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On the Complexity of the Constrained I nput Selection Problem

for Structural Linear Systems
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Abstract

This paper studies the problem of, given the structure ofnaali-time invariant system and a
set of possible inputs, finding the smallest subset of inmdtors that ensures system’s structural
controllability. We refer to this problem as timinimum constrained input selecti¢minCIS) problem,
since the selection has to be performed on an initial givéros@ossible inputs. We prove that the
minCIS problem is NP-hard, which addresses a recent opestigonef whether there exist polynomial
algorithms (in the size of the system plant matrices) thatesthe minCIS problem. To this end, we
show that the associated decision problem, to be referrad the CIS, of determining whether a subset
(of a given collection of inputs) with a prescribed cardityaéxists that ensures structural controllability,
is NP-complete. Further, we explore in detail practicathportant subclasses of the minCIS obtained
by introducing more specific assumptions either on the sysignamics or the input set instances
for which systematic solution methods are provided by aoieting explicit reductions to well known
computational problems. The analytical findings are ifatstd through examples in multi-agent leader-

follower type control problems.

. INTRODUCTION

Research on large-scale control systems has grown coablgeover the last few years,
triggered by technological advances in sensing and aotuatirastructures and relatively low
cost of deployment. Such pervasive sensing and actuateEsept tremendous opportunities for
enhanced system control, although, at the cost of handhdgoaocessing enormous amounts of
sensor data for system state inference and subsequentigimating generated control signals
among the actuators distributed throughout the systems,Tihis of importance to understand
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which subsets of sensors and actuators (hencesitialestamount of data that need to be
processed and coordination required) are crucial for &oigedesirable system monitoring
(observability) and control (controllability) performeg These and related questions form the
core of the input/output selection problems [5],1[13],][14]large-scale control systems. In this
paper, we focus on the problem of, given a possibly largeestagar-time invariant system
and a set of possible inputs, finding the smallest subsetpmftimectors that ensures system’s
controllability. Notice that, by duality between contedility and observability for linear-time
invariant systems, another problem can be posed in termstefrdining the minimal number of
outputs that ensure observability, whose solution is giitforward from knowing how to solve
the related controllability problem.

Now, consider the system
x(t) = Az(t) + Bu(t) Q)

wherez € R" is the statey € R? andy € R™ denote the input and output vectors, respectively.
Additionally, let A € {0,x}"*" denote the zero/nonzero or structural pattern of the systatrix

A, whereasB € {0,«}™*? is the structural pattern of the input matriX; more precisely, an
entry in these matrices is zero if the corresponding entryhan system matrices is equal to
zero, and a free parameter (denoted by a star) otherwiséceNttat the structural matrices
defined above determine the coupling between the system\atdtibles, and the state variables
actuated by the inputs deployed in the system. The strdatuaérices are the object of study
in structural systems theorf#], where the pair A, B) is said to bestructurally controllableif
there exists a numerical realizati¢A, B) in (1) with the same structure, i.e., having zeros in the
specified locations, a4, B) that is controllable. In fact, a stronger characterizatioids, and

it can be shown that the set of non-controllable numericalizations(A, B) of a structurally
controllable pairn A, B) has zero Lebesgue measure in the product space x R"*?; in other
words, almost all numerical realizations of a structurally controllablerpaie controllable[]4].
Hereafter, we restrict attention to structural system téo properties. More specifically, given
the structural matrix and possible input configurations,rtiinimum constrained input selection
(minCIS) problem consists of identifying the smallest ®ibsf inputs that ensure structural

controllability and may be formally posed as follows
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P, Given A € {0,%}™™ and B € {0,x}"*?, determine

*=ar min 2
J g i |J| (2)

s.t. (A, By) is structurally controllable,

where 7 is a subset of indices associated with the inputs Brpdcorresponds to the subset
of columns inB with index in 7. o

Remark 1:The results that we obtain for the minCIS problgh readily extend to the
corresponding output selection problem by the duality leetwobservability and controllability
in linear systems, and, hence, in what follows, we focus enntinCIS only. In addition, note
that the current setup considers continuous time systeavggver, all our results apply to the
discrete time setting as well due to similar controllapilititeria. o

ProblemP; has been previously explored by several authors,[sSee [1}efedences therein.
In fact, [1] provided the motivation for the present paparwihich the following question was
posed: Is there a polynomial solution t®;?

In this paper, we address the above question in general rigzgna

In what follows, we use some concepts of computational cerigyl theory [2], that ad-
dresses the classification of (computational) problems aamplexity classes. Formally, this
classification is fordecision problemsi.e., problems with an “yes” or “no” answer. Further,
for a decision problem, if there exists a procedure/alparitthat obtains the correct answer
in a number of steps that is bounded by a polynomial in the eizéhe input data to the
problem, then the algorithm is referred to asedficientor polynomialsolution to the decision
problem and the decision problem is said to be polynomiatiiyable or belong to the class
of polynomially solvable problems. A decision problem igdséo be in NP (i.e., the class
of nondeterministic polynomially problems) if, given anggsible solution instance, it can be
verified using a polynomial procedure whether the instameestitutes a solution to the problem
or not. It is easy to see that any problem that is polynomiallglso in NP, although, there are
some problems in NP for which it is unclear whether polyndra@utions exist or not. These
latter problems are referred to as being NP-complete. Guesely, the class of NP-complete
problems are thbardestamong the NP problems, i.e., those that are verifiable usshgpmial

algorithms, but no polynomial algorithms are known to existt solve them. Whereas the above
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classification is intended for decision problems, it canrbenediately extended to optimization
problems, by noticing that every optimization problem canposed as a decision problem.
More precisely, given a minimization problem, we can poseftilowing decision problem: Is
there a solution to the minimization problem that is lesstba equal to a prescribed value?
On the other hand, if the solution to the optimization prables obtained, then any decision
version can be easily addressed. Consequently, if a (degiproblem is NP-complete, then the
associated optimization problem is referred to as beinghbifé- We refer the reader tol [6] for
an introduction to the topic, and Sectioh Il for further dission.

In fact, one of the main results of the present paper conisisBowing the NP-completeness
of the decision version of the minCIS problem, which we reéeasconstrained input selection
(CIS) problem, and given as follows.

Pi Is there a collection of indiceg C {1,...,p} with at mostk elements (i.e.|J| < k)
such that(A, B ) is structurally controllable?

The NP-completeness of CIS is attained by polynomially catly theset covering problem
to it. Hence, in particular, polynomial complexity algdwihs that solve general instances of the
CIS and minCIS are unlikely to exist. Nevertheless, therelccde subclasses of the minCIS
that admit polynomial complexity algorithmic solutions, ia the case with a practically relevant
subclass of minCIS problems identified in this paper; moezigely, when the input matri%
is restricted to be structurally similar to thex n identity matth (but A is arbitrary).

In addition, since the CIS is NP-complete, the minCIS may bgrmpmially reduced to
other (more standard) NP-hard problems, through polynloraductions between their decision
versions. Practically, such reduction may lead to effic{potynomial complexity) approximation
schemes for solving the minCIS with guaranteed suboptiynatiunds. While we do not provide
such reductions from general minCIS instances to other &#B-problems, for a certain restricted
subclass of minCIS problems (with some additional condgion the dynamic matrix structure)
we explicitly construct a reduction to the minimum set cavgmproblem. This reduction builds
upon the complexity remarks elaborated [in [1], yet it holdsd larger class of instances, and

only relies on a condition on the structure of the dynamiestifermore, this restricted class is

A structural input matrixB that is structurally similar to the: x n identity matrix is referred to as dedicated input
configuration in that, each input can actuate or is connected to at mosgéesstate variable. Such dedicated input configurations
are common in several large-scale multi-agent networkedralosystems such as the power system, see [7], for example.
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practically relevant and, as shown later, subsumes impioagaplications in multi-agent control
such as leader-follower problemnis [8]] [9]; as a demonsnative show how our reduction can
be used to solve the leader-selection problem and a moreaearaiant of it, which we refer

to as the constrained leader-selection problem.

The main results of the paper are threefold: (i) we show tH& i€ NP-complete, which
implies that the minCIS is NP-hard; (ii) we identify a sulsdaof minCIS problems that are
polynomially solvable; more precisely, under the assuompthat the input matrix is structurally
similar to the identity matrix; and (iii) we provide a polymial reduction of the minCIS problem
to a minimum set covering problem under a mild assumptionhenstructure of the dynamic
matrix (given in Assumption 1), that hold for several intamoected dynamical systems, as well
as leader-selection problems like those introduced iniGedt

The rest of this paper is organized as follows: Section 2othices some preliminaries
on computational complexity theory, associated compjegidasses and polynomial reductions
between problems. Additionally, we review some concepts @sults in structural systems
theory to be used in the sequel. Section 3 presents the thatithe CIS is NP-complete, and,
subsequently, minCIS is NP-hard. In Section 4, a polynongduction from the minCIS to the
minimum set covering problem is provided, under certairuaggions on the minCIS instances.

Finally, an illustrative example is described in Section 5.

[I. PRELIMINARIES AND TERMINOLOGY

In this section, we review theinimum set covering problerand its decision version, referred
to as theset covering problenfd]. In addition, some necessary and sufficient conditidret t
ensure system’s structural controllability, required twain the results presented in the paper,
are introduced in Section 2.1.

A (computational) problem is said to beducible in polynomial timéo another if there exists
a procedure to transform the former to the latter using arpotyial number of operations on the
size of its inputs. Such reduction is useful in determining ¢ualitative complexity class![6] a
particular problem belongs to. The following result may lsedito check for NP-completeness
of a given problem.

Lemma 1 ([6]): If a problem P, is NP-complete,P5 is in NP andP, is reducible in

polynomial time toPg, thenPp is NP-complete. o
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whereS; C U, is there a collection of at modt sets that covers/, i.e., ;. S; = U, where
Kc{l,...,p} and|K| < k?

This is the decision problem associated with thi@imum set covering problera well known
NP-hard problem, given as follows.

Definition 1 ([3]): (Minimum Set Covering Problem) Given a setofelements/ = {1,2,...,m}

and a set ofr setsS = {S1,...,S,} such thatS; c U, with i € {1,--- ,n}, andUSi =U,

=1
the minimum set covering problem consists of finding a setnofices Z* C {1,2,...,n}
corresponding to the minimum number of sets covelifid.e.,

7* = argmin  |Z|
TC{1,2,...,n}

€L
<

In particular, the set covering problem is used in the priggaper to show the NP-completeness
of P¢, by considering the following result.

Proposition 1 ([6]): Let P4 and Pz be two optimization problems, an@¢ the decision
versions associated witRg. If a problem?P, is NP-hard, an instance ¢% can be efficiently
verified andP, is polynomially reducible tdPy, thenP{ is NP-complete. In particula® is
NP-hard. o

A. Structural Systems

Structural systems provide an efficient representation dhear-time invariant system as
a directed graph (digraph). A digraph consists of a setvertices) and a set ofdirected
edgeséy y of the form (v;,v;) wherev;,v; € V. If a vertexv belongs to the endpoints of
an edgee € &)y, we say that the edge is incident tov. We represent thestate digraph
by D(A) = (X,Exx), i.e., the digraph that comprises only the state variableseatices
denoted byX = {xi,---,x,} and a set of directed edges between the state vertices de-
noted byEx » = {(z;,x;) € X x X : A;; # 0}. Similarly, we represent thgystem digraplby

D(A,B) = (XUU,Ex x Uy x), Wherel = {uy,--- ,u,} corresponds to the input vertices and
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Eux = {(u,z;) €U X X : B;; #0} the edges identifying which state variables are actuated
by which inputs. Further, we say that an inputis assigned to a state variahte if B; ; # 0.

A directed pathbetween the vertices; andvy is a sequence of edgdsév;, vs), (vo, v3), .. .,
(vk—1,vg)}. If all the vertices in a directed path are different, thee thath is said to be an
elementary pathA cycleis a directed path such that = v, and all remaining vertices in the
direct path are distinct.

We also require the following graph theoretic notions [3]digraphD is strongly connected
if there exists a directed path between any two verticestrangly connected compongi8CC)
is a maximal subgrap®s = (Vs, Es) of D such that for every,, v € Vg there exist paths from
u to v and fromv to w.

By visualizing each SCC as a virtual node, we can buildirected acyclic graphDAG)
representation, in which a directed edge exists betweeitesrbelonging to two SCCi§ and
only if there exists a directed edge connecting the correspondd@s $n the original digraph
D = (V, ). The construction of the DAG associated witl{A) can be performed efficiently in
O(|V|+]€|) [3]. In Figure[1, we present a digraph and its DAG repres@ntaby convention, the
arrows connecting the different SCCs are facing downwasttéch motivates the classification
of the SCCs in the DAG as follows.

Definition 2 ([10], [11]): An SCC is said to be linked if it has at least one incoming/oirtg
edge from another SCC. In particular, an SCQias-top linkedif it has no incoming edges to

its vertices from the vertices of another SCC. o

_/\/1 ./\/2
Ny

N3

Ns

a) b)

Fig. 1.  In a) the SCCs are depicted by dashed boxes, labejlet;(i = 1,...,6), and the non-top linked SCC%¥; and
N> are depicted in red. In b), these SCCs correspond to verticesand N2) in the DAG representation.

GivenD = (V, &), we can construct a@ipartite graphB3(S;, s, s, s,), whereS;, S, C V
and the edge sefs, s, = {(s1,52) € € : s1 € S1,s2 € S }. Such bipartite graphs will
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be used throughout in connection with the minCIS and we piegome elementary concepts
associated with bipartite graphs. GivB(S;, S», £s, s,), @ matching)/ corresponds to a subset
of edges infs, s, that do not share vertices, i.e., given edges (s;, s2) ande’ = (s, s5) with
s1,8) € 8 andsg, s, € So, e, € M only if s; # s and sy # s,. A maximum matching\/*

is a matching)M with the largest number of edges among all possible matshiNgte that,
in general, a maximum matching may not be unique. A maximurtcimag can be computed
efficiently in O(/|S; U S,||€s,.s,]) using, for instance, the Hopcroft-Karp algorithi [3].

Given a matchingV/, an edge is said to be matched with respect to (wi4,)if it belongs
to M. In addition, we say that a vertex € V; UV, is matchedif it is incident to some matched
edge inM, otherwise we say that the vertex fige w.r.t. M. Incident and free vertices can
be further characterized as follows: a vertexdp is a right-matched vertexf it is incident
to an edge inM*, otherwise, it is arright-unmatched vertexA maximum matching in which
there are no free vertices (or equivalently, either lgftitiunmatched vertices) is calleparfect
matching

Given a state digrap®(A) = (X, Ex x), @ particular bipartite graph of interest is its bipartite
representation denoted B$A) = B(X, X, Ex x), and we refer to it as thetate bipartite graph
The state bipartite graph may be used to characterize alifjesstructurally controllable pairs
(A, B), see[[10]. In particular, in the sequel, we will use the failog result.

Proposition 2 ([10], [11]): GivenD(A) = (X, Ex.x) and its DAG representation, constituted
by k SCCs, denoted by\;}r_,, whereN; = (X, Ex, x,), let N;,, ... N, be the non-top linked
SCCs in the DAG representation with,...,i,,} C {1,...,k} and B(A) the state bipartite
graph. If B(A) has a perfect matching, thén, B) is structurally controllable if and only if for
each non-top linked SCC there exists an input (correspgnttira column in3) assigned to,

i.e., connected to, at least one of its state variables. O

[1l. M AIN RESULTS

In this section, we show that the minCIS presente®ins NP-hard (Corollar{]1), by showing
that its decision version, the CIS, is an NP-complete prob{€heorenil). Then, we identify a
subclass of minCIS problems that are polynomially solvdbleeorem 2).

We start by showing that CIS is NP-complete, as provided enftitiowing result.

Theorem 1:The constrained input selection (CIS) problem presenteBiis NP-complete.
&
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Proof: The proof follows by using Propositidd 1; more precisely, gngsenting the poly-
nomial reduction from the minimum set covering problem t:m@iS, and noticing thaP¢ is
in NP, i.e., there exist polynomial algorithms to verify(ifl, B(7)), for someJ C {1,...,p},
is structurally controllable [1].
To obtain the polynomial reduction, consider a general mium set covering problem instance
with sets{S,}icz, the index setZ = {1,...,p} and universed = U S;, where |U| = n.
Subsequently, construet € {0, «}"*" to be a diagonal matrix with ;fgnzero entries, i€.jn

its diagonal. Additionally, selecB € {0,x}"*?, such that itg7, j')-th entry is given as follows:

_ *, If i €Sy
0, otherwise,
fori e {1,...,n} andy’ € {1,...,p}.

Note that suctD(A) = (X, Ex.x), consists of: non-top linked SCCs and the associated state
bipartite graphB(A) has a perfect matching. Now, recall that, by Proposilibr{2,5(7)),
for someJ C {1,...,n}, is structurally controllable if and only if each non-topkied SCC
of D(A) contains a state variable that is connected from an inputggponding to a nonzero
column in B(7)).

Subsequently, we first show that a feasible solution to th&Qi8 leads to a feasible solution
of the minimum set covering problem, and secondly, a (mifjirsalution to the minCIS leads
to a (minimal) solution of the minimum set covering problefo. show feasibility, letB(.7),
for some 7, be a feasible solution to the minCIS, i.e4, B(7)) is structurally controllable. It
then follows that there exists edges from the inputs astatwith indices in7 to all the state
variables (corresponding to the non-top linked SCCP{nl)), which implies by the construction
of B that the family of subset§S;} ;< coverl.

To obtain minimality, suppose, on the contrary, tiiat constitutes a (minimal) solution to
the minCIS, but the family{S;};c - is not a minimum covering of{. Then, there existy’ C
{1,...,p} with |J'| < |J*| such that the family{S,},c coversy{. This, in turn, by the
construction of3 and Propositiofil2 implies that the p4id, 5(7’)) is structurally controllable.
Since|J'| < |J*|, we conclude thaf3(7*) is not a (minimal) solution to the minCIS, which
is a contradiction. [ |

From Theoreni]1, we obtain one of the main results of this paper
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Corollary 1: The minimum constrained input selection (minCIS) problenNP-hard. ¢

The fact that the minCIS is NP-hard, however, does not rutdraipossibility that there exist
subclasses of the minCIS (with restricted input instan¢ka) admit polynomial complexity
algorithmic solutions (in the size of the system plant ncas). In fact, a particularly interesting
subclass of the minCIS is one in which the collection of ispunitially given consist of all
possiblededicated inputsi.e., the matrix3 consists ofn inputs each of which is assigned to a
single distinct state variable. Formally, we have the fwifgy result.

Theorem 2:Let A € {0,%}"*" be a given structural dynamic matrix adtl= 1, a n x n

diagonal input matrix with nonzero diagonal entries. Thebem of determining7* such that

S R o

s.t. (A,1,(7)) is structurally controllable,

where I,(7) corresponds to the columns af with indices in.7, referred to as theninimum
dedicated input selectioproblem, can be solved polynomially. More precisely(n?). o
Proof: See Appendix. [ |
In Theoreni 2, upon a restriction iR, we obtained a subclass of minCIS problems that can
be solved polynomially. Next, we impose some restrictionglj and we show that the problem

can be systematically solved by resorting to a minimum seeicog problem.

V. PARTIAL POLYNOMIAL REDUCTION OF THE MINCIS TO THE MINIMUM SET COVERING

PROBLEM

In Section 3 we have showed tHBf is an NP-complete problem without explicitly deriving
a polynomial reduction fronP{ to an NP-complete problem, or equivalently, without exgiic
deriving a polynomial reduction from minCIS to another (gtard or known) NP-hard problem.
In this section, we provide partial polynomial reduction from the minCIS to the minimum set
covering problem (see Theorém 3 below). By partial redumctie mean that it is only valid if the
state digraph satisfies certain additional propertiesetmbde precise in Assumption 1. Notably,
the set of state digraphs satisfying Assumption 1 for whiehgroposed reduction holds, include

dynamical systems commonly encountered in multi-agenwveréed control applications (see
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Section 4.1 for details). Further, in Section 4.2 we show tiesvpolynomial reduction obtained
in Section 4.1 can be used to solve leader-selection prablermulti-agent networks.
Throughout this section, we assume that the system dynawidoes, i.e., thed matrices in
the minCIS, satisfy the following condition.
Assumption 1 The structural dynamic matri¥d is such that the state bipartite grapfid) =
B(X,X,Ex x) associated withd, has a perfect matching. In other words, the set of right-
unmatched vertices associated with any maximum matching df) is empty. o
Remark 2 ([10], [11]): In fact, Assumption 1 can be interpreted in terms of the stajeaph
as follows: the state bipartite gragh{ A) has a perfect matching if and only#(A) is spanned
by a disjoint union of cycles, or, alternatively, it correspls to a structural matrix such that
almost allof its numerical instances are full rank. o
We now provide a polynomial reduction from the minCIS to theimum set covering problem
under Assumption 1.
Theorem 3:Consider the minCIS problem with system matrix instante {0, x}"*" and
input matrix B € {0,x}"*?, where A satisfies Assumption 1. Denote By, i = 1,..., k, the

k non-top linked SCCs of D(A). The minCIS problem can then be polynomially reduced to
S;j={iceU: B,;=x, v, € N'}. o

Proof: The proof requires two steps: 1) to show that the stated teatuto the set covering
problem can be achieved by performing a polynomial numbespefrations with respect to the
size of A and B; and 2) to prove the correctness of the reduction, i.e., twsthat, under
Assumption 1, the solution to the minCIS can be readily deteed from the minimal solution
of the set covering problem.

The proposed reduction is polynomial since the non-topelihBCCs ofD(A) can be deter-
mined polynomially, for instance, by computing the DAG asated withD(A) (see Section 2.1).
Subsequently, the sets; and the universé{, constituting the minimum set covering problem,
can be constructed with linear complexity in the number afesvariables irD(A).

To show correctness, suppose, on the contrary, we ffave {1,...,p} such that{S,}c 7
is a (minimal) solution to the minimum set covering problesend B(7*) is not a (minimal)
solution to the minCIS. Hence, there exisis C {1,...,p}, with |7~| < |J*|, such that

B(J™) is a solution to minCIS. Now note that since satisfies Assumption 1, the bipartite

June 9, 2018 DRAFT



12

graphB(A) consists of a perfect matching, and hence, by Propositidor Zach non-top linked
SCCN of D(A), there exists an input corresponding to an index7in that is assigned to a
state variable inV".

Thus, by construction of the minimum set covering problehg family {S;},c7- covers
U=1{1,...,k}. Since|J~| < |J*|, it follows that the family{S;},c7~ is not a minimal set
covering ofi/, a contradiction. [ |

In the next section, we introduce a class of multi-agent ndted control problems, referred
to as leader-selection problems. Further, we explain h@wdéduction obtained in Theorelmh 3

can be used to solve these leader-selection problems.

V. ILLUSTRATIVE EXAMPLE

To illustrate the results established in Section 4, we duoe two (structural) variants of
leader-selection problems stated[in/[12], namely, (i) thecsural (unconstrained) leader-selection,
and (i) the structural constrained leader-selection, rasgnted next i€, and £, respectively.
We will also show that although the proposed method to sobik problems requires the solution
of a set covering problem, problesy is considerably easier to solve th&a; more precisely,
although the set covering problem is in general dificult ttvesothe class of problems if,
and the associated instances of the minimum set coveringgms can be solved by resorting
to polynomial algorithms.

The structural (unconstrained) leader-selectipnoblem can be posed as follows: Consider a
multi-agent network consisting df agents, where each agertias the ability to transmit scalar
data to its neighbors and perform updates given by a lineabamation of the states it receives
as well its own. LetiV € {0,«}"*V denote the sparsity induced by such linear combination
rules, andty = diag(x,...,*) € {0,x}"*" a structural pattern of a diagonal matrix without
zeros on it; further, we assume thHat has nonzero diagonal entries. In addition, let each agent
be equipped with an input that only actuates directly its atate, i.e., aledicated inputwhich
can be represented by letting the input matrix tolke The structural (unconstrained) leader-
selection problem aims to determining the minimum coltatdf agents that are required to use

their inputs to ensure structural controllability. Forigalve have the following problem:
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L, DetermineJ* where
J* = arg ij{l,lf.l,N} |7 (4)

s.t. (W, y(J)) is structurally controllable.

Alternatively, in thestructural (constrained) leader-selectignoblem, we can consider similar
dynamics structuréV’ € {0, «}V*" (assumed with non-zero diagonal entries), but instead of
considering that each agent is equipped with a dedicatedt,inge assume that they receive
input signals from external entities. These entities, canuhderstood as leaders labelled as
£ ={1,---,L}, corresponding to the set df potential leaders whose goal is to control the
collection of N followers, in this case the agents. Furthermore, denoté# iy RV*E € {0, x}
the structure of the input matrix representing the actmaggercised by the potential leader
agents, i.e., the entrg;, indicates how leadet € £ actuates the followef € {1,---, N}.
Finally, given a subsel’ C £, B(J) denotes the collection of columns i corresponding to
indices in7. The structural (constrained) leader-selection problem e posed as follows:

L, DetermineJ* where

J* = argmin 7 (5)

s.t. (W', B(J)) is structurally controllable.

We now show thatl,, £, can be solved using set covering problems by employing the
reduction developed in Theordm 3.
Proposition 3: The structural dynamics matricd$’, W' € {0,x}V*" associated with the
leader-selection problems;, £, satisfy Assumption 1. o
Proof: Let A € {0,x}*" denote the structural matri¥’ or W’ (depending on which
problem we consider). The proof follows by noticing tf2tA) consists of self-loops on all the
state vertices, corresponding to the nonzero diagonaiesnitt A. Consequently, the matching

M* ={(z;,z;), i =1,...,n} is a maximum matching associated with the state bipartapiyr

B(A), which is a perfect matching. In other words, the set of Figitnatched vertices df(A)
is empty, and hence Assumption 1 holds. [ |

Because Assumption 1 holds for the problefsand £,, by invoking Theoreni]3, it follows
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that we can solve the structural leader-selection problesimgy a minimum set covering problem.

Corollary 2: The problemsZ;, £, can be polynomially reduced to minimum set covering
problems as given in Theorem 3. o

Now, consider the system state digraphs depicted in Figuiéh@ agent states are depicted
by black vertices (labeled as, i = 1,...,9), and the inter-agent dynamical coupling by the
black directed edges. Furthermore, consider potentialtinprtices depicted by blue vertices
(labeled asu;, i = 1,...,4), where we have the following two cases: in Figlte 2 a) we pose
the structural unconstrained leader-selection probleheraas, in Figurél2 b) , we consider a
structural constrained leader-selection problem, in wilhe blue directed edges (from the inputs
to the agents’ states) represent which leaders can actumatd agents.

Hereafter, we illustrate how, both the structural leaggection problems can be solved using
the polynomial reduction developed in Theorem 3 (see alsol@oy 3).

Structural (Unconstrained) Leader Selection Problenhite goal is to solve the leader-selection
problem£; as formulated in[{4) with the structure of the dynamics maitrduced by the state
digraph represented by the black vertices and edges astepic Figure[R2 a). To this end,
note that, by Proposition 1 and Corollary B; can be reduced to a set covering problem
(see Theorem]3). From Theordm 3, to set up the set coverirgeong we obtainS; = () for
l€{1,...,9} since none of the (potential) inputs, ..., uo, i.e. the dedicated inputs assigned
to agents 1 to 9 respectively, are assigned to variables mtomw linked SCCs. In addition,
S0 = {1}, Su1 = {2}, S12 = {3}, Si13 = {4} , where each set comprises the index of the
non-top linked SCC it belongs to, and subsequently the usié = {1,2,3,4}. It is readily
seen that the solution to the set covering problem is uniquk@mprises the setS;, with
I' € {10,11,12,13}. Hence, from the viewpoint of leader-selection, agents d@23 should
be designated as leaders, which uniquely solves the leatiection problem. Thus, an input
must be assigned to the state variablgs(!’ € {10, 11,12,13}), as depicted in Figurg] 2 a)
by the blue vertices. It is important to note that in genelnal $et covering problems resulting
from structural unconstrained leader-selection probleenvge the characteristic that the séis
comprise at most a single state variable. It is readily shahguch instances of the set covering
problem may be solved using polynomial complexity algarnigh(recall the set covering problem
is NP-complete in general); in fact, to cover the universe,omly need to consider a set for

each of the elements in the universe. This is in accordantte the fact that[(3) can be solved
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Fig. 2.  The non-top linked SCCs are depicted by gray dashe@sband all agents have self-loops (not drawn to keep
the illustration simple). In a) we depict the inter-agenmoounication graph (the agents are depicted by black vertidgéh
associated states as labels) given by the black edges. itioaddotential leaders (the vertices , u2, us depicted in blue) are
shown to which a dedicated input may be assigned. Alteralgtiin b) we depict a communication graph and possible lonat

for leaders (the vertices:, uz, us depicted in blue).

using a polynomial complexity algorithm (see Theorem 2).

Structural Constrained Leader Selection ProblelRow consider the constrained leader-selection

problem £, as formulated in[{5), with the state digraph induced by thacstiral dynamics
matrix given by the black vertices and edges as depictedgar€i2 b) and the set of potential
leaders depicted by the blue vertices. Additionally, theatdollowers actuated by the potential
leaders is depicted by the blue edges, 2.5 {0,}?** with all entries equal to zero except:
Bl,l = Bg’l = x corresponding to inpui; assigned to state variables andx, respectively and,
similarly, Byy = Bso = %, Bs3 = By3 = , Br4 = Bg, = . Now note that, by Proposition 1
and Corollary 3£, can be reduced to a set covering problem (see Theldrem 3). Fneoreni B,
to set up the set covering problem, we obt&in= {1}, S, = {1,2}, S; = {2} andS, = 0. In
other words, agent 1 can only actuate followers from the topninked SCCA/?, agent 2 can
actuate followers from the non-top linked SCB&, A2 and so on. Additionally, the universe
isU = {1,2} and in this particular example (note that in general the mimh set covering
problem is NP-hard), it is straightforward to see that thieitsan of the set covering problem
consists of the sef, only. Thus agent 2 should be designated as the leader, whtble isolution

to the structural constrained leader-selection problem.

VI. CONCLUSIONS ANDFURTHER RESEARCH

In this paper, we have showed that the decision version ofrttlémum constrained input

selection (minCIS) problem is NP-complete; hence, the n8niS NP-hard. Consequently, in
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general, efficient (polynomial complexity) solution prdcees to the minCIS are unlikely to
exist. Nevertheless, we have identified one subclass oflgar) of interest for control systems
applications, where the minCIS is efficiently solvable, eynminCIS instances with dedicated
inputs, which can be solved polynomially. The NP-complessnof the decision version of
the minCIS further implies that it is polynomially redua@bto other NP-complete problems.
Subsequently, for a restricted subclass of minCIS problevh&h subsumes practically relevant
multi-agent networked control applications such as legection problems, we have explicitly
constructed a polynomial reduction from the minCIS to thesimum set covering problem.
As future research, it may be worthwhile to obtain redudiéom more general instances of
the minCIS to other standard NP-hard problems, notably ties ovith good approximation
guarantees, such as the MAX-SAT — the optimization versioth® SAT problem[[6].

APPENDIX

To prove Theorerhl2, we first introduce and review some of theltg presented in [10], [11].
More precisely, consider thaminimal structural controllability problenstated as follows: Given
A € {0,x}™", determineB* such that

B* =arg  min 1Blo (6)

B* G{O,*}" Xmn

s.t. (A4, B) is structurally controllable

IBjllo <1, j=1,...,n,

whereB_; corresponds to thgth columns of3 and|| M ||, counts the number of nonzero entries
in the matrix M € {0, x}"*"2,

The problem[(B) (in fact, a more general variant[df (6)) wassihto be polynomially solvable
in [10], [11], from which we readily conclude that the minimudedicated input selection
(and output selection, by duality) is polynomially solvabFurther, we note that the sparsity
minimization objective (as if{6)) is not generally equéest to the minCIS, which is consistent
with the fact that the minCIS general instance is NP-hardered&s, the sparsest input/output
design problems addressed inl[10] are polynomially sobiaNlevertheless, we can us$é (6) to
prove Theorenl]2 as follows.

Proof of Theoreni]2The proof follows by noticing that a solution tél(6), is ofetlform
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B =¥ 0, (n—| 7)) (Up to permutation), wherg& corresponds to the columns pfwith indices
in 7, and0,x(,—|7) IS then x (n — |J|) matrix of zeros. Further, we have th@gB*(|, = |7],
and sinceB* is a solution to[(B), it follows thal7| is minimum. ConsequentlyA, ) in (@) is
structurally controllable, and it readily follows that, 1,(7)) in (3) is structurally controllable.
Because, by definitiort in (6) is the same as,(7) in (3), the minimality in the latter holds.
Hence, from a minimal solution t@](6), it is possible to rete a minimal solution td {3).
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