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Adaptive Visual Tracking for Robotic Systems

Without Image-Space Velocity Measurement

Hanlei Wang

Abstract

In this paper, we investigate the visual tracking problem for robotic systems without image-space

velocity measurement, simultaneously taking into accountthe uncertainties of the camera model and

the manipulator kinematics and dynamics. We propose a new image-space observer that exploits the

image-space velocity information contained in the unknownkinematics, upon which, we design an

adaptive controller without using the image-space velocity signal where the adaptations of the depth-

rate-independent kinematic parameter and depth parameterare driven by both the image-space tracking

errors and observation errors. The major superiority of theproposed observer-based adaptive controller

lies in its simplicity and the separation of the handling of multiple uncertainties in visually servoed

robotic systems, thus avoiding the overparametrization problem of the existing work. Using Lyapunov

analysis, we demonstrate that the image-space tracking errors converge to zero asymptotically. The

performance of the proposed adaptive control scheme is illustrated by a numerical simulation.

Index Terms

Visual tracking, adaptive control, uncertain depth, manipulator.

I. INTRODUCTION

It is generally believed that the incorporation of versatile sensory information (e.g., the

information provided by joint position/velocity sensors,tip force/torque sensors, and vision

systems) into the control system is an important aspect of intelligent robots. Mimicking the

action of human beings, more and more manipulators are equipped with cameras to monitor their

status and further to perform visual servoing so that the system can achieve certain robustness
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against model uncertainties (see, e.g., [1], [2]). Many results in the past years have been devoted

to the visual servoing problem [1], [3], [2], [4], [5], [6], [7], [8], [9], [10]. The visual servoing

control schemes can in general be grouped into two classes (see, e.g., [2]). The first class (e.g.,

[1], [5], [9]) is known as the position-based visual servoing, which simply takes the camera as

a specific task-space sensor, i.e., the end-effector position/velocity information is obtained from

the camera. One possible disadvantage of this scheme, as is frequently stated in the literature

(e.g., [2], [7]), is the requirement of the precise/extensive calibration. The second class (e.g., [4],

[6], [7]) is known as the image-based visual servoing, whichdirectly utilizes the information

of the concerned object in the image space and does not require the calibration of the camera.

The advantage of the image-based visual servoing is now wellknown, i.e., the possible errors

in establishing and calibrating the camera model are avoided.

As a standard control methodology, adaptive control has been shown to be adept at treating

model uncertainties and be promising to achieve aggressiveperformance [11]. Since the late

1980s, numerous adaptive controllers for robot manipulators taking into account the nonlinear

robot dynamics have been proposed (e.g., [12], [13], [14]),and these controllers are all based

on the linearity-in-parameters property of the manipulator dynamic model. The recent studies in

[15], [16], [17], [18] show how the linearity-in-parameters feature of the manipulator kinematics

is exploited for performing adaptive tracking/regulationcontrol in the case of existence of the

kinematic uncertainties. An interesting property of a visually servoed robotic system (with a fixed

camera) is that if the depth of the feature point with respectto the camera frame is unknown but

kept constant, the overall kinematics of the system that describes the mapping from joint space

to image space is linearly parameterized [15]. This desirable feature of the overall kinematics,

unfortunately, no longer holds in the case that the unknown depth is time varying since the

depth acts as the denominator in the overall kinematics [7],[19], [20], [21]. Via exploiting the

respective linearity-in-parameters properties of the depth and the depth-independent interaction

matrix, adaptive strategies are developed in [7], [19], [20], [21], [22], [23] to handle the uncertain

camera parameters. In particular, the adaptive visual tracking problem is resolved in [19], and

the adaptive solutions to the visual regulation problem aregiven in [21], [23], by designing

appropriate control and adaptation laws to accommodate theuncertainties in the manipulator

dynamics and kinematics and the camera model

However, one possible limitation of the above results whichdeal with the tracking problem is
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the requirement of image-space velocity measurement in thecontrol input. One may notice that

in the adaptive regulation algorithms given in [21], [23], the control inputs do not need the image-

space velocity measurement, yet the parameter adaptation laws do use the image-space velocity

signal and in addition their extension to the more challenging tracking problem remains unclear.

Also note that if applying the approach in [17] to the visual tracking problem with constant

depth, the image-space velocity can indeed be avoided in thekinematic parameter adaptation,

yet the control will still require the availability of the image-space velocity. The image-space

velocity is usually/commonly obtained by the standard numerical differentiation of the image-

space position information. It is well recognized that thisvelocity signal tends to be very noisy

due in part to the relatively long processing time or delays of the image information, and thus

it is undesirable to use image-space velocities in the control. One possible solution is given in

[24], extending the result in [15] to the case of time-varying uncertain depth. The limitation of

[24] lies in three aspects: 1) if we further accommodate the uncertain dynamics based on [24],

the overparametrization and even nonlinear parametrization (due to the presence of the uncertain

depth in the denominator of an unknown term to be compensatedfor) problems will occur (refer

to [24, equation (22)]), and additionally the separation ofthe kinematic and dynamic uncertainties

is impossible; 2) the determination of the controller parameters relies on some priori knowledge

of the system model; 3) it requires high control activities to accommodate the variation of the

depth, due to the velocity-dependent feedback gain (which means that the undesirable high-gain

feedback is demanded in the case that the manipulator motions at a high velocity). So, the best

result that can be achieved by using the scheme in [24] is still conservative. Other adaptive

control schemes appear in [25], [26], [27], where cascade-framework-based control schemes are

proposed in [26], [27], and an observer-based controller isproposed in [25], which achieves the

image-space trajectory tracking of electrically driven robots with the desired armature current

not involving the image-space velocity. The results in [25], [26], [27], in contrast to [24], take

into consideration the uncertain robot kinematics and dynamics. Nevertheless, the results in [25],

[27] can only deal with the case that the depth is constant, and the controller given in [26] needs

to obtain the end-effector position with respect to the manipulator base frame so as to perform

the kinematic parameter estimation (refer to [26, equation(21)]) (which means that it is not a

completely image-based visual servoing but a combination of image-based and position-based

schemes, thus demanding the elaborate calibration and tending to be vulnerable to modeling
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errors). Moreover, the SDU factorization adopted in [26] (some detailed analysis appears in [28])

results in the complexity in both the controller design and stability analysis. Another limitation

of [26] may be the requirement of the persistent excitation (PE) of the kinematic regressor (see

the proof of Theorem 3 in [28])

In our opinion, the separation of the handling of multiple uncertainties of the system is highly

preferred, whose superiority may be the avoidance of overparametrization, the simplification of

the control scheme, and consequently better performance ofthe closed-loop system. Along this

idea, in this paper, we propose an observer-based adaptive control scheme for visual tracking

with time-varying depth (unlike the control schemes in [25], [27] that can only handle the

constant depth case) and with uncertain manipulator kinematics and dynamics. The proposed

adaptive controller avoids the measurement of image-spacevelocity and realizes the separation

of the handling of three categories of parameter uncertainties. Using a depth-dependent quasi-

Lyapunov function, we show the convergence of the image-space tracking errors. In contrast to

the velocity-dependent-gain feedback and the overparametrization problem in [24], our control

scheme employs a constant-gain feedback taking into account the uncertain manipulator dynamics

and kinematics in addition to the uncertain camera model andachieves the separation of the

handling of the depth, depth-rate-independent kinematic,and dynamic parameter uncertainties

(avoiding the overparametrization or even the nonlinear parametrization). Moreover, the elaborate

calibration and vulnerability to model uncertainties of [26] (due to the kinematic parameter

estimation) are conquered by the proposed completely image-based servoing controller, and

additionally, the PE condition associated with the kinematic regressor in [26] is not demanded

in the proposed control scheme.

II. K INEMATICS AND DYNAMICS

In this paper, we consider a visually servoed robotic systemconsisting of ann-DOF (degree-

of-freedom) manipulator and a fixed pinhole uncalibrated camera (see, e.g., [29]), where the

manipulator end-effector motion is mapped to the image space by the camera and it is assumed

that the number of the feature points ism. The fact that the camera is not calibrated means that

the extrinsic and intrinsic parameters of the camera are uncertain.

Let xi ∈ R2 (with the unit being pixel) represent the position of the projection of thei-th

feature point on the image plane, andri ∈ R3 denote the position of thei-th feature point
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with respect to the base frame of the manipulator,i = 1, . . . , m. Via the image Jacobian matrix

[2] or the interaction matrix [1], the relationship betweenthe image-space velocitẏxi and the

feature-point velocityṙi can be written as [7]

ẋi =
1

zi(q)

(
D̄ − xid

T
3

)
ṙi (1)

wherezi(q) ∈ R denotes the depth of thei-th feature point with respect to the camera frame,

D̄ ∈ R2×3 and d3 ∈ R3 are taken fromD =
[
D̄T , d3

]T
which is the left3 × 3 portion of

the perspective projection matrix,Ni(xi) = D̄ − xid
T
3 ∈ R2×3 is called the depth-independent

interaction matrix in [7],i = 1, . . . , m, andq ∈ Rn denotes the joint position of the manipulator.

In addition, it should be noted thatzi(q) = dT3 ri + d0 with d0 being a constant anḋzi(q) = dT3 ṙi

(see also [7]) and it is assumed thatzi(q) is uniformly positive,i = 1, . . . , m.

Equation (1) can be rewritten as the following compact form

ẋ = Z−1(q)N(x)ṙ (2)

wherex =
[
xT1 , . . . , x

T
m

]T
, r =

[
rT1 , . . . , r

T
m

]T
, Z(q) = diag[z1(q)I2, . . . , zm(q)I2] with I2 being

the 2× 2 identity matrix, andN(x) = diag
[
N1(x1), . . . , Nm(xm)

]
.

Let v0 ∈ R3 denote the translational velocity of a reference point on the end-effector with

respect to the manipulator base frame andω0 ∈ R3 the angular velocity of the end-effector with

respect to the manipulator base frame, which relate to the joint velocity q̇ as [30], [31]



v0

ω0



 = Jr(q)q̇ (3)

whereJr(q) ∈ R6×n denotes the manipulator Jacobian matrix.

The relationship between the velocity of them feature pointsṙ and the manipulator joint

velocity q̇ can be written as [20] (see also [2], [30], [31])

ṙ =








I3 −S(c1)
...

...

I3 −S(cm)








︸ ︷︷ ︸

Jf

Jr(q)q̇ (4)

whereI3 is the 3 × 3 identity matrix, ci ∈ R3 is the position vector of thei-th feature point

with respect to the reference point on the manipulator end-effector, i = 1, . . . , m, and the skew-
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symmetric formS(b) is defined as

S(b) =








0 −b3 b2

b3 0 −b1

−b2 b1 0








for a 3-dimensional vectorb = [b1, b2, b3]
T .

The combination of (2) and (4) gives rise to the overall kinematic equation [19], [20], [21],

i.e.,

ẋ = Z−1(q)N(x)JfJr(q)
︸ ︷︷ ︸

J(q,x)

q̇ (5)

whereJ(q, x) is a Jacobian matrix that does not depend on the depth (also referred to as the

depth-independent image Jacobian matrix in [20]). The exploitation of the structure of (1) allows

J(q, x) to be decomposed as

J(q, x) =
(
Im ⊗ D̄

)
JfJr(q)

︸ ︷︷ ︸

J⊥
z (q)

−X (Im ⊗ dT3 )JfJr(q)
︸ ︷︷ ︸

Jz(q)

(6)

whereIm is them ×m identity matrix, the matrixX = diag[xi, i = 1, . . . , m], ⊗ denotes the

Kronecker product [32],J⊥

z (q) is a Jacobian matrix that maps the joint velocityq̇ to a plane

which is parallel to the image plane, andJz(q) is a Jacobian matrix that describes the relationship

between the changing rate of the depth vectorz(q) = [z1(q), . . . , zm(q)]
T and q̇ (see, e.g., [7]),

i.e.,

ż(q) = Jz(q)q̇. (7)

It is worth remarking that the existence of the second term onthe right side of (6) is due to the

variation of the depth vectorz(q) while that of the first one is independent of the variation of

z(q). Therefore,J⊥

z (q) is called thedepth-rate-independent Jacobian matrix.

We now make the following assumption.

Assumption 1: The number of the manipulator DOFs and that of the feature points satisfy the

constraint thatn ≥ 2m andm ≤ 3, and the three feature points are non-collinear in the case

m = 3. Furthermore, for∀u =
[
uT1 , . . . , u

T
m

]T
with ui ∈ R2, i = 1, . . . , m, the rank ofN(u)Jf

is 2m.

March 12, 2018 DRAFT
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Remark 11: From [7, Proposition 1], we obtain that rank[Ni(ui)] = 2, ∀i. Next, we discuss

the rank ofN(u)Jf for m = 1, m = 2, andm = 3, respectively.

1) In the casem = 1, it is straightforward to obtain thatJf has full row rank and thus

rank[N(u)Jf ] = 2 (see also [7], [20]).

2) In the casem = 2, the rank ofN(u)Jf is equal to that of the matrixJT
f N

T (u) =



I3 I3

S(c1) S(c2)








NT

1 (u1) 03×2

03×2 NT
2 (u2)



 . Now consider the following linear equation withµ1, µ2 ∈

R3 being the unknowns 


I3 I3

S(c1) S(c2)








µ1

µ2



 = 0. (8)

As is well known, the rank of the skew-symmetric matrixS(b) is 2 for ∀b 6= 0, and therefore

the rank ofS(c2 − c1) is 2, which leads us to obtain from the standard matrix theorythat the

rank of the coefficient matrixJf is 5. According to the standard theory of linear equations, the

solutions of equation (8) constitute a one-dimensional space with the elements being of the form
[
µT
1 , µ

T
2

]T
= k

[
cT1 − cT2 , c

T
2 − cT1

]T
wherek is an arbitrary constant. Let us now consider the

following linear equation withλi, i = 1, . . . , 4 being the unknowns




NT

1 (u1) 03×2

03×2 NT
2 (u2)












λ1
...

λ4







= k




c1 − c2

c2 − c1



 . (9)

If c1− c2 is not in the intersection of the range spaces ofNT
1 (u1) andNT

2 (u2), equation (9) has

a solution only in the case thatk = 0, and this solution isλi = 0, i = 1, . . . , 4. Hence, the rank

of N(u)Jf is 4.

3) In the casem = 3, from the standard matrix theory, the rank ofJT
f is equal to that of the

following matrix (which is obtained by the elementary row operation ofJT
f )




I3 I3 I3

03×3 S(c2 − c1) S(c3 − c1)



 .

To determine the rank of this matrix, we have to identify thatof B =
[

S(c2 − c1) S(c3 − c1)
]

.

Suppose that there is a nonzero vectorµ ∈ R3 such thatBTµ = 0, which then means that

1The discussions on the cases ofm = 2 and m = 3 are largely due to the constructive comments from one anonymous

reviewer.
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µ is parallel toc2 − c1 and c3 − c1 simultaneously. Obviously, this will not happen since the

three feature points are non-collinear. Therefore, the rank of B is 3 and consequently the rank

of JT
f is 6. Then, we obtain from the standard theory of linear equations that the null space

of JT
f is a set containing three independent basis vectors, whose elements can be expressed as

k1
[
cT1 − cT2 , c

T
2 − cT1 , 0

T
3

]T
+k2

[
0T3 , c

T
2 − cT3 , c

T
3 − cT2

]T
+k3

[
cT1 − cT3 , 0

T
3 , c

T
3 − cT1

]T
with k1, k2,

andk3 being arbitrary constants. Now consider the following linear equation withλi, i = 1, . . . , 6

being the unknowns







NT
1 (u1) 03×2 03×2

03×2 NT
2 (u2) 03×2

03×2 03×2 NT
3 (u3)















λ1
...

λ6








= k1








c1 − c2

c2 − c1

03







+ k2








03

c2 − c3

c3 − c2







+ k3








c1 − c3

03

c3 − c1







. (10)

If none of the nonzero elements in span{c1 − c2, c1 − c3} are in the range space ofNT
1 (u1), none

of the nonzero elements in span{c2 − c3, c2 − c1} are in the range space ofNT
2 (u2), and none

of the nonzero elements in span{c3 − c1, c3 − c2} are in the range space ofNT
3 (u3), equation

(10) has only one solutionλi = 0, i = 1, . . . , 6. Hence, the rank ofJT
f N

T (u) in this case is6.

Remark 2: The rank ofN(u)Jf has been discussed in [20, p. 616]. Yet, the analysis there

is neither complete nor rigorous for the casesm = 2 and m = 3. Here, it is demonstrated

thatN(u)Jf has full row rank if the relative position vectors between the feature points in the

manipulator base frame satisfy certain conditions. The proof of the fact that rank(Jf) = 5 for

the casem = 2 and that rank(Jf) = 6 for the casem = 3 has already been given in [20,

p. 616], yet a different approach is used here to prove this fact. For more complete and detailed

discussions as well as the vivid explanations of the singularity issues associated with the case

of three feature points (i.e.,m = 3), please refer to [33].

We further make the following assumption to facilitate the controller design and stability

analysis in the sequel.

Assumption 2: For ∀u =
[
uT1 , . . . , u

T
m

]T
with ui ∈ R2, i = 1, . . . , m, the matrixJ(q, u) =

N(u)JfJr(q) has full row rank in the case that Assumption 1 holds.

Assumption 2 holds if the manipulator is away from the singular configuration and the manip-
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ulator end-effector and the camera are in the nonsingular relative configuration. In fact, from As-

sumption 1, we know that rank[N(u)Jf ] = 2m. Since the manipulator is assumed to be away from

the singular configuration, we obtain rank[Jr(q)] = min {n, 6} ≥ 2m. From [34, p. 210], the rank

of J(q, u) can be determined as rank[J(q, u)] = rank[Jr(q)] − dim [N∗(N(u)Jf) ∩ R
∗(Jr(q))],

whereN∗(N(u)Jf) denotes the null space ofN(u)Jf andR∗(Jr(q)) the range space ofJr(q).

The vectors in the range space ofJr(q) that denote the velocities of the feature points motioning

towards the pinhole of the camera, obviously, lie in the nullspace ofN(u)Jf since, physically,

the image-space velocities corresponding to these vectorsare zero. The assumption that the

end-effector and the camera are in the nonsingular relativeconfiguration ensures that the rank

of J(q, u) is the largest, i.e., onlymin {n, 6} − 2m basis vectors inR∗(Jr(q)) lie in the null

space ofN(u)Jf . Then, we obtain rank[J(q, u)] = min {n, 6} − (min {n, 6} − 2m) = 2m. In

the special case thatn ≥ 6, from [34, p. 220], we have rank[J(q, u)] = rank[N(u)Jf ] = 2m,

which implies that the nonsingular relative configuration is always ensured forn ≥ 6.

The overall kinematics (5) has the following property.

Property 1: The two quantitiesZ(q)ψ andŻ(q)φ can be linearly parameterized [7], [19], i.e.,

Z(q)ψ =Yz(q, ψ)az (11)

Ż(q)φ =Ȳz(q, q̇, φ)az (12)

whereψ =
[
ψT
1 , . . . , ψ

T
m

]T
andφ =

[
φT
1 , . . . , φ

T
m

]T
with ψi ∈ R2 andφi ∈ R2, i = 1, . . . , m,

which also directly yields

ΦJz(q)q̇ = Ż(q)φ = Ȳz(q, q̇, φ)az (13)

where Φ = diag[φi, i = 1, . . . , m], az ∈ Rp1 is the unknown depth parameter vector, and

Yz(q, ψ) ∈ R(2m)×p1 and Ȳz(q, q̇, φ) ∈ R(2m)×p1 are two regressor matrices. In addition,J(q, x)q̇

can also be linearly parameterized [19], which gives

J⊥

z (q)q̇ = Y ⊥

z (q, q̇)a⊥z (14)

wherea⊥z ∈ Rp2 is the unknown depth-rate-independent kinematic parameter vector, andY ⊥

z (q, q̇) ∈

R(2m)×p2 is the depth-rate-independent kinematic regressor matrix. Therefore,J(q, x)q̇ can be

parameterized as [by (13) and (14)]

J(q, x)q̇ = Y ⊥

z (q, q̇)a⊥z − Ȳz(q, q̇, x)az. (15)

March 12, 2018 DRAFT
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The equations of motion of the manipulator can be written as [11], [31]

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (16)

whereM(q) ∈ Rn×n is the inertia matrix,C(q, q̇) ∈ Rn×n is the Coriolis and centrifugal matrix,

g(q) ∈ Rn is the gravitational torque, andτ ∈ Rn is the exerted joint torque. Three fundamental

properties associated with the dynamics (16) that shall be useful for the subsequent controller

design and stability analysis are listed as follows (see, e.g., [11], [31]).

Property 2: The inertia matrixM(q) is symmetric and uniformly positive definite.

Property 3: The Coriolis and centrifugal matrixC(q, q̇) can be suitably selected such that

Ṁ(q)− 2C(q, q̇) is skew-symmetric.

Property 4: The dynamics (16) depends linearly on an unknown constant dynamic parameter

vectorad ∈ Rp3, and thus

M (q) ξ̇ + C (q, q̇) ξ + g (q) = Yd

(

q, q̇, ξ, ξ̇
)

ad (17)

whereYd
(

q, q̇, ξ, ξ̇
)

∈ Rn×p3 is the dynamic regressor matrix,ξ ∈ Rn is a differentiable vector,

and ξ̇ is the derivative of the vectorξ with respect to time.

III. OBSERVER-BASED ADAPTIVE TRACKING CONTROL

In this section, we investigate the adaptive visual tracking for robotic systems with time-varying

depth and with uncertain kinematics and dynamics. We will atfirst develop an image-space

observer, and then, based on this observer, we propose an adaptive tracking controller without

involving image-space velocity measurement to realize theasymptotic trajectory tracking in the

image space, i.e.,x−xd → 0 andẋ− ẋd → 0 ast→ ∞, wherexd denotes the desired trajectory

in the image space and we assume thatxd, ẋd, and ẍd are all bounded.

The image-space observer is designed as

ẋo =Ẑ
−1(q)Ĵ(q, x)q̇ −

1

2
Ẑ−1(q) ˆ̇Z(q)

× (xo − xd)− α (xo − x) (18)

where xo denotes the observed quantity of the image-space position,α is a positive design

constant,Ẑ(q) and ˆ̇Z(q) are the estimates ofZ(q) and Ż(q), respectively, which are obtained

by replacingaz in Z(q), Ż(q) with its estimatêaz, andĴ(q, x) is the estimate ofJ(q, x), which

March 12, 2018 DRAFT
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is obtained by replacinga⊥z andaz in J(q, x) with their estimateŝa⊥z and âz, respectively. The

employment of the second term on the right side of (18) is to accommodate the variation of the

depth.

The closed-loop observer dynamics can be written as

∆ẋo =Ẑ
−1(q)Ĵ(q, x)q̇ − Z−1(q)J(q)q̇ −

1

2
Ẑ−1(q) ˆ̇Z(q)

× (xo − xd)− α∆xo (19)

where∆xo = xo−x is the image-space observation error. Equation (19) can be further formulated

as

Z(q)∆ẋo =
[

Z(q)− Ẑ(q)
]

Ẑ−1(q)Ĵ(q, x)q̇

+ Ĵ(q, x)q̇ − J(q, x)q̇

−
1

2
Z(q)Ẑ−1(q) ˆ̇Z(q) (xo − xd)

− αZ(q)∆xo. (20)

Let us rewrite (20) as (by Property 1)

Z(q)∆ẋo +
1

2
Ż(q)(xo − xd)

=− Yz

(

q, Ẑ−1(q)Ĵ(q, x)q̇
)

∆az

+ Y ⊥

z (q, q̇)∆a⊥z − Ȳz (q, q̇, x)∆az

+
1

2
Ż(q) (xo − xd)−

1

2
Z(q)Ẑ−1(q) ˆ̇Z(q) (xo − xd)

︸ ︷︷ ︸

Π

− αZ(q)∆xo (21)

where∆az = âz − az and∆a⊥z = â⊥z − a⊥z are the depth and depth-rate-independent kinematic

parameter estimation errors, respectively, and the termΠ can be interestingly written as (again
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by Property 1)

Π =
1

2

[

Ż(q)− ˆ̇Z(q)
]

(xo − xd)

+
1

2

[

Ẑ(q)− Z(q)
]

Ẑ−1(q) ˆ̇Z(q) (xo − xd)

=−
1

2
Ȳz(q, q̇, xo − xd)∆az

+
1

2
Yz

(

q, Ẑ−1(q) ˆ̇Z(q) (xo − xd)
)

∆az . (22)

In this way, equation (21) can be rewritten as

Z(q)∆ẋo +
1

2
Ż(q)(xo − xd)

=− αZ(q)∆xo + Y ⊥

z (q, q̇)∆a⊥z − Y ∗

z ∆az (23)

where the combined depth regressorY ∗

z is defined by

Y ∗

z =Yz

(

q, Ẑ−1(q)Ĵ(q, x)q̇
)

+ Ȳz

(

q, q̇, x+
xo − xd

2

)

−
1

2
Yz

(

q, Ẑ−1(q) ˆ̇Z(q) (xo − xd)
)

. (24)

Next, we develop an adaptive controller based on the observed quantities generated by the

observer (18), and the kinematic equation (7) and the decomposition property ofJ(q, x) given

by equation (6) will be exploited for the adaptive controller design.

Let us define a joint reference velocity as

q̇r =
[
Ĵ (q, (xo + xd)/2)
︸ ︷︷ ︸

Ĵ∗

]+
[

Ẑ(q)ẋr

]

(25)

where Ĵ∗+ = Ĵ∗T (Ĵ∗Ĵ∗T )−1 is the standard generalized inverse of the modified estimated

Jacobian matrix̂J∗ [which is obtained by replacinga⊥z andaz in J (q, (xo + xd)/2) with â⊥z and

âz, respectively], anḋxr = ẋd−γ(xo−xd) with γ being a positive design constant. Differentiating

(25) with respect to time gives the joint reference acceleration

q̈r =Ĵ
∗+

[

Ẑ(q)ẍr +
˙̂
Z(q)ẋr −

˙̂
J∗q̇r

]

+ (In − Ĵ∗+Ĵ∗)
˙̂
J∗T Ĵ∗+T q̇r (26)

where the standard result concerning the time derivative ofĴ∗+ is used andIn is then×n identity

matrix. As can be clearly seen from (26), the variableq̈r does not involve the measurement of

the image-space velocitẏx.
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Remark 3: The use of the modified estimated Jacobian matrixĴ∗ instead of the estimated

Jacobian matrix̂J(q, x) is to accommodate the effect of the time-varying depth and toavoid the

image-space velocity measurement in deriving the joint reference acceleration.

Then, define a joint-space sliding vector

s = q̇ − q̇r. (27)

Using Ĵ∗ to premultiply both sides of (27) and exploiting Property 1 gives

Ĵ∗s =Ĵ(q, x)q̇ +
1

2
ˆ̇Z(q)(−xo − xd + 2x)− Ẑ(q)ẋr

=Z(q) [ẋ− ẋd + γ(xo − xd)]

+
1

2
Ż(q)(∆x−∆xo) + Y ⊥

z (q, q̇)∆a⊥z

−
[ 1

2
Ȳz(q, q̇, xo + xd) + Yz(q, ẋr)

︸ ︷︷ ︸

Y ∗∗
z

]

∆az (28)

where∆x = x− xd is the image-space position tracking error.

Now we propose the control law as

τ = −Ĵ∗TKĴ∗s+ Yd(q, q̇, q̇r, q̈r)âd (29)

whereK is a symmetric positive definite matrix and̂ad is the estimate ofad. The adaptation

laws for the estimated parametersâd, â⊥z , and âz are given as

˙̂ad =− ΓdY
T
d (q, q̇, q̇r, q̈r)s (30)

˙̂a⊥z =Γ⊥

z Y
⊥T
z (q, q̇) (∆x−∆xo) (31)

˙̂az =− Γz

(
Y ∗∗T
z ∆x− Y ∗T

z ∆xo
)

(32)

whereΓd, Γ⊥

z , andΓz are all symmetric positive definite matrices.

Substituting the control law (29) into the manipulator dynamics (16) yields

M(q)ṡ + C(q, q̇)s = −Ĵ∗TKĴ∗s+ Yd(q, q̇, q̇r, q̈r)∆ad (33)

where∆ad = âd − ad is the dynamic parameter estimation error.
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The closed-loop behavior of the system can then be describedby






Z(q)∆ẋo + (1/2)Ż(q)(∆xo +∆x)

= −αZ(q)∆xo + Y ⊥

z (q, q̇)∆a⊥z − Y ∗

z ∆az,

Z(q)∆ẋ+ (1/2)Ż(q)(∆x−∆xo)

= −γZ(q)(xo − xd)− Y ⊥

z (q, q̇)∆a⊥z + Y ∗∗

z ∆az + Ĵ∗s,

M(q)ṡ+ C(q, q̇)s

= −Ĵ∗TKĴ∗s+ Yd(q, q̇, q̇r, q̈r)∆ad

(34)

and the parameter adaptation laws (30), (31), and (32).

We are presently ready to formulate the following theorem.

Theorem 1: The observer (18), the control (29), and the adaptation laws(30), (31), (32) for the

visually servoed robotic system (5), (16) guarantee the convergence of the image-space tracking

errors ifα > γ/3, i.e.,∆x→ 0 and∆ẋ→ 0 as t→ ∞.

Proof: Following [13], [35], we consider the Lyapunov-like function candidateV1 = (1/2)sTM(q)s+

(1/2)∆aTd Γ
−1
d ∆ad, whose time derivative along the trajectories of the third subsystem of (34)

and (30) can be written aṡV1 = −sT Ĵ∗TKĴ∗s ≤ 0 (exploiting Property 3), which implies that

s ∈ L∞, Ĵ∗s ∈ L2, andâd ∈ L∞. The fact thatĴ∗s ∈ L2 andZ(q) is uniformly positive definite

yields the result that
∫ t

0
sT Ĵ∗TZ−1(q)Ĵ∗sdr ≤ lM , ∀t ≥ 0 for some positive constantlM .

Let us consider the following depth-dependent nonnegativefunction

V2 =
1

2
∆xTo Z(q)∆xo +

1

2
∆xTZ(q)∆x

+
1

2
∆a⊥T

z Γ⊥−1
z ∆a⊥z +

1

2
∆aTz Γ

−1
z ∆az

+
1

γ

[

lM −

∫ t

0

sT Ĵ∗TZ−1(q)Ĵ∗sdr

]

︸ ︷︷ ︸

Π∗

(35)

where the employment of the termΠ∗ follows the typical practice (see, e.g., [36, p. 118]).

The time derivative ofV2 along the trajectories of the upper two subsystems of (34) can be
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written as

V̇2 =− α∆xTo Z(q)∆xo − γ∆xTZ(q)(xo − xd)

− (∆x−∆xo)
TY ⊥

z (q, q̇)∆a⊥z

+
(
∆xTY ∗∗

z −∆xTo Y
∗

z

)
∆az

+∆a⊥T
z Γ⊥−1

z
˙̂a⊥z +∆aTz Γ

−1
z

˙̂az

+∆xT Ĵ∗s−
1

γ
sT Ĵ∗TZ−1(q)Ĵ∗s. (36)

Substituting the adaptation laws (31) and (32) into (36) gives

V̇2 =− α∆xTo Z(q)∆xo − γ∆xTZ(q)∆x

− γ∆xTZ(q)∆xo +∆xT Ĵ∗(q)s

−
1

γ
sT Ĵ∗TZ−1(q)Ĵ∗s. (37)

Using the following result obtained from the standard theory of inequalities

∆xT Ĵ∗s ≤
1

4
γ∆xTZ(q)∆x+

1

γ
sT Ĵ∗TZ−1(q)Ĵ∗s

we obtain from (37) that

V̇2 ≤− α∆xTo Z(q)∆xo − γ∆xTZ(q)∆xo −
3γ

4
∆xTZ(q)∆x

=−




∆xo

∆x





T 


αZ(q) (γ/2)Z(q)

(γ/2)Z(q) (3γ/4)Z(q)





︸ ︷︷ ︸

H




∆xo

∆x



 ≤ 0 (38)

since the matrixH is uniformly positive definite under the conditionα > γ/3, according to the

standard matrix theory. The inequality (38) as well as the definition of V2 given by (35) yields

the result that∆xo ∈ L2 ∩L∞, ∆x ∈ L2 ∩L∞, â⊥z ∈ L∞, and âz ∈ L∞. If rank(Ĵ∗) = 2m, we

obtain from the standard matrix theory thatĴ∗+ is bounded. Then, we obtain thatq̇r ∈ L∞ from

equation (25) sincêZ(q) is bounded anḋxr ∈ L∞. From the result thats ∈ L∞, we have that

q̇ ∈ L∞. From (18), we have thaṫxo ∈ L∞, which further gives rise to the result thatẍr ∈ L∞.

From the adaptation laws (31) and (32), we have that˙̂a⊥z ∈ L∞ and ˙̂az ∈ L∞, which mean that
˙̂
Z(q) and ˙̂

J∗ are bounded. Therefore, we obtain thatq̈r ∈ L∞ from (26). From (33), we obtain

that ṡ ∈ L∞ sinceM(q) is uniformly positive definite (by Property 2), which, plus the result that
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q̈r ∈ L∞, yields the conclusion thaẗq ∈ L∞. Then, from the kinematics (5) and its differentiation

with respect to time, we obtain thatẋ ∈ L∞ and ẍ ∈ L∞. We also obtain thaẗxo ∈ L∞ from

the differentiation of equation (18). Then, we have that∆ẋo ∈ L∞, ∆ẋ ∈ L∞, ∆ẍo ∈ L∞, and

∆ẍ ∈ L∞. Hence,∆xo, ∆x, ∆ẋo, and∆ẋ are all uniformly continuous. From the properties of

square-integrable and uniformly continuous functions [36, p. 117], we obtain that∆xo → 0 and

∆x → 0 as t → ∞. Then, from Barbalat’s Lemma [11], we have that∆ẋo → 0 and∆ẋ → 0

as t→ ∞. �

Remark 4: The avoidance of image-space velocity measurement is achieved at the kinematic

level, which results in the separation of the handling of thekinematic and dynamic uncertainties.

In addition, the cascaded feature of the closed-loop systemfacilitates the stability analysis.

Remark 5:

1) Compared with the results in [15], [19], [24], [26], the novel points of our result mainly

lie in the proposed observer (18), the definition of the reference velocity (25), the image-

space-velocity-free adaptation law (32), and the proposeddepth-dependent quasi-Lyapunov

function (35) as well as the associated stability analysis.The adaptation law (31) for

updatingâ⊥z coincides with the one in [25]2, [27], yet the results in [25], [27] are confined

to the simpler case of constant depth. The control law (29) aswell as the dynamic parameter

adaptation law (30) is basically the same as the one in [15] (i.e., an extension of [13] to

handle both the uncertain kinematics and dynamics), yet employ a new estimated Jacobian

matrix Ĵ∗ and new reference velocity and acceleration.

2) The simplicity of the proposed control scheme is reflectedin the aspects that the over-

parametrization when accommodating the uncertain dynamics is avoided and the constant-

gain feedback is adopted (unlike the result in, e.g., [24]),and that the explicit measurement

of the feature-point position with respect to the manipulator base frame is not required (in

contrast with [26]).

Remark 6: The standard projection approach [37] can be applied to the adaptation laws (31)

and (32) so that̂J∗ has full row rank [this originates from the fact thatJ (q, (xo + xd)/2) has

2The task-space observer and the desired armature current given in [25] (which deals with the adaptive control of electrically

driven robots) make us believe that one can obtain the solution for rigid robots (a reduced case of electrically driven robots)

from [25] and will find that the adaptation law (31) is in essence the same as this solution.
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full row rank according to Assumption 2] and̂Z(q) is uniformly positive definite during the

adaptation process (see also [19], [21]).

IV. SIMULATION RESULTS

In this section, we present the simulation results to show the performance of the proposed

observer-based adaptive controller. We consider a visually servoed robotic system that includes

a typical three-DOF manipulator and a fixed camera, as is shown in Fig. 1, and the number of

the feature points that are under consideration is set as one. The focal length of the camera is set

asf = 0.15 m and the two scaling factors of the camera are set to be the same valueβ = 900.0.

The three axes of the camera frame (denoted byXC , YC andZC , respectively) are assumed to

be aligned with the axesY0, Z0, andX0 of the manipulator base frame, respectively, yet there

is an offsetdC = 5.0 m along the axisZC between the origins of the two frames. The lengths

of the three links of the manipulator arel1 = 2.0 m, l2 = 2.0 m, and l3 = 2.0 m. The mass

and inertia properties of the manipulator are not listed dueto the space limitation. The sampling

period is chosen to be 5 ms.

The controller parameters are determined asK = 0.001I2, α = 10.0, γ = 10.0, Γd =

300.0I8, Γ⊥

z = 600.0I2 and Γz = 0.2I3. The initial estimates of the kinematic parameters

(including the camera parameters) are chosen asl̂2(0) = l̂3(0) = 3.0 m, d̂C(0) = 3.0 m,

f̂(0) = 0.1 m, and β̂(0) = 700.0. The initial estimate of the dynamic parameter vector is

chosen aŝad(0) =
[
0T6 , 15, 0

]T
. The desired trajectory in the image space is given asxd =

[45 + 20 cos(πt/3), 65 + 20 sin(πt/3)]T . The simulation results are shown in Fig. 2 and Fig.

3. From Fig. 2, we see that the image-space position trackingerrors indeed converge to zero

asymptotically. Fig. 3 gives the responses of the actual andestimated depths during the motion of

the manipulator. It seems that the estimated depth tends to approach the actual depth. Although

the convergence of the depth estimation error does not occur, the asymptotic image-space

trajectory tracking is still realized.

V. CONCLUSION

In this paper, we have examined the visual tracking problem for robotic systems with uncer-

tain camera model and uncertain manipulator kinematics anddynamics, and the image-space

velocity is assumed to be unavailable. To achieve visual tracking without image-space velocity

March 12, 2018 DRAFT



18

Camera

C
Z

C
X

C
Y

0Z

0Y

0X

Manipulator

Fig. 1. Three-DOF manipulator with a fixed camera

0 5 10 15 20
−8

−6

−4

−2

0

2

4

time (s)

tr
ac

ki
ng

 e
rr

or
s 

(p
ix

el
)

 

 

X error
Y error

Fig. 2. Image-space position tracking errors

measurement, we propose a novel image-space observer and anadaptive controller based on the

observed quantities, which yield a cascade closed-loop robotic system. Using a depth-dependent

quasi-Lyapunov function plus the standard Lyapunov-like function for analyzing the Slotine and

Li adaptive controller, we demonstrate that the image-space tracking errors converge to zero.

We also show the asymptotic convergence of the image-space observation errors. A simulation

is conducted to show the performance of the proposed observer-based adaptive controller.
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