) orthonormal basis for the left,
respectively right nullspace of E, which implies UTE =
0, EV = 0. We then make the following assumption.

Assumption 1 Matrix UTA0V is nonsingular.

This assumption is necessary to make system (1)
causal [11]. We refer to this reference for a discussion of
basic properties of (1)(definition of solutions, spectrum
determined growth property of solutions,. . . ).

Assumption 2 The null solution of system (1), with
u ≡ 0, is strongly exponentially stable.

The stability of the time-delay system (1) is a necessary
assumption for H∞ norm computation since this norm
is finite for stable systems only. Strong exponential sta-
bility refers to the fact that the asymptotic stability of
the null solution is robust against small delay perturba-
tions, [10].

The representation in (1) is the standard form of the
SISO time-delay plant for our algorithms. This form is
closed under block diagram operations such as series,
parallel, feedback etc. and therefore, it is rich enough to
represent most of the systems as a result of interconnec-
tions of time-delay systems and/or controllers. This form
(1) allows to represent systems with multiple state, mul-
tiple input and output delays, as well as systems with a
nontrivial feed through including neutral type systems,
see [9]. This generality is an important property since the
H∞ norm computation of the closed-loop system with
the designed controller is a common scenario. Therefore
representing the closed-loop system and all its subsys-
tems with the same form is essential for practical use of
the algorithm.

Another representation for the time-delay systems (also
used in MATLAB) is the generalized LTI (GLTI) class
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of continuous-time LTI systems, where systems are
modeled as the LFT interconnection of a delay-free LTI
model H and a set of internal, input and output delays
(see Figure 1).

Fig. 1. Systems with internal, input and output delays

The class of GLTI systems is also closed under series,
parallel, and feedback connections as well as branch-
ing/summing junctions [7].

State-space equations for H(s) and time-delay terms in
Figure 1 are

Fẋ(t) =Ax(t) +B1u(t) +B2w(t) (2)

y(t) =C1x(t) +D11u(t) +D12w(t)

z(t) =C2x(t) +D21u(t) +D22w(t)

w(t) = (Λfz)(t)

where Λfz is the vector-valued signal defined by
(Λfz)(t) := (zT1 (t − τ1), . . . , zTm(t − τm))T . Λi and Λo
operate on signals similarly, see [8] for further details
on defining various types of systems with time-delays.
We can transform the time-delay system in LFT form
(2) into our standard form (1) by first defining the
augmented state x̄T := [xT γTu wT zT ]T where γu is
the auxiliary variable for the input signal u. Then we
rewrite system equations (2) in terms of the new state
variable x̄ as in (1)

E = blkdiag(F, 0, 0, 0),

A0 =


A B1 B2 0

C2 D21 D22 −I
0 0 −I 0

0 −I 0 0

 , Ai =


0 0 0 0

0 0 0 0

0 0 0 I

0 0 0 0


B =

[
0 0 0 I

]T
, C =

[
C1 D11 D12 0

]
.

Hence, the transformation of (2) to (1) is immediate.

In the remainder of the paper we assume that, nu =
ny = 1, i.e., (1) is a SISO system.

3 Computation of extremum singular values

The transfer function of (1) is equal to

G(s) = C(sE −A0 −
m∑
i=1

Aie
−sτi)−1B. (3)

In what follows we characterize local extrema of the func-
tion

R 3 ω 7→ |G(jω)|. (4)

An extremum of the singular value curve of G(jω) sat-
isfies

0 = d
dωG(jω)G(jω)∗ = d

dωG(jω)G(−jω)

= jG′(jω)G(−jω)− jG(jω)G′(−jω).

We arrive at the following result.

Proposition 1 The extrema of (4) and corresponding
frequencies can be obtained from the imaginary axis zeros
of the transcendental function

Z(s) := G′(s)G(−s)−G′(−s)G(s). (5)

We introduce the following notation and two lemmas to
derive a state-space like representation (5). Let A(s) =
A0 +

∑m
i=1Aie

−sτi and let A′ be the derivative of A with
respect to s. Then, we can write the transfer function of
the SISO time-delay system (3) as

G(s) = C(sE − A(s))−1B. (6)

Lemma 2 Let G(s) have a transfer function (6). The
derivative of G(s) with respect to s is

G′(s) = [C 0]

(
s

[
E 0

0 E

]
−

[
A A′ − E
0 A

])−1 [
0

B

]
.

Proof. A simple computation yields

G′(s) =−C(sE − A)−1(E − A′)(sE − A)−1B,

= [C 0]

[
sE − A E − A′

0 sE − A

]−1 [
0

B

]
.

2

Using Lemma 2, we can derive the state space represen-
tation for G′(s) and G′(−s). The state space representa-
tion of (5) can be derived by the following result, which
are natural extension of finite dimensional case.
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Lemma 3 LetG1(s) = C1(sE1−A1)−1B1 andG2(s) =
C2(sE2 − A2)−1B2. Then

G1(s)+G2(s) = [C1 C2]

[
sE1 − A1 0

0 sE2 − A2

]−1 [
B1

B2

]

and

G2(s)G1(s) = [0 C2]

[
sE1 − A1 0

−B2C1 sE − A2

]−1 [
B1

0

]
.

By Lemma 2 and 3, we arrive at the following represen-
tation of Z(s) in (5):

Proposition 4 We can express

Z(s) = Cz(sEz − Az(s))−1Bz, (7)

where the matrices are given by

Ez = blkdiag(−E,E,E,−E,E,E),

Az(s) = blkdiag(Az(s),Az(−s)),

Bz =
[
BT 0 0 BT 0 0

]T
, Cz =

[
0 C 0 0 C 0

]
,

and Az(s) =


A(−s) 0 0

0 A(s) A′(s)− E
BC 0 A(s)

 ∈ R3n×3n.

The next section presents the numerical algorithm to
compute the zeros of Z using the above representation.

3.1 Computing the zeros of Z

Based on (7) we can compute the imaginary axis zeros
of Z in (5) by computing the imaginary axis solutions of
the following nonlinear eigenvalue problem[

Az(s)− sEz Bz

Cz 0

] [
u

v

]
= 0, (8)

where [uT , vT ]T is the corresponding eigenvector.

The nonlinearity of the eigenvalue problem stems from
the fact that Az(s) depends on e−sτi and esτi , i =
1, . . . ,m. This makes that the number of solutions of (8)
is in general infinite. It is important to note that the
solutions are symmetric with respect to the imaginary
axis, as can easily be seen from (5). Therefore, solutions
either appear in quadruples (s, s̄,−s,−s̄), or in pairs on

the imaginary axis, the latter corresponding to the ex-
trema of the original transfer function.

Due to the nonlinearity of (8), an approximation is nec-
essary to globally detect zeros on the imaginary axis.
This brings us to a predictor-corrector approach to solve
the problem, inspired by [9]. For the predictor step, we
start from a rational approximation of (3):

GN (λ) := CN(λEN −AN)−1BN, (9)

obtained by a spectral discretization of the delay system
on a grid of N Chebyshev points [4,9]. See Appendix B
in [9] for the computation of the system matrices in (9).
Subsequently, we determine the extrema of the curve
ω 7→ GN (jω). Similarly to the above derivation, these
are given by the imaginary axis zeros of

ZN (s) := G′N (s)GN (−s)−G′N (−s)GN (s). (10)

Let GN has the zero-pole-gain form as GN (s) = k b(s)a(s) .

Then, we can write ZN as

ZN (s) =

∆(s)︷ ︸︸ ︷(
−b
′(−s)
b(−s)

+
b′(s)

b(s)
+
a′(−s)
a(−s)

− a′(s)

a(s)

)
k2

a3(s)a3(−s)b(s)b(−s)
.

Note that the imaginary axis zeros as ZN and ∆ are the
same and we can compute the system ∆ as

∆(s) =

nz∑
i=1

(
1

s+ ẑ∗i
+

1

s− ẑi

)
−
np∑
k=1

(
1

s+ p̂∗k
+

1

s− p̂k

)

where ẑi and p̂k are zeros and poles of the system GN .
The computation of the imaginary axis zeros of ∆ re-
quires to solve the (standard) generalized eigenvalue
problem of size 2(np + nz) + 1,[

A∆ − sI B∆

C∆ 0

] [
uN

vN

]
= 0, (11)

where A∆, B∆ and C∆ are system matrices of the sys-
tem ∆. Due to the singularity of the matrix E in inter-
connected system, the computational cost could be sig-
nificantly lower than the order of system GN , n(N + 1).

Because of the error induced by replacing G(s) with
GN (s), the imaginary axis eigenvalues of (11) will only
be approximations of the imaginary axis eigenvalues of
(8) looked for. Therefore, the second, correction step of
the algorithm serves to remove the discretization error.
It is based on solving a system of nonlinear equations
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that characterize extremum points in the singular value
curve of G, where the initial values are obtained in the
first, predictor step. These equations are given by

H(jω, ξ)

[
u

v

]
= 0, ={v∗(Ez − A′z(jω))u} = 0, (12)

and the normalization constraints n(u, v) = 0 where

H(jω, ξ) :=

[
jωE − A(jω) −ξ−1BBT

ξ−1CTC jωET + AT (−jω)

]
.

The first equation in (12) expresses that ξ is a singu-
lar value of G at frequency ω by rewriting the singu-
lar value equation in the form of a Hamiltonian eigen-
value problem. The second equation expresses that the
Hamiltonian eigenvalue problem has a double imaginary
axis solution. This property corresponds to ξ being an
extremum of the singular value curve and is equivalent
to a zero derivative of the singular value curve with re-
spect to the ω. Finally normalization constraints for the
singular vectors need to be added to make the solution
unique. For more details we refer to [12].

Remark 5 The reason for solving (12) in the correction
step instead of solving (8) is that the number of equations
is smaller (4n+ 3 instead of 12n+ 2 real equations).

The overall algorithm for the computation of extremum
singular values is as follows.

Algorithm 1 Input: system data,N , grid ΩN with grid
points (see [9].)

(1) Prediction step:

(a) Compute all imaginary axis zeros of ZN in (10)
by computing the generalized eigenvalues of the
pencil (11), whose imaginary axis eigenvalues
are given by λ = jω(i).

(b) For each imaginary axis eigenvalue, compute

the predicted extremum point ξ̃(i) of the singular
value curve of G in (1) by ξ̃(i) = |G(jω̃(i))|.

(2) Correction step:
Solve the nonlinear equations (12) using the Gauss-
Newton method, with the starting values

ω = ω̃(i),

[
u

v

]
= arg min

ζ
‖H(jω̃(i), ξ̃(i))ζ‖/‖ζ‖;

denote the solutions with (û(i), v̂(i), ω̂(i), ξ̂(i)), for
i = 1, 2, ....

(3) The extremum singular values of the time-delay sys-

tem G in (1) and their frequencies are (ξ̂(i), ω̂(i)) for
i = 1, 2, ....

There is a linear relationship with the numberN and the
length of the frequency range approximated. The cut-off
frequency as a function of N is illustrated in Figure 4.1
of [12]. Experience from extensive benchmarking learns
that in most practical problems a very small value of N
can be taken (the default N= 20 is largely sufficient).
For further details of the choice of the number of dis-
cretization points, N , we refer to [12], whose approach
extends to the problem considered.

4 Direct computation of the strong H∞ norm

The H∞ norm of an asymptotically stable SISO system
with transfer function (3) satisfies

||G||∞ := sup
ω≥0
|G(jω)|. (13)

Algorithm 1 computes finite extrema of the transfer
function. This is not sufficient for the following reasons.

(1) Description (1) allows to model systems with a non-
trivial feed through. As a consequence, the H∞
norm might not be reached at a finite frequency.

(2) It is shown in [12] that the standard H∞ norm of
linear delay-differential algebraic systems (and neu-
tral type systems) might be sensitive to infinitesi-
mal perturbations of the time-delays. The sensitiv-
ity takes, for instance, place in control loops which
have a feed trough at infinity, prone to time-delays.
It is due to the high frequency behavior of the trans-
fer function (3), which is described by the asymp-
totic transfer function Ga(s) defined as

− CV (UTA0V +

m∑
i=1

UTAiV e
−sτi)−1UTB. (14)

The above two observations have led in [9] to the intro-
duction of the concept of strong H∞ norm, which is the
smallest upper bound robust against infinitesimal delay
perturbations. Making the dependence of G on the de-
lays ~τ = (τ1, . . . , τm) explicit with the notation G(λ; ~τ),
we have:

Definition 6 For given delays ~τ ∈ (R+
0 )m, the strong

H∞ norm of G, 9G9∞, is defined as

lim
ε→0+

sup
{
‖G(jω; ~τε)‖∞ : ~τε ∈ B(~τ , ε) ∩ (R+)m

}
.

where B(~τ , ε) is open ball of radius ε centered at ~τ ∈
(R+)m, B(~τ , ε) := {~θ ∈ (R)m : ‖~θ − ~τ‖ < ε}.

The definition of 9Ga9∞ is analogous. The following
results can be found in [9].

Proposition 7 The assertions below hold.
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• The asymptotic transfer function satisfies

9Ga9∞ = max
~θ∈[0, 2π]m

|CV (UTA0V

+

m∑
i=1

UTAiV e
jθi)−1UTB| (15)

with the argument of the max operator continuous in ~θ.
• The strong H∞ norm of G is equal to

9G9∞ = max (‖G‖∞,9Ga9∞) . (16)

The first assertion allows a computation of 9Ga9∞ by

gridding in the ~θ space. It should be stressed that in most
applications the number of actual time-delays appearing
in Ga is much smaller than the number of system delays,
m, reducing significantly the computational cost. This is
because most of the terms in the parenthesis of (14) are
typically zero. The nonzero terms correspond to a high
frequency feed through paths over the control loop.

From the second assertion it follows that if 9G9∞ >
9Ga9∞, the (strong)H∞ norm ofG is reached at a finite
frequency. Hence, a combination of computing 9Ga9∞
with Algorithm 1 allows to compute 9G9∞. We arrive
at Algorithm 2.

Algorithm 2 Input: system data.

(1) The strong H∞ norm of Ga:
Compute ξas , the strongH∞ norm of the asymptotic
transfer function Ga, by gridding.

(2) The strong H∞ norm of G:
By Algorithm 1, compute (ξo, ωo), the maximum of

|G(jω)| in (1) and its frequency, where ξo = ξ̂(io) =

max(ξ̂(1), ξ̂(2), . . .) and ωo = ω̂(io).
Compute ξs, the strong H∞ norm of G, where ξs =
max(ξas , ξo), and its frequency ωs, where ωs = ωo if
ξo > ξs or ωs =∞ otherwise.

There are two parts in the computation cost of the strong
H∞ norm. The first part is to find the strong H∞ norm
of the asymptotic transfer function Ga. As pointed out
the number of delays appearing in Ga is usually much
smaller than the number of system delays. Therefore the
computation cost for the first step is not usually high.
The second main part is the computation of the gener-
alized eigenvalues of pencil (11) in the prediction step of
Algorithm 1 with dimensions 2(np + nz) + 1, where np
and nz are the poles and zeros of the descriptor system
GN with order n(N + 1). The default value for N is 20
in our code. Inherent to the DAE modeling framework,
matrix E is often singular, leading values of nz and np
considerably lower than the order GN (see the next sec-
tion for an example). The algorithm for H∞ norm com-
putation in [12] only applies to retarded time-delay sys-
tems. TheH∞ norm computation in [12] is iterative due

to the level set approach and requires solving an eigen-
value problem of size 2n(N + 1) for each level set. On
the other hand, the algorithm in [9] considers retarded
and neutral type time-delay systems and has the same
numerical cost as Algorithm 2 in the first part and in the
second part it solves a generalized eigenvalue problem
with dimensions 2n(N + 1) in every iterative step.

5 Numerical Examples

We consider the Smith Predictor example in [8] where
the subsystems are P = 6e−106s/(37s + 1), Gp =
5.6/(40.2s + 1), Dp = e−93.9s, C = 0.5(1 + 1/(40 ∗ s))
and F = 1/(20s+ 1).

The closed-loop system Tsp is a generalized LTI with in-
ternal delays and its Bode magnitude plot is shown in
Figure 2. Circles indicate the computed imaginary axis
zeros of Z(s) (5) in the prediction step, for N = 20.
Dots show the results after the prediction results are cor-
rected, inducing a move to the extremum locations of the
singular value curve. Note that the predicted extremum
points do not improve much after correction step for
initial points since the approximation in the prediction
step reliably computes the points. As shown in Figure 2
at the bottom, zoomed to larger frequencies, we see the
improvement in the correction step due to slight devi-
ation of the approximation from the exact values. The
closed-loop system is a retarded time-delay system and
its asymptotic transfer function is equal to zero which
can be seen from the high frequency behavior in Fig-
ure 2. Therefore, the strong H∞ norm of Tsp is equal
to the standard H∞ norm of Tsp by (16). The norm is
equal to the largest singular value 1.3308 of 4th point
in the extremum points. This example has a singular E
matrix, therefore, the algorithm in [12] is not applica-
ble. When we compared the prediction steps of our al-
gorithm (including pole, zero computation of GN ) and
the one in [9], the computation time is 0.1885 and 0.6447
seconds on Intel Xeon 3.06GHz with 12GB RAM. The
size of the (single) eigenvalue problem for our algorithm
is 175, whereas the size of the eigenvalue problem in [9]
is 2n(N + 1) = 378 (to be solved in every iteration).

The second example considers the case where the strong
H∞ norm, computed using Algorithm 2, is different from
the standardH∞ norm. Given τ1 = 1, τ2 = 2, the trans-
fer function Tsh is equal to

Tsh = (s+2.1)/((s+0.1)(1−0.25e−τ1s+0.5e−τ2s)+1).

The magnitude plot of Tsh is shown in Figure 3 on the
top and the extremum points are marked as above. Note
that the high frequency behavior in Figure 3 on the top
does not converge to zero. Therefore, the asymptotic
transfer function is different from zero. As a first step of
the algorithm, the strong H∞ norm of the asymptotic
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Fig. 2. (top) The magnitude Bode plot of Tsp and its ex-
tremum points computed at prediction and correction steps
(bottom), the zoomed version with last five extremum points.

transfer function Ta, given by

Ta = 1/(1− 0.25e−τ1s + 0.5e−τ2s),

is computed and equals 4, obtained at θ1 = 0 and θ2 = π
in formula (15).

In the second step, we compute the extrema of the mag-
nitude plot by Algorithm 1. The standard H∞ norm of
Tsh is equal to 2.5788 and the high frequency behavior
visualized in Figure 3 on the top. Therefore, the strong
H∞ norm of Tsh is equal to 4 by the final step of Al-
gorithm 2, which is larger than the standard H∞ norm.
This illustrates that the H∞ norm may be sensitive to
small delay changes. Figure 3 at the bottom shows that
the strong H∞ norm value 4 is achieved for a slight per-
turbation in the delay τ1 and it can be shown that this
norm is attained a larger frequency for smaller delay per-
turbation size.

Fig. 3. (top) The magnitude Bode plot of Tsh and its ex-
tremum points computed at prediction and correction steps
(bottom), same Bode plot for (τ1, τ2) = (0.99, 2).

6 Concluding Remarks

We presented novel algorithms for the computation of
extremal singular values and strong H∞ norms of SISO
time-delay systems described by DDAEs. The latter al-
gorithm does need the iteration inherent to level set
methods.

The approach can be easily extended to multi-input-
single-output (MISO) and single-input-multiple-output
(SIMO) systems. The algorithm namely relies on the
property that the singular value plot of the transfer func-
tion involves one singular value curve. Whether the pre-
sented approach can be extended to general MIMO sys-
tems is an open problem.
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