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Adaptive Visual Tracking for Robotic Systems

Without Image-Space Velocity Measurement
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Abstract

In this paper, we investigate the visual tracking problemréibotic systems without image-space
velocity measurement, simultaneously taking into accdhatuncertainties of the camera model and
the manipulator kinematics and dynamics. We propose a neagerspace observer that exploits the
image-space velocity information contained in the unknddmematics, upon which, we design an
adaptive controller without using the image-space vejosignal where the adaptations of the depth-
rate-independent kinematic parameter and depth paraaretelriven by both the image-space tracking
errors and observation errors. The major superiority ofpiftoposed observer-based adaptive controller
lies in its simplicity and the separation of the handling ofiltiple uncertainties in visually servoed
robotic systems, thus avoiding the overparametrizatiablem of the existing work. Using Lyapunov
analysis, we demonstrate that the image-space trackimgseconverge to zero asymptotically. The

performance of the proposed adaptive control scheme ®trilted by a numerical simulation.
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. INTRODUCTION

It is generally believed that the incorporation of vergatdensory information (e.g., the
information provided by joint position/velocity sensot§y force/torque sensors, and vision
systems) into the control system is an important aspect tefligent robots. Mimicking the
action of human beings, more and more manipulators are pediwith cameras to monitor their

status and further to perform visual servoing so that théesysan achieve certain robustness
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against model uncertainties (see, eld., [1], [2]). Manyltssn the past years have been devoted
to the visual servoing problem![1]1[3]./[2]./[4].[5].[6]i7], [8], [Q], [10]. The visual servoing
control schemes can in general be grouped into two classes €93.,[[2]). The first class (e.g.,
[], [B], [9]) is known as the position-based visual sengyimvhich simply takes the camera as
a specific task-space sensor, i.e., the end-effector poAiglocity information is obtained from
the camera. One possible disadvantage of this scheme, esqigehtly stated in the literature
(e.g., [2], [1]), is the requirement of the precise/exteasialibration. The second class (e.gl, [4],
[6], [7]) is known as the image-based visual servoing, whidtectly utilizes the information
of the concerned object in the image space and does not eetipgircalibration of the camera.
The advantage of the image-based visual servoing is now kmelivn, i.e., the possible errors
in establishing and calibrating the camera model are adoide

As a standard control methodology, adaptive control has lséewn to be adept at treating
model uncertainties and be promising to achieve aggregmvimrmance[[11]. Since the late
1980s, numerous adaptive controllers for robot maniptdataking into account the nonlinear
robot dynamics have been proposed (elg.} [12], [13], [12}d these controllers are all based
on the linearity-in-parameters property of the manipulatynamic model. The recent studies in
[15], [16], [17], |[18] show how the linearity-in-paramesdieature of the manipulator kinematics
is exploited for performing adaptive tracking/regulaticontrol in the case of existence of the
kinematic uncertainties. An interesting property of a gibuservoed robotic system (with a fixed
camera) is that if the depth of the feature point with resp@the camera frame is unknown but
kept constant, the overall kinematics of the system thatrdess the mapping from joint space
to image space is linearly parameterized! [15]. This delgrédmture of the overall kinematics,
unfortunately, no longer holds in the case that the unknoepttd is time varying since the
depth acts as the denominator in the overall kinemaltics[1B], [20], [21]. Via exploiting the
respective linearity-in-parameters properties of thetlidgmd the depth-independent interaction
matrix, adaptive strategies are developedin [7]} [19]],[fZ1], [22], [23] to handle the uncertain
camera parameters. In particular, the adaptive visuakittgcgproblem is resolved i [19], and
the adaptive solutions to the visual regulation problem given in [21], [23], by designing
appropriate control and adaptation laws to accommodateutivertainties in the manipulator
dynamics and kinematics and the camera model

However, one possible limitation of the above results whdehl with the tracking problem is
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the requirement of image-space velocity measurement ilcaghé&ol input. One may notice that
in the adaptive regulation algorithms given(in|[21],/[23letcontrol inputs do not need the image-
space velocity measurement, yet the parameter adaptatando use the image-space velocity
signal and in addition their extension to the more challegdracking problem remains unclear.
Also note that if applying the approach in [17] to the visualcking problem with constant
depth, the image-space velocity can indeed be avoided ikittegnatic parameter adaptation,
yet the control will still require the availability of the iage-space velocity. The image-space
velocity is usually/commonly obtained by the standard nucaé differentiation of the image-
space position information. It is well recognized that thédocity signal tends to be very noisy
due in part to the relatively long processing time or delalythe image information, and thus
it is undesirable to use image-space velocities in the obn@ne possible solution is given in
[24], extending the result in [15] to the case of time-vagyimcertain depth. The limitation of
[24] lies in three aspects: 1) if we further accommodate theertain dynamics based dn [24],
the overparametrization and even nonlinear paramewizdtiue to the presence of the uncertain
depth in the denominator of an unknown term to be compengatggroblems will occur (refer
to [24, equation (22)]), and additionally the separatiothefkinematic and dynamic uncertainties
is impossible; 2) the determination of the controller pagters relies on some priori knowledge
of the system model; 3) it requires high control activitiesatccommodate the variation of the
depth, due to the velocity-dependent feedback gain (whieans that the undesirable high-gain
feedback is demanded in the case that the manipulator nsoéiba high velocity). So, the best
result that can be achieved by using the scheme_inh [24] iscstilservative. Other adaptive
control schemes appear in [25], [2€], [27], where cascadedwork-based control schemes are
proposed in[[26],[[27], and an observer-based controll@ragposed in[[25], which achieves the
image-space trajectory tracking of electrically drivemats with the desired armature current
not involving the image-space velocity. The results(inl [8B], [27], in contrast to[[24], take
into consideration the uncertain robot kinematics and dyios. Nevertheless, the resultsin[25],
[27] can only deal with the case that the depth is constaut tla@ controller given in [26] needs
to obtain the end-effector position with respect to the rpalator base frame so as to perform
the kinematic parameter estimation (refer [tol [26, equafii)]) (which means that it is not a
completely image-based visual servoing but a combinatioimage-based and position-based

schemes, thus demanding the elaborate calibration andntetal be vulnerable to modeling
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errors). Moreover, the SDU factorization adopted_in [268nte detailed analysis appears(in/[28])
results in the complexity in both the controller design atabgity analysis. Another limitation
of [26] may be the requirement of the persistent excitatl®B)(of the kinematic regressor (see
the proof of Theorem 3 in_[28])

In our opinion, the separation of the handling of multipleertainties of the system is highly
preferred, whose superiority may be the avoidance of ovanpetrization, the simplification of
the control scheme, and consequently better performanteeatlosed-loop system. Along this
idea, in this paper, we propose an observer-based adapiteot scheme for visual tracking
with time-varying depth (unlike the control schemes linl[2[d7] that can only handle the
constant depth case) and with uncertain manipulator kitiemmand dynamics. The proposed
adaptive controller avoids the measurement of image-speloeity and realizes the separation
of the handling of three categories of parameter uncenrtgintsing a depth-dependent quasi-
Lyapunov function, we show the convergence of the imageespacking errors. In contrast to
the velocity-dependent-gain feedback and the overparaatbdn problem in([24], our control
scheme employs a constant-gain feedback taking into attdo@inncertain manipulator dynamics
and kinematics in addition to the uncertain camera model anfdeves the separation of the
handling of the depth, depth-rate-independent kinematid, dynamic parameter uncertainties
(avoiding the overparametrization or even the nonlineaaupatrization). Moreover, the elaborate
calibration and vulnerability to model uncertainties b6[2due to the kinematic parameter
estimation) are conquered by the proposed completely irbaged servoing controller, and
additionally, the PE condition associated with the kineémetgressor in[[26] is not demanded

in the proposed control scheme.

II. KINEMATICS AND DYNAMICS

In this paper, we consider a visually servoed robotic systensisting of am-DOF (degree-
of-freedom) manipulator and a fixed pinhole uncalibrateth@a (see, e.g.| [29]), where the
manipulator end-effector motion is mapped to the image esjpgcthe camera and it is assumed
that the number of the feature pointsris The fact that the camera is not calibrated means that
the extrinsic and intrinsic parameters of the camera arertaio.

Let z; € R? (with the unit being pixel) represent the position of thejpction of thei-th

feature point on the image plane, and<c R?® denote the position of théth feature point
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with respect to the base frame of the manipulate, 1, ..., m. Via the image Jacobian matrix
[2] or the interaction matrix[1], the relationship betwettre image-space velocity; and the
feature-point velocity; can be written as [7]

1
zi(q)
where z;(¢q) € R denotes the depth of theth feature point with respect to the camera frame,
D € R*3 andd; € R? are taken fromD = [DT,d3:|T which is the left3 x 3 portion of
the perspective projection matridj;(z;) = D — z;d% € R**? is called the depth-independent

jfz':

interaction matrix in[[7]; =1, ..., m, andg € R" denotes the joint position of the manipulator.
In addition, it should be noted that(q) = dlr; + dy with dy being a constant angl(q) = di
(see alsol[7]) and it is assumed thatq) is uniformly positive,i = 1,..., m.

Equation (1) can be rewritten as the following compact form
&= Z""(q)N(x)r 2)

wherez = [«7,.. ., x%]T, r=rf,... ,TZ;]T, Z(q) = diag(z1(q) Iz, - - ., zm(q)I2] with I being
the 2 x 2 identity matrix, andN (z) = diag[N:(z1), . .., Ny (z)].

Let vy € R? denote the translational velocity of a reference point a» ¢hd-effector with
respect to the manipulator base frame agd= R the angular velocity of the end-effector with

respect to the manipulator base frame, which relate to tim¢ yelocity ¢ as [30], [31]

R AT 3)
wo

where J,(q) € RS*" denotes the manipulator Jacobian matrix.
The relationship between the velocity of the feature points: and the manipulator joint
velocity ¢ can be written as [20] (see aldd [2], [30], [31])

I; —S(¢)
r= | A AL (4)
Is —S(cm)
Ig

where I is the 3 x 3 identity matrix,c; € R® is the position vector of the-th feature point

with respect to the reference point on the manipulator dfetter,i = 1,...,m, and the skew-
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symmetric formS(b) is defined as

0 —by by
SOy =10, 0 —b
by b0

for a 3-dimensional vectdr = [by, by, bg]T.
The combination of[(2) and4) gives rise to the overall kiatimequation[[19],[[20],[121],
ie.,
i =27Y(q) N(2)J7J(0) d 5)
J(gx)
where J(q,z) is a Jacobian matrix that does not depend on the depth (disoee to as the
depth-independent image Jacobian matrixin [20]). Theatqilon of the structure of{1) allows
J(q,z) to be decomposed as
J(q.2) = (In ® D) JpJo(q) =X (L, ® df).J 1 J,(q) (6)

~~ N~

JH(a) J=(q)

where [,,, is them x m identity matrix, the matrixX = diag|x;,i = 1,...,m], ® denotes the
Kronecker product[[32],J-(¢q) is a Jacobian matrix that maps the joint velocjtyo a plane
which is parallel to the image plane, arid ) is a Jacobian matrix that describes the relationship
between the changing rate of the depth veet@) = [z:(q), ..., zm(q)]T and g (see, e.qg.,.[7]),
ie.,

#(q) = J.(q)q (7

It is worth remarking that the existence of the second terntherright side of[(b) is due to the
variation of the depth vector(q) while that of the first one is independent of the variation of
2(q). Therefore,J(q) is called thedepth-rate-independent Jacobian matrix.

We now make the following assumption.

Assumption 1. The number of the manipulator DOFs and that of the featuretpaiatisfy the
constraint thatn > 2m andm < 3, and the three feature points are non-collinear in the case
m = 3. Furthermore, foivu = [u] ... ,umT with u; € R%, i = 1,...,m, the rank of N (u)J;

is 2m.
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7

Remark IEI: From [7, Proposition 1], we obtain that raji¥;(u;)] = 2, Vi. Next, we discuss
the rank of N(u)J; for m = 1, m = 2, andm = 3, respectively.

1) In the casem = 1, it is straightforward to obtain thaf; has full row rank and thus
rank[N (u)J¢] = 2 (see alsol[7],[[20]).

2) In the casem = 2, the rank of N(u).J; is equal to that of the matrix/f N*(u) =

I3 I3 N (u1)  Osxo

S(er) S(e2) Ozx2 N3 (us)
R? being the unknowns

. Now consider the following linear equation with, > €

I Is 241
Ser) S(e2)| | me2

As is well known, the rank of the skew-symmetric matfxb) is 2 for Vb # 0, and therefore

—0. (8)

the rank ofS(cy — ¢;) is 2, which leads us to obtain from the standard matrix thebay the
rank of the coefficient matri¥/; is 5. According to the standard theory of linear equatiohs, t

solutions of equatiori{8) constitute a one-dimensionatspeth the elements being of the form

[ iE)" =k [eF — 4, d — " wherek is an arbitrary constant. Let us now consider the
following linear equation with\;, i = 1, ..., 4 being the unknowns
T )\1
Ny (u1) O3x2 = €1 —C ‘ )
O3x2 N3 (u2) 2 —
A4

If ¢, — ¢y is not in the intersection of the range spacesVéf(u,) and N (u,), equation[(P) has
a solution only in the case that= 0, and this solution is\;, = 0,7 =1, ..., 4. Hence, the rank
of N(u)Jy is 4.

3) In the casen = 3, from the standard matrix theory, the rankl}? is equal to that of the

following matrix (which is obtained by the elementary roweogtion ofJ}F)

I3 I3 I3
03><3 S(CQ - Cl) S(Cg - Cl)

To determine the rank of this matrix, we have to identify tobf3 = | S(c, —c;) S(cz —c1)|-

Suppose that there is a nonzero vecgtoe R? such thatBT; = 0, which then means that

The discussions on the casesmf= 2 andm = 3 are largely due to the constructive comments from one anoogm

reviewer.

March 12, 2018 DRAFT



w1 is parallel tocy; — ¢; and c3 — ¢; simultaneously. Obviously, this will not happen since the
three feature points are non-collinear. Therefore, th& @nB is 3 and consequently the rank
of JfT is 6. Then, we obtain from the standard theory of linear aqoatthat the null space
of JJT is a set containing three independent basis vectors, wHesgepts can be expressed as
by [ — b el — T 0] kg [01, ¢ — L, — 1" kg [¢F — 8,00, ¢F — ¢T]" with Ky, ko,
andk; being arbitrary constants. Now consider the following éinequation with\;, s =1,....,6

being the unknowns

N (u1)  Ogx2 0352 A1
032 NJ(ug)  Ozxo
O3x2 032 NI(uz)| [N

C1 — Cy 03 C1 —C3
=k |co—c1| +kalco—cy| +ks 03 . (10)

03 C3 — C2 3 —C1

If none of the nonzero elements in sgan — c,, c; — c3} are in the range space of! (), none
of the nonzero elements in spn — c3, ¢, — ¢} are in the range space of! (u,), and none
of the nonzero elements in spn — c;,c3 — o} are in the range space of] (u3), equation
(I0) has only one solution; =0, i = 1,...,6. Hence, the rank oﬂfNT(u) in this case I%.

Remark 2: The rank of N(u)J; has been discussed in [20, p. 616]. Yet, the analysis there
is neither complete nor rigorous for the cases= 2 and m = 3. Here, it is demonstrated
that N(u)J; has full row rank if the relative position vectors betweer fhature points in the
manipulator base frame satisfy certain conditions. Thefpod the fact that rank/;) = 5 for
the casem = 2 and that rank/;) = 6 for the casem = 3 has already been given in_[20,
p. 616], yet a different approach is used here to prove tluis Feor more complete and detailed
discussions as well as the vivid explanations of the singuléssues associated with the case
of three feature points (i.em = 3), please refer ta_[33].

We further make the following assumption to facilitate thentroller design and stability
analysis in the sequel.

Assumption 2: For Vu = [uff,...,ufn]T with u; € R?, i = 1,...,m, the matrix.J(q,u) =
N(u)JsJ,(¢q) has full row rank in the case that Assumption 1 holds.

Assumption 2 holds if the manipulator is away from the siagaonfiguration and the manip-
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ulator end-effector and the camera are in the nonsingulative configuration. In fact, from As-
sumption 1, we know that rafk (u)J¢] = 2m. Since the manipulator is assumed to be away from
the singular configuration, we obtain rak(¢)] = min {n,6} > 2m. From [34, p. 210], the rank
of J(q,u) can be determined as rapkq, u)] = rank[.J.(q)] — dim[N*(N(u)J;) N R*(J,(q))],
where N*(N(u)Jy) denotes the null space of(u).J; and R*(J,(¢)) the range space of.(q).
The vectors in the range space.bfq) that denote the velocities of the feature points motioning
towards the pinhole of the camera, obviously, lie in the splice ofN(u).J; since, physically,
the image-space velocities corresponding to these veat@sero. The assumption that the
end-effector and the camera are in the nonsingular relatwvdiguration ensures that the rank
of J(q,u) is the largest, i.e., onlynin {n,6} — 2m basis vectors inR*(.J.(¢)) lie in the null
space ofN(u).J;. Then, we obtain rank/(¢, )] = min {n,6} — (min {n,6} — 2m) = 2m. In
the special case that > 6, from [34, p. 220], we have ranld(q, u)] = rank[N(u).J;] = 2m,
which implies that the nonsingular relative configuratisralways ensured fat > 6.

The overall kinematicd{5) has the following property.

Property 1: The two quantitiesZ(¢): and Z(q)¢ can be linearly parameterized [7]. [19], i.e.,

Z(q)y =Y.(q,¥)a. (11)
Z(q)¢ =Y.(q, 4, d)a. (12)

wherey = [¢7, ..., ¢v7]" and¢ = [¢7,...,¢L]" with ¢, € R? and¢, € R?, i = 1,...,m,
which also directly yields
©J.(q) = Z(q)6 = Y2 (q. 4, ¢)a. (13)

where & = diag|¢;,i =1,...,m|, a, € RP' is the unknown depth parameter vector, and
Y.(q,%) € R®™*Pr andY,(q, ¢, ) € R®™>*P1 are two regressor matrices. In additiof{g, z)q
can also be linearly parameterizéd|[19], which gives

J(@)q =Y (q.¢)a; (14)

wherea! € RP? is the unknown depth-rate-independent kinematic paramettor, andr’* (¢, ¢) €
RZm)xp2 s the depth-rate-independent kinematic regressor maktierefore,J(q, )¢ can be
parameterized as [by (13) arld [14)]

J(q,2)¢ =Y (q,¢)ar — Y.(q,4,7)a.. (15)
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10
The equations of motion of the manipulator can be written1d3, [|31]

M(q)i+C(q,4)q+g(q) =T (16)

whereM (q) € R™*" is the inertia matrix(C'(¢, ¢) € R™*™ is the Coriolis and centrifugal matrix,
g(q) € R" is the gravitational torque, ande R" is the exerted joint torque. Three fundamental
properties associated with the dynamics| (16) that shalldefuli for the subsequent controller
design and stability analysis are listed as follows (seg, €11], [31]).

Property 2: The inertia matrix} (¢) is symmetric and uniformly positive definite.

Property 3: The Coriolis and centrifugal matriK'(¢, ¢) can be suitably selected such that
M(q) — 2C(q, q) is skew-symmetric.

Property 4: The dynamics[(16) depends linearly on an unknown constamrdic parameter
vectora, € RP3, and thus

M (@) €+C(q:0)¢ +9(a) = Ya (0.4.€€) aa (7)

whereY, (q, q,&, 5) € R™Ps is the dynamic regressor matrig,c R" is a differentiable vector,

and¢ is the derivative of the vectaf with respect to time.

[[l. OBSERVERBASED ADAPTIVE TRACKING CONTROL

In this section, we investigate the adaptive visual tragkor robotic systems with time-varying
depth and with uncertain kinematics and dynamics. We wilfirgst develop an image-space
observer, and then, based on this observer, we propose gtivad@acking controller without
involving image-space velocity measurement to realizeasamptotic trajectory tracking in the
image space, i.er;— x4y — 0 andz — 24 — 0 ast — oo, wherex, denotes the desired trajectory
in the image space and we assume thati,;, and, are all bounded.

The image-space observer is designed as

~
A~ A

b =27 @) 0)i ~ 377 (@) 2a)
X (xy —xq) — a(zo — ) (18)

where x, denotes the observed quantity of the image-space posiiias, a positive design
constant,Z(q) and Z(q) are the estimates of(¢) and Z(q), respectively, which are obtained

by replacinga. in Z(q), Z(q) with its estimatez., and j(q,x) is the estimate of/ (¢, x), which
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11

is obtained by replacingl anda. in J(q,z) with their estimates. anda., respectively. The
employment of the second term on the right side[of (18) is tmawnodate the variation of the

depth.
The closed-loop observer dynamics can be written as

Ak, =27 @) 2)i ~ 27 @) T (@)~ 577 () 2 (a)

X (2o — xq) — @Az, (29)

whereAz, = x,—x is the image-space observation error. Equafioh (19) canrieef formulated

as

A A

Z(q)] Z7Y(q)J (g, 7)q

Z(q)Ax, = [
+J(g,2)q — J(q, 2)q
1

- 5227 (@) (w0~ )

— aZ(q)Az,. (20)
Let us rewrite [(2D) as (by Property 1)
2(0) A, + 5 2(a) (0 — 22
=~ Y. (¢ 27 (@) (g.2)q) Aa.

+ Y g, ¢)Aar — Y, (q,4,7) Aa,

—aZ(q)Ax, (21)

whereAa, = a, — a, and Aat = a- — al are the depth and depth-rate-independent kinematic

parameter estimation errors, respectively, and the téroan be interestingly written as (again
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by Property 1)

=3 [2) - 20)] (20— 20
+5 [20) - 20)] 77 @ 2(0) (5~ )
S %Z(q, 4, %o — Tq)Aa,
1 NN
+5Y: (.27 2(0) (@0 — 7)) Aa. (22)

In this way, equation(21) can be rewritten as

Z(q)Aiy + %qu)(% ~ 2a)

=—aZ(q) Az, + Y (q,)Aar — Y Aa, (23)

where the combined depth regressgr is defined by

. . _ To — T
v =Y. (027 @ 0d) + ¥ (adr+ )

~

37 (.77 @20 (50— 7). 24)

Next, we develop an adaptive controller based on the obdeguantities generated by the
observer[(IB), and the kinematic equatibh (7) and the deositipn property of/(q,x) given
by equation[(b) will be exploited for the adaptive controliesign.

Let us define a joint reference velocity as
i = [J (@, (w0 + 20/2)]" [2(0)i] (25)
j*

where J*+ = J*T(J*J*T)~! is the standard generalized inverse of the modified estinate

Jacobian matrix/* [which is obtained by replacing anda. in J (¢, (z, + x4)/2) with & and
a, respectively], and:, = &,—v(z,—x,) with v being a positive design constant. Differentiating

(259) with respect to time gives the joint reference accéiemna
G =J" | 2(q)in + Z(q)ie — TG,
(L= J I, (26)

where the standard result concerning the time derivativé bfis used and,, is then xn identity
matrix. As can be clearly seen froin {26), the variafjledoes not involve the measurement of

the image-space velocity.
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Remark 3: The use of the modified estimated Jacobian maffixinstead of the estimated
Jacobian matrix/ (¢, z) is to accommodate the effect of the time-varying depth aravtad the
image-space velocity measurement in deriving the joirgrexfce acceleration.

Then, define a joint-space sliding vector
$=q— - (27)
Using J* to premultiply both sides of {27) and exploiting Propertyiteg
J*s =J(a,0)0+ 5 200) (~t — va+ 20) = Z(a)i
=Z(q) [# — &q + y(2o — 2a)]

+ = Z(q)(Az — Az,) + Y- (g, §) At

N | —

Va4 + 24) + Vala, ) | Ao, (28)

(Mo | —

J/

-~

YZ**
where Az = x — x4 is the image-space position tracking error.

Now we propose the control law as
7= —JTKJs + Yalq, 4, 4r ir)a (29)

where K is a symmetric positive definite matrix arig is the estimate ofi;. The adaptation

laws for the estimated parametérg al, anda. are given as

C;Ld - - FdeT(q7 q'7 QTa qT)S (30)
at =Ty (q, ) (Ax — Az,) (31)
a,=—T, (Y;"Ar - V" Az,) (32)

whereT'y, T'L, andT', are all symmetric positive definite matrices.

Substituting the control law _(29) into the manipulator dyries (16) yields
M(q)$ + C(g,4)s = =T TKJ"s + Ya(q. 4 4r- i) Dag (33)

where Aa, = a4 — ag4 IS the dynamic parameter estimation error.
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The closed-loop behavior of the system can then be descbped

(

Z(q)Ado + (1/2)Z(q)(Az, + Ax)

= —aZ(q)Ar, + Y (¢, §)Aa; — Y Aay,

Z(q)Ai + (1/2)Z(q)(Az — Ax,) (34)
= —7Z(q)(wo — xa) — YVH(g,¢) Nt + Y *Aa. + J*s,

M(q)s + C(q,q)s

= —j*TKj*S + Yd(Q> (ja (jrv éjr)Aa’d

\

and the parameter adaptation laws] (30)] (31), (32).

We are presently ready to formulate the following theorem.

Theorem 1. The observer (18), the contr@l (29), and the adaptation {@@% (31), [(32) for the
visually servoed robotic systernl (5], {16) guarantee therexgence of the image-space tracking
errors ifa > /3, i.e., Az — 0 and Az — 0 ast — oo.

Proof: Following [13], [35], we consider the Lyapunov-like funmti candidaté’, = (1/2)s” M (q)s+
(1/2)AalT; ' Aay, whose time derivative along the trajectories of the thinbsystem of[(34)
and [30) can be written a§, = —s”.J*TK.J*s < 0 (exploiting Property 3), which implies that
s € Lo, J*s € Ly, andiy € L. The fact that/*s € £, and Z(q) is uniformly positive definite
yields the result thaif) s”J*TZ~"(q)J*sdr < Iy, ¥t > 0 for some positive constarif;.

Let us consider the following depth-dependent nonnegdtixetion
Vs :%AxZZ(q)AxO + %AxTZ(q)Ax

1 1
+ ~Aar T ' Aat + iAaffglAaz

2
1 b s 5
+ = {ZM — / sT T 727 q)J* sdr (35)
:}/ 0 e
he

where the employment of the terfii* follows the typical practice (see, e.d., [36, p. 118]).
The time derivative ofi;, along the trajectories of the upper two subsystems of (3d)b&a
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written as
Vo = — alal Z(q) Az, — vA2" Z(q) (0 — 7a)
— (Az — Az,)"Y (g, ) Aay
+ (Az"Y — AzlY)) Aa,

+ At Tt + Al T G,
+ Az s — lsTj*TZ_l(q)j*s. (36)
Y
Substituting the adaptation lawis {31) and](32) inid (36kgiv

Vo = —alzl Z(q) Az, — yA2T Z(q) Ax
— AT Z(q) Az, + Az J*(q)s

1 .« R
— ;sTJ*TZ_l(q)J*s. (37)

Using the following result obtained from the standard tlyemfrinequalities

R 1 1 - A
Azt J s < ZyAxTZ(q)Ax + st T 77 g)J s
Y

we obtain from [(3F7) that

Vo < —alzl' Z(q) Az, — yAzT Z(q) Az, — ??%AxTZ(q)Ax

T
Ax,

Ax

Az,
Azx

aZ(q)  (v/2)Z(q)
(v/2)Z(q) (3v/4)Z(q)

H

since the matrix{ is uniformly positive definite under the conditien> ~/3, according to the

<0 (38)

7

standard matrix theory. The inequalify {38) as well as thindion of V, given by [35) yields
the result thatAz, € LoN Lo, Az € L3N Lo, 4t € Lo, anda, € L. If rank(J*) = 2m, we
obtain from the standard matrix theory th&t" is bounded. Then, we obtain thate £, from
equation [(Zb) sincé?(q) is bounded and;, € £... From the result that € £.,, we have that
g € L. From [18), we have that, € L., which further gives rise to the result that € L.
From the adaptation law5s (81) arid)32), we have tHat £.. anda. € L., which mean that

Z(q) and J* are bounded. Therefore, we obtain thate £., from (28). From [(3B), we obtain
thats € L, sinceM (q) is uniformly positive definite (by Property 2), which, pldsetresult that
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jr € L, yields the conclusion thdte £... Then, from the kinematicgl(5) and its differentiation
with respect to time, we obtain thate £, andi € £L,. We also obtain that, € £, from
the differentiation of equatiori (18). Then, we have that, € £, Az € L, A, € L, and
Ax € L. Hence,Az,, Az, Aix,, andAz are all uniformly continuous. From the properties of
square-integrable and uniformly continuous functions [86117], we obtain that\z;, — 0 and
Az — 0 ast — oo. Then, from Barbalat's Lemma [11], we have that, — 0 and Az — 0
ast — oo. [
Remark 4: The avoidance of image-space velocity measurement is\azhigt the kinematic
level, which results in the separation of the handling ofkimematic and dynamic uncertainties.
In addition, the cascaded feature of the closed-loop sy$&eifitates the stability analysis.
Remark 5:

1) Compared with the results ih [15], [19], [24], [26], thevad points of our result mainly
lie in the proposed observdr {18), the definition of the eiee velocity[(25), the image-
space-velocity-free adaptation law [32), and the propdegth-dependent quasi-Lyapunov
function ([3%) as well as the associated stability analy§tee adaptation lawl (31) for
updatinga® coincides with the one irEBB,] [27], yet the results in [25]/[27] are confined
to the simpler case of constant depth. The control [aw (29edlsas the dynamic parameter
adaptation law[(30) is basically the same as the oné_ih [18], @n extension of [13] to
handle both the uncertain kinematics and dynamics), yet@ngonew estimated Jacobian
matrix J* and new reference velocity and acceleration.

2) The simplicity of the proposed control scheme is reflegtethe aspects that the over-
parametrization when accommodating the uncertain dyreisiavoided and the constant-
gain feedback is adopted (unlike the result in, elg., [22}) that the explicit measurement
of the feature-point position with respect to the manipuidiase frame is not required (in
contrast with [[26]).

Remark 6: The standard projection approach][37] can be applied to daptation laws[(31)
and [32) so that/* has full row rank [this originates from the fact thafq, (z, + z4)/2) has

2The task-space observer and the desired armature curkemt igi [25] (which deals with the adaptive control of elezatly
driven robots) make us believe that one can obtain the solutr rigid robots (a reduced case of electrically drivebats)

from [25] and will find that the adaptation lalv(31) is in essernthe same as this solution.
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full row rank according to Assumption 2] anﬁ(q) is uniformly positive definite during the
adaptation process (see als0![19],1[21]).

V. SIMULATION RESULTS

In this section, we present the simulation results to shavgarformance of the proposed
observer-based adaptive controller. We consider a vissalivoed robotic system that includes
a typical three-DOF manipulator and a fixed camera, as is showrig. 1, and the number of
the feature points that are under consideration is set asitveefocal length of the camera is set
asf = 0.15> m and the two scaling factors of the camera are set to be the galwes = 900.0.
The three axes of the camera frame (denotedXby Y- and Z., respectively) are assumed to
be aligned with the axe¥;, Z,, and X, of the manipulator base frame, respectively, yet there
is an offsetd- = 5.0 m along the axisZ- between the origins of the two frames. The lengths
of the three links of the manipulator ate = 2.0 m, I, = 2.0 m, andl/; = 2.0 m. The mass
and inertia properties of the manipulator are not listed tdude space limitation. The sampling
period is chosen to be 5 ms.

The controller parameters are determinedfas= 0.0017,, o = 10.0, v = 10.0, I'y =
300.0lg, 't = 600.0/, and I', = 0.2I3. The initial estimates of the kinematic parameters
(including the camera parameters) are choser,&§ = I5(0) = 3.0 m, de(0) = 3.0 m,
f(0) = 0.1 m, and 3(0) = 700.0. The initial estimate of the dynamic parameter vector is
chosen asiy(0) = [OGT, 15,0}T. The desired trajectory in the image space is giverras=
[45 + 20 cos(wt/3), 65 + 20 sin(wt/3)]". The simulation results are shown in Fig. 2 and Fig.
3. From Fig. 2, we see that the image-space position trackinys indeed converge to zero
asymptotically. Fig. 3 gives the responses of the actualstichated depths during the motion of
the manipulator. It seems that the estimated depth tendgpimach the actual depth. Although
the convergence of the depth estimation error does not ptlarasymptotic image-space

trajectory tracking is still realized.

V. CONCLUSION

In this paper, we have examined the visual tracking problenrdbotic systems with uncer-
tain camera model and uncertain manipulator kinematics dymémics, and the image-space

velocity is assumed to be unavailable. To achieve visuaking without image-space velocity
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Z,

Manipulator

P

Fig. 1. Three-DOF manipulator with a fixed camera

— X error
- --Y error

tracking errors (pixel)
|
N

0 5 10 15 20
time (s)

Fig. 2. Image-space position tracking errors

measurement, we propose a novel image-space observer auhjgtive controller based on the
observed quantities, which yield a cascade closed-looptiobystem. Using a depth-dependent
guasi-Lyapunov function plus the standard Lyapunov-likection for analyzing the Slotine and
Li adaptive controller, we demonstrate that the image-sgdeacking errors converge to zero.
We also show the asymptotic convergence of the image-sgaser\@tion errors. A simulation

is conducted to show the performance of the proposed obseaged adaptive controller.
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Fig. 3. Actual and estimated depths
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