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Abstract

This paper investigates synchronization issues of a heterogeneous complex network with a general switching topology in the
sense of boundedness, when no complete synchronization manifold exists. Several sufficient conditions are established with the
Lyapunov method and the differential analysis of convergence to determine the existence and estimate the convergence domain
for the local and global bounded synchronization of a heterogeneous complex network. By using the consensus convergence
of a switched linear system associated with the switching topology, explicit bounds of the maximum deviation between nodes
are obtained in the form of a scalar inequality involving the property of the consensus convergence, the homogeneous and
heterogeneous dynamics of individual nodes for the local and global cases. These analytical results are simple yet generic,
which can be used to explore synchronization issues of various complex networks. Finally, a numerical simulation illustrates
their effectiveness.
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1 Introduction

Synchronization of populations of locally interacting
units is an active field of research with applications
in science and engineering, see [Pikovsky et al., 2001],
[Osipov, Kurths, & Zhou, 2007], [Arenas et al., 2008]
and references therein. From the viewpoint of com-
plex network, synchronization of complex systems
is usually determined by the dynamics of individ-
ual nodes and the coupling configuration between
nodes. This result has been established by mainly
assuming that all the node dynamics are identical,
see [Wu, 2005], [Belykh et al., 2006], [Yu et al., 2009],
[Stilwell et al. 200)], [Zhao et al. 2009]. However, signif-
icant differences commonly exist within the relevant
individual nodes. Motivated by this, we investigate syn-
chronization issues of complex heterogeneous networks
in this paper.

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author M. Z. Q. Chen. Tel. (852)28592628. Fax
(852)28585415.

Email addresses: lwang@buaa.edu.cn (Lei Wang),
mzqchen@hku.hk (Michael Z. Q. Chen),
elewqg@nus.edu.sg (Qing-Guo Wang).

The behavior of complex dynamical networks with non-
identical nodes is much more complicated than that of
the identical-node case since synchronization manifold,
guaranteed by the diffusive condition in identical-node
networks, disappears due to the heterogeneity of indi-
vidual nodes. And the ultimate synchronous trajecto-
ry, in general, has to be confined to some particular
solution. Also, decompositions into a few of lower di-
mensional subsystems are no longer possible even for
local synchronization of heterogeneous networks. Thus,
it is quite difficult to explore synchronization of com-
plex heterogeneous networks, and very few results have
been reported to date. A simple case for all nonidenti-
cal nodes shared with a common equilibrium has been
studied in [Xiang & Chen, 2007], [Zhao et al., 2011]. Be-
sides, synchronization of coupled nonidentical chaotic
systems have also been discussed in [Femat et al., 2005],
[Li, Chen, & Aihara, 2006], [Duan & Chen, 2009].

There is no doubt that a complex network of coupled
nonidentical systems may still exhibit some kind of syn-
chronous behaviors that need to be understood. Bound-
ed synchronization is a typical weaker form of synchro-
nization when complete synchronization is impossible.
Examples include clock synchronization in mobile robot-
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s, or task coordination of swarming animals, or the ap-
pearance of synchronized bulk oscillations in suspension
of yeast cells etc. Several investigations have discussed
the bounded synchronization issues, e.g., in stochas-
tic complex networks [Shen et al., 2011] and consensus
control of multi-agent systems [Zhong et al., 2012]. A
very recent result in [Zhao et al., 2012] has addressed
synchronization of a general dynamical network with
nonidentical nodes and symmetric coupling matrix.
Wang et al. [Wang et al., 2015] introduced a general-
ized connection graph stability method to avoid the
calculating eigenvalues of an asymmetry coupling ma-
trix. It is noted that the above mentioned topology has
dealt with a “slow-varying” structure, i.e., a continuous
function is simply taken as the varying connection for
a time-varying network. Such a description has limi-
tations in handling the varying topologies that change
very quickly such as switches due to connection failures
and new creations. In general, the relevant time-varying
results exhibit strong conservativeness, particularly
in analyzing an unconnected topology. A few recen-
t results [Frasca et al., 2008], [Wang et al., 2010] have
discussed switching synchronization issues of a mo-
bile agent network under the fast-switching constraint.
More results on switching networks have focused on the
consensus of multi-agent systems from the viewpoint
of control science, see [Olfati-Saber & Murray, 2004],
[(Ren & Beard, 2005)] for example. This paper inves-
tigates bounded synchronization of a a heterogeneous
complex switched network. With the Lyapunov func-
tion approach as well as differential analysis of con-
vergence, we derive several bounded synchronization
conditions for the heterogeneous network. In particular,
the problem of bounded synchronization under the gen-
eral switching topology is solved by partially using the
techniques of the consensus problem because of the sim-
ilarity of synchronization in complex coupled networks
and consensus in multi-agent systems.

The rest of this paper is organized as follows. Section
2 presents a heterogeneous complex switched network
and some mathematical preliminaries. In Section 3, we
derive several sufficient conditions to guarantee the lo-
cal and global bounded synchronization of the consid-
ered network, respectively. A numerical example is given
to elucidate the effectiveness of the presented results in
Section 4. Section 5 concludes the investigation.

2 A Heterogeneous Network Model

Consider a nonlinear system ofN linearly and diffusively
coupled nonidentical nodes which are represented by

ẋi(t) = fi(t,xi)− c

N∑
j=1

LσijΓxj(t), i = 1, 2, . . . , N, (1)

where xi = [xi1, xi2, . . . , xin]
T ∈ Rn is the state vec-

tor of node i, fi : [0,∞) × D → Rn is continuously d-
ifferentiable with D ⊆ Rn, governing the dynamics of
each node, c > 0 is the overall coupling strength, Γ =
diag(γ1, . . . , γn) ∈ Rn×n is the inner-coupling matrix,
the switching signal σ(t) : [0,∞) → P = {1, 2, . . . , p}
with p < ∞ is a piecewise constant function with suc-
cessive times to describe the topology switches between
subintervals. In network (1), the communication topol-
ogy is represented by digraph Gσ and described in a ma-
trix form by the Laplacian Lσ(t) = (Lσij) ∈ RN×N . The
Laplacian of digraph Gσ is defined as follows: If there is
a directed connection from node j to node i (i ̸= j) at
time t, then Lσij < 0; otherwise Lσij = 0, and its diago-

nal entries satisfy Lσii = −
∑N

j=1,j ̸=i Lσij , ∀ i, and σ(t).

For simplicity, let G = {Gi|i ∈ P} denote the set of all
possible communication graphs of network (1) in the pro-
cess of switching, each of which represents a digraph with
the Laplacian Li for i ∈ P. Also, consider an infinite se-
quence of nonempty, bounded and contiguous time inter-
vals [tk, tk+1), k = 0, 1, . . . , with t0 = 0 and tk+1 − tk ≤
Tmax for some positive constant Tmax. In each interval
[tk, tk+1), there is a sequence of non-overlapping subin-
tervals [tk0 , tk1), [tk1 , tk2), . . . , [tkmk−1

, tkmk
) with tk0 =

tk, tkmk
= tk+1 satisfying tkj+1 − tkj ≥ Tmin, 0 ≤ j ≤

m − 1, for some integer m ≥ 1 and a given positive
constant Tmin. In particular, the digraph Gσ with the
Laplacian Lσ switches at tkl

and it does not change dur-
ing each subinterval [tkl

, tkl+1
). Throughout this paper,

notations for graphs and their corresponding Laplacian
matrices are not differentiated unless stated otherwise.

Assumption 1 (A1): The dynamics of each isolat-
ed node can be expressed in the form of fi(t,xi) =
f(t,xi,X) + gi(t,X) and ||gi|| ≤ δ holds uniform-
ly for all nodes with constant δ as the heterogeneity
parameter, where f : [0,∞) × D × . . . × D → Rn,
gi : [0,∞)×D×. . .×D → Rn,X = [xT

1 ,x
T
2 , . . . ,x

T
N ]T ∈

RnN , and || · || denotes the Euclidean norm.

Note that the heterogeneous dynamics gi(t,X) rep-
resents the differences arising from the individual n-
odal dynamics. A common choice of f is f(t,xi,X) =∑N

i=1 ξifi(t,xi), where ξi ≥ 0 for all i and
∑N

i=1 ξi = 1.
Sometimes, one can simply select f(t,xi,X) = f(t,xi)
according to the nodal dynamics for some i. Then,
gi(t,X) = fi(t,xi)− f(t,xi), and the estimation δ asso-
ciates with the states of nodes. It is noted that δ can be
analytically calculated for many coupled limit-cycle or
chaotic systems as if the bound of nodal states is known
as a prior. Besides, the function gi(t,X) can also take
the noise or external disturbances into account.

Now, let F(t,X) = [fT(t,x1,X), . . . , fT(t,xN ,X)]T ∈
RnN , G(t) = [gT

1 (t,X), . . . ,gT
N (t,X)]T ∈ RnN . Then,
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network (1) can be rewritten in a block form as

Ẋ(t) = F(t,X)− c(Lσ ⊗ Γ)X(t) +G(t), (2)

where ⊗ is the Kronecker product. From A1, G(t) ≡ 0
means that the heterogeneity among the node dynam-
ics disappears. Then, network (2) reduces to a complex
network of coupled identical nodes

Ẋ(t) = F(t,X)− c(Lσ ⊗ Γ)X(t). (3)

For network (3), there always exists an invariant syn-
chronization manifold S = {(xT

1 , . . . ,x
T
N )T ∈ RnN :

xi = xj , ∀i, j}. We denote an orthonormal basis of S

by ṽ , (vT ⊗ In) ∈ Rn×nN and a basis of orthocomple-

ment space of S (denoted by S+) by ṽ+ , (vT
+ ⊗ In) ∈

Rn(N−1)×nN , where v = 1√
N
[1, 1, . . . , 1]T ∈ RN , and

v+ ∈ RN×(N−1). Then, it is easy to verify that X ∈
S ⇐⇒ ṽ+X = 0. Left-multiplying Eq. (2) by ṽ+ yields

Ẏ(t) = ṽ+F(t, ṽ
T
+Y(t) +X(t))

− c(L̃σ ⊗ Γ)Y(t) + ṽ+G(t), (4)

where In is an n × n identity matrix, Y = ṽ+X ∈
Rn(N−1), X = [xT,xT, . . . ,xT]T ∈ RnN , x = 1√

N
ṽX is

the average state trajectory, and L̃σ = vT
+Lσv+. Obvi-

ously, Y(t) = 0 is an equilibrium point of system

Ẏ(t) = ṽ+F(t, ṽY(t) +X(t))− c(L̃σ ⊗ Γ)Y(t). (5)

The exponential stability of system (5) is equivalen-
t to the exponential synchronization of network (3)
[Wang & Wang, 2013]. Correspondingly, the bounded
synchronization of network (2) can be assessed by the
ultimate boundedness of the solutionY(t) of system (4).

Definition 1. Network (1) is said to achieve bound-
ed synchronization to the convergence domian M
if ∀i, j = 1, . . . , N , Xij(t) approaches to M, i.e.,
limt→∞ dist(Xij(t),M) = 0, where Xij(t) = xi(t) −
xj(t), dist(x

∗,M) denotes the distance from a point x∗

to a set M, that is, the smallest distance from x∗ to any
point in M.

3 Bounded Synchronization Analysis

3.1 Analysis of local bounded synchronization

Theorem 1. Suppose that A1 holds. If there exist a
uniformly symmetric positive definite matrix P (t) ∈
Rn(N−1)×n(N−1) and positive scalars a, b, and η such that

a||Y(t)||2 ≤ YT(t)P (t)Y(t) ≤ b||Y(t)||2, ∀Y(t), (6)

Ṗ (t) +AT(t)P (t) + P (t)A(t) + 2ηIn(N−1) ≤ 0, (7)

then network (1) with the initial condition Xij(t0) ∈
Bδ = {Y ∈ Rn(N−1)| ||Y|| ≤ δ} for any i and j syn-

chronizes to the set M1 = {X ∈ RnN | ||X − X|| ≤
δ
√
a/b}, where A(t) = IN−1 ⊗ Jf (t,X) − cL̃σ ⊗ Γ,

Jf (t,X) is the Jacobian matrix of f(t,X(t)) eval-

uated at X(t), ϕ =
√∑n

i=1 ϕ
2
i with the Hessian

matrix Φj of function fj satisfying ||Φj || ≤ ϕj

for all j, δ = 4
√
Nδ/(η +

√
η2 − 8

√
nNϕδ) and

δ = 4
√
Nδ/(η −

√
η2 − 8

√
nNϕδ).

Proof. Use the Taylor formula with the integral remain-
der at x and write it in a compact form as F(t,X) =√
Nv ⊗ f(t,X) + (IN ⊗ Jf (t,X))(X(t)−X(t)) +H(t),

where hi(t) = [hi1(t), . . . , hin(t)]
T ∈ Rn with hij(t) =∫ 1

0
(1− s)(xi −x)TΦj((1− s)xi + sx)(xi −x)ds, H(t) =

[hT
1 (t), . . . ,h

T
N (t)]T. Then, system (4) can be further

rewritten as

Ẏ(t) = A(t)Y(t) + ṽ+

(
H(t) +G(t)

)
. (8)

We use V (t,Y(t)) = 1
2Y

T(t)P (t)Y(t) as a Lya-
punov function candidate for system (8), where P (t)
is solved by Eq. (7). Then, we calculate the deriva-
tive of V (t,Y(t)) along the trajectories of system (8)
and recall the constraints in Eqs. (6)–(7) as well as

||H(t)|| ≤
√
n
2 ϕ||Y(t)||2 to derive

V̇ (t) ≤ δb||Y(t)|| − η||Y(t)||2 +
√
n

2
ϕb||Y(t)||3. (9)

It follows from Eq. (9) that there exists a K-class func-

tionα(||Y(t)||) such that V̇ (t,Y(t)) ≤ −α(||Y(t)||), ∀δ ≤
||Y(t)|| ≤ δ. Taking ϵ = bδ2 ensures that Bδ ⊂ Ωt,ϵ =

{Y ∈ Rn(N−1)| V (t,Y(t)) ≤ ϵ}. Since V̇ (t,Y(t)) ≤ 0
on Bδ, for any t0 and any Y(t0) ∈ Ωt0,ϵ, the solution
starting at (t0,Y(t0)) stays in Ωt,ϵ. Therefore, any solu-
tion starting in Bδ will stay in Ωt,ϵ for all future time.
To calculate the ultimate bound on Y(t), we have

V (t,Y(t)) ≤ ϵ =⇒ a||Y(t)||2 ≤ ϵ ⇐⇒ ||Y(t)|| ≤ δ
√

a/b.

Therefore, the ultimate boundedness of system (8) can

be taken as δ
√
a/b. The proof is thus completed. 2

Remark 1. As shown in [Zhao et al., 2012], the linear ma-
trix inequality (7) is a sufficient condition for local ex-
ponential synchronization of network (3). Actually, the
nonautonomous system (5) can be rewritten as a linear
time-varying system by using the Mean Value Theorem

Ẏ(t) = A(t)Y(t) + ṽ+Σ(t)ṽT
+Y(t), (10)

whereΣ(t) = diag( ∂f
∂x (t,Z1)− ∂f

∂x (t,X), . . . , ∂f
∂x (t,ZN )−

∂f
∂x (t,X)) ∈ RnN×nN , and Zi is a vector on the line seg-
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ment connecting X to X. Then, according to the con-
verse Lyapunov theorem, if the origin of system (10) is
exponentially stable, there always exists a time-varying
quadratic Lyapunov function V (t) defined for system
(10). Then, the exponential stability of the synchroniza-
tion manifold in network (3) guarantees the existence of
function V (t). Thus, one can easily estimate the bound-
edness of synchronization from Theorem 1 as if network
(3) achieves exponential synchronization.

Remark 2. Consider the solvability of inequality (7). If
P (t) = P1⊗P2(t), then inequality (7) can be guaranteed
by the following two inequalities:

Ṗ2(t) + JT
f (t,X)P2 + P2Jf (t,X)− β1P2Γ ≤ 0, (11)

β1P1 − cL̃T
σP1 − cP1L̃σ + β2IN ≤ 0, (12)

where constant matrix P1 ∈ R(N−1)×(N−1) is positive
definite, diagonal matrix P2(t) ∈ Rn×n is uniformly pos-
itive definite, β1 and β2 are arbitrary positive constants.
It is noted that Eq. (11) implies the local stability of
linear system

ẋ(t) =
(
Jf (t,X)− β1Γ

)
x(t), ∀x(t) ∈ Rn. (13)

As shown in the connection graph stability method
[Belykh et al., 2004], the existence of P2 has been wide-
ly investigated when P2 is a constant matrix. And the
inequality (12) implies the exponential stability of the
linear switched system written as

ẏ(t) = −
(
cL̃σ − β1IN−1

)
y(t), ∀y(t) ∈ RN−1. (14)

The following lemma provides a simple convergence do-
main when the inner-coupling matrix is an identity ma-
trix and its proof is given in Appendix A.

Lemma 1. The solution of the linear switched system

˙̃Z(t) =
(
IN−1 ⊗ Jf (t,x)− c(L̃σ ⊗ In)

)
Z̃(t) (15)

satisfies ||Z̃(t)|| ≤ e(−µ+νmax+ϵ)(t−t0)||Z̃(t0)|| for a suffi-
ciently small scalar ϵ.

Theorem 2. Suppose that A1 holds. If νmax − µ < 0,
then network (1) with Γ = In locally synchronizes to the
set M2 =

{
X ∈ RnN | ||X−X|| ≤ δ

µ−νmax

}
, where νmax

is the largest Lyapunov exponent of system

ξ̇(t) = Jf (t,X)ξ(t), (16)

and µ is the convergence rate of switched system

ẇ(t) = −cL̃σw(t). (17)

Proof. It is well-known that for the local synchroniza-
tion issue of system (2), we can investigate the linearized
system (4) written as

Ż =
(
IN−1 ⊗ Jf (t,X)− cL̃σ ⊗ In

)
Z+ ṽ+G, (18)

where the solution of system (18) can be expressed by

Z(t) = Φ̃(t, t0)Z(0) +

∫ t

t0

Φ̃(t, τ)ṽ+G(τ)dτ, (19)

state transition matrix Φ̃(t, τ) = Φ(t)Φ−1(τ), and
Φ(t) ∈ Rn×n is a fundamental solution of system (15).

From the definition of an induced matrix norm, we have
||Φ̃(t, t0)|| = max||Z̃||=1 ||Φ̃(t, t0)Z̃||. It follows from

Lemma 1 that

||Φ̃(t, t0)|| ≤ max
||Z̃||=1

e(−µ+νmax+ϵ)(t−t0)||Z̃||. (20)

Combining it with Eq. (19) and taking the limit give the
ultimate boundedness of Y(t). 2

Remark 3. Theorem 2 provides a reasonably simple
boundedness criterion of local synchronization, relating
to the heterogeneity of individual nodes, the largest Lya-
punov exponent νmax of an isolated homogeneous system
(16), and the convergence rate µ of a linear switched sys-
tem (17). In particular, if δ = 0, then Theorem 2 reduces
to a criterion of local synchronization of a linearly cou-
pled complex network. A similar result can also be found
in Refs. [Wang & Wang, 2013,Xiang & Wei, 2011].

3.2 Analysis of global bounded synchronization

Assumption 2 (A2): Suppose that there exist a time-
varying matrix B(t) ∈ Rn×n and a vector field g̃i(t) for
i = 1, . . . , N such that fi(t,xi) = B(t)xi + g̃i(t), where

||ṽ+G̃(t)|| ≤ δ̃ for some positive scalar δ̃ with G̃(t) =
[g̃T

1 (t), . . . , g̃
T
N (t)]T, and the fundamental solution of the

linear system ẋ = B(t)x, denoted by Ψ̃(t), satisfying

||Ψ̃(t)|| ≤ eυbt for some constant υb.

Theorem 3. Suppose that A2 holds and system (17)
achieves global exponential stability, i.e., there exists a
positive scalarµ such that ||w(t)|| ≤ ||w(t0)||e−µt, ∀w(t0) ∈
RN−1. If µ > νb, then network (1) globally synchronizes

to the set M3 =
{
X ∈ RnN | ||X−X|| ≤ δ̃

µ−νb

}
.

The detailed proof is omitted here since it can be easily
deduced by following the proof of Theorem 2.

Remark 4. A2 is quite reasonable since, for a general
nonlinear vector function fi(t,x), it can be easily decom-
posed into a linear part Bx with constant matrix B and
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a nonlinear part g̃i(t). Then, A2 is consistent with A1 .
However, such a simple decomposition is sometimes not
a good choice to obtain smaller scalars νb and δ̃. By us-
ing the Taylor formula, we may decompose fi(t,xi) into

fi(t,xi) = f(t,X) + Jf (t,X)(xi − x) + gi(t) + r(t,xi),

where r(t,xi) ∈ Rn is the integral form of the reminder,
B(t) = Jf (t,X), and g̃i = f(t,X)− Jf (t,X)x+ gi(t) +
r(t,xi). Then a conservative condition that guarantees

A2 can be given as δ̃ , δ + ||R(t,xi))||.

Remark 5. Theorem 2 and Theorem 3 require the con-
vergence rate µ. For system (17), the convergence rate µ
is equal to the consensus convergence rate of multi-agent
system written as

ẋi(t) = −c
N∑
j=1

Lσijxj(t), i = 1, . . . , N. (21)

A simple estimation of the convergence rate µ can be
calculated as shown in [Xiang & Wei, 2011].

For a general global synchronization issue of network
(1), we here give a relatively conservative result by con-
structing a quadratic Lyapunov function.

Theorem 4. Suppose that A1 holds. If there exist a
uniformly symmetric positive definite matrix P (t) ∈
Rn(N−1)×n(N−1), positive scalars a, b, α and θ such that

a||Y(t)||2 ≤ YT(t)P (t)Y(t) ≤ b||Y(t)||2, ∀Y(t), (22)

1

2

(
P (t)Γ + ΓP (t)

)
− θP (t) ≥ 0, (23)

XT
ij(t)

(1
2
Ṗ (t)− αP (t)

)
Xij(t)

+
(
f(t,xi,X)− f(t,xj ,X)

)T
P (t)Xij ≤ 0, (24)

and there exists an infinite sequence {tk, k = 0, 1, . . . , }
such that

(tk+1 − tk)
−1

∫ tk+1

tk

γσ(t)dt ≥ γ, (25)

then network (1) globally synchronizes to the set

M4 =

{
X ∈ RnN | ||X − X|| ≤ bδγ̃(1−γ∗m+1)

a(1−e−
1
2
γTmin )(1−γ∗)

}
,

where γσ = cλσ
2θ − α, λσ

2 is the smallest eigenval-

ue of matrix L̃σ except zero, γ is a positive con-

stant, γ̃ = max∀l∈N{ 1
γσ

(1 − e−
1
2γσ(tkl+1

−tkl )}, and

γ∗ = max∀l∈N{e−
1
2γσ(tkl+1

−tkl
)}.

Proof. Choose the Lyapunov function as

V (t,X(t)) =
1

2
XT(t)

(
Π⊗ P (t)

)
X(t), (26)

where P (t) is solved by Eq. (22)–(24). Differentiating
V (t,X(t)) along the trajectory of network (2) gives

V̇ (t) =
1

4N

N∑
i,j=1

XT
ij(t)

(
Ṗ (t)Xij(t) + 2P (t)

(
f(t,xi,X)

− f(t,xj ,X)
))

+YT(t)
(
IN ⊗ P (t)

)
G(t)

− cYT(t)
(
L̂σ ⊗ P (t)Γ

)
Y(t)

≤ − 1

2N

N∑
i,j=1

γσX
T
ij(t)P (t)Xij(t) + bδ||Y(t)||.

As we know, the Laplacian Lσ in each time subinter-
val is constant. Then, in the subinterval [tkl

, tkl+1
), the

derivative of V (t) satisfies

V̇ (t) ≤ −γσV (t) + bδ||Y(t)||. (27)

Recalling Eq. (22) and taking U(t) =
√

V (t), we use

V̇ (t) = 2U(t)U̇(t) to obtain U̇(t) ≤ − 1
2γσU(t) + bδ

2
√
a
.

Moreover, by applying the comparison lemma, we have

U(tkl+1
) ≤ e−

1
2γσ∆tklU(tkl

) +
b√
a
δγ̃, (28)

where ∆tkl
= tkl+1

− tkl
. Note that the common Lya-

punov function V (t) is a continuous function in the in-
terval [tk, tk+1). Then, according to Eq. (28), we deduce
a relation by recursion

U(tk) ≤ e
− 1

2

∫ tk

0
γσdtU(0)

+
bδγ̃(1− e−

1
2γTmin(k+1))(1− γ∗m+1)

√
a(1− e−

1
2γTmin)(1− γ∗)

. (29)

Taking the limit on both sides of Eq. (29) indicates that
all trajectories Y(t) converge to the set M4. 2

Remark 6. The inequality (24) in Theorem 4 implies the
exponential stability of the time-varying systems ∀i, j,

Ẋij =

(∫ 1

0

Jf (t, sxi + (1− s)xj)ds− αIn

)
Xij . (30)

The detailed proof can be easily deduced by construct-
ing the Lyapunov functions Vij(t) =

1
2X

T
ij(t)Q(t)Xij(t)

for each system in Eq. (30). In synchronization anal-
ysis and control issues of complex dynamical net-
works, see [Wang & Chen, 2002], [Li et al., 2004],
[Pham & Slotine, 2007], [Chen et al. 2007], a sufficiently
large α can ensure the existence of P (t). And inequality
(22) is solvable by setting P (t) as a constant matrix for
the trivial case that all nodes are identical in many cou-
pled limit-cycle or chaotic systems [Belykh et al., 2006].
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Fig. 1. The switching topologies.

Remark 7. It is observed that from inequality (25), λ
σ

2 ,
1

∆tk

∫ tk+1

tk
λσ
2dt is the time average of the second smallest

eigenvalues corresponding to the Laplacians of switch-
ing topology, and α is a constant, which is determined
by the dynamics of individual node. As a matter of fac-
t, the inequality (25) indicates the exponential synchro-
nization of the considered switched network (3). A recen-
t result can also be derived from Theorem 4 by setting
the Laplacians to be symmetric [Wang & Wang, 2011] or
asymmetric [Wang & Wang, 2012], which indicates that
synchronization for a linearly coupled network with a
switching topology can be evaluated by the time aver-
age of second smallest eigenvalues corresponding to the
Laplacians of switching topology.

4 A Numerical Simulation

Our simulation model is built on the laboratory de-
vices of coupled pendulums [Fradkov et al., 2005],
where each node is a similar pendulum, and ev-
ery two pendulums are connected by an elastic link.
The dynamic equations of the nodes are described
by ẋi1(t) = xi2(t) + ui1(t), ẋi2(t) = −ri sin(xi1) −
qxi2(t)+ϕi(t)+ ui2(t), where i = 1, . . . , 4, q = 3.15 and
ri = 0.02i are system parameters, [ϕ1, ϕ2, ϕ3, ϕ4]

T =
[0.2 sin t,−0.15 sin t, 0.1 sin t, −0.05 sin t]T are distur-
bance inputs, ui(t) = [ui1(t), ui2(t)]

T are control signals
that are selected as the distributed consensus protocol:
ui(t) = −c

∑4
j=1 Lijσxj(t). The collection of switching

topologies is shown in Fig. 1.

Every second, σ(t) updates its value in the order of
1, 2, 3, r, 1, 2, 3, r, . . ., where r is a random valuable ran-
domly chosen from the set {1, 2, 3}. For T = 4, the tran-
sition matrix Ξσ(kT, (k − 1)T ) corresponding to linear
system (15) must be one of the three matrices written as
Ξi = vT

+e
−cLie−cL3e−cL2e−cL1v+ with i = 1, 2, 3. Ac-

cording to [Xiang & Wei, 2011], µ = 2.7784 by setting
the overall coupling strength c = 4. On the other hand,
one can selectB = [0, 1; 0,−q] and g̃i = [0,−ri sin(xi1)+

ϕi]
T. We then derive νb = 0 and δ̃ = 0.295.

Thus, by Theorem 3, it can be concluded that system (1)
with such a randomly switching topology achieves global
bounded synchronization, and the ultimate bounded re-
gions are M4 = {X ||X−X|| < 0.106}. The simulation
results are shown in Fig. 2, which shows that the glob-
al bounded synchronization of the nonlinear networked

system can be guaranteed.
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Fig. 2. Trajectories of the complex network.

5 Conclusions

Bounded synchronization has been studied for a hetero-
geneous complex network with a general switching topol-
ogy in this paper. By using the Lyapunov function ap-
proach and the differential analysis of convergence, sev-
eral convergence domain estimates are derived for the
local and global bounded synchronization of a heteroge-
neous network. In particular, we have shown that the ul-
timate boundedness of synchronization can be easily e-
valuated by the consensus convergence rate of a switched
linear network associated with the switching topology,
the homogeneous and heterogeneous dynamics of indi-
vidual nodes. Our results are quite simple and power-
ful, without assumption of a symmetric or connective
Laplacian matrix, which can be widely used to investi-
gate various topologies, no matter they are undirected
or directed, weighted or unweighted, time-invariant or
switching. All these results provide an insight into the
analysis and regulation of collective behavior of complex
dynamical systems.
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A The proof of Lemma 1

Proof. Let Ψ(t) be a fundamental solution of sys-

tem (16), then Ψ̇(t) = Jf (t,x)Ψ(t) and d
dtΨ

−1(t) =

−Ψ−1(t)Jf (x). Introducing a time-dependent coordi-

nate transformation W(t) = (IN−1 ⊗ Ψ−1(t))Z̃(t) to
system (15) yields

Ẇ(t) = −c(L̃σ ⊗ In)W(t). (A.1)

According to the matrix theory, there must exist a
permutation matrix A ∈ Rn(N−1)×n(N−1) such that
AT(L̃σ ⊗ In)A = In ⊗ L̃σ. We then introduce a coordi-
nate transformation W(t) = ATW(t) to system (A.1)

7



to obtain

Ẇ(t) = −c(In ⊗ L̃σ)W(t). (A.2)

Obviously, system (A.2) is the combination of n inde-
pendent associated systems (17). Following the previous
arguments, the solution of system (15) can be expressed

by Z̃(t) =
√
N(IN−1⊗Ψ(t))A−T(v⊗w(t)). Correspond-

ingly, we obtain

||Z̃(t)|| ≤
√
N ||Ψ(t)|| · ||w(t)||. (A.3)

The following provides how to estimate the bound of
||w(t)|| and||Ψ(t)||. Denote the convergence rate of sys-
tem (17) as µ, which is defined as

µ = − sup
w(t0) ̸=0

lim
t→∞

1

t
ln

||w(t)||
||w(t0)||

. (A.4)

It is easy to verify from [Adrianova, 1995] that the e-
quation µ ̸= ±∞ holds if and only if, for any ϵ > 0, the
following conditions hold simultaneously

lim
t→∞

e(µ+ϵ)t||w(t)|| = 0, (A.5)

lim
t→∞

e(µ−ϵ)t||w(t)|| = ∞. (A.6)

Apparently, if µ > 0, limt→∞ ||w(t)|| = 0, which fur-
ther implies that limt→∞ ||W(t|| = limt→∞ ||Y(t|| = 0.
Thus, the synchronization will be achieved. And if µ ≤ 0
for any bounded initial statew(0), synchronization can-
not be achieved for system (17). By the definition of
convergence rate µ and Eqs. (A.5)–(A.6), there exists a
positive constant k1, dependent on ϵ1 > 0, such that

||w(t)|| ≤ k1e
(−µ+ϵ1)(t−t0)||w(t0)|| (A.7)

for any positive scalar ϵ1.

And ||Ψ(t)|| can be evaluated by the the largest Lya-
punov exponent νmax of system (16) satisfying

||Ψ(t)|| ≤ k2e
(νmax+ϵ2)(t−t0), (A.8)

where ϵ2 is an arbitrary positive scalar and k2 is a posi-
tive constant, dependent on ϵ2.

Therefore, it follows from Eqs. (A.3)–(A.8) that

||Z̃(t)|| ≤ ke(−µ+νmax+ϵ)(t−t0)||Z̃(t0)||, (A.9)

where ϵ is an arbitrary positive scalar and k is a positive
constant, dependent on ϵ. There is no doubt that one can
select a sufficiently small ϵ such that k ≤ 1. The proof is
thus completed.
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