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Abstract

We consider sensor transmission power control for state estimation, using a Bayesian inference approach. A sensor node sends
its local state estimate to a remote estimator over an unreliable wireless communication channel with random data packet
drops. As related to packet dropout rate, transmission power is chosen by the sensor based on the relative importance of
the local state estimate. The proposed power controller is proved to preserve Gaussianity of local estimate innovation, which
enables us to obtain a closed-form solution of the expected state estimation error covariance. Comparisons with alternative
non-data-driven controllers demonstrate performance improvement using our approach.
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1 Introduction

Wireless networked systems have a wide spectrum of ap-
plications in smart grid, environment monitoring, intel-
ligent transportation, etc. State estimation is a key en-
abling technology where the sensor(s) and the estimator
communicate over a wireless network. Energy conserva-
tion is a crucial issue as most wireless sensors use on-
board batteries which are difficult to replace and typ-
ically are expected to work for years without replace-
ment. Thus power control becomes crucial. In this work,
we consider sensor transmission power control for re-
mote state estimation over a packet-dropping network.
Transmission power control in state estimation scenario
has been considered from different perspectives. Some
works took transmission costs as constant. Shi et al. [1]
assumed sensors to have two energy modes, allowing it
to send data to a remote estimator over an unreliable
channel either using a high or low transmission power
level. The optimal power controller is to minimize the
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expected terminal estimation error at the remote esti-
mator subject to an energy constraint. Similar works can
also be found in [2, 3]. Meanwhile, some literature has
taken channel conditions into account. Quevedo et al. [4]
studied state estimation over fading channels. They pro-
posed a predictive control algorithm, where power and
cookbooks are determined in an online fashion based
on the undergoing estimation error covariance and the
channel gain predictions. More related works can been
seen in [5–7].

An important issue which has not been taken seriously in
most works is that the transmission power assignment,
as a tool to control the accessibility of information to the
receiver, should be determined not only by the underly-
ing channel condition and the desired estimation perfor-
mance, but also by the transmitted information itself.
In [4] and [5], the authors failed to associate transmis-
sion power with data to be sent. The plant states are
used to determine the transmission power in [8]. In this
case, lost packets signal the receiver of the state infor-
mation. To avoid computation difficulty, the signaling
information is discarded.

In this paper, we focus on how to adapt the transmis-
sion power to the measurements of plant state and how
to exploit information contained in the lost packets. We
propose a data-driven power controller, which utilizes
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different transmission power levels to send the local esti-
mate according to a quadratic function of a key param-
eter called “incremental innovation” which is evaluated
by the sensor at each time slot. By doing this, even when
data dropouts occur, the remote estimator can utilize
the additional signaling information to refine the pos-
terior probability density of the estimation error by a
Bayesian inference technique (see [9]), therefore deriving
the MMSE estimate. It compensates the deteriorated es-
timation performance caused by packet losses. To facili-
tate analysis, we assume that a baseline power controller
has already been established based on different factors
with regard to different settings, such as the requirement
of estimation performance as in [1] or the channel condi-
tions as in [4,5,7]. We are devoted to developing a power
controller that embellishes this baseline controller by
adapting the transmission power to the measurements
such that the averaged power with respect to all possible
values taken by the measurements does not exceed that
of the baseline power controller. The proposed power
controller, driven by online measurements, can run on
top of non-data-driven power controllers, which results
in hierarchical power control mechanisms. Then exten-
sion to a time-varying power baseline is established in
Section 4.4. Note that a related controller was first pro-
posed in [10], but as a special case of the controller in
this work. The main contributions of the present work
are summarized as follows.

(1) We propose a data-driven power control strat-
egy for state estimation with packet losses, which
adapts the transmission power to the measured
plant states.

(2) We prove that the proposed power controller pre-
serves Gaussianity of the local innovation. It sim-
plifies derivation of the MMSE estimate and leads
to a closed-form expression of the expected state
estimation error covariance.

(3) We present a tuning method for parameter design.
Despite of its sub-optimality, the controller is shown
to perform not worse than an alternative non-data-
driven one.

The remainder of this paper is organized as follows.
In Sections 2 and 3, we give mathematical models of
the considered system and introduce the data-driven
transmission power controller. In Section 4, we present
the MMSE estimate at the remote estimator and a
sub-optimal power controller that minimizes an upper
bound of the remote estimation error. In Section 5, com-
parisons with alternative non-data-driven controllers
demonstrate performance improvement using our ap-
proach. Section 6 presents concluding remarks.

Notation: N (and N+) is the set of nonnegative (and
positive) integers. Sn+ is the cone of n by n positive
semi-definite matrices. For a matrix X, λi(X) is the ith
smallest nonzero eigenvalue. We abuse notations det(X)
and X−1, which are used, in case of a singular matrix
X, to denote the pseudo-determinant and the Moore-

Penrose pseudoinverse. δij is the Dirac delta function,
i.e., δij equals to 1 when i = j and 0 otherwise. The no-
tation pdf(x, x) represents the probability density func-
tion (pdf) of a random variable x taking value at x.

2 State Estimation using a Smart Sensor

Consider a linear time-invariant (LTI) system:

xk+1 = Axk + wk, (1)

yk = Cxk + vk, (2)

where k ∈ N, xk ∈ Rn is the system state vector at time
k, yk ∈ Rm is the measurement obtained by the sensor,
the state noise wk ∈ Rn and observation noise vk ∈ Rm
are zero-mean i.i.d. Gaussian noises with E[wkw

′
j ] =

δkjQ (Q � 0), E[vk(vj)
′] = δkjR (R � 0), E[wk(vj)

′] =
0 ∀j, k ∈ N. The initial state x0 is a zero-mean Gaus-
sian random vector with covariance Π0 � 0 and is un-
correlated with wk and vk. (A,C) is assumed to be de-
tectable and (A,Q1/2) is assumed to be stabilizable. Fur-
thermore, we assume A is Hurtwitz. 1
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Fig. 1. The system architecture.

2.1 Sensor Local Estimate

Hovareshti et al. [11] illustrated that utilization of the
computation capabilities of wireless sensors may im-
prove the system performance significantly. Equipped
with such “smart sensors”, the sensor locally runs a
Kalman filter to produce the MMSE estimate x̂sk of the
state xk based on all the measurements collected up
to time k, i.e., y1:k , {y1, ..., yk}, and then transmits
its local estimate to the remote estimator. Denote the
sensor’s local MMSE state estimate, the corresponding

1 Since we focus on remote state estimation in this paper,
for any practically working systems (to be monitored alone),
A has to be Hurwitz. Otherwise, the system state will go
unbounded and there is no real sensing device which can
track an unbounded state trajectory. Adding a control input
to regulate the system state for an unstable A and studying
its associated stability issue will be beyond the scope of this
paper and will be left as our future work.
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estimation error and error covariance as x̂sk, esk and P sk ,

respectively, i.e., x̂sk , E[xk|y1:k], esk , xk − x̂sk and

P sk , E[(xk − x̂sk)(xk − x̂sk)′|y1:k]. Standard Kalman
filtering analysis suggests that these quantities can be
calculated recursively (cf., [12]), where the recursion
starts from x̂s0 = 0 and P s0 = Π0 � 0. Since P sk converges
to a steady-state value exponentially fast (cf., [12]), we
assume that the sensor’s local Kalman filter has entered
the steady state, that is, P sk = P � 0 ∀k ∈ N, This as-
sumption simplifies our subsequent analysis and results,
such as Theorem 4.8 and Proposition 4.17.

2.2 Wireless Communication Model

The data are sent to the remote estimator over an Addi-
tive White Gaussian Noise (AWGN) channel using the
Quadrature Amplitude Modulation (QAM) whereby x̂sk
is quantized into K bits and mapped to one of 2K avail-
able QAM symbols. 2 For simplicity, the following as-
sumptions are made:

A.1: The channel noise is independent of wk and vk.
A.2: K is large enough so that quantization effect is neg-

ligible when analyzing the performance of the re-
mote estimator.

A.3: The remote estimator can detect symbol errors 3 .
Only the data arriving error-free are regarded as
being successfully received; otherwise they are re-
garded as dropout.

These assumptions are commonly used in communica-
tion and control theories (cf., [4, 5, 8, 13, 14]). For ex-
ample, Fu and Souza [14] demonstrated that the esti-
mation quality improvement (in terms of reduction of
the remote estimation error) achieved by increasing the
number K of the quantization bits is marginal when K
is sufficiently large (in their example K only needs to
be greater or equal to 4. Based on A.3, the communica-
tion channel can be characterized by a random process
{γk}k∈N+ , where

γk =

{
1, if x̂sk arrives error-free at time k,

0, otherwise,

initialized with γ0 = 1. Denote γ1:k , {γ1, . . . , γk}. Let
ωk ∈ [0,+∞) be the transmission power for the QAM
symbol at time k. We adopt the wireless communication
channel model used in [10], and have Pr (γk = 0|ωk) =

qωk , where q is given by q , exp(−α/(N0W )) ∈ (0, 1),
N0 is the AWGN noise power spectral density, W is the
channel bandwidth, and α ∈ (0, 1] is a constant that de-
pends on the specific modulation being used. To send lo-
cal estimates to the remote estimator, the sensor chooses

2 QAM is a common modulation scheme widely used in
IEEE 802.11g/n as well as 3G and LTE systems, due to its
high bandwidth efficiency.
3 In practice, symbol errors can be detected via a cyclic
redundancy check (CRC) code.

from a continuum of available power levels ωk > 0, see
Fig. 1. Note that different power levels lead to different
dropout rates, thereby affecting estimation performance.

2.3 Remote State Estimation

Define Ik as the information available to the remote es-
timator up to time k, i.e.,

Ik = {γ1x̂
s
1, γ2x̂

s
2, ..., γkx̂

s
k} ∪ {γ1:k}. (3)

Denote x̂k and Pk as the remote estimator’s own MMSE
state estimate and the corresponding estimation error
covariance, i.e., x̂k , E[xk|Ik] and Pk , E[(xk−x̂k)(xk−
x̂k)′|Ik], where expectations are taken with respect to a
fixed power controller. We assume that the remote esti-
mator feedbacks acknowledgements γk before time k+1.
Such setups are common especially when the remote es-
timator (gateway) is an energy-abundant device. This
energy asymmetry allows the estimator to trade energy
cost for estimation accuracy.

3 Data-driven Transmission Power Control

Our strategy uses the measurements to assign transmis-
sion power level efficiently. As focusing on how the power
controller utilize the sensor’s real-time data, to simplify
discussion, we assume a constant power baseline ω̄ in
this section. We define θ , {θk}k∈N+

as a transmission
power controller over the entire time horizon, where θk
is a mapping from y1:k and γ1:k to ωk. Before proceeding
to study θ, let us first briefly explain the idea of data-
driven power control mechanism. Define τ(k) ∈ N+ as
the holding time since the most recent time when the
remote estimator received the data from the sensor, i.e.,

τ(k) , k − max
16t6k−1

{t : γt = 1}. (4)

We interchange τ(k) with τ when the underlying time
index is clear from the context. Define εk as the incre-
mental innovation in the sensor local state estimate com-
pared to time k− τ , the previous reception instant, i.e.,

εk = x̂sk −Aτ x̂sk−τ . (5)

Lemma 3.1 E[eskε
′
k|Ik−1, γk = 0] = 0 ∀k ∈ N+.

Proof: The result follows from noting that

E[eskε
′
k|Ik−1, γk = 0] = E [E[eskε

′
k|y1:k, γ1:k]|Ik−1, γk = 0]

= E [E[esk|y1:k]ε′k|Ik−1, γk = 0] = 0,

where the second equality holds because esk is independent
of γ1:k, and the last equality holds since E[esk|y1:k] = 0.
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Note that, if εk = 0, then the sensor generates a lo-
cal estimate, x̂sk identical to the prediction Aτ x̂sk−τ . We
would say that, for the remote estimator, the “value”
of information contained in x̂sk is null. As εk becomes
larger, x̂sk has an increasing drift from the prediction
Aτ x̂sk−τ and the importance of the sensor sending x̂sk
thereby raises. Motivated by these observations, we de-
fine a stationary power controller, θef : εk → ωk, as
an increasing function of εk. To fit the above observa-
tions, we introduce a quadratic function of εk given by
C(εk,Q) , εk

′Qεk, where Q ∈ Sn+ is a weight matrix.
According to Lemma 3.1, the covariance of εk is a func-
tion of τ(k). Therefore we specify τ(k) for the index of
Q and construct the following controller:

θef : {ωk =
N0W

2α
C(εk,Qτ ) + ω}. (6)

In contrast to (6), most non-data-driven transmission
power controllers (i.e., [4,5]) use a given power ω̄ regard-
less of what value εk takes. Note that in (6) a constant
term ω is added after C(εk,Qτ ). If one sets Qτ = 0,
then the transmission with the baseline power controller
ω = ω̄ is a special case of the proposed transmission
power controller. As for Qτ 6= 0, the transmission power
is a constant ω if C(εkQτ ) = 0; otherwise it is adapted
according to C(εk,Qτ ). Compared with a related con-
troller proposed earlier in [10], θef in (6) is more gen-
eral at least from two aspects: 1) we introduce a weight
matrix Qτ to highlight the roles of different entries of
εk; 2) it allows the sensor to transmit using a stan-
dard power ω even if C(εk,Qτ ) = 0, which includes a
non-data-driven power transmission as a special case.
As shown later in Lemma 4.4, given Ik−1, εk is zero-
mean Gaussian with a covariance Στ depending on τ(k),
i.e., (εk|Ik−1) ∼ N (0,Στ ). For convenience of our subse-
quent analysis, we define a new parameter Ψτ satisfying

Ψτ ,
(
Qk + Σ−1

τ

)−1
, where Στ � Ψτ � 0. We now list

the main problems considered in the remainder of this
work,

(1) Under θef defined in (6), what is the MMSE es-
timate and its associated estimation error covari-
ance?

(2) What value should Qτ (or Ψτ ) take in order to
minimize, E[Pk], the expected estimation error at
the remote estimator?

The solution to the first problem is presented in Sec-
tion 4.2. A sub-optimal solution to the second one is
given in Section 4.3 in view of the difficulty of the opti-
mization problem.

Before proceeding, we note that in previous works such
as [8] the difficulty of using the information contained
in lost packets, i.e., γk = 0, when computing the MMSE
estimate of the plant state has been acknowledged. One
typically discards such information as was done in [8]

or resorts to approximations, e.g., treating a truncated
Gaussian distribution as a Gaussian distribution as was
done in [15]. These approaches either lead to conserva-
tive results (due to the unutilized information) or inac-
curate results (due to approximations). Our method, on
other hand, makes use of the information contained in
the event γk = 0 to improve the estimation performance.
The associated MMSE estimate, relying on no approxi-
mation techniques, is derived in a closed-form.

4 Main Results

4.1 Preliminaries

For any Σ � 0 that is singular, there exist matrices
U,D ∈ Rn×n such that Σ = UDU ′, where U is uni-
tary, whose columns are right eigenvectors of Σ, and

D ,

[
∆ 0

0 0

]
, where ∆ is a diagonal matrix generated by

the corresponding nonzero eigenvalues of Σ. Let Σ1/2 ,
U
√
D. Then Σ = Σ1/2

(
Σ1/2

)′
.

Generally speaking, an n-dimensioned random vector
x ∼ N (µ,Σ), does not have a pdf with respect to the
Lebesgue measure on Rn if some entries in x degener-
ate to almost surely constant random variables. To work
with such vectors, one can instead consider Lebesgue
measure in the rank(Σ)-dimension affine subspace: Ω ,
{µ + Σ1/2z : z ∈ Rn}, with respect to which x has a
pdf pdf(x, x) = 1√

σ
exp

(
− 1

2 (x− µ)′Σ−1(x− µ)
)
, where

σ = (2π)rank(Σ)det(Σ). Without loss of generality, in
the remainder of this paper, for a random variable x ∼
N (0,Σ) with a singular Σ, the pdf of x means the prob-
ability density on Ω. Note that the Moore-Penrose pseu-
doinverse of Σ is unique and given by

Σ−1 = U

[
∆−1 0

0 0

]
U ′, (7)

and that the pseudo-determinant of Σ equals to the prod-
uct of all nonzero eigenvalues of Σ.

Consider the power control law θef defined in (6). In or-
der to guarantee that ωk is always nonnegative for any
value εk, the difference of Ψ−1

τ and Σ−1
τ needs to be

at least positive semi-definite, i.e., two conditions must
be simultaneously satisfied, which are Στ � Ψτ and
Ψ−1
τ � Σ−1

τ . The following lemma provides a necessary
condition that Ψτ needs to satisfy.

Lemma 4.1 Suppose Σ and Ψ satisfy Σ � Ψ and Ψ−1 �
Σ−1. Then

rank(Ψ) = rank(Σ) (8)

and
Im(Σ1/2) = Im(Ψ1/2), (9)
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where Im(X) is the image of X.

Proof: Since Σ � Ψ, it is true that rank(Σ) ≥ rank(Ψ).
To verify (8), suppose that rank(Σ) > rank(Ψ). Then
from (7), rank(Σ−1) > rank(Ψ−1), which contradicts

with Ψ−1 � Σ−1. To prove (9), let us denote rank(Ψ) , r
and assume there is a set of vectors W , {w1, . . . ,wr}
such that Im(Ψ1/2) = span ({w1, . . . ,wr}) . Suppose
Im(Σ1/2) 6= Im(Ψ1/2). Then there exists a vector in W
(without loss of generality, let it be w1), and a vector
w0 ∈ Ker

(
(Σ1/2)′

)
where the operator Ker(X) is the

kernel of a matrix X, such that w0
′w1 6= 0. It leads to

the fact that w0 6∈ Ker
(
(Ψ1/2)′

)
. We in turn have

w0
′Σ1/2

(
Σ1/2

)′
w0 = 0 while w0

′Ψ1/2
(

Ψ1/2
)′

w0 > 0,

which contradicts with Σ � Ψ.

For convenience, denote nτ , rank(Στ ) = rank(Ψτ ),

Ωτ , Im(Σ
1/2
τ ) = Im(Ψ

1/2
τ ) and Φτ ,

(
Σ

1/2
τ

)′
Ψ−1
τ Σ

1/2
τ .

One has next lemma, the proof provided in the Ap-
pendix.

Lemma 4.2 The rank of Φτ equals that of Στ (or Ψτ ),
i.e., rank(Φτ ) = nτ .

Example 4.3 Two matrices are provided below as a
simple example for n = 3,

Στ =


5 0 0

0 5 0

0 0 0

 , and Ψτ =


3 −1 0

−1 3 0

0 0 0

 .
We can verify that nτ = 2, Στ � Ψτ , Ψ−1

τ � Σ−1
τ , (8),

and Lemma 4.1 holds.

4.2 MMSE State Estimate

In general, the posterior distribution of εk fails to
maintain Gaussianity without analog-amplitude obser-
vations. The defect is especially common for quantized
Kalman filtering and Gaussian filters, where it is tack-
led by Gaussian approximation [12,16,17]. By contrast,
the following lemma shows that, using θef in (6), the
distribution of εk conditioned on Ik−1, γk = 0 is Gaus-
sian. The proof, similar to that of Lemma 3.5 in [10], is
omitted.

Lemma 4.4 Under θef defined in (6), given Ik−1, εk
follows a Gaussian distribution: (εk|Ik−1) ∼ N (0,Στ ),
where Στ is given by the following recursion:

Στ = AΨτ−1A
′ +
(
h(P )− P

)
, (10)

with Ψ0 = 0. It is also true that, given γk = 0 and Ik−1,
(εk|Ik−1, γk = 0) ∼ N (0,Ψτ ).

Proposition 4.5 Under θef defined in (6), given
Ik−1, the packet drop rate at time k is given by

Pr(γk = 0|Ik−1) = 1√
det(Στ )det(Ψ−1

τ )
exp

(
− α
N0W

ω
)
.

We denote the packet arrival rate as pτ , 1 − Pr(γk =
0|Ik−1), where the subscript τ is to emphasize that it
depends on Στ and Ψτ . To ensure that the averaged
transmission power with respect to different values
taken by the measurement in θ does not exceed ω̄, i.e.,
E[ωk|Ik−1] ≤ ω̄, we require the following result.

Lemma 4.6 Under θef (6), given Ik−1, the relation be-
tween E[ωk|Ik−1] and Ψτ , and ω is given by

E[ωk|Ik−1] =
N0W

2α

(
Tr(ΣτΨ−1

τ )− nτ
)

+ ω. (11)

Proof: From Lemma 4.4, we know that (εk|Ik−1) ∼
N (0,Στ ). Under θef , we have:

E[ωk|Ik−1] = E [E[ωk|εk]|Ik−1]

=
N0W

2α
E
[
ε′k
(
Ψ−1
τ − Σ−1

τ

)
εk
∣∣ Ik−1] + ω

=
N0W

2α
Tr
(
E [εkε

′
k|Ik−1] (Ψ−1

τ − Σ−1
τ )
)

+ ω

=
N0W

2α

(
Tr(ΣτΨ−1

τ )− nτ
)

+ ω.

With θef defined in (6), the remote estimator computes
xk and Pk according to the following two theorems.

Theorem 4.7 Under θef (6), the remote estimator com-
putes x̂k as

x̂k =

{
x̂sk, if γk = 1,

Aτ x̂sk−τ , if γk = 0,
(12)

where x̂sk is updated as x̂sk = Aτ x̂sk−τ + εk when γk = 1.

Proof: When γk = 1, the result is straightforward since
x̂sk is the MMSE estimate of xk given y1:k. Now consider
γk = 0. The tower rule gives

E [xk|Ik−1, γk = 0] = E [E [xk|y1:k, γ1:k] |Ik−1, γk = 0]

= E
[
Aτ x̂sk−τ+ εk|Ik−1, γk = 0

]
= Aτ x̂sk−τ + E [εk|Ik−1, γk = 0] .

Lemma 4.4 leads to E [εk|Ik−1, γk = 0] = 0.

5



Theorem 4.8 Under θef (6), Pk at the remote estimator
is updated as

Pk =

{
P , if γk = 1,

P + Ψτ , if γk = 0.
(13)

Proof: When γk = 1 the result is straightforward. We
only prove the case when γk = 0.

E [(xk − x̂k)(xk − x̂k)′|Ik−1, γk = 0]

= E
[
(xk −Aτ x̂sk−τ )(xk −Aτ x̂sk−τ )′|Ik−1, γk = 0

]
= E [E [(esk + εk)(·)′|y1:k, γ1:k] |Ik−1, γk = 0]

= E[(esk)(esk)′|y1:k] + E [(εk)(εk)′|Ik−1, γk = 0]

= P + Ψτ ,

where the third equality is due to Lemma 3.1 and the last
one is from Lemma 4.4.

Remark 4.9 Under a baseline power controller with a
constant power control ω̄, the remote estimator’s esti-
mate still obeys the recursion (12); however, the estima-
tion error covariance is updated differently: Pk = P when
γk = 1, and Pk = h(Pk−1) = Στ when γk = 0). Note
that although the obtained estimates under the two power
controllers are the same, their different estimation er-
ror covariance matrices suggest different confident levels
with which the remote estimator trusts the obtained es-
timate: with the data-driven power controller, it is more
convinced that the obtained estimate is close to the real
state while less convinced with a non-data-driven power
controller.

4.3 Selection of Design Parameters

The performances of θef for different Ψτ ’s are difficult to
compare in general. However, for Στ and Ψτ , there must
exist a real number ετ ∈ (0, 1] such that Ψτ � ετΣτ and
Ψτ 6� εΣτ ,∀ ε < ετ . Observe that

Φτ =
(

Σ1/2
τ

)′
Ψ−1
τ Σ1/2

τ � 1

ετ

[
Inτ 0

0 0

]
,

which yields ετ = 1
λ1(Φτ ) . In light of (10), we further

have Ψτ � ετΣτ = ετ (AΨτ−1A
′ + Σ1) . According to

Proposition 4.5, it can be seen given τ(k) = τ that
E[Pk|τ(k) = τ ] has an upper bound: E[Pk|τ(k) = τ ] �
P + (1− pτ )ετ (AΨτ−1A

′ + Σ1) . Instead of minimizing
E[Pk], we minimize its upper bound which is equivalent
to minimize (1− pτ )ετ . Iterating over time, one eventu-
ally needs to minimize (1 − pτ )ετ for any τ(k) ∈ N+ at
any k ∈ N+. To this end, we propose to assign param-
eters of θef in (6) as the solution to the following opti-
mization problem:

Problem 4.10

min
Ψτ ,Στ ,ω

1(
det(Στ )det(Ψ−1

τ )
)1/2

λ1(Φτ )
exp

[
− α

N0W
ω

]
,

s.t.
N0W

2α

(
Tr(ΣτΨ−1

τ )− nτ
)

+ ω ≤ ω̄.

The constraint is imposed by (11). To solve Prob-
lem 4.10, we first note that Tr(ΣτΨ−1

τ ) = Tr(Φτ ).
However, for any matrix X,Y ∈ Rn×n, det(XY ) =
det(X)det(Y ) does not hold in general since det(X)
means X’s pseudo-determinant (in case X is singular).
Fortunately, this property still holds for Στ and Ψ−1

τ .
The proof is given in the Appendix.

Lemma 4.11 Suppose Στ and Ψτ satisfy Στ � Ψτ � 0
and Ψ−1

τ � Σ−1
τ . Then det(Στ )det(Ψ−1

τ ) = det(Φτ ).

From linear algebra, det(Φτ ) =
∏nτ
i=1 λi(Φτ ), and

Tr(Φτ ) =
∑nτ
i=1 λi(Φτ ). We simply write λi(Φτ ) as

λi(τ), and denote the nonzero eigenvalues of Φτ by

Λτ , [λ1(τ), . . . , λnτ (τ) ]. Then Problem 4.10 can be
recast as

Problem 4.12

min
Λτ ,ω

1

λ1(τ)
∏nτ
i=1 λi(τ)1/2

exp

[
− α

N0W
ω

]
, (14)

s.t.
N0W

2α

[
nτ∑
i=1

λi(τ)− nτ

]
+ ω = ω̄, ω ≥ 0

1 ≤ λ1(τ) ≤ λj(τ), ∀j = 2, . . . , nτ .

Lemma 4.13 Let Λ∗τ be the optimal solution to Prob-
lem 4.12. Then Λ∗τ satisfies

λ1(τ)∗ = λ2(τ)∗ = · · · = λnτ (τ)∗. (15)

Proof: Suppose that Λ is the optimal solution to Prob-
lem 4.12 but does not satisfy (15). We will show that
there must exist another vector, which is different from
Λ and has a smaller cost function (14). Let

∑nτ
i=1 λi = c

where c is a positive constant. Due to the fact that λ1

in Λ is the minimum eigenvalue of Φτ and the inequal-
ity of arithmetic and geometric means, we have λ1 ≤ c

nτ

and
∏nτ
i=1 λi ≤

(
c
nτ

)nτ
, the equalities simultaneously

satisfied when λi = c
nτ
, ∀ i = 1, . . . , nτ . Thus, Λ0 =

[ cnτ , . . . ,
c
nτ

] results in a smaller value of (14), which con-
tradicts with the assumption and completes the proof.

The following lemma is a result of Lemma 4.13. Its proof
is presented in the Appendix.
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Lemma 4.14 If ω̄ > N0W
α , then the optimal solution to

Problem 4.12 is ω = ω̄ − N0W
α and

Λ∗τ = [1 +
2

nτ
, . . . , 1 +

2

nτ
]. (16)

Otherwise, if ω̄ ≤ N0W
α , the optimizer is ω = 0 and

Λ∗τ = [1 +
2αω̄

nτN0W
, . . . , 1 +

2αω̄

nτN0W
]. (17)

Denote by θ∗ef the transmission power associated with
the solution to Problem 4.12. Then we have the following
theorem. It can be readily verified from Lemma 4.14.

Theorem 4.15 If ω̄ > N0W
α , then θ∗ef is given by

θ∗ef : {ωk =
N0W

αnτ
ε′kΣ−1

τ εk + ω̄ − N0W

α
},

where Στ+1 = nτ
nτ+2AΣτA

′ + h(P ) − P with Σ0 = 0.

Otherwise, if ω̄ ≤ N0W
α , θ∗ef is given by

θ∗ef : {ωk =
ω̄

nτ
ε′kΣ−1

τ εk},

where Στ+1 = nτN0W
nτN0W+2αω̄AΣτA

′ + h(P )− P .

Remark 4.16 A non-data-driven baseline power con-
troller with a constant power level ω̄ is feasible to Prob-
lem 4.10. Since θ∗ef is the optimal solution, it has not
worse state estimation performance compared with the
alternative non-data-driven power controller. Numeri-
cal examples in Section 5 demonstrate performance im-
provements using θ∗ef compared with the non-data-driven
power controller.

The following proposition shows that the rank of Στ can
be calculated offline. The proof is given in the Appendix.

Proposition 4.17 Consider the θ∗ef given in Theo-
rem 4.15, for any τ ∈ N+, nτ can be calculated as:
nτ = rank(hτ (P ) − P ). In particular, when τ ≥ n, the
dimension of x, nτ becomes a constant which is given
by: nτ = rank(hn(P )− P ), ∀ τ ≥ n.

4.4 Extension

In many cases, the base-line power controller changes
over time with respect to different settings. For example,
in [4], block fading channels were taken into account. To
deal with a time-varying channel power gain hk

4 , a pre-
dictive power control algorithm was established, which

4 The term “channel power gain” means the square of the
magnitude of the complex channel.

determines the transmission power level, bit rates and
codebooks used by the sensors. The algorithm in [4] re-
quires that the receiver (i.e, the remote estimator) runs
a channel gain predictor, see e.g., [18]. A key observa-
tion is that the data-driven controller proposed in the
present work can be readily adapted to situations where
the baseline controller provides time-varying power lev-
els w̄k. 5 In fact, by solving Problem 4.12 for a time-
varying power baseline ω̄k, we obtain the optimal solu-
tion θ∗ef as follows: If ω̄k >

N0W
α , then θ∗ef is given by

θ∗ef : {ωk =
N0W

αnτ
ε′kΣ−1

k εk + ω̄k −
N0W

α
}

and Ψk = nτ
nτ+2Σk−1. Otherwise, if ω̄k ≤ N0W

α , θ∗ef is
given by

θ∗ef : {ωk =
ω̄

nτ
ε′kΣ−1

k εk}

and Ψk = nτN0W
nτN0W+2αω̄Σk. In both cases, Σk = (1 −

γk−1)AΨk−1A
′ + h(P ) − P . Note that Σk, Ψk and Φk

are calculated similar to Στ , Ψτ and Φτ given in The-
orem 4.15. To reduce the sensor’s computational load,
the sensor only needs to calculate the quadratic form
ε′kΣ−1

τ εk, while the rest of the paraments are updated
and then sent to the sensor by the estimator. Note that
calculating ε′kΣ−1

τ εk has a complexity of O(n2).

5 Simulation and Examples

Consider a system with parameters as follows: A =[
0.99 0.3

0.1 0.7

]
, C =

[
2.3 1

1 1.8

]
, R = Q = I2×2. We first

assume that θ has a constant power baseline ω̄ = 5 and
N0W
α = 3 < ω̄. In Section 5.2, a time-varying power

baseline is considered.

1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3

3.5

ω̄

J 30
(θ

)

 

 

θ
1

θ
2

Fig. 2. Empirical estimation covariance provided by con-
trollers θ∗ef(θ1) and θ2 as a function of energy constraint ω̄.

5.1 Comparison with Different Energy Constraints

We compare our proposed schedule θ∗ef (denoted as θ1)
with a constant baseline power controller within the en-

5 Following assumptions commonly made in the literature,
see, e.g., [4, 7], in the sequel we shall assume that the chan-
nel gain hk is available via the one-step ahead channel gain
predictor.

7



tire time horizon (denoted as θ2 : {ωk = ω̄}). Define

Jk(θ) = 1
k

∑k
i=1 Tr (E[Pi]) as the empirical approxima-

tion (via 100000 Monte Carlo simulations) of the aver-
age expected state error covariance (denoted as J(θ)).
We choose J30(θ) as an approximation of J(θ).

Fig. 2 shows that θ∗ef leads to a better system perfor-
mance when compared to θ2 under the same energy con-
straint.

5.2 Comparison under Fading Channels

In practice, wireless communication channels typically
comprise fading often assumed to be Rayleigh [19], i.e.,
the channel power gain hk is exponentially distributed
with pdf(hk) = 1

h
exp (−hk

h
), where hk > 0 and h is

the mean of hk. Truncated channel inversion transmit
power controllers have been studied in several works [5,
7, 20], where the transmission power is the inversion of
hk, with a truncated boundary. In this subsection, we
use the baseline power determined by truncated channel
gain inversion Denote the truncated channel inversion
transmission power controller as θ3:

ωk =

{
v
hk
, hk > h?,

v
h? , otherwise.

(18)

where v and h? are design parameters. Consider the case
of h = 1 and set h? = 5. Based on the results in [5], we
can choose v to meet the energy constraint. Fig. 3 sug-
gests that θ∗ef leads to better system performance when
compared with θ3. Fig. 4 shows the comparison given a
specific realization of channel power gains.

0 5 10 15 20 25 30
0.5

1

1.5

k

J k(θ
)

 

 

θ
1

θ
3

Fig. 3. Comparison of θ∗ef(θ1) and θ3 under Rayleigh fading.

6 Conclusion

We proposed a data-driven transmission power con-
troller for remote state estimation, which adjusts the
sensor’s transmission power according to its real-time
measurements. Then we proved that the proposed power
controller preserves Gaussianity of the incremental in-
novation and provided a closed-form expression of the
expected state estimation error covariance. a tuning

Fig. 4. Comparison of θ∗ef(θ1) and θ3 given a specific realiza-
tion of channel power gains.

method for parameter design was presented to guar-
antee that the data-driven power controller not worse
performance than the alternative non-data-driven ones.
Comparisons were conducted to illustrate estimation
performance improvement.

Appendix

Proof of Lemma 4.2: To verify the clain, it suffices to
show that rank(Φτ ) ≥ nτ . Suppose that rank(Φτ ) =
r < nτ . Since Φτ � 0, there must exist exactly n −
r mutually orthogonal vectors e1, . . . , en−r such that
ei
′Φτei = 0, for i = 1, . . . , n − r. Denote the unit vec-

tor with only the (nτ + j)th entry being 1 by ij , that
is, ij = [ 0, . . . , 0, 1︸ ︷︷ ︸

nτ+j

, 0, . . . , 0 ]′. Since ij
′Φτ ij = 0, j =

1, . . . , n−nτ ,without loss of generality, let ej = ij . As we
assume that en−r is orthogonal to ej , j = 1, . . . , n−nτ ,
it is true that D

1/2
τ en−r 6= 0. Since Uτ is nonsingu-

lar and Ker(Uτ ) = {0}, we have e , Σ
1/2
τ en−r 6= 0.

We then observe that e′Ψ−1
τ e = en−r

′Φτen−r = 0, and

e′Σ−1
τ e = en−r

′

[
Inτ 0

0 0

]
en−r > 0, which contradicts

with Ψ−1
τ � Σ−1

τ . �

Proof of Lemma 4.11: By definition, it is easy to see that
det(Στ )det(Ψ−1

τ ) =
∏nτ
i=1 λi(Στ )λi(Ψτ )

−1
. Therefore

we only need to prove det(Φτ ) =
∏nτ
i=1 λi(Στ )λi(Ψτ )

−1
.

Observe that Στ and Ψτ can be factorized as Στ =

Uτ

[
∆τ 0

0 0

]
Uτ
′ and Ψτ = Vτ

[
Θτ 0

0 0

]
Vτ
′, where

∆τ and Θτ are diagonal matrices generated respec-
tively by the nonzero eigenvalues of Στ and Ψτ . For
i = 1, . . . , nτ , ui and vi are the eigenvectors asso-
ciated with λi(Στ ) and λi(Ψτ ). In addition, Uτ =
[u1, . . . , unτ , 0, . . . , 0 ] and Vτ = [ v1, . . . , vnτ , 0, . . . , 0 ].

Then Φτ can be written as Φτ =

[
Mτ 0

0 0

]
, where Mτ=
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∆τ
1/2Ũ ′τ ṼτΘτ

−1Ṽ ′τ Ũτ∆τ
1/2 ∈ Snτ+ , Ũτ = [u1, . . . , unτ ]

and Ṽτ = [ v1, . . . , vnτ ]. According to Lemma 4.3,
Mτ is nonsingular, so det(Φτ ) = det(Mτ ). Since
Im(Στ ) = Im(Ψτ ) from (9), there exists a unitary

matrix V such that Ṽτ = ŨτV . Thus, det(Mτ ) =

det
(

∆τ
1/2VΘτ

−1V ′∆τ
1/2
)

= det
(
∆τΘτ

−1
)
, which

completes the proof. �

Proof of Lemma 4.14: According to Lemma 4.13, we set
λ1(τ) = · · · = λnτ (τ) = λτ . Logarithm does not change
the monotonicity of (14). Problem 4.12 is consequently
transformed to

min
λτ ,ω

− α

N0W
ω − (

nτ
2

+ 1) lnλτ , (19)

s.t.
nτN0W

2α
(λτ − 1) + ω = ω̄, ω ≥ 0.

Substituting ω = − α
N0W

ω̄+ nτ
2 (λτ − 1)− (nτ2 + 1) lnλτ

into (19) and taking derivative, it yields that the min-
imum of (19) is attained at λτ = 1 + 2

nτ
. Meanwhile

ω needs to be nonnegative, so the optimal solution to
Problem 4.10 is (16) if ω̄ > N0W

α or (17) otherwise. �

Proof of Proposition 4.17: Consider a matrix Σ =∑τ
i=1 ρi

(
hi(P )− hi−1(P )

)
with ρi ∈ (0, 1]. We have

Im(Σ) = Im([ ρ1Σ
1/2
1 ρ2AΣ

1/2
1 · · · ρτAτ−1Σ

1/2
1 ][ · ]′)

= Im([ ρ1Σ
1/2
1 ρ2AΣ

1/2
1 · · · ρτAτ−1Σ

1/2
1 ])

= Im([ Σ
1/2
1 AΣ

1/2
1 · · · Aτ−1Σ

1/2
1 ])

= Im([ Σ
1/2
1 AΣ

1/2
1 · · · Aτ−1Σ

1/2
1 ][ · ]′)

= Im(hτ (P )− P ), (20)

which leads to the first assertion. By the Cayley-
Hamilton theorem, we have Ak = −a1(k)An−1 −
a2(k)An−2−· · ·−an(k)I, ∀ k ≥ n,where a1(k), . . . , an(k)
are coefficients of the characteristic polynomial of A.
When τ ≥ n+ 1, we have

Im([ Σ
1/2
1 AΣ

1/2
1 · · · Aτ−1Σ

1/2
1 ][ · ]′)

= Im([ Σ
1/2
1 AΣ

1/2
1 · · · − a1(τ−1)An−1Σ

1/2
1

−a2(τ−1)An−2Σ
1/2
1 − · · · − an(τ−1)Σ

1/2
1 ]),

The last assertion follows from the reasoning used
in (20). �

References

[1] L. Shi and L. Xie, “Optimal sensor power scheduling for state
estimation of Gauss–Markov systems over a packet-dropping
network,” IEEE Transactions on Signal Processing, vol. 60,
no. 5, pp. 2701–2705, 2012.

[2] Y. Xu and J. P. Hespanha, “Optimal communication logics
in networked control systems,” in Proceedings of the 43rd
IEEE Conference on Decision and Control, vol. 4. IEEE,
2004, pp. 3527–3532.

[3] O. C. Imer and T. Basar, “Optimal estimation with limited
measurements,” in Proceedings of the 44th IEEE Conference
on Decision and Control, European Control, December 2005,
pp. 1029–1034.

[4] D. E. Quevedo, A. Ahlén, and J. Østergaard, “Energy
efficient state estimation with wireless sensors through the use
of predictive power control and coding,” IEEE Transactions
Signal Processing, vol. 58, no. 9, pp. 4811–4823, 2010.

[5] A. S. Leong and S. Dey, “Power allocation for error covariance
minimization in Kalman filtering over packet dropping links,”
in Decision and Control (CDC), 2012 IEEE 51st Annual
Conference on. IEEE, 2012, pp. 3335–3340.

[6] M. Nourian, A. Leong, S. Dey, and D. E. Quevedo, “An
optimal transmission strategy for Kalman filtering over
packet dropping links with imperfect acknowledgements,”
IEEE Trans. Contr. Network Syst., vol. 1, no. 3, pp. 259–271,
Sept. 2014.

[7] D. E. Quevedo, A. Ahlén, A. S. Leong, and S. Dey, “On
Kalman filtering over fading wireless channels with controlled
transmission powers,” Automatica, vol. 48, no. 7, pp. 1306–
1316, 2012.

[8] K. Gatsis, A. Ribeiro, and G. J. Pappas, “Optimal power
management in wireless control systems,” in American
Control Conference (ACC), 2013, 2013, pp. 1562–1569.

[9] G. E. Box and G. C. Tiao, Bayesian inference in statistical
analysis. Wiley-Interscience, 2011.

[10] Y. Li, D. E. Quevedo, V. Lau, and L. Shi, “Online sensor
transmission power schedule for remote state estimation,”
in Proceedings of 52nd IEEE Conference on Decision and
Control, Florence, Italy, 2013.

[11] P. Hovareshti, V. Gupta, and J. S. Baras, “Sensor scheduling
using smart sensors,” in Proceedings of the 46th IEEE
Conference on Decision and Control, 2007, pp. 494–499.

[12] B. D. O. Anderson and J. Moore, Optimal Filtering.
Englewood Cliffs, NJ: Prentice Hall, 1979.

[13] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I.
Jordan, and S. S. Sastry, “Kalman filtering with intermittent
observations,” IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1453–1464, 2004.

[14] M. Fu and C. E. de Souza, “State estimation for
linear discrete-time systems using quantized measurements,”
Automatica, vol. 45, no. 12, pp. 2937 – 2945, 2009.

[15] J. Wu, Q. shan Jia, K. H. Johansson, and L. Shi,
“Event-based sensor data scheduling: Trade-off between
communication rate and estimation quality,” IEEE
Transactions on Automatic Control, vol. 58, no. 4, pp. 1041–
1046, 2013.

[16] J. H. Kotecha and P. M. Djuric, “Gaussian particle filtering,”
IEEE Transactions on Signal Processing, vol. 51, no. 10, pp.
2592–2601, 2003.

[17] A. Ribeiro, G. B. Giannakis, and S. I. Roumeliotis, “SOI-KF:
Distributed Kalman filtering with low-cost communications
using the sign of innovations,” IEEE Transactions on Signal
Processing, vol. 54, no. 12, pp. 4782–4795, 2006.

[18] L. Lindbom, A. Ahlén, M. Sternad, and M. Falkenström,
“Tracking of time-varying mobile radio channels–part II: A
case study,” IEEE Transactions Commun., vol. 50, no. 1, pp.
156–167, Jan. 2002.

[19] T. S. Rappaport et al., Wireless communications: principles
and practice. Prentice Hall PTR New Jersey, 1996, vol. 2.

[20] A. J. Goldsmith and P. P. Varaiya, “Capacity of fading
channels with channel side information,” IEEE Transactions
on Information Theory, vol. 43, no. 6, pp. 1986–1992, 1997.

9


	1 Introduction
	2 State Estimation using a Smart Sensor
	2.1 Sensor Local Estimate
	2.2 Wireless Communication Model
	2.3 Remote State Estimation

	3 Data-driven Transmission Power Control
	4 Main Results
	4.1 Preliminaries
	4.2 MMSE State Estimate
	4.3 Selection of Design Parameters
	4.4 Extension 

	5 Simulation and Examples
	5.1 Comparison with Different Energy Constraints
	5.2 Comparison under Fading Channels 

	6 Conclusion
	References

