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Abstract

The purpose of this paper is to study the realization theory of quantum linear systems. It is shown that for a

general quantum linear system its controllability and observability are equivalent and they can be checked by means of

a simple matrix rank condition. Based on controllability and observability a specific realization is proposed for general

quantum linear systems in which an uncontrollable and unobservable subspace is identified. When restricted to the

passive case, it is found that a realization is minimal if and only if it is Hurwitz stable. Computational methods are

proposed to find the cardinality of minimal realizations of a quantum linear passive system. It is found that the transfer

function of a quantum linear passive system G can be written as a fractional form in terms of a matrix function Σ;

moreover, G is lossless bounded real if and only if Σ is lossless positive real. A type of realization for multi-input-

multi-output quantum linear passive systems is derived, which is closely related to its controllability and observability

decomposition. Two realizations, namely the independent-oscillator realization and the chain-mode realization, are

proposed for single-input-single-output quantum linear passive systems, and it is shown that under the assumption

of minimal realization, the independent-oscillator realization is unique, and these two realizations are related to the

lossless positive real matrix function Σ.

Keyword: Quantum linear systems, realization theory, controllability, observability.

1 Introduction

Linear systems and signals theory has been very useful in the analysis and engineering of dynamical systems. Many funda-

mental notions have been proposed to characterize dynamical systems from a control-theoretic point of view. For example,

controllability describes the ability of steering internal system states by external input, observability refers to the possi-

bility of reconstructing the state-space trajectory of a dynamical system based on its external input-output data. Based

on controllability and observability, Kalman canonical decomposition reveals the internal structure of a linear system.

This, in particular minimal realization as a very convenient and yet quite natural assumption, is the basis of widely used

model reduction methods such as balanced truncation and optimal Hankel norm approximation. Moreover, fundamental

dissipation theory has been well established and has been proven very effective in control systems design. All of these

have been well documented, see, e.g., [Kwakernaak & Sivan, 1972]; [Willems, 1972]; [Anderson & Vongpanitlerd, 1973];

[Kailath, 1980]; [van der Schaft, 1996]; [Zhou, Doyle & Glover, 1996].

In recent years there has been a rapid growth in the study of quantum linear systems. Quantum linear systems and sig-

nals theory has been proven very effective in the study of many quantum systems including quantum optical systems, opto-

mechanical systems, cavity quantum electro-magnetic dynamical systems, atomic ensembles and quantum memories, see,

e.g., [Gardiner & Zoller, 2000]; [Wall & Milburn, 2008]; [Wiseman & Milburn, 2010]; [Stockton, van Handel & Mabuchi, 2004];

[Zhang, Chen, Bhattacharya, & Meystre, 2010]; [Massel, et al., 2011]; [Matyas, et al., 2011]; [Tian, 2012]; [Zhang, et al., 2013];
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[Hush, Carvalho, Hedges & James, 2013]. Because of its analytical and computational advantages, the linear setting al-

ways serves as an essential starting point for development of a more general theory.

Controllability and observability of quantum linear passive systems have been discussed in [Maalouf & Petersen, 2011a];

these two properties are used to establish the complex-domain bounded real lemma ([Maalouf & Petersen, 2011a, Theorem

6.5]) for quantum linear passive systems, which is the basis of quantum H∞ coherent feedback control of quantum linear

passive systems, [Maalouf & Petersen, 2011b]. For a quantum linear passive system it is shown in [Guta & Yamamoto, 2013,

Lemma 3.1] that controllability is equivalent to observability; moreover, a minimal realization is necessarily Hurwitz sta-

ble, [Guta & Yamamoto, 2013, Lemma 3.2]. In this paper we explore further controllability and observability of quantum

linear systems. For general quantum linear systems (not necessarily passive), we show that controllability and observabil-

ity are equivalent (Proposition 2.3). Moreover, a simple matrix rank condition is established for checking controllability

and observability. Base on this result, a realization of general quantum linear systems is proposed, in which the un-

controllable and unobservable subspace is identified (Theorem 2.6). Theorem 2.6 can be viewed as the complex-domain

counterpart of Theorem 3.1 in [Yamamoto, 2013] in the real domain. However, it is can be easily seen from the proof of

Lemma 2.5 that the structure of the unitary transformation involved is better revealed in the complex domain. Restricted

to the passive case, we show that controllability, observability and Hurwitz stability are equivalent to each other (Lemma

3.3). Thus, the realization of a quantum linear passive system is minimal if and only if it is Hurwitz stable (Theorem

3.5). We also derive formulas for calculating the cardinality of minimal realizations of a given quantum linear passive

system (Proposition 3.7 for the single-input-single-output case and Proposition 3.8 for the multi-input-multi-output case).

Finally we show how a given quantum linear system can be written as a fractional form in term of a matrix function Σ

(Proposition 2.8), and for the passive case show that a quantum linear passive system G is lossless bounded real if and

only if the corresponding Σ is lossless positive real (Theorem 3.11).

The synthesis problem of quantum linear systems has been investigated in [Nurdin, James & Doherty, 2009], where

they showed that a quantum linear system can always be realized by a cascade of one-degree-of-freedom harmonic

oscillators with possible direct Hamiltonian couplings among them if necessary. Then in [Nurdin, 2010] a necessary and

sufficient condition is derived for the realizability of quantum linear systems via pure cascading only. For the passive case,

it is shown in [Petersen, 2011] that, under certain conditions on the system matrices, a minimal quantum linear passive

system can be realized by a cascade of one-degree-of-freedom harmonic oscillators. These restrictions were removed in

[Nurdin, 2010] which proves that all quantum linear passive systems can be realised by pure cascading of one-degree-

of-freedom harmonic oscillators. Model reduction of quantum linear systems has been studied in, e.g., [Petersen, 2013],

and [Nurdin, 2013]. In this paper we propose several realizations of quantum linear passive systems. For the multi-

input-multi-output (MIMO) case we show that the proposed realization has a close relationship with controllability and

observably of the quantum linear passive system (Theorem 4.1). In the single-input-single-output (SISO) case, we propose

two realizations, namely the independent-oscillator realization and the chain-mode realization (Theorem 4.3 and Theorem

4.7), and finally we show that if the system is Hurwitz stable, these two realizations are related to the lossless positive

real Σ mentioned in the previous paragraph (Theorem 4.10).

The rest of the paper is organized as follows. Section 2 studies general quantum linear systems; specifically, Subsec-

tion 2.1 briefly reviews quantum linear systems, Subsection 2.2 investigates their controllability and observability, and

Subsection 2.3 presents a fractional form for transfer functions of quantum linear systems. Section 3 studies quantum

linear passive systems, specifically, Subsection 3.1 introduces quantum linear passive systems, Subsection 3.2 investigates

their Hurwitz stability, controllability and observability, Subsection 3.3 studies minimal realizations of quantum linear

passive systems, and Subsection 3.4 proposes a fractional form for transfer functions of quantum linear passive systems.

Section 4 investigates realizations of quantum linear passive systems; specifically, Subsection 4.1 proposes a realization

for MIMO quantum linear passive systems, Subsections 4.2.1 and 4.2.2 propose an independent-oscillator realization and

a chain-mode realization for SISO quantum linear systems respectively, and Subsection 4.2.3 discusses the uniqueness of

the independent-oscillator realization. Section 5 concludes this paper.

Notations. m is the number of input channels, and n is the number of degrees of freedom of a given quantum
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linear system, namely, the number of system oscillators. Given a column vector of complex numbers or operators

x = [ x1 · · · xk ]T , define x# = [ x∗
1 · · · x∗

k ]T , where the asterisk ∗ indicates complex conjugation or Hilbert

space adjoint. Denote x† = (x#)T . Furthermore, define a column vector x̆ to be x̆ = [ xT (x#)T ]T . Let Ik be

an identity matrix and 0k a zero square matrix, both of dimension k. Define Jk = diag(Ik,−Ik). Then for a matrix

X ∈ C2j×2k, define X♭ = JkX
†Jj . Given two constant matrices U , V ∈ Cr×k, define ∆(U, V ) = [U V ;V # U#]. Given two

operators A and B, their commutator is defined to be [A,B] = AB −BA. “⇐⇒” means if and only if. Finally, Spec(X)

denotes the set of all distinct eigenvalues of the matrix X , σ(X) denotes the diagonal matrix with diagonal entries being

the non-zero singular values of the matrix X , Ker (X) denotes the null space of the matrix X , and Range (X) denotes

the space spanned by the columns of the matrix X .

2 Quantum linear systems

We first introduce quantum linear systems in Subsection 2.1, then discuss their controllability and observability in

Subsection 2.2, and finally study their transfer functions in Subsection 2.3.

2.1 Quantum linear systems

In this subsection quantum linear systems are briefly described in terms of the (S,L,H) language, [Gough & James, 2009].

More discussions on quantum linear systems can be found in, e.g., [Gardiner & Zoller, 2000]; [Wall & Milburn, 2008];

[Wiseman & Milburn, 2010]; [Doherty & Jacobs, 1999]; [Zhang & James, 2012]; [Tezak, et al., 2012].

An open quantum linear system G studied in this paper consists of n interacting quantum harmonic oscillators driven

by m input boson fields. Each oscillator j has an annihilation operator aj and a creation operator a∗j ; aj and a∗j are

operators on the system space h which is an infinite-dimensional Hilbert space. The operators aj , a
∗
k satisfy the canonical

commutation relations: [aj , a∗k] = δjk. Denote a ≡ [a1 · · · an]T . Then the initial (that is, before the interaction between

the system and the input boson fields) Hamiltonian H can be written as H = (1/2)ă†Ωă, where ă = [aT (a#)T ]T as

introduced in the Notations part, and Ω = ∆(Ω−,Ω+) ∈ C2n×2n is a Hermitian matrix with Ω−,Ω+ ∈ Cn×n. L in the

(S,L,H) language describes the coupling of the system harmonic oscillators to the input boson fields. The coupling is

linear and can be written as L = [C− C+]ă with C−, C+ ∈ Cm×n. Finally, in the linear setting S in the (S,L,H) language

is taken to be a constant unitary matrix in Cm×m.

Each input boson field j has an annihilation operator bj(t) and a creation operator b∗j (t), which are operators on an

infinite-dimensional Hilbert space F. Let b(t) ≡ [b1(t) · · · bm(t)]T . The operators bj(t) and their adjoint operators b∗j (t)

satisfy the following commutation relations:

[bj(t), b∗k(r)] = δjkδ(t− r), ∀j, k = 1, . . . ,m, ∀t, r ∈ R. (2.1)

For each j = 1, . . . ,m, the j-th input field can also be represented in the integral form Bj(t) ≡
∫ t

0 bj(r)dr, whose Ito

increment is dBj(t) ≡ Bj(t + dt) − Bj(t). Denote B(t) ≡ [B1(t) · · · Bm(t)]T . The gauge process can be defined by

Λjk(t) =
∫ t

0
b∗j(r)bk(r)dr, (j, k = 1, . . . ,m). The field studied in this paper is assumed to be canonical, that is, the field

operators Bj(t), B
∗
k(t),Λrl(t) satisfy the following Ito table:

× dBk dΛkl dB∗
l dt

dBi 0 δikdBl δildt 0

dΛij 0 δjkdΛil δjldB
∗
i 0

dB∗
j 0 0 0 0

dt 0 0 0 0

Under mild assumptions, the temporal evolution of the open quantum system G can be described in terms of the

following quantum stochastic differential equation (QSDE):

dU(t) =
{

−
(

L†L/2 + iH
)

dt+ dB†(t)L − L†SdB(t) + Tr[(S − I)dΛT (t)]
}

U(t), t > 0, (2.2)
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with U(0) = I being the identity operator. Let X be an operator on the system space h. Then the temporal evolution of

X , denoted X(t) ≡ U(t)∗(X ⊗ I)U(t), is governed by the following QSDE:

dX(t) = LL,H(X(t))dt+ dB†(t)S†(t)[X(t), L(t)] + [L†(t), X(t)]S(t)dB(t)

+Tr[(S†(t)X(t)S(t)−X(t))dΛT (t)], (2.3)

where the Lindblad operator LL,H(X(t)) is

LL,H(X(t)) ≡ −i[X(t), H(t)] +
1

2
L†(t)[X(t), L(t)] +

1

2
[L†(t), X(t)]L(t). (2.4)

Note that X(t) is an operator on the joint system-field space h⊗ F.

Let bout,j(t) denote the j-th field after interacting with the system, and Bout,j(t) ≡
∫ t

0
bout,j(r)dr. We have Bout,j(t) =

U∗(t) (I ⊗Bj(t))U(t). Denote Bout(t) ≡ [Bout,1(t), · · · Bout,m(t)]T . Then in compact form the output field equation is

dBout(t) = L(t)dt+ SdB(t). (2.5)

Substituting H = (1/2)ă†Ωă and L = [C− C+]ă into (2.3) we have a quantum linear system:

dă(t) = Aă(t)dt+ BdB̆(t), (2.6)

dB̌out(t) = Că(t)dt+DdB̆(t), (2.7)

in which

A = −1

2
C♭C − iJnΩ, B = −C♭∆(S, 0m×m), C = ∆(C−, C+) ≡ C, D = ∆(S, 0m×m). (2.8)

Clearly, the quantum linear system is parameterized by constant matrices S,C,Ω. In the sequel, we use the notation

G ∼ (S,C,Ω) for the quantum linear system (2.6)-(2.7) with parameters given in (2.8).

For notation’s sake, we introduce the following definition.

Definition 2.1 (2.6)-(2.7) with parameters given in (2.8) is said to be the realization of the quantum linear system

G ∼ (S,C,Ω).

The constant matrices A,B, C,D in (2.8) satisfy the following fundamental relations:

A+A♭ + C♭C = 0, B = −C♭D, D♭D = I2m. (2.9)

These equations are often called physically realizability conditions of quantum linear systems. More discussions on physical

realizability of quantum linear systems can be found in, e.g., [James, Nurdin & Petersen, 2008]; [Zhang & James, 2011];

[Zhang & James, 2012].

2.2 Controllability and observability

In this subsection we study controllability and observability of quantum linear systems introduced in Subsection 2.1.

Let X be an operator on the system space h. Denote by 〈X(t)〉 the expected value of X(t) with respect to the initial

joint system-field state (which is a unit vector in the Hilbert space h ⊗ F). Then (2.6)-(2.7) gives rise to the following

classical linear system

d 〈ă(t)〉
dt

= A〈ă(t)〉+ B〈b̆(t)〉, (2.10)

d〈b̆out(t)〉
dt

= C 〈ă(t)〉+D〈b̆(t〉). (2.11)

Definition 2.2 The quantum linear system G ∼ (S,C,Ω) is said to be Hurwitz stable (resp. controllable, observable) if

the corresponding classical linear system (2.10)-(2.11) is Hurwitz stable (resp. controllable, observable).
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Due to the special structure of quantum linear systems, we have the following result concerning their controllability

and observability.

Proposition 2.3 Given a quantum linear system G ∼ (S,C,Ω), the following statements are equivalent:

(i) G is controllable;

(ii) G is observable;

(iii) rank(Os) = 2n, where

Os ≡













C

CJnΩ
...

C (JnΩ)
2n−1













. (2.12)

Proof. (i) ⇒ (ii). We show this by contradiction. Assume G is not observable. By the classical control theory (see.

e.g., [Zhou, Doyle & Glover, 1996, Theorems 3.3]) there exist a scalar λ and a non-zero vector v ∈ C2n such that Av = λv

and Cv = 0. So JnΩv = iλv and Cv = 0. Let u = Jnv and µ = −λ∗. Then u†B = −v†C†Jm = 0, and

u†A = −(Jnv)
†
(

C♭C/2 + iJnΩ
)

= −(Jnv)
†iJnΩ = −iv†Ω = −λ∗v†Jn = µu†.

By a standard result in classical control theory, (see. e.g., [Zhou, Doyle & Glover, 1996, Theorems 3.1]), G is not control-

lable. We reach a contradiction.

(ii) ⇒ (i). This can be established by reversing the proof for (i) ⇒ (ii).

(ii) ⇒ (iii). Let v ∈ C2n such that Osv = 0. Then Cv = Cv = 0 and C(JnΩ)
kv = 0, k = 1, . . . , 2n− 1. Moreover,

CAv = −C
(

C♭C/2 + iJnΩ
)

v = −iCJnΩv = 0,

CA2v = −C
(

C♭C/2 + iJnΩ
)2

v = C(JnΩ)
2v = 0,

...

CA2n−1v = C(JnΩ)
2n−1v = 0.

But by (ii) G is observable, therefore v = 0. (iii) is established.

(iii) ⇒ (ii). This can be established by reversing the proof for (ii) ⇒ (iii).

Proposition 2.3 tells us that the controllability and observability of a quantum linear system G ∼ (S,C,Ω) are

equivalent; moreover they can be determined by checking the rank of the matrix Os.

On the basis of Proposition 2.3, we have the following result about the uncontrollable and unobservable subspace of

a quantum linear system.

Proposition 2.4 Let C ≡ [ B AB · · · A2n−1B ] and O ≡ [ CT (CA)
T · · · (CA2n−1)

T
]T be the controllability

and observability matrices of a quantum linear system G ∼ (S,C,Ω) respectively. Then (in the terminology of modern con-

trol theory, [Kwakernaak & Sivan, 1972]; [Anderson & Vongpanitlerd, 1973]; [Kailath, 1980]; [Zhou, Doyle & Glover, 1996])

the following statements hold:

(i) The unobservable subspace is

Ker (O) = Ker (Os) , (2.13)

where Ker (X) denotes the null space of the matrix X, as introduced in the Notations part.

(ii) The uncontrollable subspace is

Ker
(

C†
)

= Ker (OsJn) . (2.14)
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(iii) The uncontrollable and unobservable subspace is Ker (Os) ∩Ker (OsJn).

Proposition 2.4 can be established in the similar way as Proposition 2.3.

Propositions 2.3 and 2.4 appear purely algebraic. Nevertheless, they have interesting and important physical conse-

quences. We begin with the following lemma.

Lemma 2.5 The dimension of the space Ker (Os)∩Ker (OsJn) is even. Let the dimension of Ker (Os)∩Ker (OsJn) be

2l for some nonnegative integer l. There exists a matrix V = [ V1 V2 ] with V1 ∈ C2n×2l and V2 ∈ C2n×2(n−l) such that

Range(V1) = Ker (Os) ∩Ker (OsJn) , (2.15)

V V † = V †V = I2n, (2.16)

V †JnV =

[

Jl 0

0 Jn−l

]

. (2.17)

The proof is given in the Appendix.

We are ready to state the main result.

Theorem 2.6 Let V be the matrix defined in Lemma 2.5. If Range(V1) is an invariant space under the linear transfor-

mation of Ω, then the transformed system
[

ăDF

ăD

]

≡ V †ă

has the following realization:

dăDF (t) = −iJlV
†
1 ΩV1ăDF (t)dt, (2.18)

dăD(t) = −
(

(CV2)
♭(CV2)/2 + iJn−lV

†
2 ΩV2

)

ăD(t)dt − (CV2)
♭DdB̌(t), (2.19)

dB̌out(t) = (CV2)ăD(t)dt+DdB̌(t). (2.20)

Proof. Because Range(V1) = Ker (Os) ∩Ker (OsJn), the coupling operator of the transformed mode [ ăTDF ăTD ]T

is CV = [ 0 CV2 ]. Moreover, because Range(V1) is an invariant space under the linear transformation of Ω, there exists

a matrix Y such that ΩV1 = V1Y . We have V †
1 ΩV2 = Y †V †

1 V2 = 0 where (2.16) is used. This, together with (2.17), gives

V †JnΩV = V †JnV V †ΩV =

[

JlV
†
1 ΩV1 0

0 Jn−lV
†
2 ΩV2

]

.

That is, the transformed system with mode [ ăTDF ăTD ]T has the realization (2.18)-(2.20).

Remark 1. By (2.18), the modes ăDF evolve unitarily as an isolated system. In literature such isolated modes embedded

in an open quantum system is often called decoherence-freemodes, see, e.g., [Ticozzi & Viola, 2008], [Ticozzi & Viola, 2009],

[Yamamoto, 2013]. Theorem 2.6 can be viewed as the complex-domain counterpart of Theorem 3.1 in [Yamamoto, 2013]

in the real domain. However, with the help of the matrix Os, matters are simplified; moreover, it can be seen from the

proof of Lemma 2.5 in the Appendix that the structure of the unitary transformation matrix V is better revealed with

the help of Os and in the complex domain.

Finally, from the proof of Lemma 2.5 it can be seen that the dimension of the space Ker(C) is also even. Moreover

we have the following corollary which shows that under some conditions the unobservable and uncontrollable subspace is

exactly Ker(C).

Corollary 2.7 Let the dimension of the space Ker(C) be 2r. Let a matrix T ∈ C2n×2r be such that Range(T ) = Ker(C).

If JnT = TJr and Range(T ) is an invariant space under the linear transformation of Ω, then Ker(C) = Ker(Os) ∩
Ker(OsJn).
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Proof. Clearly, Ker (Os)∩Ker (OsJn) ⊂ Ker(Os) ⊂ Ker (C). Thus it is sufficient to show that Ker (C) ⊂
Ker (Os)∩Ker (OsJn). However Range(T ) = Ker (C), we show that Range(T ) ⊂ Ker (Os)∩Ker (OsJn). Because

Range(T ) is invariant with respect to a linear transformation Ω, there exist matrix Y such that ΩT = TY . This,

together with JnT = TJr, gives C(JnΩ)T = CTJrY = 0. Similarly, for all k ≥ 1, C(JnΩ)kT = 0. That is, OsT = 0.

Moreover, OsJnT = OsTJr = 0. Consequently Ker(C) = Range(T ) ⊂ Ker (Os)∩Ker (OsJn). This together with

Ker (Os)∩Ker (OsJn) ⊂ Ker (C) yields Ker (C) = Ker (Os)∩Ker (OsJn).

Corollary 2.7 can be regarded as the complex-domain counterpart of Proposition 3.1 in [Yamamoto, 2013] in the real

domain.

2.3 Transfer functions

In the frequency domain, the transfer function of the system G ∼ (S,C,Ω) is defined to be

G(s) ≡ D + C(sI −A)−1B. (2.21)

This transfer function has the following fundamental property, see, e.g., [Zhang & James, 2013, Eq. (24)]:

G(iω)♭G(iω) = G(iω)G(iω)♭ = I2m, ∀ω ∈ R. (2.22)

Interestingly, the transfer function G(s) of the quantum linear system G ∼ (S,C,Ω) can be written into a fractional form.

Proposition 2.8 The transfer function G(s) for a Hurwitz stable quantum linear system G ∼ (S,C,Ω) can be written

in the following fractional form

G(s) = (I − Σ(s))(I +Σ(s))−1∆(S, 0), (2.23)

where

Σ(s) ≡ 1

2
C(sI + iJnΩ)

−1C♭, ∀Re[s] > 0. (2.24)

Proof. Because the system G(s) is Hurwitz stable, all the eigenvalues of the matrix A have strictly negative real

part, therefore the matrix sI − A is invertible for all Re[s] > 0. Moreover, for all Re[s] > 0, by the Woodbury matrix

inversion formula,

(sI −A)−1 = (sI + iJnΩ+
1

2
C♭C)−1

= (sI + iJnΩ)
−1 − 1

2
(sI + iJnΩ)

−1
C♭

(

I +
1

2
C (sI + iJnΩ)

−1
C♭

)−1

C (sI + iJnΩ)
−1

.

As a result, for all Re[s] > 0,

I − C(sI −A)−1C♭

= I − C

{

(sI + iJnΩ)
−1 − 1

2
(sI + iJnΩ)

−1
C♭(I +

1

2
C (sI + iJnΩ)

−1
C♭)−1C (sI + iJnΩ)

−1

}

C♭

= I − 2Σ(s) + 2Σ(s) (I +Σ(s))
−1

Σ(s)

= (I − Σ(s))(I +Σ(s))−1,

with Σ(s) as defined in (2.24). Consequently,

G(s) = (I − C(sI −A)−1C♭)∆(S, 0) = (I − Σ(s))(I +Σ(s))−1∆(S, 0).

3 Quantum linear passive systems

In this section quantum linear passive systems are studied. This type of systems is introduced in Subsection 3.1. Stability,

controllability and observability are investigated in Subsection 3.2, while minimal realizations of quantum linear passive

systems are studied in Subsection 3.3. The relation between G and Σ in the passive setting is discussed in Subsection 3.4.

7



3.1 Quantum linear passive systems

If the matrices C+ = 0 and Ω+ = 0, the resulting system, parameterized by matrices S, C−, Ω−, is often said to be a

quantum linear passive system. In this case, it can be described entirely in terms of annihilation operators. Actually a

quantum linear passive system has the following form:

da(t) = Aa(t) − C†
−SdB(t), (3.1)

dBout(t) = C−a(t) + SdB(t). (3.2)

in which A ≡ − 1
2C

†
−C− − iΩ−.

In analog to Definition 2.1 for realization of general linear systems we introduce the following realization concept for

passive linear systems.

Definition 3.1 (3.1)-(3.2) is said to be the realization of the quantum linear passive system G ∼ (S,C−,Ω−).

Clearly, the transfer function of G ∼ (S,C−,Ω−) is

G(s) = S − C−(sI −A)−1C†
−S. (3.3)

Define

Σ(s) ≡ 1

2
C−(sI + iΩ−)

−1C†
−. (3.4)

Then, in analog to Proposition 2.8, we have

G(s) = (I − Σ(s))(I +Σ(s))−1S. (3.5)

In the passive case, Eq. (2.22) reduces to

G(iω)†G(iω) = G(iω)G(iω)† = Im, ∀ω ∈ R. (3.6)

Because deferent realizations may correspond to the same transfer function (3.3), we introduce the following concept.

Definition 3.2 Two realizations are said to be unitarily equivalent if there exists a unitary transformation which trans-

forms one to the other.

Clearly, two unitarily equivalent realizations correspond to the same transfer function.

3.2 Stability, controllability, and observability

In this subsection we study stability of quantum linear passive systems. In particular, we show that a quantum linear

passive system G ∼ (S,C−,Ω−) is Hurwitz stable if and only if it is observable and controllable.

Lemma 3.3 The following statements for a quantum linear passive system G ∼ (S,C−,Ω−) are equivalent:

(i) G is Hurwitz stable;

(ii) G is observable;

(iii) G is controllable.

Proof. (i) → (ii). Clearly, X = In > 0 is the unique solution to the following Lyapunov equation

A†X +XA+ C†
−C− = 0. (3.7)
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According to [Zhou, Doyle & Glover, 1996, Lemma 3.18], (C†
−C−, A) is observable, so (C−, A) is observable. That is, G

is observable.

(ii)→ (i). BecauseX = In > 0 is a solution to Eq. (3.7), C†
−C− ≥ 0 and (C†

−C−, A) is observable, by [Zhou, Doyle & Glover, 1996,

Lemma 3.19], A is Hurwitz stable.

The equivalence between (ii) and (iii) has been established in Proposition 2.3.

Remark 2. An alternative proof of the equivalence between (ii) and (iii) is given in [Guta & Yamamoto, 2013, Lemma

3.1]. An alternative proof of (ii) → (i) is given in [Guta & Yamamoto, 2013, Lemma 3.2].

3.3 Minimal realization

In this subsection we study minimal realization of a given quantum linear passive system G ∼ (S,C−,Ω−). We first

introduce the concept of minimal realization.

Definition 3.4 If a quantum linear passive system G ∼ (S,C−,Ω−) is both controllable and observable, we say its

realization (3.1)-(3.2) is a minimal realization.

The following result is an immediate consequence of Lemma 3.3.

Theorem 3.5 (3.1)-(3.2) is a minimal realization of the quantum linear passive system G ∼ (S,C−,Ω−) if and only if

it is Hurwitz stable.

In what follows we study the following problem concerning minimal realization.

Problem 3.6 Given a quantum linear passive system G ∼ (S,C−,Ω−) which may not be Hurwitz stable, it may have

a subsystem (S,Cmin,Ωmin) which is Hurwitz stable. In this case, let nmin be the number of system oscillators in the

minimal realization of (S,Cmin,Ωmin). How to compute nmin?

3.3.1 The single-input-single-output (SISO) case

Given a SISO quantum linear passive system G(s), let the spectral decomposition of Ω− be

Ω− =
∑

ω∈spec(Ω
−
)

ωPω,

where Pω denotes the projection onto the eigenspace of the eigenvalue ω of Ω−. Define

σ(Ω−, C−) ≡ {ω ∈ spec(Ω−) : C−PωC
†
− 6= 0}. (3.8)

The following result shows that the size of the set σ(Ω−, C−) is nothing but nmin.

Proposition 3.7 Given a SISO quantum linear passive system G ∼ (S,C−,Ω−), the number nmin of oscillators of a

minimal realization (S,Cmin,Ωmin) is equal to the size of the set σ(Ω−, C−) defined in (3.8).

The proof is given in the Appendix.

3.3.2 The multi-input-multi-output (MIMO) case

The following result is the MIMO version of Proposition 3.7.

Proposition 3.8 For a MIMO quantum linear passive system G ∼ (S,C−,Ω−), let the distinctive eigenvalues of Ω− be

ω1, . . . , ωr, each with algebraic multiplicity τi respectively, i = 1, . . . , r. Define Λi = ωiIτi , i = 1, . . . , r. Assume

Ω− =









Λ1 0
. . .

0 Λr









. (3.9)
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Accordingly partition C− = [C1 C2 · · · Cr] with Ci having τi columns, i = 1, . . . , r. Then

nmin =

r
∑

i=1

column rank[Ci]

In particular, if τi = 1 for all i = 1, . . . , r, that is, all poles of Ω− are simple poles, then

nmin = {ωi ∈ spec(Ω−) : Tr[C−Pωi
C†

−] 6= 0}, (3.10)

as given in Proposition 3.7.

The construction in Proposition 3.8 is essentially the Gilbert’s realization. Its proof follows the discussions in

[Kailath, 1980, Sec. 6.1] or [Zhou, Doyle & Glover, 1996, Sec. 3.7]. The details are omitted.

3.4 G and Σ

In this subsection we explore a further relation between a quantum linear passive system G ∼ (S,C−,Ω−) and Σ defined

in (3.4).

We first review the notions of lossless bounded real and lossless positive real. The bounded real lemma for quantum

linear passive systems has been established in [Maalouf & Petersen, 2011a]. Dissipation theory for more general quantum

linear systems has been studied in [James, Nurdin & Petersen, 2008], [Zhang & James, 2011], while the nonlinear case

has been studied in [James & Gough, 2010].

Definition 3.9 (Lossless Bounded Real, [Maalouf & Petersen, 2011a, Definition 6.3].) A quantum linear passive system

G = (S,C−,Ω−) is said to be lossless bounded real if it is Hurwitz stable and Eq. (3.6) holds.

According to Definition 3.9, a Hurwitz stable quantum linear passive system is naturally lossless bounded real, as

derived in [Maalouf & Petersen, 2011a].

Positive real functions have been studied extensively in classical (namely, non-quantum) control theory, see, e.g.,

[Anderson & Vongpanitlerd, 1973]. Here we state a complex-domain version of positive real functions.

Definition 3.10 (Lossless Positive Real.) A function Ξ(s) is said to be positive real if it is analytic in Re[s] > 0 and

satisfies

Ξ(s) + Ξ(s)† ≥ 0, ∀Re[s] > 0.

Moreover, Ξ(s) is called lossless positive real if is positive real and satisfies

Ξ(iω) + Ξ(iω)† = 0, (3.11)

where iω is not a pole of Ξ(s).

The following result relates the lossless bounded realness of a quantum linear passive system G ∼ (S,C−,Ω−) to the

lossless positive realness of Σ(s) defined in Eq. (3.4).

Theorem 3.11 If a quantum linear passive system G ∼ (S,C−,Ω−) is minimal, then

(i) G(s) is lossless bounded real.

(ii) Σ(s) defined in Eq. (3.4) is lossless positive real.
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Proof. (i). Without loss of generality, assume S = Im. Because G ∼ (I, C−,Ω−) is minimal, by Theorem 3.5, it is

Hurwitz stable. Moreover, G ∼ (I, C−,Ω−) satisfies Eq. (3.6). Therefore, according to Definition 3.9, G ∼ (I, C−,Ω−) is

lossless bonded real.

(ii). Assume iω is not a pole of Σ(s). Then the matrix iωI + iΩ− is invertible. Note that

Σ(s) + Σ(s)† =
1

2
C−(sI + iΩ−)

−1C†
− +

1

2
C−(s

∗I − iΩ−)
−1C†

− (3.12)

= Re [s]C−(sI + iΩ−)
−1
(

C−(sI + iΩ−)
−1
)†

, ∀Re[s] > 0.

By (3.12), Σ(iω) + Σ(iω)† = 0. Therefore, by Definition 3.10, Σ(s) is lossless positive real.

Remark 3. In fact it can be shown that in the minimal realization case (i) and (ii) in Theorem 3.11 are equivalent.

Remark 4. Σ(s) is a linear port-Hamiltonian system, [van der Schaft, 1996, Chapter 4]. However it is worth noting

that a lossless positive real Σ(s) may not generate a genuine quantum system G(s) via G(s) = (I−Σ(s))(I+Σ(s))−1. For

example, given Σ(s) = s2+1
s(s2+2) , it is lossless positive real. However, it can be verified that G(s) = (I−Σ(s))(I+Σ(s))−1 =

1− 2(s2+1)
s3+s2+2s+1 is not a genuine quantum linear system. Later in Section 4.2.3 we will give an explicit form of Σ(s) which

generates a genuine quantum linear passive system G, see (4.28) for details.

Here we have used the annihilation-operator form to study dissipative properties of quantum linear passive sys-

tems. Because the resulting matrices may be complex-valued, they can be viewed as the complex versions of lossless

bounded real and lossless positive real in terms of the quadrature form, [James, Nurdin & Petersen, 2008]. In fact, if

the quantum system is represented in the quadrature form, it is exactly the same lossless bounded real form as that in

[Anderson & Vongpanitlerd, 1973, Secs. 2.6 and 2.7] for classical linear systems. In fact, the relation between lossless

bounded real and lossless positive real is well-known in electric networks, see. e.g., [Anderson & Vongpanitlerd, 1973].

4 Realizations for quantum linear passive systems

Several realizations of quantum linear passive systems are proposed in this section. The multi-input-multi-output (MIMO)

case is studied in Subsection 4.1. For the single-input-single-output (SISO) case, an independent-oscillator realization is

proposed in Subsection 4.2.1, Fig. 2; a chain-mode realization is presented in Subsections 4.2.2, Fig. 3; and the uniqueness

of the independent-oscillator realization is discussed in Subsection 4.2.3.

4.1 Realizations for multi-input-multi-output models

In this subsection a new realization for MIMO quantum linear passive systems is proposed.

Before presenting our realizations for quantum linear passive systems, we describe for completeness a realization

proposed in [Nurdin, 2010] and [Petersen, 2011] using the series product to produce a realization of an n-oscillator system

as a cascade of n one-oscillator systems.

We begin with the observation that every matrix n × n matrix A admits a Schur decomposition A = U †A′U with

U unitary and A′ lower triangular. For a given quantum linear passive system G ∼ (S,C−,Ω−), we define a unitary

transform a′ ≡ Ua, such that A′ = UAU † is lower triangular. Accordingly denote C′ = C− U † and Ω′ = UΩ−U
†. The

new system is thus G′ ∼ (S,C′,Ω′). A standard result from linear systems theory shows that the two systems G and

G′ have the same transfer function. In what follows we show the system G′ has a cascade realization, Fig. 4.1. Because

A′ = − 1
2C

′†C′ − iΩ′ is lower triangular, for j < k we have A′
jk = − 1

2C
′†
j C′

k − iΩ′
jk = 0, so Ω′

jk = i
2C

′†
j C′

k. Therefore the

lower triangular components are

A′
kj = −1

2
C′†

k C′
j − iΩ′

kj = −1

2
C′†

k C′
j − iΩ′∗

jk ≡ −C′†
k C′

j .

Let us now set G0 ∼ (S, 0, 0) and Gk ∼ (I, C′
k,Ω

′
kk) then the new system G′ has a the cascaded realization G′ = Gn ⊳

· · · ⊳ G1 ⊳ G0, Fig. 4.1.
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Figure 1: A quantum linear passive system with n system oscillators is realised as a sequence of n components in series,

each one having a one-mode oscillator.

Next we present a new realization for MIMO quantum linear passive systems, which may have: 1) a set of inter-

connected principal oscillators ãpr that interact with the (possibly part of) environment b̃pr(t); 2) auxiliary oscillators

ãaux,1 and ãaux,2) which only couple to the principal oscillators while otherwise being independent; 3) input-out channels

b̃aux(t) that do not couple to the system oscillators.

Theorem 4.1 A quantum linear passive system G = (I, C−,Ω−) can be unitarily transformed to another one with the

corresponding realization

dãpr(t) = −(
σ(C−)

2

2
+ iΩ̃1)ãpr(t)dt− iΩ̃21ãaux,1(t)dt− iΩ̃22ãaux,2(t)dt− σ(C−)dB̃in,pr(t), (4.1)

dãaux,1(t) = −iσ(Ω̃3)ãaux,1(t)dt− iΩ̃†
21ãpr(t)dt, (4.2)

dãaux,2(t) = −iΩ̃†
22ãpr(t)dt, (4.3)

dBout,pr(t) = σ(C−)ãpr(t)dt+ dBin,pr(t), (4.4)

dBout,aux(t) = dBin,aux(t), (4.5)

where Ω̃1 = Ω̃†
1, Ω̃3 = Ω̃†

3, and σ(X) denotes the diagonal matrix with diagonal entries being the non-zero singular values

of the matrix X. Clearly, this new realization corresponds the a quantum linear passive system
(

I, C̄, Ω̄
)

with

C̄ ≡
[

σ(C−) 0 0

0 0 0

]

, Ω̄ ≡







Ω̃1 Ω̃21 Ω̃22

Ω̃†
21 σ(Ω̃3) 0

Ω̃†
22 0 0






. (4.6)

The proof is given in the Appendix.

The realization (4.1)-(4.5) is in some sense like controllability and observability decomposition of quantum linear

passive systems. In fact by Proposition 2.3 and Theorem 2.6, we have the following result.

Corollary 4.2 For the realization (4.1)-(4.5),

1. the mode ãpr is both controllable and observable;

2. if the system G = (I, C−,Ω−) is Hurwitz stable, then Ω̃21 6= 0 and Ω̃22 6= 0.

Remark 5. When m = 1, assuming minimal realization, from the proof given in the Appendix it can be seen

that Theorem 4.1 reduces to Theorem 4.3 for the independent-oscillator realization of SISO systems to be discussed in

Subsection 4.2.1.

4.2 Realizations for single-input-single-output models

In this subsection, two realizations, namely the independent-oscillator realization and the chain-mode realization, of SISO

quantum linear passive systems are proposed.
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Principle Mode  

Figure 2: The independent-oscillator realization: the principal mode is coupled to n − 1 independent auxiliary modes.

The principal mode couples to the field, while the auxiliary modes are independent other than that they couple to the

principal mode.

4.2.1 Independent-oscillator realization

Given a SISO quantum linear passive system G ∼ (I, C−,Ω−) where

C− = [
√
γ1 . . .

√
γn], Ω− = (ωjk)n×n, (4.7)

we show how to find a unitarily equivalent realization in terms of a single oscillator (the coupling mode c0, we also call

it the principle mode) which is then coupled to n− 1 auxiliary modes c1, · · · , cn−1. The auxiliary modes are themselves

otherwise independent oscillators, Fig. 2.

Theorem 4.3 There exists a unitary matrix T such that the transformed modes

c =













c0

c1
...

cn−1













≡ T a (4.8)

have the following realizations

dc0(t) = −(γ/2 + iω0)c0(t)dt−
n−1
∑

j=1

i
√
κjcj(t)−

√
γdB(t), (4.9)

dcj(t) = −iωjcj(t)dt − i
√
κjc0(t)dt, j = 1, . . . , n− 1, (4.10)

dBout(t) =
√
γc0(t) + dB(t), (4.11)

where

γ ≡
n
∑

j=1

γj , ω0 ≡ 1

γ

n
∑

j,k=1

√
γjγkωjk, (4.12)

and the other parameters ωj , κj (j = 1, . . . , n− 1) are given in the proof.

Proof. Let R be a unitary matrix whose first row is R1j =
√

γj/γ, (j = 1, . . . n). Set b′j ≡
∑n

k=1 Rjkak, j = 1, . . . n.

We have [b′j , b
′∗
k ] = δjk. Clearly L = C−a =

√
γb′1 and [L, b′∗j ] = 0 for j = 2, . . . n. Let us apply a further unitary

transformation V of the form V =

[

1 0⊤n−1

0n−1 Ṽ

]

with 0n−1 the column vector of length n− 1 with all zero entries and

Ṽ unitary in C
(n−1)×(n−1) to be specified later. We set

c =













c0

c1
...

cn−1













≡ V b′ = V R a.
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We have L =
√
γc0. The Hamiltonian takes the form H = c†V RΩR†V †c = c†Ω′c, where

Ω′ ≡
[

1 0⊤n−1

0n−1 Ṽ

]

RΩ−R
†

[

1 0⊤n−1

0n−1 Ṽ †

]

.

As the matrix Ṽ is still arbitrary except being unitary, we may choose it to diagonalize the lower right (n− 1)× (n− 1)

block of RΩR†, and with this choice we obtain Ω′ of the form

ΩIO ≡













ω0 ε∗1 · · · ε∗n−1

ε1 ω1 0
...

. . .

εn−1 0 ωn−1













. (4.13)

It can be readily verified that ω0 = 1
γ

∑n
jk=1

√
γjγkωjk. Set T = V R and the overall unitary transform is thus c = T a.

Finally we may absorb the phases of the εk into the modes, so without loss of generality we may assume that they are

real and non-negative, say εk ≡ √
κk.

By Proposition 2.3 and Theorem 2.6, we have the following corollary:

Corollary 4.4 For the realization (4.8)-(4.11) constructed in Proposition 4.3, if κj = 0, (j = 1, . . . , n − 1,) then the

mode cj is neither controllable nor observable.

Because the two realizations, G ∼ (I, C−,Ω−) with C−,Ω− defined in (4.7) and that in (4.8)-(4.11), are unitarily

equivalent, they have the same transfer function. In what follows we derive their transfer function.

The following lemma turns out to be useful.

Lemma 4.5 We have the algebraic identity that































a0 b1 · · · bn

b1 a1
. . . 0

...
. . .

bn 0 an















−1
















row 1,column 1

=
1

a0 −
∑n

k=1

b2k
ak

,

where (X)row 1,column 1 means the entry on the intersection of the first row and first column of a constant matrix X.

The proof is given in the Appendix.

We are now ready to present the transfer function.

Corollary 4.6 The SISO quantum linear passive system G ∼ (I, C−,Ω−) with C−,Ω− defined in (4.7) has a transfer

function of the form

G (s) = 1− γ

s+ 1
2γ + iω0 +

∑n−1
k=1

κk

s+iωk

. (4.14)

The proof follows Theorem 4.3 and Lemma 4.5.

Remark 6. Theorem 4.3 gives an independent-oscillator realization of a quantum linear passive system, Fig. 2.

Unfortunately, because the unitary matrices V and R used in the proof of Theorem 4.3 are by no means unique, it is

unclear whether this realization is unique or not, that is, whether the parameters ωi and κj are uniquely determined by

the system parameters γi and ωjk in (4.7) or not. In Theorem 4.10 to be given in Subsection 4.2.3, we show that the

independent-oscillator realization is unique under the assumption of minimal realization.
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4.2.2 Chain-mode realization

In the subsection we present the chain-mode realization of SISO quantum linear passive systems.

Let G ∼ (I, Cmin,Ωmin) be a Hurwitz stable SISO quantum linear system with nmin the number of system oscillators.

We assume that Ωmin is diagonal and the entries of Cmin are non-negative; specifically,

ā =









ā1
...

ānmin









, Ωmin = diag (ω̄1, · · · , ω̄nmin
) , Cmin =

[√
γ̄1, · · · ,

√

γ̄nmin

]

. (4.15)

Remark 7. Because the matrix Ωmin is Hermitian, it can always be diagonalized. Similarly by absorbing phases into

system oscillators if necessary, the entries of the matrix Cmin can be taken to be non-negative. Thus, given a Hurwitz

stable quantum linear passive system, one can always unitarily transform it to another one corresponding to (4.15).

Moreover, by Proposition 3.7, minimality requires that ω̄j 6= ω̄k if j 6= k, and γ̄j 6= 0, j = 1, . . . , nmin.

In what follows we unitarily transform the system G ∼ (I,Ωmin, Cmin) to a chain-mode realization of an assembly of

interacting oscillators, Fig. 3.

Principal Mode  

Figure 3: The Chain-mode realization: the principal mode is coupled to a non-damped mode which in turn is coupled to

a finite chain of modes.

Theorem 4.7 For the system G ∼ (I, Cmin,Ωmin) defined by (4.15), there exists a unitary transform W such that the

transformed modes












c̃0

c̃1
...

c̃nmin−1













≡ W ā (4.16)

have the following realization:

dc̃0(t) = −(γ̄/2 + iω̃0)c̃0(t)dt − i
√

κ̃1c̃1(t)dt −
√
γ̄dB(t), (4.17)

dc̃j(t) = −iω̃j c̃j(t)dt− i
√

κ̃j c̃j−1(t)dt− i
√

κ̃j+1c̃j+1(t)dt, j = 1, . . . , nmin − 2, (4.18)

dc̃nmin−1(t) = −iω̃nmin−1c̃nmin−1(t)dt− i
√

κ̃nmin−1c̃nmin−2(t)dt, (4.19)

dBout(t) =
√
γ̄c̃0(t)dt + dB(t), (4.20)

where the parameters ω̃j and κ̃j are given respectively in (5.28) and (5.29) in the proof.
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The proof is given in the Appendix.

Remark 8. In the literature of continued fraction, [Wall, 1948]; [Gautschi, 2004]; [Hughes, Christ & Burghardt, 2009];

[Woods, et al., 2014], etc., the matrix

J ≡

























ω̃0

√
κ̃1 0 · · · 0 0√

κ̃1 ω̃1

√
κ̃2 0 0

0
√
κ̃2 ω̃2

. . .
...

...
. . .

. . .
√

κ̃nmin−2 0

0 0
√

κ̃nmin−2 ω̃nmin−2

√

κ̃nmin−1

0 0 · · · 0
√

κ̃nmin−1 ω̃nmin−1

























is often called a Jacob matrix. Clearly J is actually the Hamiltonian matrix for the new system corresponding to the

realization (4.17)-(4.20).

Because the two realizations, G ∼ (I, Cmin,Ωmin) defined by (4.15) and that in (4.17)-(4.20), are unitarily equivalent,

they share the same transfer function. Next we study their transfer function.

We begin with the following lemma.

Lemma 4.8 We have the algebraic identity that















a0 b1 0

b1 a1
. . .

. . .
. . . bn

0 bn an















−1

row 1,column 1

=
1

a0 −
b21

a1 −
b22

a2−
. . .

− b2n−1

an−1 −
b2n
an

,

where (X)row 1,column 1 means the entry on the intersection of the first row and first column of a constant matrix X.

The proof is given in the Appendix.

Based on Theorem 4.7 and Lemma 4.8, we may derive the transfer function.

Corollary 4.9 The SISO quantum linear passive system G ∼ (I, Cmin,Ωmin) has a transfer function in the form of the

continued fraction expansion

G (s) = I − γ̄

s+
1

2
γ̄ + iω0 +

κ̃1

s+ iω̃1+
. . .

+
κ̃nmin−2

s+ iω̃nmin−2 +
κ̃nmin−1

s+ iω̃nmin−1

. (4.21)

4.2.3 Uniqueness of the independent-oscillator realization

In Subsection 4.2.1 an independent-oscillator realization for SISO quantum linear passive systems is proposed. From the

construction it is unclear whether the parameters in this independent-oscillator realization are unique, Remark 6. In this

subsection we show that they are indeed unique if minimality is assumed.

Theorem 4.10 Given a minimal quantum linear passive system G ∼ (I, Cmin,Ωmin) in (4.15), its unitarily equivalent

independent-oscillator realization is unique.
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Proof. Firstly, for the minimal realization G ∼ (I, Cmin,Ωmin) in (4.15), by (4.12) and (5.30), ω0 = ω̃0. Secondly,

by (4.14) and (4.21) we see the transfer function takes the form

G(s) = 1− γ

s+ γ
2 + iω0 +∆(s)

, (4.22)

where

∆(s) ≡
nmin−1
∑

k=1

κk

s+ iωk
(4.23)

=
κ̃1

s+ iω̃1 +
κ̃2

s+ iω̃2+
.. .

+
κ̃nmin−2

s+ iω̃nmin−2 +
κ̃nmin−1

s+ ω̃nmin−1

(4.24)

in the independent-oscillator and chain-mode realizations respectively. Replacing s with iω in (4.22), (4.23) and (4.24)

we have

G (iω) = 1 +
iγ

ω + ω0 −
γ

2
i− ∆̂ (ω)

, (4.25)

where

∆̂ (ω) ≡ i∆(iω) =

nmin−1
∑

k=1

κk

ω + ωk
(4.26)

=
κ̃1

ω + ω̃1 −
κ̃2

ω + ω̃2−
. . .

− κ̃nmin−2

ω + ω̃nmin−2 −
κ̃nmin−1

ω + ω̃nmin−1

(4.27)

in the independent-oscillator and chain-mode realizations respectively. By Theorem 4.7, ω̃j and κ̃j in (4.27) are uniquely

determined by Cmin and Ωmin, that is, ∆̂ (ω) is unique. On the other hand, because G = (I, Cmin,Ωmin) is minimal, in

(4.26) ωj 6= ωk if j 6= k, and κi 6= 0. Clearly, for this single pole fraction form of ∆̂ (ω) in (4.26), κk and ωk are unique.

The proof is completed.

We notice that (4.22) implies that

Σ (s) =
1

2

γ

s+ iω0 +∆(s)
(4.28)

with ∆(s) given by (4.24).

Remark 9. Given ∆(s) in (4.23) and (4.24), by (4.28) an explicit form of Σ(s) can be constructed, subsequently a

quantum linear passive system G(s) = (I−Σ(s))((I+Σ(s)))−1 can be constructed. According to (4.22), G(s) constructed

in this way is always a genuine quantum system. In this sense, (4.28) indicates what type of lossless positive real functions

can generate a quantum linear passive system (which is lossless bounded real).

5 Conclusion

In this paper we have studied the realization theory of quantum linear systems. We have shown the equivalence between

controllability and observability of general quantum linear systems, and in particular in the passive case they are equivalent

to Hurwitz stability. Based on controllability and observability, a special form of realization has been proposed for
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general quantum linear systems which can be regarded as the complex-domain counterpart of the so-called decoherence-

free subspace decomposition studied in [Yamamoto, 2013]. Specific to quantum linear passive systems, formulas for

calculating the cardinality of minimal realizaitons are proposed. A specific realization is proposed for the multi-input-

multi-output case which is closely related to controllability and observability decomposition. Finally, two realizations,

the independent-oscillator realization and the chain-mode realization, have been derived for the single-input-single-output

case. It is expected that these results will find applications in quantum systems design.
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Appendix.

Proof of Lemma 2.5. We first show that the dimension of the space Ker (Os)∩Ker (OsJn) is even. If a nonzero vector

v =

[

v1

v2

]

∈ Ker (Os)∩Ker (OsJn) (5.1)

with v1, v2 ∈ Cn, then

C
[

v1

v2

]

=

[

C−v1 + C+v2

C#
+ v1 + C#

− v2

]

= 0, CJn
[

v1

v2

]

=

[

C−v1 − C+v2

C#
+ v1 − C#

− v2

]

= 0, (5.2)

which are equivalent to

C
[

v1 0

0 v2

]

= 0.

That is,

C
[

v1

v2

]

= 0, CJn
[

v1

v2

]

= 0 ⇐⇒ C
[

v1

0

]

= 0, C
[

0

v2

]

= 0. (5.3)

On the other other hand, by (5.1) we also have

CJnΩ
[

v1

v2

]

= 0, CJnΩJn
[

v1

v2

]

= 0, (5.4)

which are equivalent to

CJnΩ
[

v1 0

0 v2

]

= 0.

Therefore we have

CJnΩ
[

v1

v2

]

= 0, CJnΩJn
[

v1

v2

]

= 0 ⇐⇒ CJnΩ
[

v1

0

]

= 0, CJnΩ
[

0

v2

]

= 0. (5.5)

Analogously it can be shown that

C(JnΩ)k
[

v1

v2

]

= 0, CJn(JnΩ)k
[

v1

v2

]

= 0 ⇐⇒ C(JnΩ)k
[

v1

0

]

= 0, C(JnΩ)k
[

0

v2

]

= 0, k ≥ 1 (5.6)

(5.3), (5.5) and (5.6) indicate that

v =

[

v1

v2

]

∈ Ker (Os)∩Ker (OsJn) ⇐⇒
[

v1

0

]

,

[

0

v2

]

∈ Ker (Os)∩Ker (OsJn) . (5.7)
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Moreover, it can be readily shown that
[

v1

0

]

∈ Ker (Os)∩Ker (OsJn) ⇐⇒
[

0

v#1

]

∈ Ker (Os)∩Ker (OsJn) , (5.8)

[

0

v2

]

∈ Ker (Os)∩Ker (OsJn) ⇐⇒
[

v#2
0

]

∈ Ker (Os)∩Ker (OsJn) , (5.9)

As a result, one can choose an orthonormal basis of Ker (Os)∩Ker (OsJn) to be one of the form
[

v1

0

]

,

[

0

v#1

]

, · · · ,
[

vl

0

]

,

[

0

v#l

]

.

Therefore, the dimension of the space Ker (Os)∩Ker (OsJn) is even. Here we take it to be 2l.

Secondly, we construct V1 ∈ C2n×2l. Noticing Ker
(

OsJn[ In 0n ]T
)

= Ker
(

Os[ In 0n ]T
)

, we have

[

vi

0

]

∈ Ker (Os)∩Ker (OsJn) ⇐⇒ vi ∈ Ker

(

Os

[

In

0n

])

.

Thus it is sufficient to construct the orthonormal basis vectors v1, . . . , vl for the space Ker
(

Os[ In 0n ]T
)

. This can

be done by the Gram-Schmidt orthogonalisation procedure. Define

V1 ≡
[

v1 · · · vl 0 · · · 0

0 · · · 0 v#1 · · · v#l

]

∈ C
2n×2l. (5.10)

For the above construction, Range(V1) = Ker (Os) ∩Ker (OsJn). (2.15) is established.

Thirdly, we construct the matrix V2. If a normalized vector vl+1 ∈ Cn such that for all k = 1, . . . , l, v†l+1vk = 0,

then (v#l+1)
†v#k = 0. That is, the normalized vectors

[

vl+1

0

]

and

[

0

v#l+1

]

are orthogonal to the space Range(V1). Of

course

[

vl+1

0

]

and

[

0

v#l+1

]

are orthogonal to each other too. By the Gram-Schmidt orthogonalisation procedure an

orthonormal basis {vl+1, . . . , vn} can be found for the orthogonal space of the space spanned by the vectors {v1, . . . , vl} .
The an orthonormal matrix V2 can be constructed to be

V2 ≡
[

vl+1 · · · vn 0 · · · 0

0 · · · 0 v#l+1 · · · v#n

]

∈ C
2n×2(n−l).

Fourthly, define V ≡ [ V1 V2 ]. Clearly, V †V = I2n which establishes (2.16).

Finally, because V †
1 Jn = JlV

†
1 , we have

V †JnV =

[

V †
1 JnV1 V †

1 JnV2

V †
2 JnV1 V †

2 JnV2

]

=

[

Jl 0

0 Jn−l

]

,

which is (2.17). The proof is completed.

Proof of Proposition 3.7. Without loss of generality, assume that Ω− is diagonal. (Otherwise, there exists a

unitary matrix T such that Ω̄ = TΩ−T
† is diagonal. Correspondingly, denote P̄ω = TPωT

† and C̄ = C−T
†. Then

C̄P̄ωC̄
† = C−PωC

†.) Let there be r non-zero entries in the row vector C−. Because Ω− is diagonal, if the ith element

of C− is zero, then the ith column of the matrix in (2.12) is a zero column. As a result, for minimality we need only

consider non-zero elements of C−. Without loss of generality, assume C− = [C1 0], where C1 = [c1 c2 · · · cr] with ci 6= 0,

(i = 1, . . . , r). Correspondingly, partition Ω− as

Ω− =

[

Ω1 0

0 Ω2

]

,
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where Ω1 is a r × r square diagonal matrix with ω1, . . . , ωr being diagonal entries. Clearly,

rank













C−

C−Ω−

...

C−Ω
n−1
−













= rank













C1

C1Ω1

...

C1Ω
r−1
1













. (5.11)

Notice that












C1

C1Ω1

...

C1Ω
r−1
1













=













1 1 · · · 1

ω1 ω2 · · · ωr

...
...

...
...

ωr−1
1 ωr−1

2 · · · ωr−1
r

























c1

c2
. . .

cr













. (5.12)

According to Lemma 3.3 and noticing ci 6= 0 for i = 1, . . . , r,

nmin = rank













C1

C1Ω1

...

C1Ω
r−1
1













= rank













1 1 · · · 1

ω1 ω2 · · · ωr

...
...

...
...

ωr−1
1 ωr−1

2 · · · ωr−1
r













. (5.13)

Let ℓ be the total number of distinct diagonal entries of the matrix Ω1. By a property of the Vandermonde matrices,

ℓ = nmin. Finally, denote the distinct eigenvalues of Ω1 by ω̂1, . . . , ω̂ℓ. For each i = 1, . . . , ℓ, because ci 6= 0, C−Pω̂i
C†

− 6= 0.

So we have shown that the number nmin of system oscillators of a minimal realization (S,Cmin,Ωmin) equals the total

number of elements of the set σ(Ω−, C−) defined in (3.8).

Proof of Theorem 4.1. The proof can be done by construction. Let rank(C−) = r > 0. Firstly, according to

[Bernstein, 2009, Theorem 5.6.4] there exist unitary matrices R1 ∈ Cm×m and R2 ∈ Cn×n such that

R1C−R2 =

[

σ(C−)r×r 0

0 0

]

(5.14)

where σ(C−) is a diagonal matrix with diagonal entries being singular values of the matrix C−. Partition the matrix

R†
2Ω−R2 accordingly, and denote

Ω̄ =

[

Ω̃1 Ω̃2

Ω̃†
2 Ω̃3

]

≡ R†
2Ω−R2. (5.15)

Define the unitary transformations
[

b̃in,pr(t)

b̃in,aux(t)

]

≡ R1b(t),

[

b̃out,pr(t)

b̃out,aux(t)

]

≡ R1bout(t),

[

ãpr(t)

aaux(t)

]

≡ R†
2a(t), (5.16)

where all the first blocks on the left-hand side are a row vector of dimension r. Then G is unitarily equivalent to the

following system

˙̃apr = −(σ(C−)
2/2 + iΩ̃1)ãpr − iΩ̃2aaux − σ(C−)b̃in,pr(t), (5.17)

ȧaux = −iΩ̃†
2ãpr − iΩ̃3aaux, (5.18)

b̃out,pr = σ(C−)ãpr + b̃in,pr(t), (5.19)

b̃out,aux = b̃in,aux(t). (5.20)

By Schur decomposition there exists a unitary matrix T ∈ C(n−r)×(n−r) such that

Ω̃3 = T

[

σ(Ω̃3) 0

0 0

]

T †. (5.21)
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Accordingly, denote [Ω̃21 Ω̃22] ≡ Ω̃2T
†. As a result, applying the unitary transformation







ãpr

ãaux,1

ãaux,2






≡
[

Ir×r 0

0 T

][

ãpr

aaux

]

(5.22)

to (5.17)-(5.18) yields the final realization (4.1)-(4.5). Clearly the realization (4.1)-(4.5) corresponds to a quantum linear

passive system whose the parameters are given in (4.6).

Proof of Lemma 4.5. We show this by induction. It is clear true for n = 1, so we the assume it is true for a given

n and establish for n + 1. Let us write E11 (M) for the first entry (row 1, column 1) of a matrix M . Let us consider a

sequence

Mn =















a0 b1 · · · bn

b1 a1
. . . 0

...
. . .

bn 0 an















of matrices, then

Mn+1 ≡
[

Mn bn+1en

bn+1e
⊤
n an+1

]

, where en =













1

0
...

0













∈ C
n+1.

We recall the Schur-Feshbach inversion formula for a matrix in block form

[

A11 A12

A21 A22

]−1

=

[

Y −1 −Y −1A12A
−1
22

−A−1
22 A21Y

−1 A−1
22 +A−1

22 A21Y
−1A12A

−2
22

]

(5.23)

where Y = A11 −A21A
−1
22 A21. From the Schur-Feshbach formula we deduce that

E11

(

M−1
n+1

)

= E11

(

(Mn − b2n+1

an+1
ene

⊤
n )

−1

)

.

However, the matrix Mn − (b2n+1/an+1)ene
⊤
n is identical to Mn except that we replace the first row first column entry a0

with a0 − (b2n+1/an+1), and by assumption we should then have

E11

(

(Mn − b2n+1

an+1
ene

⊤
n )

−1

)

=
1

(

a0 −
b2n+1

an+1

)

−
∑n

k=1

b2k
ak

.

This establishes the formula for n+ 1, and so the formula is true by induction.

Proof of Proposition 4.7. The spectral distribution Φ associated with a SISO system G ∼ (S,C−,Ω−) is defined

through the Stieltjes’ integral, i.e.,
∫ ∞

−∞

eitωdΦ (ω) =
1

C−C
†
−

C−e
itΩ

−C†
−,

where the normalization coefficient C−C
†
− > 0. In particular, in terms of the specific minimal realizationG ∼ (S,Cmin,Ωmin)

given in (4.15), we have

dΦ (ω) =

nmin
∑

j=1

γ̄j
γ̄
δ (ω − ω̄j) dω ≡ µ̄(ω)dω, (5.24)

where

γ̄ ≡
nmin
∑

j=1

γ̄j . (5.25)
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That is, the cardinality of the support of dΦ is exactly the number of oscillators nmin in the minimal realization of

G ∼ (S,Cmin,Ωmin). The spectral distribution defined in (5.24) has only finitely many point supports. We define an

inner product for polynomials in the field of real numbers in terms of this discrete spectral distribution. More specifically,

given two real polynomials P (ω) and Q(ω), define their inner product with respect to µ̄ to be

〈P,Q〉µ̄ ≡
∫ ∞

−∞

P (ω)Q(ω)µ̄(ω)dω =

nmin
∑

j=1

γ̄j
γ̄
P (ω̄j)Q(ω̄j). (5.26)

The norm of a polynomial P (ω) is of course ‖P‖ ≡
√

〈P, P 〉µ̄. Next we introduce a sequence of nmin orthogonal

polynomials {Pi}, which are defined via the Gram-Schmidt orthogonalization:

P0(ω) ≡ 1, Pj(ω) = ωj −
j−1
∑

k=0

〈ωj , Pk〉µ̄
〈Pk, Pk〉µ̄

Pk(ω), j = 1, . . . , nmin − 1,

where 〈ωj , Pk〉µ̄ is to be understood as 〈ωj , Pk〉µ̄ =
∫∞

−∞ ωjPk(ω)µ̄(ω)dω. It is easy to verify that the above orthogonal

polynomial sequence {Pj}nmin

j=0 satisfies the following three-term recurrence relation, [Gautschi, 2004, Theorem 1.27]

Pk+1(ω) = (ω − ω̃k)Pk(ω)−
√
κ̃kPk−1(ω), k = 0, . . . , nmin − 1, (5.27)

where κ̃0 ≡ ‖P0‖ and the convention P−1 ≡ 0 is assumed. Clearly,

ω̃k =
〈ωPk, Pk〉µ̄
〈Pk, Pk〉µ̄

, k = 0, . . . , nmin − 1, (5.28)

and

κ̃k =

√

〈Pk, Pk〉µ̄
〈Pk−1, Pk−1〉µ̄

, k = 1, . . . , nmin − 1. (5.29)

(Note that κ̃k 6= 0, k = 0, . . . , nmin − 1.) According to (5.28), we have

ω̃0 =
1

γ̄

nmin
∑

j=1

γ̄jω̄j . (5.30)

By normalizing {Pj}nmin

j=0 , that is define P̃j ≡ 1
‖Pj‖

Pj , we can get a set of orthonormal polynomial sequence {P̃j}nmin

j=0 . We

define a new set of oscillators to be

c̃0 ≡
nmin
∑

j=1

√

γ̄j
γ̄
P̃0(ω̄j)āj , (5.31)

c̃k ≡
nmin
∑

j=1

√

γ̄j
γ̄
P̃k(ω̄j)āj , k = 1, . . . , nmin − 1. (5.32)

It can be verified that the transformation (5.31)-(5.32) is unitary. Moreover,

c̃0 =
1√
γ̄

nmin
∑

j=1

√

γ̄j āj, (5.33)

and the canonical commutation relations [c̃0, c̃k] = [c̃0, c̃
∗
k] = 0, [c̃j , c̃

∗
k] = δjk for j, k = 1, . . . , nmin − 1. By (5.33),

L̃ =
√
γ̄c̃0. (5.34)

Define matrices

Q =









P̃0(ω̄1) · · · P̃0(ω̄nmin
)

...
. . .

...

P̃nmin−1(ω̄1) · · · P̃nmin−1(ω̄nmin
)









≡









P̃0(ω̄)
...

P̃nmin−1(ω̄)









(5.35)
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and Γ ≡ diag
(√

γ̄1

γ̄
, · · · ,

√

γ̄nmin

γ̄

)

. It can be shown that

nmin−1
∑

k=0

γ̄i
γ̄
P̃k(ω̄i)P̃k(ω̄j) = δij , i, j = 1, . . . , nmin, (5.36)

see, e.g., [Gautschi, 2004, Eq. (1.1.14)]. By (5.36), it can be verified that the inverse matrix of the matrix Q turns out to

be Q−1 = Γ2[P̃0(ω̄)
† . . . , P̃nmin−1(ω̄)

†]. Thus we have













c̃0

c̃1
...

c̃nmin−1













= QΓ













ā1

ā2
...

ānmin













. (5.37)

With this, the Hamiltonian of the minimal realization can be re-written as

nmin
∑

j=1

ω̄j ā
∗
j āj =













c̃0

c̃1
...

c̃nmin−1













†

((QΓ)−1)†Γ









ω̄1

. . .

ω̄nmin









(QΓ)−1













c̃0

c̃1
...

c̃nmin−1













. (5.38)

Finally, according to (5.35) and (5.36), we have the new Hamiltonian matrix

H̃ = ((QΓ)−1)†Γ









ω̄1 0
. . .

0 ω̄nmin









(QΓ)−1 (5.39)

=

























ω̃0

√
κ̃1 0 · · · 0 0√

κ̃1 ω̃1

√
κ̃2 0 0

0
√
κ̃2 ω̃2

. . .
...

...
. . .

. . .
√

κ̃nmin−2 0

0 0
√

κ̃nmin−2 ω̃nmin−2

√

κ̃nmin−1

0 0 · · · 0
√

κ̃nmin−1 ω̃nmin−1

























.

With the new coupling operator J̃ defined (5.34) and new Hamiltonian matrix H̃ defined in (5.39), the realization

(4.17)-(4.20) can be obtained. The proof is completed.

Proof of Lemma 4.8. We again use induction. The formula is clearly true for n = 1. Let us set

Nn =















a0 b1 0

b1 a1
. . .

. . .
. . . bn

0 bn an















and so

Nn+1 =

[

Nn bn+1fn

bn+1f
⊤
n an+1

]

, where fn =













0
...

0

1













∈ C
n+1
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Let us write E11 (M) for the first entry (row 1, column 1) of a matrix M . We deduce from the Schur-Feshbach formula

(5.23) that

E11

(

N−1
n+1

)

= E11

(

(Nn − b2n+1

an+1
fnf

⊤
n )−1

)

.

However, the matrix Nn − (b2n+1/an+1)fnf
⊤
n is identical to Nn except that we replace the last row, last column entry an

with an − (b2n+1/an+1), and if by assumption the relation is true for n we deduce the formula for n+ 1. The formula is

true by induction.
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