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Abstract

The identification of polynomial Nonlinear Autoregressive [Moving Average] models with eXogenous variables (NAR[MA]X) is typically
carried out with incremental model building techniques that progressively select the terms to include in the model. The Model Structure
Selection (MSS) turns out to be the hardest task of the identification process due to the difficulty of correctly evaluating the importance of
a generic term. As a result, classical MSS methods sometimes yield unsatisfactory models, that are unreliable over long-range prediction
horizons. The MSS problem is here recast into a probabilistic framework based on which a randomized algorithm for MSS is derived,
denoted RaMSS. The method introduces a tentative probability distribution over models and progressively updates it by extracting useful
information on the importance of each term from sampled model structures. The proposed method is validated over models with different
characteristics by means of Monte Carlo simulations, which show its advantages over classical and competitor probabilistic MSS methods
in terms of both reliability and computational efficiency.

Key words: Model identification; Nonlinear models; Polynomial NARX models; Randomized algorithms; Regressor selection;
Prediction error minimization methods.

1 Introduction

System identification is the process of building a mathemat-
ical model of a dynamical system from input-output data
[35]. In particular, the black-box identification of nonlinear
systems is a singularly difficult and challenging problem,
since it amounts to solving an optimization problem with a
mixed combinatorial (model structure selection) and contin-
uous (parameter estimation) nature, [34], [19], [6].

We are here mainly concerned with recursive input/output
(I/O) models of the Nonlinear Autoregressive [Moving Av-
erage] with eXogenous variables (NAR[MA]X) class, [21],
where the current value of the system output is obtained as
a nonlinear functional expansion of lagged input and output
(and possibly noise) terms. Polynomial NARX/NARMAX
models have earned widespread interest in view of their
flexibility and representation capabilities, and several ap-
plications are documented (see, e.g., [31], [24], [2], [27],
[12], [9], [22], [36], [28]). Various identification algorithms
have been proposed in the literature for NARX/NARMAX
models, mainly based on the Prediction Error Minimiza-
tion (PEM) framework for parameter estimation, which is in
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fact computationally convenient in view of the linear-in-the-
parameters structure of the model. The main difficulty ad-
dressed by such algorithms is the selection of an appropriate
model structure, considering that functional approximation
using families of basis functions often leads to an exponen-
tial increase in the number of candidate model structures
(curse of dimensionality), a critical issue of polynomial ex-
pansions in particular.

Classical model selection techniques based on information
criteria, such as the AIC (Akaike Information Criterion), the
BIC (Bayesian Information Criterion), and similar indices,
appear to be hardly applicable in the nonlinear framework.
Essentially, these indices weigh the model accuracy against
the model size (number of parameters) and are used in the
linear framework to estimate the correct model size. In the
nonlinear context, no simple relation between model size
and accuracy can be established, because one can construct
many models of the same size with very different regressors
and these can have quite different performances. As a result,
these criteria cannot be used to derive indications on whether
to accept or discard a specific term [27], [11]. Regularization
criteria like the Least Absolute Shrinkage Selection Operator
(LASSO) operate in a similar direction by penalizing the
model size in the model identification process. As such they
are effective in reducing the model size, but not necessarily
in the more difficult task of selecting the appropriate model
structure [10].

An efficient method for tackling the Model Structure Se-
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lection (MSS) task for NARX/NARMAX models was first
suggested in [20], based on an incremental model building
procedure (forward regression). In detail, at each algorithm
iteration a new term is included in the model based on an
importance index, the Error Reduction Ratio (ERR), which
evaluates the local accuracy improvement that can be gained
by adding the term to the current model. The method also
exploits Orthogonal Least Squares (OLS) to decouple the es-
timation of the various regressors. Accordingly, it is denoted
Forward Regression Orthogonal Estimator (FROE). Several
variants of this method have been introduced in the literature
using both forward and backward regression schemes (see,
e.g., [8], [18], [26], [29], [23], [19], [39], [10], [15], [17]).
The combinatorial optimization performed by the FROE in
the space of all possible models follows a greedy scheme,
so that there is no guarantee of convergence to the global
minimum. Several other drawbacks, that may ultimately pre-
vent the convergence towards the correct model, have been
pointed out, e.g., in [1], [7], [29]. They are essentially re-
lated to the inadequacy of the ERR index to express in an
absolute way the importance of a regressor. Indeed, such
measure depends on the specific model to which the regres-
sor is to be added. Notice also that the PEM paradigm guar-
antees the unbiasedness of the parameter estimates only in
ideal conditions, where the system is persistently excited
and the model structure (including the disturbance model)
exactly matches that of the target system, a condition which
is typically not met in the model building process, precisely
because the model is constructed iteratively.

Recently, some novel approaches have been introduced to
address the nonlinear identification problem, based on ran-
domized algorithms [37]. An algorithm based on the Expec-
tation Maximization (EM) approach is presented in [4], that
employs the particle filter to handle nonlinearities and jointly
perform MSS and parameter identification. In [5], both tasks
are dealt with in a unified Bayesian framework, that is suit-
able for describing the uncertainty in both parameters and
structure. Structure and parameter variations are performed
based on a statistical acceptance/rejection mechanism. Pos-
terior distributions are inferred using the Reversible Jump
Markov Chain Monte Carlo (RJMCMC) procedure. The in-
troduction of random sampling favors the convergence to
the global minimum. However, MCMC methods are known
to require a burn-in period for the Markov chain to converge
to the desired stationary distribution, and this calls for many
iterations.

In this paper, a novel iterative randomized algorithm is intro-
duced for the identification of nonlinear systems, based on
a different probabilistic reformulation of the MSS problem.
The method is here described for NARX models only, al-
though the extension to the NARMAX case can be envisaged
(and is a matter of current research endeavors). A Bernoulli
random variable is associated to each regressor. These ran-
dom variables are assumed to be independent and, at each
iteration, the proposed algorithm generates a set of models,
each one being independently extracted from the joint distri-
bution of all regressors. More precisely, an extracted model

will contain a specific regressor if the value taken by the
Bernoulli random variable associated to that regressor is 1.
Then, the parameters of the extracted models are estimated,
and the performances of the parameterized models evalu-
ated in terms of a suitable index based on the prediction and
simulation errors. Finally, the Bernoulli distribution of each
regressor is updated based on the performances of the entire
population of extracted models. More precisely, a regressor
probability is increased if, on average, the extracted mod-
els that contain that specific regressor perform better than
those that do not, and decreased in the opposite case. The
algorithm converges to a limit distribution corresponding to
a specific model structure. Some examples are analyzed by
means of Monte Carlo simulations to show the effectiveness
of the adopted probabilistic formulation, and to illustrate the
improved reliability of the proposed algorithm compared to
currently available randomized methods.

The proposed approach has some features in common with
evolutionary methods, such as genetic algorithms (GA) [32],
in that it exploits randomness in choosing potential regres-
sors and in that it processes populations of models. More
in detail, a GA selects the fittest individuals in the current
population and manipulates them to generate a new popula-
tion, using specific pair-wise operators. In our framework,
the “fitness” of each regressor is evaluated from an aggre-
gate analysis of the whole population. All individuals of the
population contribute to the evaluation of the regressors, ei-
ther reinforcing or discouraging their selection. Then, the
new population is generated from scratch, based on the ag-
gregate information derived from the current population.

A preliminary version of this work is given in [14]. The
present paper significantly extends that contribution both
from a theoretical and a methodological viewpoint. More
specifically, the iterative algorithm is here better formalized
within an appropriately defined probabilistic framework, and
its convergence properties are established. Furthermore, a
more extensive assessment of the performance of the pro-
posed approach has been carried out via numerical exam-
ples taken from the literature. In particular, the behavior of
the algorithm is analyzed in critical operating conditions,
such as when a slowly varying input signal is used or when
the randomized procedure is only allowed to get partial in-
formation on the correct model structure. In the case of a
slowly varying input signal, the possible advantages related
to the use of the simulation error for performance evaluation
purposes are also discussed.

The rest of the paper is organized as follows. Section 2 pro-
vides the basic framework and notation for nonlinear sys-
tem identification of NARX models and briefly reviews the
main approaches in the literature. Section 3 discusses the
crucial issue of how to evaluate the importance of each re-
gressor. The proposed method is illustrated in Section 4 and
then tested in Section 5. Finally, some concluding remarks
are drawn in Section 6.
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2 Preliminaries

2.1 The NARX model class

A NARX model [21] is described by the following in-
put/output recursive equation:

y(k) =f(y(k − 1), . . . , y(k − ny),

u(k − 1), . . . , u(k − nu)) + e(k) (1)

where y(k), u(k), and e(k) are the output, input, and (white)
noise signals, respectively, ny and nu being suitable maxi-
mum lags, and f(·) is an unknown nonlinear function.

The objective of a NARX model identification process is to

find an estimator f̂ for function f based on the available in-
put/output data. Now, provided that f is a continuous func-
tion, it can be approximated using various types of nonlinear
functional expansions, such as piecewise linear models, ra-
tional polynomial models, radial basis function or sigmoidal
neural networks, etc. [34], [19]. All these functional expan-
sions are universal approximators, i.e. they can approximate
f to an arbitrary level of accuracy, provided they are en-
dowed with sufficient degrees of freedom. The most fre-
quently used nonlinear functional expansions are those that
provide a linear combination of nonlinear basis functions,
[34], [19]:

ŷ(k) = f̂(x(k)) =

m
∑

j=1

ϑj ϕj(x(k)), (2)

where x(k) = [y(k − 1) , . . . , y(k − ny) , u(k − 1) , . . . ,
u(k − nu)], ϕj(x(k)), j = 1, . . . ,m, are given nonlinear
basis functions, ϑj are the corresponding coefficients, and
m is the number of basis functions. In vector form:

ŷ(k) = ϕT(k)ϑ, (3)

where ϕ(k) = [ϕ1(x(k)), . . . , ϕm(x(k))]T is the regressor
vector and ϑ = [ϑ1, . . . , ϑm]T the parameter vector. An
often adopted functional expansion is the polynomial one,
where the generic regressor is a monomial in the components
of x(k):

ϕj(x(k)) = y(k − dj1) · · · y(k − dji) · (4)

·u(k − dj,i+1) · · ·u(k − djℓ)

with dj1, . . . , djℓ ∈ N and 0 ≤ ℓ ≤ M , M being the max-
imum degree of the polynomial expansion (the regressor
corresponding to ℓ = 0 is the constant term ϕj = 1). Poly-
nomial NARX models provide a fairly general and flexible
class of models. They are typically more compact models
compared to, e.g., neural networks or support vector ma-
chines, and provide a better and clearer insight on the non-
linearities underlying the system dynamics.

Linear-in-the-parameter models, such as (3), have several
features: i) they allow parameter estimation through simple
algorithms of the Least Squares (LS) family, ii) they are well
structured for adaptive learning, iii) the algorithms for their
estimation have provable convergence conditions, and iv)
they are amenable to a more direct interpretation and easier
usage in control engineering applications, [19].

NARMAX models are a generalization of the NARX class,
such that x(k) also includes past noise terms, therefore al-
lowing for a more flexible representation of the disturbance
model to account for unmodeled dynamics. The inclusion
of a non-trivial disturbance model reduces the bias in the
parameter estimates. However, it also aggravates the com-
putational effort of the MSS task, since the set of candi-
date regressors for the model is typically largely increased.
Furthermore, the parameter estimation algorithms that can
be employed in the presence of the MA part of the model
are more complex and computationally demanding. Besides,
given the significant increase in the modeling capabilities of
nonlinear models compared to linear ones, the role of the
disturbance model is much de-emphasized in the considered
framework. For these reasons, in the sequel we stick to the
simpler NARX class, although the presented theory can also
be extended to NARMAX models.

2.2 Parameter estimation and Student’s t-test

The linear-in-the-parameters structure (3) of the NARX
model allows the use of LS algorithms for parameter estima-
tion. Assume that a data-set {(u(k) , y(k)), k = 1, . . . , N}
of input/output pairs is available for identification purposes.
The model performance is measured in terms of the Mean
Squared Prediction Error (MSPE):

MSPE =
1

N

N
∑

k=1

(y(k)− ŷ(k))2, (5)

where ŷ(k) denotes the one-step-ahead prediction of y(k).
The optimal parameter estimate of a linear regression of type
(3), which minimizes (5), is given by the LS formula:

ϑ̂ =

(

N
∑

k=1

ϕ(k)ϕT(k)

)−1 N
∑

k=1

ϕ(k) y(k) . (6)

The variance of the estimated parameters can be estimated
as:

σ̂2
j ≈ σ̂

2
eVjj , (7)

where σ̂2
e is the estimated noise variance, obtained by scaling

the mean squared residual by a factor N/ (N −m), and Vjj
is the jth diagonal element of V = (

∑N
k=1ϕ(k)ϕ

T(k))−1.

The parameter variances σ̂2
j can be used in a Student’s t-

test to determine the statistical relevance of each regressor.
More precisely, let tα,N−m be the 100(1− α) percentile of
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the Student’s t distribution with N −m degrees of freedom.
Then, the 100(1 − α)% confidence interval for each ϑj is
given by:

[ϑ̂j − σ̂j tα,N−m ; ϑ̂j + σ̂j tα,N−m]. (8)

If the interval defined by expression (8) does not contain
zero, ϑj is not zero with a confidence of 100(1−α)%. Other-
wise, ϑj is not significantly different from zero and the null
hypothesis ϑj = 0 cannot be rejected. In the latter case, the
corresponding regressor ϕj is considered to be statistically
irrelevant for the given model, [16], and therefore redundant.

Concerning the model performance evaluation, it is some-
times useful to resort to the Mean Squared Simulation Error
(MSSE):

MSSE =
1

N

N
∑

k=1

(y(k)− ŷs(k))
2, (9)

where ŷs denotes the simulated output of the model (some-
times referred to as free-run prediction). It is argued in [29]
that using the MSSE as a model evaluation criterion can im-
prove the robustness of the MSS process in partial identifi-
ability conditions. In the sequel, to evaluate model perfor-
mances, we will employ exponential versions of the MSPE
and MSSE indices:

Jp = e−K·MSPE, (10)

Js = e−K·MSSE, (11)

where K is a tuning parameter. Jp and Js provide indices
of the model quality in the [0, 1] range, higher performances
corresponding to values of the criteria close to 1. The expo-
nential transformation is also useful in the MSS task, since
it tends to amplify the differences between models with sim-
ilar performance, so that even small improvements can be
detected. For further generality and in analogy with [3], one
can employ the following combined performance index:

J = αJs + (1− α)Jp, (12)

where α ∈ [0, 1] is a user defined parameter 1 .

2.3 MSS: the FROE algorithm

The most popular MSS algorithms for NARX models is ar-
guably the FROE [20]. This is an iterative model building
procedure, that adds one term per iteration to the model
based on the ERR criterion, which is used to rate the regres-
sor importance. From a computational viewpoint, the FROE
uses OLS to estimate the parameters, exploiting the orthog-
onalization to decouple the regressors.

1 Optimization over α is not carried out, but rather J is optimized
for a given value of α.

The ERR coefficient measures the contribution of each re-
gressor to the explained output variance, and it is computed
by adding the regressor to the current model and evaluating
the corresponding reduction of the MSPE normalized with
respect to the model output variance [20]. At each iteration,
the ERR coefficient is evaluated for all regressors not yet
included in the model, and the regressor ϕj with the highest
ERR (i.e., the regressor whose inclusion most improves the
MSPE), is selected and added to the current model. Notice
that the prediction error variance of the model is monotoni-
cally decreasing with the iterations.

The procedure applies to both NARX and NARMAX mod-
els, in the latter case the I/O structure being identified first
and the model being subsequently complemented with ad-
ditional noise dependent terms.

One of the most critical issues of the FROE is that it does not
take into account the fact that the importance of a regressor
as measured by the ERR index is not an absolute, “global”
value that can be associated to the regressor itself indepen-
dently of the particular model considered, but rather it is a
function of the model with respect to which it is calculated,
[29], which characterizes it as a “local” index. As a conse-
quence, for example, a regressor that is included at an early
stage of the procedure may turn out to be irrelevant when
the algorithm identifies the complete model structure, [15].
Testing the included regressors for redundancy partially mit-
igates the problem [30]. Another strategy that aims at re-
ducing the sensitivity to bad initial choices consists in iter-
ating the FROE starting from different initial regressors, as
done by the iterative orthogonal forward regression (iOFR)
method [17].

Overall, the model building procedure is critically affected
by the fact that the regressor inclusion policy is based on a
local estimate of the regressor importance, as can be given
by the ERR. Furthermore, the FROE algorithm suffers from
the very incremental nature of the model building procedure,
with its inherently local search mechanism in the space of
model structures, which inevitably leads to suboptimal so-
lutions, [20], [19], [29], [5]. Clearly, the MSS task would
be greatly improved if the significance of a term could be
established in absolute, global terms, independently of the
model structure.

2.4 MSS: the RJMCMC-based approach of [5]

A radically different approach to NARX model identification
has been recently presented in [5], that employs a Bayesian
approach to derive posterior distributions for both the model
structure and its parameters by way of a sampling approach.
The Bayesian framework also provides a way to quantify
the uncertainty in the model structure determination and
the parameter estimation task, a feature that is absent in all
deterministic approaches.

The algorithm is based on the RJMCMC procedure, which
extends the Metropolis-Hastings (MH) algorithm to account
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for “jumps” in the parameters dimension, as occur if the
model structure is updated. It is an iterative algorithm, which
at each iteration randomly performs one of the following
actions:

i) birth move: a new regressor is randomly selected from
a predefined pool of candidate terms and proposed for
inclusion in the current model structure.

ii) death move: a regressor in the current model structure
is chosen at random and tested for exclusion.

iii) update move: parameters are updated using a MH ran-
dom walk.

The probabilities of performing birth or death moves are
updated at each iteration, according to the likelihood that
the size of the real model is larger or smaller than the
current model. The proportion between update moves and
birth/death moves is a design parameter. As prescribed by
the MH procedure, a move is first proposed and then the al-
gorithm decides if it can be accepted or not, based on the in-
formation collected at previous iterations. In the NARMAX
case this proposal-acceptance mechanism is repeated twice:
the first time for the process model and the second time for
the noise model. After a burn-in period the algorithm should
converge to a distribution over both the regressors and the
parameters.

The joint identification of both structure and parameters,
while appealing in principle, turns out to be problematic,
especially because the parameter distribution over different
model structures is often quite complex. Indeed, the same
parameter may assume significantly different values depend-
ing on the model structure in which the associated regressor
appears. Figure 1 shows the histogram of the LS estimates
of the same parameter when the rest of the model structure
varies over a given model family.
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Figure 1. Distribution of the estimates of a parameter over different
models that include the corresponding regressor.

3 Evaluating the regressor importance

A crucial step in the MSS task is the evaluation of the im-
portance of the regressors, which ultimately drives the selec-
tion process. In the FROE algorithm the importance of each
term is evaluated at each iteration by means of the ERR cri-
terion. As already commented, the ERR provides a measure
of the regressor importance which is only valid for a spe-
cific model, which makes it a quite erratic index depending
on the considered model. A much more robust and reliable
evaluation of the regressor significance can be obtained by
analyzing a collection of models rather than a single one.

Consider for example the following system:

y(k) = u(k − 1)2 − 0.7y(k − 2)u(k − 1) + e(k), (13)

where u(·) ∼ WGN(0, 0.36) and e(·) ∼ WGN(0, 0.01).
Assume that, based on a set of input/output measurements,
we want to perform MSS over the model family obtained by
including all monomials up to order 2 of the terms y(k−1),
y(k − 2), u(k − 1), which amounts to a family of m = 10
regressors, for a total of 2m = 1024 possible models. The
considered setting is sufficiently small to allow an exhaus-
tive analysis of all the possible models. Accordingly, for
each possible model we can estimate the parameters (with
LS), remove all irrelevant regressors using the Student’s t-
test, and finally evaluate its performance based on Jp. Let

Ip+j be the average performance of the models that con-

tain the jth regressor (after the elimination of redundant

terms), and Ip−j the corresponding average performance of
the remaining models. Then, as shown in Figure 2, index

Ipj = Ip+j − Ip−j provides a much clearer indication of the

presence or absence of the jth regressor, compared to the
ERR coefficient calculated assuming an empty model as ref-
erence (as occurs at the onset of the FROE algorithm). In
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Figure 2. Evaluation of the importance of regressors: Ip vs. ERR.

fact, Ipj is positive only for the two correct terms. On the
other hand, the ERR is positive for all terms, and provides
an incorrect ranking of the terms (the constant term is pre-
ferred over the term y(k − 2)u(k − 1)). Though there is a
chance that this ranking will be corrected at the second iter-
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ation of the FROE, the example still serves the purpose of
illustrating the capabilities of the proposed formulation.

Things get more involved if the input signal employed in the
identification experiment has poor excitation properties. This
is indeed the case when experiment design is not applicable,
and the input-output data-set is an input to the identification
process. Consider, e.g., the case where system (13) is excited
by a low-pass filtered white noise:

u(k) = 1.85u(k − 1)− 0.855u(k − 2) + ξ(k), (14)

where ξ(·) ∼WGN
(

0, 2.28·10−2
)

and the variance of u(k)
is equal to the previous case. Signal (14) is an AR process,
and as such it is persistently exciting (see, e.g., [35]). Ac-
cordingly, if employed for parameter estimation in perfect
model matching conditions (i.e., the model structure coin-
cides with that of the system generating the data), no bias is
experimented. On the other hand, the MSS process is much
more affected by this choice of input signal, as observed in
several works [3], [29]. This occurs because such an input
produces a slowly varying output, causing the difference be-
tween adjacent output samples to be very small. This makes
several regressors look alike and complicates the discrimi-
nation of the correct ones.

The Ip and ERR indices associated to the 10 regressors in
this case are shown in Figure 3. It is immediately evident
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Figure 3. Evaluation of the importance of regressors: Ip, Is, and
ERR.

that the ERR is hardly capable of distinguishing the differ-
ent regressors. In particular, regressors of the same “cluster”
(i.e., of the same type of nonlinearity), have very similar
ERR values: compare, e.g., regressors y(k−1)u(k−1) and
y(k − 2)u(k − 1). By contrast, Ip sharply discards 5 out
of 10 regressors and provides a positive indication for both
correct regressors plus 3 redundant ones. Even better results
are obtained if the same importance index is calculated with
Js in place of Jp, as suggested in [29]. Indeed, as is appar-
ent from Figure 3, the simulation-based index (denoted Is)
provides a sharp and precise classification of the regressors.
This is very much in line with a number of previous results
in the literature (see, e.g., [29], [13], [3]).

4 A randomized approach to MSS

We now propose a novel MSS procedure where the deci-
sion regarding the inclusion of terms is taken based on a
population of models, rather than a single one. MSS is re-
formulated as an optimization problem over a distribution
of models, that is progressively refined using aggregate in-
formation obtained from a set of extracted models.

4.1 Probabilistic reformulation of the MSS problem

LetR := {ϕ1, . . . , ϕm} denote the set of them regressors in
the chosen family, so that the power set of R, i.e. F := 2R,
is the set of all possible model structures. In the following,
we will assume that the true model, denoted f⋆, belongs
to F . Parameter estimation is carried out as explained in
Section 2.2, and statistically irrelevant regressors terms are
removed. The latter operation is accounted for by a function

T : F → F̃ , where the set of non-redundant models F̃ =
{f̃ = T (f), f ∈ F} is a subset of F . For the purpose of
MSS, estimated models are rated with performance index
J : F → R

+ as defined by (12).

According to the introduced notation, the structure selection
problem can be formalized as that of finding the subset of
regressors that maximizes the performance index over all
non-redundant models. Throughout the paper we will as-
sume that there exists only one such model and that this
model coincides with the true one:

f⋆ = argmax
f̃∈F̃

J (f̃), (15)

so that the identification problem is well-posed.

To solve the optimization problem (15), one should in prin-
ciple explore all possible models in f ∈ F , compute the cor-

responding f̃ = T (f), and pick the non-redundant model
with the best performance index. Such an exhaustive enu-
meration approach can hardly be considered viable, given
that the number of possible models is 2m, and m rapidly in-
creases with ny , nu, and the polynomial degree M , a prob-
lem often referred to as “curse of dimensionality”. More
conveniently, the problem can be addressed by reformulat-
ing it in a probabilistic framework. For this purpose, we in-

troduce the discrete random variable Φ̃ which takes values
in F̃ according to a probability distribution PΦ̃. The average

performance of Φ̃ is given by:

E[J (Φ̃)] =
∑

f̃∈F̃

J (f̃)PΦ̃(f̃). (16)

Expression (16) is a convex combination of the performance

indices of all models in F̃ . If we letPΦ̃ vary over all possible

distributions on F̃ , the maximum value of (16) is obtained
by making all probability mass concentrate on the “true”
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model. Thus, the optimization problem

f⋆ = argmax
P

Φ̃

E[J (Φ̃)] (17)

provides the same solution of problem (15).

A key feature of the proposed method is to provide a suitable
parametrization for PΦ̃. More specifically, we associate to
each regressor ϕj a (Bernoulli) random variable ρj , whose
possible outcomes are 1 with probability µj and 0 with prob-
ability 1− µj :

ρj ∼ Be(µj) , (18)

with µj ∈ [0, 1] and j = 1, . . . ,m. We assume that all ran-
dom variables ρj , j = 1, . . . ,m, are independent. In the fol-
lowing, we will refer to µj as the Regressor Inclusion Prob-

ability (RIP) of the jth regressor, and µ = [µ1 . . . µm]T is
the vector of RIPs. Setting µ induces a probability distribu-
tion PΦ over the models in F . Precisely,

PΦ(f) =
∏

j:ϕj∈f

µj

∏

j:ϕj /∈f

(1− µj), (19)

for any f ∈ F . Note that, to each f ∈ F one can associate
a limit distribution with µj = 1 if ϕj ∈ f and 0 otherwise,
j = 1, . . . ,m, such that PΦ(f) = 1. In particular, we will
denote as target limit distribution the one associated to f⋆.

Now, setting Φ̃ = T (Φ) results in a probability distribution
PΦ̃ that is induced by PΦ through T . Formally,

PΦ̃(f̃) =
∑

f∈F : T (f)=f̃

PΦ(f) (20)

with PΦ(f) depending on µ through (19).

Exploiting the previous derivation, one can optimize (17) by
tuning parameters µ1, . . . , µm so as to make PΦ concentrate
onto f⋆. Indeed, since from (20),

PΦ̃(f̃) ≥ PΦ(f̃) ∀f̃ ∈ F̃ , (21)

it holds that, if PΦ(f
⋆) tends to 1, i.e. if the RIP distribution

tends to the target limit one, then PΦ̃(f
⋆) tends to 1 as well,

so that the desired maximization of E[J (Φ̃)] is achieved.

Let

Ij = E[J (Φ̃)|ϕj ∈ Φ̃]− E[J (Φ̃)|ϕj /∈ Φ̃], (22)

j = 1, . . . ,m, where the conditional expectations are set
equal to 0 if the conditioning event has 0 probability to occur.
Index Ij compares the average performance of the (non-

redundant) models containing the jth regressor with that of
the remaining ones. As such, it can be interpreted as a sort
of global measure of the regressor importance, weighted in

probability by the underlying model distribution induced by
µ. More importantly, if the latter is not distant from the
target limit distribution corresponding to f⋆, it can be shown
(see Theorem 1 below) that Ij > 0 iff ϕj ∈ f

⋆.

Theorem 1 Let PΦ be the probability distribution induced
by µ, according to (19). Then, there exists δ ∈ (0, 1) such
that if PΦ(f

⋆) ≥ δ it holds that, for all j ∈ {1, . . . ,m},
Ij > 0 if ϕj ∈ f

⋆ and Ij < 0 otherwise.

Proof See Appendix A.1.

Theorem 1 suggests that the sign of indices Ij , j =
1, . . . ,m, can provide reliable information for setting the µj

parameters to the values of the target limit distribution. In
practice, the expected values in (22) are estimated based on
the empirical mean, and are, hence, affected by uncertainty.
To mitigate this issue an adaptive rule is introduced in Sec-
tion 4.2 for the tuning of the RIPs, to properly compromise
between the already available information on the Ij indices
and that gathered from new model samples. Another key
issue related to Theorem 1 is that the property expressed
therein is only guaranteed when PΦ(f

⋆) is sufficiently
high, and, hence, the RIP distribution is close to the target
limit distribution. However, it will be shown in Section 5
that the result in Theorem 1 is quite conservative in this
respect, since the proposed iterative RIP tuning method is
capable of converging to the target limit distribution even
if PΦ̃(f

⋆) = 0. In other words, the essential information
regarding the correct model structure can be retrieved by
proper processing of partial or incomplete models, that con-
tain some but not all the correct regressors. In general, as
discussed in the next section, indices Ij can provide correct
information regarding the true model regressors even with
relatively low values for PΦ̃(f

⋆).

4.2 The RaMSS algorithm

The probabilistic reformulation discussed in Section 4.1 can
be exploited to construct an iterative randomized procedure
that progressively refines the vector of RIPs µ so as to con-
centrate the mass probability of PΦ (and hence that of PΦ̃)
onto f⋆. The idea is to extract a family of models based on
the current RIP values, and update the latter based on the cu-
mulative information obtained from the models, in the form
of indices Ij , j = 1, . . . ,m. Then, the procedure is repeated
until convergence to a limit distribution corresponding to a
specific model structure.

More in detail, each model extraction amounts to establish-
ing for each regressor ϕj if it belongs to the model, which is
done through an extraction of the Bernoullian random vari-
able ρj associated to the regressor. Once the model structure
has been defined, parameter estimation is carried out with
LS (for computational reasons). The statistical significance
of each parameter is established with a Student’s t-test, and
statistically non-significant regressors are eliminated. If the
model is reduced, its parameters are re-estimated. Finally,
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all resulting models are evaluated based on the mixed index
(12), and the RIPs are modified according to the tuning rule:

µj(i+ 1) = µj(i) + γIj (23)

for j = 1, . . . ,m, where the step size γ > 0 is a design pa-
rameter. In practice, Ij is estimated based on the sampled
expected values of the model performances. In other words,
each individual RIP is increased if the average performance
of the models that include that specific regressor is greater
than the average performance of the remaining ones. Ex-
pression (23) is similar to a gradient-based update rule, al-
though Ij is not directly interpretable as the gradient of the
cost function with respect to µj . Nevertheless, the local con-
vergence to the target limit distribution is still guaranteed
thanks to the following result, which rests on Theorem 1.

Theorem 2 Let µ be such that PΦ(f
⋆) ≥ δ, where δ is a

value for which Theorem 1 holds. Then, the iterative ap-
plication of (23) starting from µ leads to the target limit
distribution.

Proof See Appendix A.2.

Algorithm 1 summarizes the whole model identification pro-
cedure.

Besides the input-output data and the candidate regressor
set R, the algorithm requires several parameters (Np, K,
α, µ, µmin, µmax, ε), which are briefly discussed next. Pa-
rameter Np defines the number of models to be extracted
at each iteration. Clearly, the more models are extracted at
each iteration, the more robust will the regressor evalua-
tion be (at an increased computational cost). In the exam-
ples (see Section 5) a value Np = 100 has been used. The
cost function depends on parameters K and α (see expres-
sions (10-12)). In particular, K determines the sensitivity of
the performance index (higher K values amplify the perfor-
mance difference between models) and ultimately influences
the algorithm stopping (the algorithm stops when the re-
gressor distribution converges, which occurs when no struc-
tural variation results in a significant improvement of J ).
Parameter α determines the weight of the simulation per-
formance index for model assessment. Vector µ describes
the initial regressor distribution. The algorithm is initialized
by setting equal small probabilities for each regressor, say
µj = 1/m, j = 1, . . . ,m, thus encouraging the extraction
of small-sized models at the early steps of the algorithm.
If any information is available regarding the size m◦ of the
“true” model, setting µj = m◦/m results in an initial set
of extracted models with an average number of terms equal
to m◦. Notice that expression (23) does not ensure that pa-
rameters µj remain in the [0, 1] interval. Therefore, suitable
saturation thresholds µmin and µmax must be introduced to
keep the µj’s in the mentioned interval. Accordingly, the up-
per bound µmax is typically set to 1. On the other hand, the
lower bound µmin is more conveniently set to a small non-
zero value, so that the probability that a regressor can be

Algorithm 1 The RaMSS algorithm.

Input: {(u(k) , y(k)), k = 1, . . . , N}, R = {ϕj(k), j =

1, . . . ,m}, Np, K, α, µ, µmin, µmax, ε;

Output: µ

1: repeat

2: for i = 1 to Np do ⊲ Generate models

3: ψ(k) = [ ];

4: τ = 0;

5: for j = 1 to m do ⊲ Generate regressors

6: Extract rj from Be(µj);

7: if rj = 1 then ⊲ Add regressor

8: ψ(k)← [ψT(k) ϕj(k)]
T ;

9: τ ← τ + 1;

10: end if

11: end for

12: ϑ̂← (
∑N

k=1ψ(k)ψ
T(k))−1

∑N
k=1ψ(k) y(k);

13: V ← (
∑N

k=1ψ(k)ψ
T(k))−1;

14: σ̂2
e = 1

N−τ

∑N
k=1(y(k)−ψ

T(k) ϑ̂)2;

15: for h = 1 to τ do ⊲ Remove redundant terms

16: σ̂2
h ← σ̂2

eVhh;

17: if |ϑ̂h| ≤ σ̂h tα,N−τ then

18: Remove regressor ψh(k) from ψ(k);

19: end if

20: end for

21: ϑ̂← (
∑N

k=1ψ(k)ψ
T(k))−1

∑N
k=1ψ(k) y(k);

22: J (i) ← αJ
(i)
p + (1− α)J

(i)
s ;

23: end for

24: for j = 1 to m do ⊲ Update RIPs

25: J + ← 0; n+ ← 0; J− = 0; n− ← 0;

26: for i = 1 to Np do

27: if ϕj ∈ ψ(k) then

28: J + ← J + + J (i); n+ ← n+ + 1;

29: else

30: J− ← J− + J (i); n− ← n− + 1;

31: end if

32: end for

33: µj ← µj + γ
(

J+

max(n+,1) −
J−

max(n−,1)

)

;

34: µj ← max(min(µj , µmax), µmin);

35: end for

36: until min
j=1,...,m

|2µj − 1| ≥ 1− ε ⊲ Stopping criterion

picked out at any iteration can never go to 0. This prevents
the algorithm from completely excluding the regressor (an
event which can sometimes occur at the early stages of the
procedure). Finally, parameter ε defines the stopping crite-
rion. The algorithm stops when the distribution converges to
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a limit distribution. We consider that this has occurred for
all practical purposes if the values of µ do not differ more
than ε/2 from 0 or 1, where ε is a suitably small value.

The step size is a crucial tuning parameter, since too small
a value would lead to an extremely slow convergence rate,
while too large a value might cause instability. For this rea-
son we here employ an adaptive step size solution, in which
we set

γ =
1

10(Jmax − J̄ ) + 0.1
, (24)

where Jmax represents the performance of the best model
structure among all models extracted at the current iteration,
while J̄ is the average value of model performances. The
rationale underlying the adaptive step size (24) is as follows.
If J̄ is far from the performance of the best model, γ is kept
small to take adequately into account the information dis-
persion in the considered population of models. Conversely,
if J̄ is close to Jmax, all extracted models have similar per-
formance, and the parameter correction suggested based on
this information is considered more reliable.

5 Simulation examples

In this section several simulation examples are discussed to
show the effectiveness of the RaMSS algorithm. Consider
the following five systems taken from the literature (S1 from
[39], S2 from [10], S3 from [25], and S4 and S5 from [5]):

S1 : y(k) = −1.7y(k − 1)− 0.8y(k − 2) + u(k − 1)
+ 0.81u(k − 2) + e(k),

with u(k) ∼WUN(−2, 2), e(k) ∼WGN(0, 0.01)

S2 : y(k) = 0.8y(k − 1) + 0.4u(k − 1) + 0.4u2(k − 1)
+ 0.4u3(k − 1) + e(k),

with u(k) ∼WGN(0, 1), e(k) ∼WGN
(

0, 0.332
)

S3 : y(k) = 0.2y3(k − 1) + 0.7y(k − 1)u(k − 1)
+ 0.6u2(k − 2)− 0.7y(k − 2)u2(k − 2)
− 0.5y(k − 2) + e(k),

with u(k) ∼WUN(−1, 1), e(k) ∼WGN(0, 0.01)

S4 : y(k) = 0.7y(k − 1)u(k − 1)− 0.5y(k − 2)
+ 0.6u2(k − 2)− 0.7y(k − 2)u2(k − 2)
+ e(k),

with u(k) ∼WUN(−1, 1), e(k) ∼WGN(0, 0.004)

S5 : y(k) = 0.7y(k − 1)u(k − 1)− 0.5y(k − 2)
+ 0.6u2(k − 2)− 0.7y(k − 2)u2(k − 2)
+ 0.2e(k − 1)− 0.3u(k − 1) e(k − 2)
+ e(k),

with u(k) ∼WUN(−1, 1), e(k) ∼WGN(0, 0.02)

In all examples a white noise input is assumed, either with a
Gaussian distribution WGN

(

η, σ2
)

, where η and σ are the

mean and standard deviation, or a uniform one WUN(a, b)
in the interval [a, b]. In particular, system S4 [5] is directly
used to compare the RaMSS algorithm with the RJMCMC
approach.

All realizations of the listed systems are composed of 500
samples.

In the sequel, parameter α is always assumed 0, except in
Section 5.3, where the effect of different choices for that
parameters is analyzed.

5.1 RaMSS performance and comparative analysis

A candidate regressor set was constructed using all mono-
mials of the input and output signals with maximum lag
equal to 4 and maximum degree equal to 3, for a total of
m = 165 regressors. The RaMSS algorithm was executed
withNp = 100 (number of models to be generated at each it-
eration), and initial RIPs equal to µj = 1/m, j = 1, . . . ,m.
The parameter K in the performance indices Jp and Js was
set to 1, and a purely predictive index has been used for
model evaluation (α = 0 in (12), i.e. J = Jp).

Figure 4 illustrates a typical run of the RaMSS algorithm
with reference to system S4. Notice how the RIPs associated
to the correct regressors are consistently increasing until they
reach 1, while all other RIPs tend eventually to 0. Interest-
ingly enough, a spurious parameter initially displays a larger
RIP than any of the correct regressors, but the algorithm is
capable of rejecting it, when the information concerning the
correct regressors is sufficiently reinforced. The algorithm
is capable of providing the correct model structure after ap-
proximately 20 iterations (all correct terms have µj > 0.5,
while for all the others µj < 0.5). Finally, the average model
size (AMS) in the population of models extracted at each it-
eration is essentially monotonically increasing to the correct
value, implying that small, incomplete models are typically
tested.

To evaluate the consistency of the randomized approach we
repeated the MSS process 100 times for each of the 5 sys-
tems over the same data-set of 500 input/output pairs. The
aggregate results of the RaMSS algorithm are summarized in
Table 1. The MSS process resulted in the exact model struc-
ture in all cases, gathering the necessary information for the
RIP update from less than 5000 models overall, which rep-
resents a tiny fraction of the total number of possible mod-
els (2165). The final values for the AMS show that the al-
gorithm converges to the actual number of regressors in the
model. The small difference between the final AMS and the
true model size is due to the application of a lower bound
greater than 0 on the RIPs (µmin > 0 in Algorithm 1). With
the exception of system S1, the average size of the explored
models is only slightly larger than the true model size. In the
case of system S1, the algorithm explores models of larger
size than the correct one for some time before converging
to the true model, as indicated by the maximum AMS value
in Table 1. A possible reason for this resides in the fact that
the chosen family is largely over-parameterized with respect
to the simple linear structure of system S1.

The FROE algorithm was tested as well on all five systems
using a 1% threshold for regressor inclusion (at each iteration
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Figure 4. A typical evolution of the RaMSS algorithm for system
S4: RIP (top) and AMS (bottom) evolution over 34 iterations.

the most improving regressor is added, provided it improves
the MSPE by at least 1% of the process variance). Only the
model structure of system S2 is correctly identified. Two cor-
rect regressors (y(k − 1) and u(k − 1)) are picked initially
for system S1, but a wrong term selection (y(k − 3)) at the
3rd iteration jeopardizes the MSS process, which ends up in
a model which misses two out of four terms. An incorrect
model structure is returned for S3 as well, with a redundant
constant term and y(k − 1) in place of y3(k − 1). Finally,
for both systems S4 and S5 a constant term is added by the
FROE and the regressor y(k − 2)u2(k − 2) is not included.

Concerning system S4, we can also compare our results di-
rectly with those reported in [5], which documents a similar
simulation experiment. Specifically, the RJMCMC approach
retrieves the correct structure 7 times out of 10 runs, as op-

Table 1
Average performance indicators of the RaMSS algorithm

S1 S2 S3 S4 S5

Correct selection 100% 100% 100% 100% 100%

# of Iterations 42.65 36.00 55.09 37.19 36.13

Elapsed Time [sec] 51.3 57.1 80.4 58.4 57.1

Maximum AMS 5.83 4.01 5.25 4.04 4.06

Final AMS 4.02 4.00 5.11 4.02 4.01

Explored Models 4671 2428 4813 3260 3077

posed to the 100% correct selection obtained by the RaMSS
algorithm. The RaMSS compares favorably also in terms of
the computational effort. Specifically, 3260 model structures
were evaluated on average, which amounts to about 1/6 of
the RJMCMC iterations, as reported in [5].

Notice that the RaMSS is capable of a 100% correct perfor-
mance even if system S4 is modified with the addition of a
colored noise (see system S5).

5.2 RaMSS performance under a slowly varying input sig-
nal

As already observed earlier, the MSS process is generally
sensitive to the excitation characteristics of the input, and
particularly to slowly varying input signals. For this reason
we performed an additional test on systems S2 and S4 using
the low-pass filtered white noise signal (14) as input. More
precisely, a Monte Carlo analysis of the performance of the
FROE and RaMSS algorithms was conducted on 500 differ-
ent data-sets (a single run of the RaMSS was carried out for
each data-set). The FROE was applied with a 1% threshold
on the ERR for regressor acceptance. Also, a Student’s t-test
was performed on the returned model, and redundant terms
were removed from the model, which was then re-estimated
before evaluation. The RaMSS settings are the same used in
the previous subsection. The quality of the selected models
was finally evaluated both in terms of prediction and simu-
lation performance through Jp and Js.

Figure 5 displays the performances of the models returned
by both methods on systems S4 and S2. Concerning S4, on
average the RaMSS improves little on the FROE in terms
of prediction performance, but much more in simulation. It
must be noted that the dispersion of the results is quite large,
a clear sign of the high sensitivity of system S4 to the in-
put signal realization. The results for system S2 are much
more neatly clustered, showing that only the RaMSS algo-
rithm is capable of obtaining models that perform accurately
in simulation as well as prediction, while the FROE gener-
ally returns models that have scarce simulation performance
(some are even unstable). This capability of the RaMSS is
all the more surprising, given than parameter estimation is
performed along the PEM framework and that α = 0 in the
performance evaluation index (during the MSS process).

The iOFR method [17] was tested as well on system S4
to assess if its improved performance over the FROE can
compare with the RaMSS. Figure 6 shows the performance
and size distribution of all possible models obtained with
the iOFR. Apparently, they are all dominated by the model
identified by the RaMSS algorithm. This demonstrates that
the difficulties experienced by the FROE in the MSS task
are not limited to the initial choices but carry on throughout
the whole process.
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5.3 Effects related to using Js for model evaluation in the
RaMSS

Given the significant differences in terms of simulation per-
formance, it is interesting to determine the possible improve-
ments achievable by the RaMSS if α > 0 is used for evalu-
ating models in the MSS process. For this purpose, we ran
another set of Monte Carlo simulations with the following
setup. This time a single input realization was employed
(again, using the low-pass filtered white noise signal (14)),
but the RaMSS was carried out 500 times for each value of
α in the set {0, 0.25, 0.5, 0.75, 1}. The prediction and sim-
ulation performances of the returned models are shown in
Figures 7 and 8, for systems S2 and S4, respectively, and
for increasing values of α. The overlaid percentages quan-
tify the number of trials in which the identified model has
simulation performance less than or equal to 0.5. It appears
that occasionally the RaMSS may return a model with scarce
simulation performance, albeit with optimal predictive char-
acteristics. However, the frequency of occurrence of such

cases decreases with α. Clearly, considering the simulation
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Figure 7. S2 identified model performances for increasing α.
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Figure 8. S4 identified model performances for increasing α.

error in the performance index used for model evaluation
purposes can be beneficial, in that it increases the ability
of the algorithm to discard models with an apparently good
performance, but that do not catch the underlying dynam-
ics of the system. More in detail, the numerical simulations
suggest that α should be set greater than 0.5 for appreciable
results.

5.4 Algorithm performance when PΦ(f
⋆) = 0

One of the nice features of the presented approach is that the
RaMSS is capable of extracting useful information on the
model structure from partially correct models, i.e. models
containing some of (but not all) the correct regressors among
others. To emphasize this property, 1000 Monte Carlo sim-
ulations have been carried out on S4 (with a white noise
input), where the RaMSS has been interrupted before con-
vergence at the first extraction of the correct model (or any
redundant one that includes it). In this way, no informa-
tion is derived directly from the knowledge of the correct
model structure. Figure 9 displays the maximum RIP value
obtained for each regressor over all trials. There is an appar-
ent gap between the values associated to the true regressors
and those of the others, showing that the information ex-
tracted from partial models is overall enough to detect the
true model.
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5.5 A real case study: the Wiener-Hammerstein benchmark

While the RaMSS is designed for model structure selection
it is also important to assess its performance when the model
family does not include the exact system generating the data.
For this purpose we considered a data-set concerning a non-
linear SISO electronic system with a Wiener-Hammerstein
structure, originally documented in [38], which has been
used as a benchmark nonlinear identification problem (see
[33]). A data set of 188000 input-output data is available,
the first 100000 for identification and the remaining for val-
idation purposes. Following [28] we actually used a small
portion of 2000 data only for model structure selection, then
refined the parameter estimation over all the identification
data and finally assessed the identified models over the val-
idation data. The MSS task has been carried out over a can-
didate regressor set of 165 terms, including all monomials
of the input and output signals with maximum lag equal to
4 and maximum degree equal to 3.

The results are reported in Table 2. Using K = 5000, the
RaMSS achieves an MSPE of 1.3309 · 10−6 and an MSSE
of 0.0031 on the validation data, returning a model with 14
terms. For comparison purposes we tested the FROE and
iOFR algorithms on the same problem limiting the model
size to 14 terms. As evident from Table 2 the performances
of the identified models are worse than for the RaMSS (the
model returned by the FROE is even unstable). Actually, to
reach the prediction performances of the RaMSS one has
to allow the FROE to pick 144 terms (almost the entire re-
gressor set), which reveals how such algorithm may have
difficulties in discovering the appropriate terms. The iOFR
cuts this figure to 117 terms, which is still a grossly over-
parameterized model. Finally, note that the computational
time associated to the RaMSS algorithm is much larger com-
pared to the other two algorithms when applied with the
same size limit. However, the iOFR requires more than dou-
ble the time (534 s) to achieve comparable accuracy (with
117 terms). In any case, a computational time of 3.5 minutes
appears largely affordable.

Table 2
Wiener-Hammerstein benchmark: validation performance of the
identified models

Algorithm MSPE MSSE Number Elapsed

of terms time [s]

RaMSS 1.3309 · 10−6 0.0031 14 211

FROE 2.8967 · 10−5
∞ 14 < 1

iOFR 1.9679 · 10−6 0.0106 14 57

As a final remark, the iOFR performance can be greatly im-
proved if a simulation-based criterion is used instead of the
ERR for selecting regressors, similarly to what done in [29].
More specifically, at each iteration the regressor that most
improves the MSSE is included in the model. The resulting
MSS algorithm yields comparable results with the RaMSS,
both in terms of model size and accuracy. However, this
comes at a great increase (almost a factor 10) in the compu-
tational time, due to the costly model simulations required.

6 CONCLUSIONS

A novel randomized algorithm denoted RaMSS is proposed
for nonlinear system identification using the NARX model
representation. More specifically, a probabilistic reformula-
tion of the MSS process is given, that employs a model dis-
tribution defined in terms of the individual probabilities of
each regressor to be included. Models extracted from the
resulting distribution provide structural information that is
exploited to update the mentioned regressor probabilities,
thus adapting the model probability distribution. The local
convergence of this iterative approach to the target limit dis-
tribution associated to the true model is proven in the paper,
under mild conditions.

The performances of the RaMSS have been evaluated on
five different systems using Monte Carlo analysis, the re-
sults showing that the RaMSS outperforms competitor ap-
proaches in terms of reliability of the selection. Compared
to other randomized approaches it is also computationally
more efficient. Moreover, it was shown that the algorithm
is capable of retrieving the correct structure of the process
model with a high percentage of success even with slowly
varying inputs. Finally, the possibility of using a simulation
error-oriented index for evaluation purposes has also been
analyzed.
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A Theorem proofs

A.1 Proof of Theorem 1

Consider first a regressor ϕj ∈ f⋆. Then, the following
lower bound can be determined for Ij , defined in (22):

Ij ≥ J (f
⋆)PΦ(f

⋆)− J j , (A.1)

where J j = max
f̃∈F̃ :ϕj /∈f̃

J (f̃). Indeed, notice that both ex-

pected values in (22) are positive, since J (f̃) > 0, ∀f̃ ∈ F̃ .
Also, they can be bounded as explained in the following. As
for the first term in (22),

E[J (Φ̃)|ϕj ∈ Φ̃] =
∑

f̃∈F̃ :ϕj∈f̃

J (f̃)
PΦ̃(f̃)

µ̃j
,

where µ̃j =
∑

f̃∈F̃ :ϕj∈f̃ PΦ̃(f̃). The RHS of the previous

expression can be bounded as follows:

∑

f̃∈F̃ :ϕj∈f̃

J (f̃)
PΦ̃(f̃)

µ̃j
≥ J (f⋆)

PΦ̃(f
⋆)

µ̃j
≥ J (f⋆)PΦ(f

⋆),

where the second inequality follows from (21) and upon
observing that 0 < µ̃j ≤ 1. This finally leads to:

E[J (Φ̃)|ϕj ∈ Φ̃] ≥ J (f⋆)PΦ(f
⋆). (A.2)

On the other hand, the second term of (22) satisfies the
following inequality:

E[J (Φ̃)|ϕj /∈ Φ̃] ≤ J j . (A.3)

Applying the bounds (A.2) and (A.3) in (22), one obtains
(A.1).

A similar reasoning applies to the case where ϕj /∈ f⋆,
leading to the following bound:

Ij ≤ J̃j − J (f
⋆)PΦ(f

⋆), (A.4)

where J̃j = max
f̃∈F̃ :ϕj∈f̃

J (f̃). Indeed, the first term in (22)

can be bounded from above as follows:

E[J (Φ̃)|ϕj ∈ Φ̃] ≤ J̃j . (A.5)

The second term can be reformulated as

E[J (Φ̃)|ϕj /∈ Φ̃] =
∑

f̃∈F̃ :ϕj /∈f̃

J (f̃)
PΦ̃(f̃)

1− µ̃j
≥ J (f⋆)PΦ(f

⋆).

(A.6)

Applying the bounds (A.5) and (A.6) in (22), one obtains
(A.4).

Now, if we set

δ > max
f̃∈F̃\{f⋆}

J (f̃)

J (f⋆)

and PΦ(f
⋆) ≥ δ, we have that Ij > 0 if ϕj ∈ f⋆, from

bound (A.1). Conversely, Ij < 0 if ϕj /∈ f⋆, from bound
(A.4).

A.2 Proof of Theorem 2

Theorem 2 is proved upon showing that, if PΦ(f
⋆) is suf-

ficiently high, the execution of an algorithm iteration has
the effect of rewarding correct regressors and discouraging
wrong ones, thereby increasing PΦ(f

⋆) further.

Let PΦ(i) denote the probability distribution induced by

µ(i), by way of (19), where i is the iteration index in (23).
Then, if PΦ(i)(f

⋆) ≥ δ, where δ satisfies the conditions of
Theorem 1:

Ij > 0 ∀j : ϕj ∈ f
⋆

Ij < 0 ∀j : ϕj /∈ f
⋆

one obtains that:

µj(i+ 1) = µj(i) + γIj > µj(i) ∀j : ϕj ∈ f
⋆

µj(i+ 1) = µj(i) + γIj < µj(i) ∀j : ϕj /∈ f
⋆.

Now, recalling that

PΦ(i+1)(f
⋆) =

∏

j:ϕj∈f⋆

µj(i+ 1)
∏

j:ϕj /∈f⋆

(1− µj(i+ 1)),

one obtains that

PΦ(i+1)(f
⋆) > PΦ(i)(f

⋆) ≥ δ.

Therefore, the repetitive application of (23) preserves the
signs of Ij , j = 1, . . . ,m, thus leading to the convergence
of the vector of RIPs to the target limit distribution.
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