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RobustGlobalTrajectoryTracking for aClass of

UnderactuatedVehicles ⋆

Pedro Casau a, Ricardo G. Sanfelice b, Rita Cunha a, David Cabecinhas c,a,

Carlos Silvestre c,a

aDepartment of Electrical and Computer Engineering, Laboratory for Robotics and Systems in Engineering and Science
(LARSyS), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

bDepartment of Computer Engineering, University of California, Santa Cruz, CA 95064, USA

cDepartment of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau,
China.

Abstract

In this paper, we tackle the problem of trajectory tracking for a particular class of underactuated vehicles with full torque
actuation and a single force direction (thrust), which is fixed relative to a body attached frame. Additionally, we consider
that thrust reversal is not available. Under some given assumptions, the control law that we propose is able to track a smooth
reference position trajectory while minimizing the angular distance to a desired orientation. This objective is achieved robustly,
with respect to bounded state disturbances, and globally, in the sense that it is achieved regardless of the initial state of the
vehicle. The proposed controller is tested in an experimental setup, using a small scale quadrotor vehicle and a VICON motion
capture system.

Key words: Guidance Navigation and Control of Vehicles, Application of Nonlinear Analysis and Design, Robust Control of
Nonlinear Systems, Hybrid Control Systems

1 Introduction

In recent years, the advent of miniaturized electronics
allowed for the development of small-scale aerial vehicles
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that are able to perform efficiently a number of differ-
ent tasks, such as surveillance, targeting, structure in-
spection, among others (c.f. Herrick (2000), Kinsey et al.
(2006)). In order to take full advantage of the capabili-
ties of these vehicles, several controllers have been pro-
posed that make use of different parametrizations of the
attitude of the system, such as: Euler-angles, quater-
nions, rotation matrix and angle-axis parametrization,
just to name a few. Euler-angles arise when lineariza-
tion is used in the controller design and even though
they are very intuitive in nature and might be used ef-
fectively for local stabilization around a given set-point,
they are not singularity-free, i.e., there exist points in
the attitude space that cannot be represented with a
given set of Euler-angles, so they cannot be used for the
purpose of global stabilization. The rotation matrix pro-
vides a singularity-free injective representation of the
orientation of the vehicle, and it can be used for con-
troller design as suggested by Koditschek (1989). The
unit-quaternions and the angle-axis are representations
of attitude that provide a double cover of the attitude
space, meaning that for every orientation there exist
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two quaternions (or two different angle-axis combina-
tions) that represent that rotation. So, even though they
are singularity-free, they might lead to inconsistent be-
haviour, namely the unwinding phenomenon (c.f. May-
hew et al. (2011a)). In order to avoid such problems,
one is required to select the sign of the unit-quaternion
so that the kinematic equations of motion are satisfied.
In practice, a memory state is required to keep track of
past values, as suggested by Mayhew et al. (2013). For
a more in-depth discussion on attitude representation,
the reader is referred to the work of Shuster (1993).

Every attitude representation has its advantages and
drawbacks and, depending on the particular applica-
tion at hand, some might prove more useful that oth-
ers. In particular, unit-quaternion representations have
been applied to the control of spacecraft by Joshi et al.
(1995), Li et al. (2010), Kristiansen et al. (2009), Wis-
niewski & Kulczycki (2003), unmanned aerial vehicles
by Tayebi & McGilvray (2006) and underwater vehicles
by Fjellstad & Fossen (1994). A good overview of these
different control techniques can be found in the work
by Chaturvedi et al. (2011).

Despite their relative success, the aforementioned pa-
pers provide a control solution for fully actuated vehi-
cles, ruling out very common vehicles such as helicopters
and underwater vehicles. In order to address this issue,
other control solutions have been presented by Goodarzi
et al. (2013), Lee et al. (2011) and Aguiar & Hespanha
(2007). However, such strategies rely on continuous con-
trollers and it has been shown by Bhat & Bernstein
(2000) that global asymptotic stabilization of a given set-
point is not possible by means of continuous feedback. In
order to solve this problem, discontinuous control laws
have been proposed (see e.g. Fjellstad & Fossen (1994))
but these are not robust to small measurement noise, as
shown by Mayhew & Teel (2011a). Recent advances in
hybrid control theory have shown that hybrid systems
satisfying the so-called hybrid basic conditions are in-
herently robust to small measurement noise (c.f. Goebel
et al. (2012)), making hybrid control techniques a suit-
able candidate for the problem at hand. In fact, hybrid
control strategies using both quaternion feedback and
rotation matrix feedback have been proposed by May-
hew et al. (2011a) and Mayhew & Teel (2011b), respec-
tively.

In this paper, we will make use of the hybrid quaternion
feedback strategy that is presented by Mayhew et al.
(2011a), in order to design a controller for a class of un-
deractuated vehicles that have a single force direction,
known as thrust, and full torque actuation. Resorting to
the backstepping of hybrid feedback laws given by May-
hew et al. (2011b), we design a controller that is able to
globally asymptotically stabilize a given smooth refer-
ence position trajectory while minimizing the rotation
angle to a given attitude configuration. The proposed
strategy is, in part, similar to that of Zhao et al. (2013),

however, the controller we propose includes an integral
term that makes it robust to static acceleration pertur-
bations, we use a robust hybrid system in order to extract
the desired unit-quaternion and our solution is evaluated
in an experimental setup using an optical motion cap-
ture system. A preliminary version of this article that
does not consider the additive disturbance and with-
out the experimental results was presented at the 2013
American Control Conference (c.f. Casau et al. (2013)).
Another preliminary version of the present work with a
system model that does not include the attitude dynam-
ics was presented at the 2014 International Conference
on Robotics and Automation (c.f. Casau et al. (2014)).

The remainder of the paper is organized as follows. In
Section 2, we present some of the notation and basic
concepts that are used throughout the paper. In Sec-
tion 3, we rigorously define the problem at hand and
presents some of the assumptions that render the pro-
posed controller a feasible solution to the given prob-
lem. In Section 4, we devise a controller for the position
subsystem, considering the orientation and the thrust
as inputs, while in the sections 5 and 6 we follow the
backstepping procedures in order to devise a controller
in terms of the torque and the thrust. In Section 7, we
present some experimental results. Finally, in Section 8
provides some concluding remarks to this work.

2 Preliminaries

In this paper, we make use of the following notation:
N denotes the set of natural numbers; Rn denotes the
n-dimensional Euclidean space equipped with the inner
product 〈x, y〉 := x⊤y for each x, y ∈ Rn which induces

the norm |x| :=
√
〈x, x〉; Rm×n denotes the set ofm×n

matrices; vec : Rm×n → Rmn is given by vec (A) :=[
e⊤1 A

⊤ . . . e⊤nA
⊤
]⊤

for each A ∈ Rm×n, where ei ∈ Rn

is a vector of zeros except for the i-th entry which is 1;
|v|∞ := maxi∈{1,...,n} vi for each v ∈ Rn; |A|2 denotes

the maximum singular value of a matrix A ∈ Rm×n;
given M > 0, we have that MB := {x ∈ Rn : |x| ≤ M};
given a set valued mapping M : Rm ⇒ Rn, the range of
M is the set rgeM = {y ∈ Rn : ∃x ∈ Rm such that y ∈
M(x)}.

We follow the same notation of Magnus & Neudecker
(1985) to represent the derivatives of differentiable func-
tions. Let F : Rm×n → Rp×q be a differentiable func-
tion, then

DX (F ) :=
∂vec (F )

∂vec (X)⊤
. (1)

We also define the saturation function:

Definition 1 A K-saturation function is a smooth
strictly increasing function σK : R → R that satisfies
the following properties:
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(1) σK (0) = 0,
(2) sσK (s) > 0 for all s 6= 0,
(3) lim

s→±∞
σK (s) = ±K, for some K > 0.

Moreover, for each x ∈ Rn we define

ΣK(x) :=
[
σK (x1) . . . σK (xn)

]⊤
. �

The attitude of a rigid-body can be described by an
element R of SO(3) given by SO(3) := {R ∈ R3×3 :

R⊤R = I3, det(R) = 1}. Flows in SO(3) satisfy Ṙ =
RS (ω) , where ω ∈ R3 denotes the angular velocity and

S (ω) =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 ,

(c.f. (Bullo& Lewis 2005, Section 4.1.5)). Let Sn ⊂ R
n+1

denote the n-dimensional sphere, defined by Sn := {x ∈
Rn+1 : x⊤x = 1}. The attitude of a rigid body may also
be represented by unit quaternions q := [η ǫ⊤]⊤, where
η and ǫ denote the scalar and vector components of q.
The mapping R : S3 → SO(3), given by

R(q) := I3 + 2ηS (ǫ) + 2S (ǫ)
2
, (2)

maps a given unit-quaternion to a rotation matrix
(c.f. (Wertz 1978, Eq. (12-47))). This map is a double
cover of SO(3), since R(q) = R(−q). It is important to
note that for any continuous path R : [0, 1] 7→ SO(3)
and for any q(0) ∈ S3 such that R(q(0)) = R(0), there
exists a unique continuous path q(t) : [0, 1] 7→ S3 such
that R(q(t)) = R(t) for all t ∈ [0, 1] (c.f. Bhat & Bern-
stein (2000)). This is known as the path lifting property
and, in particular, it means that the solution R(t) to

Ṙ = RS (ω) can be uniquely lifted to a path q(t) in S3

that satisfies

q̇ =
1

2

[
−ǫ⊤

ηI3 + S (ǫ)

]
ω :=

1

2
Π(q)ω.

We make use of recent developments on hybrid systems
theory which are described by Goebel et al. (2012). Un-
der this framework, a hybrid system H is defined as

H =

{
ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D
, (3)

where the data (F,C,G,D) is given as follows: the set-
valued map F : Rn ⇒ Rn is the flow map and governs
the continuous dynamics (also known as flows) of the
hybrid system; the set C ⊂ R

n is the flow set and defines
the set of points where the system is allowed to flow;

the set-valued map G : Rn ⇒ Rn is the jump map and
defines the behavior of the system during jumps; the set
D ⊂ Rn is the jump set and defines the set of points
where the system is allowed to jump. A solution x to H
is parametrized by (t, j), where t denotes ordinary time
and j denotes the jump time, and its domain domx ⊂
R≥0 × N is a hybrid time domain: for each (T, J) ∈
domx, domx ∩ ([0, T ]× {0, 1, . . . J}) can be written in

the form ∪J−1
j=0 ([tj , tj+1], j) for some finite sequence of

times 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ , where Ij := [tj , tj+1]
and the tj ’s define the jump times. For a definition of
asymptotic stability for hybrid systems see (Goebel et al.
2012, Definition 7.1).

3 Problem Formulation

In this paper, we consider the problem of designing a
controller for a class of rigid bodies with a single thrust
direction and full torque actuation. This includes, for
example, different types of helicopter vehicles. For con-
troller design purposes, we consider that the dynamics
of such vehicles can be described by the following set of
differential equations:

ṗ = v, (4a)

v̇ = −Re3
T

m
+ ge3 + L(p, v)b, (4b)

Ṙ = RS (ω) , (4c)

ω̇ = −J−1S (ω)Jω + J−1M , (4d)

where p ∈ R
3 denotes the position of the rigid body in

the inertial reference frame, v ∈ R3 represents its linear
velocity, expressed in inertial coordinates, R ∈ SO(3)
represents the orientation of the body fixed frame with
respect to the inertial reference frame, ω ∈ R3 denotes
the angular velocity, expressed in the body attached
frame, g ∈ R denotes the acceleration of gravity, (p, v) 7→
L(p, v) ∈ R3×ℓ is smooth function that represents state
dependent disturbances that scale linearly with an un-
known constant parameter b ∈ Rℓ for some ℓ ∈ N, T ∈ R

is the thrust magnitude, M ∈ R3 is the torque, m ∈ R

denotes the mass of the rigid body and J ∈ R3×3 de-
notes its tensor of inertia. This model is similar to those
that were used by Frazzoli et al. (2000) and Hua et al.
(2009). For more details, the reader is referred to Pad-
field (2007), Betty (1986) and references therein.

Suppose that we are given a function t 7→ (p
(4)
d (t), ω̇d(t)) ∈

MpB ×MωB for some Mp,Mω > 0 and for each t ≥ 0.
Then, the position and attitude reference trajectories,
denoted by pd and Rd, respectively, are obtained by
integration of this function, given a set of suitable ini-
tial conditions. In particular, the attitude trajectory
t 7→ Rd(t) is obtained by integration of the differential

equation Ṙd = RdS (ωd), hence guaranteeing that Rd(t)
belongs to SO(3) for each t ≥ 0.
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This procedure gives rise to a map t 7→ r(t) ∈ R12 ×
SO(3)× R3 defined for each t ≥ 0, where

r(t) := (pd(t), p
(1)
d (t), p

(2)
d (t), p

(3)
d (t), Rd(t), ωd(t)) (5)

collects not only the position and attitude trajectories,
but their derivatives up to a certain order. In the sequel,
we restrict our attention to bounded reference trajecto-
ries and disturbances satisfying the following assump-
tion.

Assumption 1 Given Mp,Mω > 0, a reference trajec-
tory is a solution r to

ṙ ∈ Fd(r) := (p
(1)
d , p

(2)
d , p

(3)
d ,MpB, RdS (ωd) ,MωB),

(6)
such that rge r ∈ Ωr for some compact set Ωr ⊂ R

12 ×
SO(3) × R3, satisfying e⊤3 Rd(t)e3 ≥ 0 for each t ≥ 0.
Moreover, given disturbances (p, v, b) 7→ L(p, v)b for (4),
the following holds

sup
r∈Ωr

∣∣∣p(2)d

∣∣∣ + (
√
3 +

√
ℓ sup
(p,v)∈R6

|L(p, v)|2) |b|∞ < g.

(7)
�

In general, it is not possible for an underactuated vehi-
cle to track an arbitrary reference trajectory (c.f. Levine
& Mllhaupt (2011)). Therefore, given a reference trajec-
tory r satisfying Assumption 1, the controller proposed
in this paper is able to track the attitude trajectory
R0(r,X) obtained by solving the optimization problem

minimize 1
2 trace

(
I3 −RR⊤

d

)

subject to R ∈ X,
. (8)

where X ⊂ SO(3) is such that (pd, R0(r,X)) is a feasi-
ble trajectory for the system (4). Under these consider-
ations we may now state the objective of the controller
proposed in this paper.

Problem 1 Design a hybrid controller

ẋc ∈ Fc(x), x ∈ Cc, (9a)

x+
c ∈ Gc(x), x ∈ Dc, (9b)

with output (T (x),M(x)), where x := (r, p, v, R, ω, xc)
belongs to X := Ωr × R3 × R3 × SO(3) × R3 × Xc, for
some Xc, such that the set

A :=
{
x ∈ X : p = pd, v = p

(1)
d , R = R0(r,X)

}
,

(10)
is globally asymptotically stable for the interconnection
between (4) and the controller (9) and there exists T > 0
such that 0 < T (x) ≤ T for each solution x to the closed-
loop system. �

To solve this problem, we separate it into three simpler
tasks. In Section 4, we design a controller for the posi-
tion subsystem and then, in Sections 5 and 6, we design
a control law for the whole system using backstepping
techniques.

4 Robust Position Tracking by Saturated Feed-
back

In this section, let us consider R ∈ SO(3) as a virtual
input. Then, given a reference trajectory satisfying As-
sumption 1, the position and velocity tracking errors are
given by

p0 := p− pd, v0 := v − p
(1)
d , (11)

respectively. Then, using (4a) and (4b), we find that the
dynamics of the tracking errors are given by

ṗ0 = v0, (12a)

v̇0 = −Re3
T

m
+ ge3 + L(p, v)b− p

(2)
d . (12b)

Since we are considering both R ∈ SO(3) and T ∈ R as
inputs, the term −Re3T/m can be set to an arbitrary
vector µ ∈ R3 using the thrust input

T (µ) := m |µ| , (13)

and the attitude input as the solution to the optimization
problem (8) with

Xµ := {R ∈ SO(3) : Re3 = −µ/ |µ|}, (14)

which is given by

R0(r,Xµ) =

(
I3 + S (γ) +

1

1− e⊤3 R
⊤
d

µ
|µ|

S (γ)
2

)
Rd,

(15)
where

γ := −S (Rde3)
µ

|µ| , (16)

for each µ ∈ R3 (c.f. Frazzoli et al. (2000)). Then, let us
define the feedback law

µ(r, p0, v0, z) :=− ΣK(kpp0 + kvv0)

− L (p, v)ΣK(z)

− ge3 + p
(2)
d ,

(17)

where ΣK : Rℓ → Rℓ is aK-saturation function with the
properties given in Definition 1, kp, kv > 0 and z ∈ Rℓ

is a integral state satisfying

ż := kzL(p, v)
⊤Dv0

(
V 0(p0, v0)

)⊤
,
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for each (r, p0, v0) ∈ Ωr × R3 × R3, where

V 0 :=

3∑

i=1

1

2

[
σK (r̃i) e⊤i v0

]
P

[
σK (r̃i)

e⊤i v0

]
+

∫ ri

0

σK (ξ) dξ,

(18)
with r̃ := kpp0 + kvv0, σK given in Definition 1 and

P :=




kv

kp
β −β

−β kp


 ,

for some β ∈ (0, kv).

Clearly, R0(r,Xµ) is not defined when e⊤3 Rdµ = |µ|.
However, if e⊤3 Rd(t)e3 ≥ 0 for each t ≥ 0 and (7) is
satisfied then this situation does not happen for any so-
lution to the closed-loop system. Additionally, (7) is re-
quired to guarantee that the thrust input satisfies the
lower saturation bound T (µ) > 0 as described in Prob-
lem 1. Notice that the model disturbances L(p, v)b must
be bounded. If the disturbance term does not satisfy this
requirement, then the results presented in this paper do
not hold globally, but rather on a subset of the state
space where (7) is satisfied.

Replacing (17) into (12) using the inputs (T,R) =
(T (µ), R0(r,Xµ)), given by (15) and (13), we obtain the
closed-loop system

ṗ0 = v0,

v̇0 = −ΣK(kpp0 + kvv0) + L (p, v) (b− ΣK(z)),

ż = kzL(p, v)
⊤Dv0

(
V 0(p0, v0)

)⊤
.

(19)

with the important stability properties that are given in
the following lemma.

Lemma 1 Let Assumption 1 hold. Then, for each
kp, kv, kz > 0, there exists K > |b|∞ such that the set

A0 := {(p0, v0, z) ∈ R
3 × R

3 × R
ℓ : p0 = v0 = 0},

(20)
is globally asymptotically stable for the system (19) and
its solutions are bounded. Moreover, there exists T > 0
such that 0 < T (µ(r, p0, v0, z)) < T for each r ∈ Ωr and
for each solution (p0, v0, z) to (12).

PROOF. See Appendix 9.

5 Global Asymptotic Stabilization of the Atti-
tude Kinematics by Hybrid Quaternion Feed-
back

In this section, we develop a controller that solves Prob-
lem 1 when the ω is taken as a virtual input. To do so,

let us define the rotation error as

R1 := RR⊤
0 , (21)

where R0 is given by (15). Since R0(t) ≡ R0(r(t), Xµ(t))
belongs to SO(3) for each t ≥ 0, then its derivative
satisfies

Dt (R0(t)) = vec (R0(t)S (ω0(t)))

= −Γ(R0(t))R0(t)ω0(t),
(22)

for each t ≥ 0, with

Γ(R) := −
[
S (Re1) S (Re2) S (Re3)

]⊤
.

Moreover, solving (22) for ω0, we obtain

ω0 = −1

2
R⊤

0 Γ(R0)
⊤Dt (R0) , (23)

and, from (4c) and (21), we conclude that

Ṙ1 = R1S (R0(ω − ω0)) .

The design of a controller such that R = R0 is glob-
ally asymptotically stable is equivalent to the design of
a controller that stabilizes R1 = I3. Although strategies
for the global stabilization of an attitude reference by
matrix feedback exist (c.f. Mayhew & Teel (2011b)), it is
not clear how they can be extended to the stabilization
of the class of underactuated vehicles presented in this
paper. Instead, we resort to attitude stabilization by hy-
brid quaternion feedback introduced in Mayhew et al.
(2011a).

In this direction, let us point out that there exists a
unique unit-quaternion satisfying R1 = R(q1) and the
kinematic equations

q̇1 =
1

2
Π(q1)R0(ω − ω0). (24)

In order to retrieve the unit-quaternion uniquely, we
make use of the robust path-lifting strategy that was in-
troduced in Mayhew et al. (2013). We discuss the imple-
mentation of this technique at the end of Section 6, but,
for now, we assume that q1 is readily available from the
measurements.

In standard backstepping we would add a feedforward
term to ω in order to cancel out ω0. However, due to the
presence of an unknown constant b ∈ Rℓ in the dynamics
of the plant, we cannot determine ω0. Instead, we use an
estimate ω0,1, given by

ω0,1 := −1

2
R⊤

0 Γ(R0)
⊤ Dt (R0)|b=b1

,

5



which is in all aspects identical to (23) but where we
replace the unknown disturbance b by an estimate b1.

It is possible to verify that the difference between ω0,1

and ω0 is given by

ω0,1 − ω0 = −1

2
R⊤

0 Γ(R0)
⊤Dv0 (R0)L(p, v)̃b1, (25)

where we have used the definition of the estimation error
b̃1 := b1 − b.

Let η1 and ǫ1 denote the scalar and vector components
of q1, respectively, H := {−1, 1},

Q+
δ := {(q, h)× ∈ S

3 ×H : hη ≥ −δ},
Q−

δ := {(q, h)× ∈ S
3 ×H : hη ≤ −δ}, (26)

x1 := (r, p0, v0, q1, z, h, b̃1) belongs to X1 := Ωr × R3 ×
R3 × S3 × Rℓ ×H × Rℓ and

ḃ1 :=
1

2
kb1khL(p, v)

⊤Dv0 (R0)
⊤
Γ(R0)ǫ1, (27)

then define the hybrid system H1 := (C1, F1, D1, G1) as
follows

ẋ1 ∈ F1(x1)

F1(x1) :=




Fd(r)

v0

−R(q1)R0e3
T (µ)
m

+ ge3 − p
(2)
d + L(p, v)b

1
2Π(q1)R0(ω1 − ω0)

kzL(p, v)
⊤Dv0

(
V 0(p0, v0)

)⊤

0

1
2kb1khL(p, v)

⊤Dv0 (R0)
⊤
Γ(R0)ǫ1




x1 ∈ C1 := {x1 ∈ X1 : (q1, h) ∈ Q+
δ } (28a)

x+
1 ∈ G1(x1) := (r, p0, v0, q1, q0, z,−h, b̃1)

x1 ∈ D1 := {x ∈ X1 : (q1, h) ∈ Q−
δ }, (28b)

for some δ ∈ (0, 1), where T (µ) is given by (13) and ω1

is given by

ω1 := ω0,1 +R⊤
0 (−ω⋆

1 − kqhǫ1) , (29)

with

ω⋆
1 :=

2kzkV0

kh
(η1S (µ)− S (µ)S (ǫ1))Dv0 (V0)

⊤
. (30)

and h ∈ H is a logic variable that enables controller
switching and H := {−1, 1} is a discrete set endowed
with the discrete topology, but it can be regarded as a
subset of R with the subspace topology. In particular,

if we consider any function V : Rn ×H → R such that
the map x 7→ V (x, h) is continuous for each h ∈ H , then
V (x, h) is continuous on R×H . This fact is used in the
proof of the following theorem.

Theorem 2 Let Assumptions 1 hold. Then, for each
kp, kv, kV0

, kq, k, kz, kb1 > 0, there exists K > |b|∞ such
that the solutions to the hybrid system (28) are bounded
and the set

A1 :=

{
x1 ∈ X1 : p0 = 0, v0 = 0, q1 =

[
h 0⊤

]⊤}

is globally asymptotically stable.

PROOF. First of all, we prove that the hybrid sys-
tem (28) meets the hybrid basic conditions (as given
in Goebel et al. (2012)): (1) since φ(x1) := hη1 is con-
tinuous, the pre-image of closed sets under φ is also
closed, thus both C1 and D1 are closed; (2) since F1(x1)
given in (28a), is a single valued function and contin-
uous, it is locally bounded, convex and outer semicon-
tinuous; (3) by (Goebel et al. 2012, Lemma 5.10), the
jump map G1(x1) is outer semicontinuous if and only if
D1×G1(D1) is closed. Notice that the jumpmap changes
the logic variable but not the states, therefore G1(D1) is
closed and G1(x1) is locally bounded for each x1 ∈ D1.
Since D1 is closed, we conclude that the jump map is
outer-semicontinuous.

Next, let us prove that every maximal solution to H1

is precompact, i.e. complete and bounded. Consider the
following definition

V1(x1) := kV0
V0(p0, v0, z) + 2k(1− hη1)

+
1

2kb1
b̃⊤1 b̃1.

(31)

From the properties of V0 and knowing that both H and
S3 are compact we have that for any c > 0, V −1

1 (c) is
compact. From Assumption 1 we have that the reference
trajectory r belongs to a compact set Ωr and, since q0
belongs to the compact set S3, then for any initial con-

dition (r, p0, v0, q1, , z, h, b̃1)(0, 0) we have that the set

U1 := {x1 ∈ X1 : V1(x1) ≤ V1(x1(0, 0))}, (32)

is compact. Using (64), (2) and (28a) we have that the
time derivative of V1 is given by

〈
Dx1

(V1)
⊤
, F1(x1)

〉
= −kV0

kzW0(p0, v0)

+ kV0
Dv0 (V0) (−2η1S (ǫ1)− 2S (ǫ1)

2
)µ

+ khǫ⊤1 R0(ω1 − ω0) +
1

kb
b̃⊤ḃ1.

(33)
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Replacing (29), (25) and (27) into (33) yields

〈Dx1
(V1), F1(x1)〉 = −kV0

kzW0(p0, v0)− kkqǫ
⊤
1 ǫ1.

(34)
Defining

uc1(x1) :=

{−kV0
kzW0(p0, v0)− kkqǫ

⊤
1 ǫ1 if x1 ∈ C1

−∞ otherwise
,

(35)
it is straightforward to see that 〈Dx1

(V1), F1(x1)〉 =
uc1(x1) ≤ 0, for all x1 ∈ C1 ∩ U1. If x1 ∈ U1 ∩D1 then

V1(G1(x1)) − V1(x1) = 4khη1, (36)

From (28b), we have than hη1 ≤ −δ thus

V1(G1(x1))− V1(x1) ≤ −4kδ. (37)

Defining

ud1
(x1) =

{−4kδ if x ∈ D1

−∞ otherwise
, (38)

we have that V1(G1(x1)) − V1(x1) = ud1
(x1) < 0 for

all x1 ∈ U1 ∩ D1. These results show that any solu-
tion x1(t, j) to H1 remains in U1 for all (t, j) ∈ domx.
This together with the fact that G1(D1) ⊂ C1 implies
the completeness (from (Goebel et al. 2012, Proposi-
tion 2.10)) and the boundedness of solutions. Addition-
ally, the relation rgex1 ⊂ U1 is also verified and the
growth of V1 along solutions to H1 is bounded by uc1 ,
ud1

on U1. Then, since H1 satisfies the hybrid basic con-
ditions and V1 is continuous, by (Goebel et al. 2012,
Theorem 8.2), the precompact solutions x1(t, j) to H1

approach the largest weakly invariant set Ω(x1) on

V −1
1 (c) ∩U1 ∩

[
u−1
c1 (0) ∪

(
u−1
d1

(0) ∩G(u−1
d1

(0))
)]

, (39)

for some c > 0. Since u−1
d1

(0) = ∅ we have that, in par-

ticular, Ω(x) ⊂ u−1
c1 (0), with

u−1
c1

(0) =

{
x1 ∈ X1 : p0 = v0 = 0, q1 =

[
h 0
]⊤}

= A1.

(40)
Since every solution to H1 is precompact, then the so-
lutions x1(t, j) to H1 converge to A1. We conclude that
A1 is globally attractive for the closed-loop hybrid sys-
tem (28). Since V1 is positive-definite relative to A1 and
non-increasing along solutions to (28), then A1 is glob-
ally stable for the closed-loop hybrid system. Hence, we
conclude that it is globally asymptotically stable. ✷

In the next section, we take advantage of Theorem 2 and
backstepping techniques in order to solve Problem 1.

6 Global Asymptotic Stabilization of the Full
Dynamic System

In this section, we develop a hybrid feedback law that
is obtained from that of the previous section by means
of backstepping. As before, due to the unknown distur-
bance b, the derivative of ω1 has to be estimated us-
ing a second estimator for b, denoted by b2 ∈ R3. Let

ω̃ := ω − ω1, b̃2 := b2 − b and

M = S(ω)Jω + J(ω̇1,2 + u), (41)

where kω > 0, u ∈ R
3 denotes a new virtual input vari-

able and ω̇1,2 := Dt (ω1)|b=b2
denotes the estimate of ω̇1

when using the estimate b2. The difference between ω̇1,2

and ω̇1 is given by

ω̇1,2 − ω̇1 = Dv0 (ω1)L(p, v)̃b2. (42)

Let x2 := (x1, ω̃, b̃2) belong to X2 := X ×R3×R3. Then,
replacing (41) into (4d), we obtain

ω̇ = u+ ω̇1,2, (43)

allowing us to define the hybrid system H2 :=
(C2, F2, D2, G2) as follows:

ẋ2 ∈ F2(x2) :=




F1(x1)

−kωω̃ +Dv0 (ω1)L(p, v)̃b2 − khR⊤
0 ǫ1

−L(p, v)⊤Dv0 (ω1)
⊤
ω̃




x2 ∈ C2 = {x2 ∈ X2 : (q1, h) ∈ Q+
δ }

(44a)

x+
2 ∈ G2(x2) := (G1(x1), ω̃, b̃2)

x ∈ D2 := {x2 ∈ X2 : (q1, h) ∈ Q−
δ }

(44b)

where we have used

u := −kωω̃ − khR⊤
0 ǫ1, (45a)

ḃ2 := −L(p, v)⊤Dv0 (ω1)
⊤ ω̃. (45b)

With these definitions, we are able to state the main
result of this paper.

Theorem 3 Let Assumptions 1 hold. Then, for each
kp, kv, kV0

, kq, k, kz, kb1 , kb2 > 0, there exists K > |b|∞
such that the solutions to the hybrid system (44) are
bounded and the set

A2 := {x2 ∈ X2 : x1 ∈ A1, ω̃ = 0} ,

is globally asymptotically stable.
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PROOF. The proof of this theorem follows very closely
the proof of Theorem 2. Namely, the proof thatH2 meets
the hybrid basic conditions is essentially the same so we
dismiss it here.

Let us define the following Lyapunov function candidate

V2(x2) := kV0
V0(p0, v0, z) + 2k(1− hη1)

+
1

2
ω̃⊤ω̃ +

1

2kb1
b̃⊤1 b̃1 +

1

2kb2
b̃⊤2 b̃2.

(46)

Since V0 is positive-definite relative to {(p0, v0, z) ∈ R3×
R3 × Rℓ : p0 = 0, v0 = 0, z = Σ−1

K (b)} and, by Assump-
tion 1, r ∈ Ωr for some compact set Ωr we conclude that,
for each initial condition x2(0, 0), the set

U2 := {x2 ∈ X2 : V2(x2) ≤ V2(x2(0, 0))}, (47)

is compact. Using (33) and (44a) we have that the time
derivative of V2 is given by

〈
Dx2

(V2)
⊤
, F2(x2)

〉
= −kV0

kzW0(p0, v0)− kkqǫ
⊤
1 ǫ1

− kωω̃
⊤ω̃.

(48)
Defining

uc2(x2) :=

{−kV0
kzW0 − kkqǫ

⊤
1 ǫ1 − kωω̃

⊤ω̃ if x2 ∈ C2

−∞ otherwise
(49)

it is straightforward to see that
〈
Dx2

(V2)
⊤
, F2(x2)

〉
=

uc2(x2) ≤ 0, for all x2 ∈ C2 ∩ U2. From (44b), we have
hη1 ≤ −δ, thus the following holds

V2(G2(x2))− V2(x2) ≤ −4kδ ∀x2 ∈ D2. (50)

Defining

ud2
(x2) =

{−4kδ if x2 ∈ D2

−∞ otherwise
, (51)

we have that V2(G2(x2)) − V (x2) = ud2
(x2) < 0 for all

x2 ∈ U2 ∩ D2. These results show that any give solu-
tion x2(t, j) to H2 remains in U2 for all (t, j) ∈ domx2.
This together with the fact that G2(D2) ⊂ C2 implies
the completeness (from (Goebel et al. 2012, Proposi-
tion 2.10)) and the boundedness of solutions. Addition-
ally, the relation rgex2 ⊂ U2 is also verified and the
growth of V2 along solutions to H2 is bounded by uc2 ,
ud2

on U2. Then, since H2 satisfies the hybrid basic con-
ditions and V2 is continuous, by (Goebel et al. 2012,
Theorem 8.2) or (Sanfelice et al. 2007, Theorem 4.7),
the precompact solutions to x2(t, j) approach the largest
weakly invariant set Ω(x2) on

V −1
2 (r) ∩U2 ∩

[
u−1
c2 (0) ∪

(
u−1
d2

(0) ∩G(u−1
d2

(0))
)]

, (52)

for some r > 0. Since u−1
d2

(0) = ∅ we have that, in par-

ticular, Ω(x2) ⊂ u−1
c2 (0), with

u−1
c2

(0) =

{
x2 ∈ X2 : p0 = v0 = 0, q1 =

[
h 0
]⊤

, ω̃ = 0

}

= A2.
(53)

Since every solution to H2 is precompact, then the so-
lutions x2(t, j) to H2 converge to A2. We conclude that
A2 is globally attractive for the hybrid systemH2. Since
V2 is positive-definite relative to A2 and non-increasing
along solutions to (44), then A2 is globally stable for the
closed-loop hybrid system. Hence, we conclude that A2

is globally asymptotically stable for (44). It follows from
the fact that solutions to the hybrid system remain in

U2 that b̃2 is bounded. ✷

To show that Problem 1 is solved using the proposed
control law, let us define the controller variables xc :=
(z, h, b1, b2, q̂1), where q̂1 ∈ S3 is a memory variable that
is part of the robust path-lifting strategy introduced
in Mayhew et al. (2013). Then, the state variables of the
closed-loop system are x := (r, p, v, R, ω, xc) ∈ X with
X := Ωr×R3×R3×SO(3)×R3×Rℓ×H×Rℓ×Rℓ×S3.
Furthermore, let us define the hybrid controller

Fc(x) :=




kzL(p, v)
⊤Dv0

(
V 0(p0, v0)

)⊤

0

1
2kb1khL(p, v)

⊤Dv0 (R0)
⊤ Γ(R0)ǫ1

−L(p, v)⊤Dv0 (ω1)
⊤ ω̃

0




x ∈ Cc := {x ∈ X : (Φ(q̂1, RR⊤
0 ), h) ∈ Q+

δ ,

dist(q̂1,Q(RR⊤
0 )) ≤ α},

Gc(x) :=

{
(z,−h, b1, b2, q̂1) if x ∈ D1,

(z, h, b1, b2,Φ(q̂1, RR⊤
0 )) if x ∈ D2

x ∈ Dc := D1 ∪D2,

(54)

where 0 < α < 1, Q(R) denotes the set of quaternions
{q,−q} ⊂ S3 satisfying R(q) = R(−q) = R for each
R ∈ SO(3),

D1 := {x ∈ X : (Φ(q̂1, RR⊤
0 ), h) ∈ Q−

δ },
D2 := {x ∈ X : dist(q̂1,Q(RR⊤

0 )) ≥ α},
(55)

dist(p,Q) := inf{p⊤q : q ∈ Q} for each p ∈ S3 and
Q ⊂ S3, and

Φ(q, R) := arg max
p∈Q(R)

q⊤p,
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is such that q1 = Φ(q̂1, RR⊤
0 ). Moreover, the output of

the controller is

T = m |µ| ,
M = S (ω)Jω + J−1(−kωω̃ − khR⊤

0 ǫ1 + ω̇1,2).
(56)

Backtracking the definitions of the variables in (56), it
follows from (Mayhew et al. 2013, Theorem 9) and The-
orem 3 that (10) is globally asymptotically stable for the
interconnection between (4) and (54).

In the next section we present some experimental results
that show the behaviour of the closed-loop system using
the given controller.

7 Experimental Results

In order to experimentally evaluate the performance of
the controller described in Section 6, we make use of the
following components:(1) Blade mQX quadrotor Hori-
zon Hobby Inc. (2012), (2) VICON Bonita motion
capture system VICON (2012), (3) MATLAB/Simulink
software, and (4) custom made RF interface. The Blade
mQX quadrotor weighs 80 g and has a radius of approx-
imately 11 cm. This vehicle accepts the thrust and the
angular velocity as inputs. It is readily available in the
market and allows for easy integration with the other
components of the control architecture. However, the
development of a custom made RF interface board is
required in order to enable the communication between
the MATLAB/Simulink software that is running the
control algorithms and the vehicle itself. In order to
estimate the position and velocity of the quadrotor we
make use of the VICON Bonita motion capture sys-
tem. This is a high performance system that operates
with sub-millimetre precision and up to a frequency of
120 Hz. In these experiments we have used a frequency
of 50 Hz for improved accuracy. The overall control
architecture is depicted in Figure 1.

Fig. 1. Quadrotor control architecture.

We performed the identification of the platform by ap-
plying different constant inputs over several experiments
and applying a linear regression to the experimental re-
sults. The maximum allowed thrust is approximately
1.37 N, the maximum allowed angular velocity input in
the x-axis and the y-axis is 200 deg/s and 300 deg/s in

the z-axis direction. Moreover, changes in the actuation
are not instantaneous but can be modelled by a linear
first order system with a pole at 1.5 Hz. For more details
on the system architecture and identification, the reader
is referred to Cabecinhas et al. (2014). Since the VICON
motion capture system outputs the rotation matrix of
the vehicle we resort to the strategy outlined in May-
hew et al. (2013) so as to obtain consistent quaternion
representations of attitude.

In order to assess that the hybrid controller was working
as intended, we carried out the following experiment

• Set the desired position trajectory to (57);
• Set the initial yaw of the quadrotor to be approxi-
mately 180 degrees away from the desired orienta-
tion;

• Run the experiment for h(0, 0) = 1 and h(0, 0) =
−1.

Let us consider that L(p, v) = I3 and σK(s) =
2K
π

arctan(s). Moreover, we have chosen the controller
parameters kV0

= 0.01, kz = 0.3, kp = 3, kv = 6, k = 3,
K = 1, kω = 40, kb2 = 1 and kb1 = 1. The controller
parameters for the position subsystem were obtained
using LQR synthesis techniques and, even though, the
performance attained by the LQR controller does not
translate to this application due to saturation, it works
fairly well when the tracking error is small. Also, one
must select the attitude controller gains much higher
that the position controller gains to ensure that the
commanded orientation R0 is closely tracked. The ref-
erence trajectory is given by

pd(t) :=




a sin(2πν0t)

a cos(2πν0t)

−h0


 , Rd := I3, (57)

where a = 1 m, f0 = (2π)−1 Hz and h0 = 1 m. This
trajectory satisfies Assumptions 1.

In this experiment, we test specifically the hybrid na-
ture of the proposed controller since, if working as in-
tended, different values of the logic variable produce dif-
ferent outcomes when the quadrotor is near a rotation
error of 180 degrees. From the analysis of Figure 2, it
is possible to verify that this is indeed the case. For the
experiment where h(0, 0) = −1, the initial yaw angle is
approximately 175◦ (or −185◦ if we subtract 360◦) and
it is quickly brought to zero. On the other hand, for the
experiment where h(0, 0) = 1, the initial yaw angle is
174◦ and, even though the initial yaw angles are only 1◦

apart, the quadrotor corrects its yaw angle by rotating
in opposite directions. It may also be verified that this
correction of the yaw angle has nothing but a small effect
on the pitch and the roll angles. By introducing a hys-
teresis gap around rotations of 180◦, where the behavior
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of the vehicle depends on the value of a logic variable,
the hybrid controller reduces the possibility of chatter-
ing due to noise. This feature of the hybrid quaternion-
based feedback is discussed in more detail in Mayhew
et al. (2011a).
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Fig. 2. Euler angles for two experiment runs starting roughly
with the same initial.

In Figure 3, we present a comparison between the refer-
ence and the actual position of the vehicle for the two ex-
periments. We see that there is little mismatch between
the trajectories in both experiments and that the con-
troller is able to converge to the given trajectory within
the first 10 seconds of the experiments. The (component-
wise) position tracking errors do not exceed 10 cm after
the first 10 seconds, which we attribute mostly to de-
lays in the system, since it is possible to see that there
is some lag in the tracking of the given trajectory.

From the analysis of Figures 2 and 3 it can be concluded
that the controller proposed in this paper yields very
good results, despite the very simple model that was
considered in its design.

8 Conclusion

In this paper, we designed a quaternion-based hybrid
controller that globally asymptotically stabilizes a class
of underactuated vehicles to a smooth reference posi-
tion trajectory. In particular, the proposed controller is
robust to bounded state dependent acceleration distur-
bances and small measurement noise. Moreover, the pro-
posed controller also minimizes the angle to a reference
orientation. The proposed controller was tested in an ex-
perimental setup using a optical motion capture system.
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9 Proof of Lemma 1

In what follows, let

u0(p0, v0) := −ΣK(kpp0 + kvv0). (58)

Proposition 4 ((Casau et al. 2013, Proposition 1))
For each K, kp, kv > 0 there exists a positive definite
and symmetric matrix P ∈ R2×2 such that

〈
D(p0,v0)

(
V 0(p0, v0)

)⊤
, [v⊤0 u0(p0, v0)

⊤]⊤
〉
< 0,

for each (p0, v0) ∈ R6\{0} and

〈
D(p0,v0)

(
V 0(p0, v0)

)⊤
, [v⊤0 u0(p0, v0)

⊤]⊤
〉
= 0,

for (p0, v0) = 0.
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Next, we use the following intermediary result to show
that the input T satisfies the given bounds.

Lemma 5 Given a reference trajectory satisfying As-
sumption 1 and disturbances (p, v, b) 7→ L(p, v)b for (12),
if (7) holds for each (p, v) ∈ R3, then there exists K >
|b|∞ such that

0 < |µ(r, p0, v0, z)| ≤ g + (
√
3 +

√
ℓ sup
(p,v)∈R6

|L(p, v)|2)K

+ sup
r∈Ωr

∣∣∣p(2)d

∣∣∣ ,

(59)
for each (p0, v0, z) ∈ R3 × R3 × Rℓ.

PROOF. It follows from (17) and from the reverse tri-
angle inequality that

|µ(r, p0, v0, z)| ≥ g−(
√
3+

√
ℓ |L(p, v)|2)K− sup

r∈Ωr

∣∣∣p(2)d

∣∣∣ .

Then, it follows from (7) that it is possible to selectK >
|b|∞ such that |µ(r, p0, v0, z)| > 0 for each (p0, v0, z) ∈
R3×R3×Rℓ. It follows from the triangle inequality that
(59) holds. ✷

Consider the following continuous function

V0(p0, v0, z) = kzV 0(p0, v0)

+

ℓ∑

i=1

(∫ |zi|

0

σK (ξ) dξ +

∫ |bi|

0

σ−1
K (ξ) dξ

)

− b⊤z.
(60)

From an application of Young’s inequality it follows that

bizi ≤ |bi||zi| ≤
∫ |zi|

0

σK (ξ) dξ +

∫ |bi|

0

σ−1
K (ξ) dξ, (61)

it is possible to conclude that (60) is positive definite
relative to the compact set {(p0, v0, z) ∈ R3 ×R3 ×Rℓ :
p0 = v0 = 0, z = Σ−1

K (b)}. To prove that V0 is radially
unbounded, let us consider the following limit

lim
|zi|→+∞

∫ |zi|

0

σK (ξ) dξ − b|zi|, (62)

where b > 0 and i ∈ {1, 2, 3}. Suppose that the limit
in (62) is finite, then

lim
|zi|→+∞

∫ |zi|

0

σK (ξ) dξ − b|zi| =

= lim
|zi|→+∞

|zi|
∫ |zi|

0
σK (ξ) dξ − b|zi|2

|zi|

= lim
|zi|→+∞

∫ |zi|

0

σK (ξ) dξ − b|zi|

+ lim
|zi|→+∞

|zi|(σK (|zi|)− b).

(63)

However, using the properties of the K-saturation func-
tion, sinceK > |b|∞ we have that lim

|zi|→+∞
|zi|(σK (|zi|)−

b) does not converge, thus the limit in (62) cannot con-
verge. By (61) we have that

lim
|zi|→+∞

∫ |zi|

0

σK (ξ) dξ − b|zi| = +∞. �

Since V 0 is also radially unbounded, then V0 is radially
unbounded.

Let

F =




v0

−ΣK(kpp0 + kvv0) + L (p, v) (b− ΣK(z))

kzL(p, v)
⊤D(p0,v0)

(
V 0(p0, v0)

)⊤


 ,

such that (ṗ0, v̇0, ż) = F (r, p0, v0, z), then the time
derivative of (60) is given by

〈
D(p0,v0) (V0(p0, v0))

⊤
, F
〉
= −kzW0(p0, v0), (64)

thus (64) is negative definite relative to p0 = v0 = 0.
Since (60) is radially unbounded, for any initial condition
(p0, v0, z)(0) then the sub-level set

Ω0 := {(p0, v0, z) ∈ Ωr × R
3 × R

3 × R
ℓ :

V0(p0, v0, z) ≤ V0((p0, v0, z)(0))}
(65)

is compact. It follows from (Khalil 2002, Theorem 4.8)
that the set {(p0, v0, z) ∈ R3×R3×Rℓ : p0 = v0 = 0, z =
Σ−1

K (b)} is globally stable for the system (12), and it fol-
lows from (Khalil 2002, Theorem 8.4) that V0(p0, v0, z)
converges to 0, therefore each solution converges to

Ω0 ∩ {(p0, v0, z) ∈ Ωr × R
3 × R

3 × R
ℓ : p0 = v0 = 0},

(66)
which is a subset of A0.
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