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Abstract

In this paper, we address distributed convergence to fair allocations of CPU resources for
time-sensitive applications. We propose a novel resource management framework where a cen-
tralized objective for fair allocations is decomposed into a pair of performance-driven recursive
processes for updating: (a) the allocation of computing bandwidth to the applications (resource
adaptation), executed by the resource manager, and (b) the service level of each application
(service-level adaptation), executed by each application independently. We provide conditions
under which the distributed recursive scheme exhibits convergence to solutions of the centralized
objective (i.e., fair allocations). Contrary to prior work on centralized optimization schemes,
the proposed framework exhibits adaptivity and robustness to changes both in the number and
nature of applications, while it assumes minimum information available to both applications and
the resource manager. We finally validate our framework with simulations using the TrueTime
toolbox in MATLAB/Simulink.

1 Introduction

The current trend in embedded computing demands that the number of applications sharing the
same execution platform increases. This is due to the increased capacity of the new hardware
platforms, e.g., through the use of multi-core techniques. An example includes the move from
federated to integrated system architectures in the automotive industry [9].

In such scenarios, the need for better mechanisms for controlling the rate of execution of each
application becomes apparent. To this end, virtualization or resource reservation techniques [1, 17]
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are used. According to these techniques, each reservation is viewed as a virtual processor (or
platform) executing at a fraction of the speed of the physical processor, i.e., the bandwidth of the
reservation. An orthogonal dimension along which the performance of an application can be tuned
is the selection of its service level. It is assumed that an application is able to execute at different
service levels, where a higher service level implies a higher quality-of-service (QoS). Examples include
the adjustable video resolutions and the adjustable sampling rates of a controller.

Typically this problem is solved by using a resource manager (RM), which is in charge of: (a)
assigning virtual processors to the applications, (b) monitoring the use of resources, and (c) assigning
the service level to each application. The goal of the RM is to maximize the overall delivered QoS.
This is often done through centralized optimization and the use of feedback from the applications.

RM’s that are based on the concept of feedback, monitor the progress of the applications and
adjust the virtual platforms based on measurements [10, 21]. In these early approaches, however,
quality adjustment was not considered. Instead, reference [8] proposed an inner loop to control the
resource allocation nested within an outer loop that controls the overall delivered quality.

Optimization-based resource managers have also received considerable attention [15,19]. These
approaches, however, rely on the solution of a centralized optimization that determines both the
amount of assigned resources and the service levels of all applications [3, 19, 20]. In the context of
networking, reference [13] models the service provided by a set of servers to workloads belonging to
different classes as a utility maximization problem. However, there is no notion of adjustment of
the service level of the applications.

An example of a combined use of optimization and feedback was developed in the ACTORS
project [2, 3]. In that project, applications provide a table to the RM describing the required
amount of CPU resources and the expected QoS achieved at each supported service level [2, 3]. In
the multi-core case, applications are partitioned over the cores and the amount of resources is given
for each individual partition. Then, the RM decides the service level of all applications and how the
partitions should be mapped to physical cores using a combination of Integer Linear Programming
(ILP) and first-fit-decrease (FFD) for bin packing.

On-line centralized optimization schemes have several weaknesses. First, the complexity of the
solvers used to implement the RM (such as ILP solvers) grows significantly with the number of
applications. It is impractical to have a RM that optimally assigns resources at the price of a
large consumption of resources by the RM itself. Second, to enable a meaningful formulation of
a cost function in such optimization problems, the RM must compare the quality delivered by
different applications. This comparison is unnatural because the concept of quality is extremely
application dependent. Finally, a proper assignment of service levels requires application knowledge.
In particular, applications must inform the RM about the available service levels and the expected
consumed resources at each service level, increasing significantly communication complexity.

To this end, distributed optimization schemes have recently attracted considerable attention.
Reference [22] considered a cooperative game formulation for job allocation to service providers in
grid computing. Reference [23] proposed a non-cooperative game-theoretic formulation to allocate
computational resources to a given number of tasks in cloud computing. Tasks have full knowledge
of the available resources and try to maximize their own utility function. Similarly, in [11] the load
balancing problem is formulated as a non-cooperative game.

Contrary to the grid computing setup of [22] or the load balancing problem of [11,23], this paper
addresses a lower-level resource allocation problem, that is, the establishment of fair allocations of
CPU bandwidth among time-sensitive applications which adjust their own service levels. Contrary
to the cloud computing setup of [23], a game-theoretic formulation may not easily be motivated
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practically when addressing such lower-level (single node) resource allocation problems. Instead,
we propose a distributed optimization scheme, according to which a centralized objective for fair
allocations is decomposed into a pair of performance-driven recursive processes for updating: (a)
the allocation of computing bandwidth to the applications (resource adaptation), executed by the
RM, and (b) the service level of each application (service-level adaptation), executed by each appli-
cation independently. We provide conditions under which the distributed recursive scheme exhibits
convergence to fair allocations).

The proposed scheme introduces a design technique for allocating computing bandwidth to
time-sensitive applications, i.e., applications whose performance is subject to strict time deadlines,
such as multimedia and control applications. In particular, the proposed scheme: (a) exhibits
linear complexity with the number of applications, (b) drops the assumption that the RM has
knowledge of application details, and (c) exhibits adaptivity and robustness to the number and
nature of applications. This paper extends the theoretical contributions of [6] by addressing global
convergence and asynchronous updates. Furthermore, reference [16] presents the full implementation
framework in Linux.

The paper is organized as follows. Section 2 provides the overall framework, while Section 3
presents the distributed scheme for resource allocation. Section 4 presents the convergence behavior
for the synchronous and asynchronous case. Section 5 presents technical details required for the
derivation of the main results in Section 4. Section 6 provides selective simulations. Finally, Section
7 presents concluding remarks.

Notation:

• Π[a,b] is the projection onto the set [a, b].

• For some finite sequence {x1, x2, ..., xn} in R, define col{x1, x2, ..., xn} to be the column vector
in Rn with entries {x1, x2, ..., xn}.

• For any x ∈ R, define the operator [x]− as follows:

[x]− ,

{
x, x ≤ 0

0, x > 0.

• For any x ∈ Rn and set A ⊂ Rn, define dist(x,A)
.
= infy∈A ‖x − y‖, where ‖ · ‖ denotes the

Euclidean norm.

• For some finite set A, |A| denotes the cardinality of A.

2 Framework & Problem Formulation

2.1 Resource manager & applications

The overall framework is illustrated in Figure 1. A set I of n (time-sensitive) applications are
sharing the same CPU platform. Let i be a representative element of this set. Since we allow
applications to dynamically join or leave, the number n may not be constant over time.

The resources are managed by a RM that allocates resources through a Constant Bandwidth
Server (CBS) [1] with period Pi and budget Qi. Hence, application i is assigned a virtual platform
with bandwidth vi = Qi/Pi corresponding to a fraction of the computing power (or speed) of a single
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Figure 1: Resource management framework.

CPU. Obviously, not all virtual platforms vi are feasible, since their sum cannot exceed the number
κ of available CPU’s. Formally, we define the set of feasible virtual platforms, (v1, . . . , vn), as

V .
=
{
v = (v1, ..., vn) ∈ [0, 1]n :

n∑
i=1

vi ≤ κ
}
. (1)

In this study, the main concern is the computation of the allocation v in real time such that a
centralized objective is achieved. However, we will not be concerned with the exact mapping of this
allocation onto the available cores. Such mapping can be performed by a standard first-fit-decrease
algorithm. Furthermore, in practice, more constraints might be present, especially if applications
are single-threaded (i.e., they may only run on a single core). In this case, the above feasibility
constraint will be a relaxed version of the original problem, however, the forthcoming analysis can
be modified in a straightforward manner to incorporate additional constraints on V.

Each application i ∈ I may change its service level, si. It represents a qualitative indicator of
the delivered quality of application i, assuming sufficient amount of resources vi. Naturally, it can
be represented by a real number si ∈ Si .

= [si,∞) ⊂ R, where si > 0 is the minimum possible
service level of application i. The domain Si inherits the partial ordering from R, according to
which s′i ≤ s′′i implies that the quality delivered at service level s′i is smaller than or equal to the
corresponding quality delivered at s′′i . The physical interpretation of the service level may only
be realized in the context of a specific application. It may represent any quality indicator of the
application, e.g., the inverse of the accuracy of an iterative optimization routine, the details of an
MPEG player and the sampling frequency of a controller. We denote s

.
= col{s1, ..., sn} the service

level profile of all applications evolving within S .
= S1 × ...× Sn.

We implicitly assume here that an application may always increase its service level providing
the necessary resources, however, in practice it will always be constrained due to the constraints
imposed in vi. Note, finally, that the service level si is an internal state of application i, i.e., it can
be written/read only by i.
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2.2 The matching function

To be able to assess the performance of a time-sensitive application, it is necessary to introduce a
performance function. The RM is able to measure at any time t ≥ 0, (a) the soft-deadline of each
application i, Di(t), which is the time duration of its last CPU reservation, and (b) the corresponding
job-response time, Ri(t), which is the time elapsed from the start time to the finishing time of a
job during its last reservation. A natural definition of such performance function for time-sensitive
applications is the following matching function:

fi(t)
.
=
Di(t)

Ri(t)
− 1, (2)

Note that fi ≥ −1, a property that will be used often.
Based on the above definition, we define a perfect matching between Di and Ri to be the

situation at which |fi| ≤ δ, for some small δ > 0. This is the case when application i has the correct
amount of resources. Instead, a scarce matching describes a situation at which fi < −δ, i.e., when
application i does not have enough resources, and an abundant matching describes a situation at
which fi > δ, i.e., when application i has more than enough resources.

2.2.1 Nominal matching function

The matching function depends indirectly on the virtual platform vi and the service level si of
application i. For a large class of applications, we may derive a nominal representation of the
matching function, denoted ϕi, as a function of si and vi as follows:

ϕi(si, vi)
.
= βi

vi
si
− 1, (3)

for some positive constant βi. For example, for multimedia applications, the soft deadline Di can be
considered constant, while the response time can be defined as Ri = Ci/vi, where Ci = αisi is the
execution time per job (at a service level si) and vi is the speed of execution. Similarly, in control
applications, Ri = Ci/vi where Ci denotes nominal time of execution, while the soft deadline Di is
considered inverse proportional to the sampling frequency (or service level) si, i.e., Di = αi/si. Both
cases lead to a matching function with the form of (3).

It is evident that the nominal matching function (3) satisfies the following properties: For some
si, s

′
i ∈ Si and vi, v

′
i ∈ V: (P1) si 6= 0 ⇒ ϕi(si, 0) < 0, that is, the matching must certainly be

scarce if no resources are assigned; (P2) si ≥ s′i ⇒ ϕi(si, vi) ≤ ϕi(s
′
i, vi), if application i lowers its

service level, then the performance should not decrease; (P3) vi ≥ v′i ⇒ ϕi(si, vi) ≥ ϕi(si, v′i), if the
bandwidth of application i decreases, then the performance should not increase.

2.3 Application weights

The RMmay also assign weights to the applications. We introduce the weight λi ∈ (0, 1] to represent
the importance that the RM assigns to application i when adjusting its virtual platform vi. As we
shall see in a forthcoming section, the weights {λi} will determine the direction of adjustment of
the virtual platforms {vi} by the RM. The weights {λi} are considered given and determined by
the RM.
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2.4 Fair allocations & objective

To define fair allocations, for each application i, we introduce the following nominal fairness
measure :

Φi(s,v)
.
=

−(1− v̄i)λi [ϕi(si, vi)]− + v̄i
∑
j 6=i

λj [ϕj(sj , vj)]− , (4)

where v̄i
.
= vi/κ is the normalized virtual platform of i over the number of cores.

The function Φi captures the deficiency in resources of application i compared to the rest of
applications. When application i is not performing well, i.e., ϕi(si, vi) < 0, and its available
resources vi are small, while the rest of applications are performing well, we should expect large
values for Φi.

Definition 2.1 (Fair allocation) For some service level profile s ∈ S, a virtual platform profile
v∗ ∈ V is fair or balanced if Φi(s,v

∗) ≡ 0 for all i ∈ I.

According to Definition 2.1, an allocation of virtual platforms v∗ is fair for application i only
if v∗i 6= 0, since at zero resources ϕi(si, 0) < 0 and Φi(s,v) < 0. Thus, an allocation v∗ is fair
if either (a) [ϕi(si, v

∗
i )]− ≡ 0 for all i or (b) [ϕi(si, v

∗
i )]− < 0 for all i and the ratio of resources

v̄∗i/1−v̄∗i coincides with the corresponding ratio of weighted matching functions. Since [ϕi]− ∈ [−1, 0],
case (b) implies that the resources are balanced with the negative performances. For example, if v̄∗i
is large compared to the rest 1 − v̄∗i , then [ϕi]− has to be sufficiently negative, i.e., application i
should not perform so well compared to the rest. Informally, there could not be application i that
monopolizes the resources at a fair allocation when i performs well and the others do not.

The above fairness definition introduces a potential centralized problem for fair allocations.{
mins∈S,v∈V

∑
i∈I |Φi(s,v)|

s.t. ϕi(si, vi) = 0, ∀i ∈ I. (5)

However, neither the RM nor application i has complete knowledge of the details of the nominal
matching function ϕi(si, vi). Thus, on-line centralized optimization is highly prohibited. Instead,
optimization may only be based upon measurements collected during run-time.

3 Adjustment Dynamics

In this section, the centralized objective of fair allocations is decomposed into a pair of performance-
driven recursive schemes, executed independently by the RM and the applications, thus avoiding
the computation and communication complexity of centralized optimization.

3.1 Resource adaptation

The RM updates the bandwidth v̄i = vi/κ, normalized with respect to the number of cores κ. The
unused bandwidth is vr = κ −∑n

i=1 vi, and its normalized version is v̄r = 1 −∑n
i=1 v̄i. At time

instances tk, k = 0, 1, . . . the RM assigns resources as follows:

1. It measures the matching function fi = fi(tk) for each i ∈ I, and computes [fi(tk)]−.
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2. It updates the normalized resource allocation vector v̄ .
= (v̄1, ..., v̄n) as follows:

v̄i(tk+1) = ΠVi

[
v̄i(tk) + εFi(tk)

]
(6)

for each i = 1, ..., n, where V i .= [0, 1/κ] and Fi(tk) is the observed fairness measure defined as
follows:

Fi(tk)
.
=

−(1− v̄i(tk))λi[fi(tk)]− + v̄i(tk)
∑
j 6=i

λj [fj(tk)]−.

Furthermore, the unused bandwidth is updated according to v̄r(tk+1) = 1−∑n
i=1 v̄i(tk+1).

3. It computes the original bandwidths by setting vi(tk+1) = κ v̄i(tk+1).

4. It updates the time index k ← k + 1 and repeats.

Note that according to the definition of Fi(tk), if there is a deficiency of resources for i, i.e.,
Fi(tk) > 0, then v̄i will increase, otherwise it will decrease. We consider a constant step size ε > 0,
since it provides an adaptive response to changes in the number of applications. In some cases, we
will use vector notation, denoting v̄

.
= col{v̄1, ..., v̄n} which evolves over V .

= V1 × ...× Vn.
Recursion (6) for the adjustment of resources was motivated by the standard replicator dynamics

(cf., [24, Chapter 3]) and in particular the discrete-time equivalent (namely reinforcement learning)
introduced in [7]. Note that the RM time complexity is linear with respect to the number of
applications, as demonstrated in [16].

3.2 Service level adaptation

The RM provides information to each application i through an observation signal Yi(tk), k = 0, 1, ...,
that captures its performance. Applications are designed to adjust their service levels based on Yi(tk)
as follows:

si(tk+1) = ΠSi [si(tk) + εYi(tk)] , i ∈ I. (7)

A natural selection for the observation signal is to set Yi(tk) ≡ fi(tk), i.e., the observed matching
function. In this scenario, the application i will increase its service level if fi(tk) > 0, otherwise
it will decrease it. Alternative observation terms can also be defined with similar properties as
demonstrated in [6].

4 Convergence

In this section, a characterization of the convergence properties of the proposed distributed scheme
is provided in case of (a) synchronous applications’ updates, and (b) asynchronous applications’ up-
dates. Asynchronous updates constitute a form of perturbation of the nominal synchronous behavior
which may alter significantly the performance of the scheme. Perturbations due to measurement
noise are not present, since the RM has direct access to the response time of each application.
However, internal uncertainties of an application may result in small deviations from its nominal
matching function. Due to the small probability density of such events, we will not discuss ro-
bustness with respect to such uncertainties, i.e., for the remainder of the paper, we consider
fi(t) ≡ ϕ(si(t), vi(t)), where the nominal matching function satisfies (3).
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4.1 Feasibility

The first property of the proposed adjustment process is the feasibility of the resulting virtual
platforms.

Proposition 4.1 (Feasible allocations) For sufficiently small step size ε = ε(n) > 0, the update
recursion of projected virtual platforms (6) leads to a sequence of virtual platforms {v(tk)} which
satisfies v(tk) ∈ V for all k = 0, 1, ... as long as v(t0) ∈ V.

Proof. See Appendix A. �

4.2 Minimum guarantees

The adjustment process guarantees starvation avoidance, i.e., a positive amount of resources (at least
ε > 0) to all applications with non-zero weight. Furthermore, it guarantees a balance condition,
according to which, in overloaded CPU’s, no application is able to monopolize resources.

Before stating formally these observations, define:

− L
.
= supi∈I,k∈N |Fi(tk)| <∞,

− λ
.
= mini∈I λi > 0.

Proposition 4.2 (Starvation avoidance) There exists ε∗ = ε∗(n) < 1/(L+1)κ with ε∗ → 0 as
n→∞, such that for any step size ε ≤ ε∗, infk∈N v̄i(tk) > ε for all i.

Proof. See Appendix B. �

Proposition 4.3 (Balance) Pick 0 < ζ ≤ 1/κ such that maxi∈I{βiκζ/si − 1} < 0. For any
ε = ε(ζ) < ζ/L, there exists a number of applications n∗ = n∗(ζ) such that, for any set of applications
I with |I| ≥ n∗ and for any i ∈ I, the following hold:

1. if v̄i(t0) > ζ, then v̄i(tk) ≤ ζ after a finite k;

2. if v̄i(t0) ≤ ζ, then v̄i(tk) ≤ ζ for all k = 1, 2, ....

Also, as ζ → 0, n∗(ζ)→∞ and ζn∗(ζ)→ c, for some positive constant c.

Proposition 4.3 states that if we pick ζ such that v̄i ≤ ζ implies negative matching function for all
i, and we consider a sufficiently large number of applications n ≥ n∗, then all applications will end
up with a virtual platform less than ζ within finite time. Informally, when the CPU is overloaded,
no application can monopolize the available resources. Proof. See Appendix C. �
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4.3 Synchronous convergence

In the forthcoming convergence analysis, we will consider either one of the following hypotheses:

(H1) Let βi/si < 1 for all i.

(H2) Let the number of applications n be sufficiently large such that, there exists 0 < ζ ≤ 1/κ
satisfying properties (1) and (2) of Proposition 4.3 for n∗(ζ) ≤ n.

Hypothesis (H1) corresponds to the case where the applications are highly demanding, while (H2)
corresponds to the case where the assigned resources is small compared to the number of applications.

The asymptotic behavior of recursions (6)–(7) can be associated with the limit points of the
following collection of (nonlinear) ordinary differential equations (ODE):(

ṡi(τ)
˙̄vi(τ)

)
=

(
ϕi(si(τ), κv̄i(τ))
Φi(s(τ), κv̄(τ))

)
+ zi(τ), i ∈ I, (8)

as the step size ε approaches zero, where τ refers to the time-index of the ODE. The vector zi(τ)
represents the vector of minimum length required to drive v̄i(τ) back to V i and si(τ) back to Si.
Define (sτ0(·), v̄τ0(·)) to be the solution of the ODE (8) starting at (s(τ0), v̄(τ0)).

Consider also the linear-time interpolation (si,ε(t), v̄i,ε(t)) of {(si(tk), v̄i(tk))}k, defined as follows:
si,ε(t) = si(tk), and v̄i,ε(t) = v̄i(tk), for every tk ≤ t < tk+1. Introduce also the vector notation
sε

.
= col{si,ε}i and v̄ε

.
= col{v̄i,ε}i.

Theorem 4.1 (Synchronous convergence) The following hold:

1. If either (H1) or (H2) applies, the ODE (8) exhibits stationary points (s∗, v̄∗), which satisfy:

s∗i = si, and

{
Φi(s

∗, κv̄∗) = 0, or
Φi(s

∗, κv̄∗) > 0, v̄∗i = 1/κ
∀i. (9)

2. If either (i) βiκ/si → 0 for all i, or (ii) n→∞, then

(a) any stationary point of the ODE (8) satisfies:

s∗i = si, v̄∗i → min
{1

κ
,

λi∑
j λj

}
, ∀i ∈ I. (10)

(b) (si(tk), v̄i(tk))→ (s∗i , v̄
∗
i ) as k →∞ and ε→ 0.1

Proof. The proof is an immediate implication of a series of propositions presented in detail in
Section 5.1. �

In other words, Theorem 4.1 states that stationary points of the ODE (8) are fair allocations
(except for trivial cases where a virtual platform is limited by the size of the core). Furthermore,
when the CPU is overloaded (i.e., either due to (i) a high demand, or (ii) a large number of
applications), then the unique fair allocation is a global attractor of the distributed process.

1By x(t)→ A for a set A, we mean limt→∞ dist(x(t), A) = 0.
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Figure 2: Visualization of asynchronous applications.

4.4 Asynchronous convergence

So far, we have implicitly assumed that the adjustment dynamics (6)–(7) have synchronized clocks.
However, the virtual platform, vi, indirectly determines application i’s speed of execution. Hence,
the update rate of the service level si varies over time.

Under asynchronous updates, the asymptotic allocation of virtual platforms may not necessarily
be fair to all applications. Consider, for example, the case where an application i does not update
its service level, while all other applications do. Then, under limited available resources, application
i will retain a sufficiently negative matching function fi, while the matching functions of all other
applications steadily approach zero. This situation may lead to application i getting asymptotically
a larger virtual platform independently of its weight λi.

To address asynchronous updates, we first introduce the following notation, also visualized in
Figure 2.

• t denotes the actual run time;

• tik denotes the update instances of application i;

• tm denotes the update instances of the RM;

• k̄(t, i)
.
= {k ∈ N : tik ≤ t < tik+1} denotes the most recent to t update index of application i;

• m̄(t)
.
= {m ∈ N : tm ≤ t < tm+1} denotes the most recent to t update index of the RM;

• ψi(m)
.
= max{m′ ≤ m : ∃ k s.t. tm′ ≤ tik < tm} denotes the most recent update of the RM

after which the last update of application i occurred. For example, in Figure 2, ψi(m̄(t)) =
m̄(ti

k̄
). We set ψi(m) = 0 if there exists no k such that tik < tm.

• Ni(k)
.
= m̄(tik+1) − m̄(tik) is the number of times that the RM has updated within [tik, t

i
k+1),

i.e., between two consecutive updates of application i ∈ I.
Throughout this section, we also admit the design assumption that 1 ≤ Ni(k) ≤ N̄ for all i ∈ I

and k = 0, 1, ..., and for some N̄ ∈ N. In other words, (a) the frequency at which the RM updates
is larger than the frequency of every application i, and (b) each application i updates with positive
frequency. Without loss of generality, we will also assume that t0 = 0, i.e., the RM starts updating
first.

Given the above notation, the update recursion of each application i can be written as follows:

si(t
i
k+1) = ΠSi [si(t

i
k) + εYi(tm̄(tik))], (11)

since the computation of the observation signal Yi(·) of each application i is based upon the most
recent performance measurements taken by the RM at m̄(tik).

10



Theorem 4.2 (Asynchronous convergence) Let application i’s actual recursion be given by
(11), with

Yi(t
i
k) = Ni(k) · Y ′i (tik), (12)

for each i ∈ I, where Y ′i (·) .
= fi(·). Then, the conclusions of Theorem 4.1 continue to hold.

Proof. The proof will be shown in Section 5.2. �

5 Technical Derivation

In this section, the technical proofs of Theorems 4.1–4.2 are presented through a series of proposi-
tions.

5.1 Synchronous convergence (Theorem 4.1)

The proof of Theorem 4.1 is an immediate implication of the following steps: (a) derivation of
the ODE approximation of the adjustment dynamics (6)–(7), provided by Proposition 5.1, (b)
characterization and stability analysis of its stationary points, provided by Propositions 5.2–5.3.

5.1.1 ODE approximation

We begin by establishing a connection between the asymptotic properties of the recursions (6)–(7)
with the locally asymptotically stable sets of the ODE (8).

Proposition 5.1 (Synchronous ODE) Consider the recursions (6)–(7), according to which both
the RM and the applications update synchronously at fixed time instances tk, k = 1, 2, .... If A is
a locally asymptotically stable set in the sense of Lyapunov2 for the ODE (8), then, for any initial
condition (s(t0), v̄(t0)) in the domain of attraction of A, (s(tk), v̄(tk))→ A as k →∞ and ε→ 0.

Proof. The observation signal of the overall recursion is uniformly bounded, and the vector field of
the ODE (8) is a continuous function on its domain. By [12, Theorem 1.1] (which shows convergence
of Euler’s method), we have that for every τ > 0:

lim
ε→0

sup
k=0,...,bτ/εc

‖(sε(tk), v̄ε(tk))− (sτ0(τk), v̄
τ0(τk))‖ = 0,

where (sτ0(τ0), v̄τ0(τ0)) = (s(t0), v̄(t0)) and τk
.
= εk. Given that A is locally asymptotically stable

and the initial condition (s(t0), v̄(t0)) lies within the region of attraction of A, the conclusion follows
in a straightforward manner by the fact that any solution of the ODE (8) with initial condition
(s(t0), v̄(t0)) converges to A. �

2See [14, Definition 3.1].
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5.1.2 Stationary points

In this section, we characterize the stationary points of the ODE (8). In general, if an allocation
(s∗, v̄∗) exists such that φi(s∗i , κv̄

∗
i ) ≡ 0 for all i, then such allocation will be a stationary point

of the ODE (8) and a fair allocation according to Definition 2.1. In situations though where the
CPU is overloaded, there might not be such allocations. The following proposition provides a
characterization of the stationary points in such cases.

Proposition 5.2 (Stationary points) Under either (H1) or (H2), the ODE (8) exhibits station-
ary points satisfying (9). Furthermore, as either (i) βi/si → 0 or (ii) n→∞, any stationary point
satisfies (10).

Proof. If hypothesis (H1) is satisfied, then φi(si, κv̄i) < 0 for all (s, v̄) and τ ≥ 0. In this case, any
stationary point (s∗, v̄∗) satisfies (9) which equivalently implies that: s∗i ≡ si and

v̄∗i = min
{1

κ
,

λiφi(s
∗
i , κv̄

∗
i )∑

j∈I λjφj(s
∗
j , κv̄

∗
i )

}
. (13)

The mapping defined by the second expression of v̄∗i is well defined since φi(s∗i , κv̄
∗
i ) < 0 for all i.

Furthermore, according to Brower’s fixed point theorem [4, Corollary 6.6], it exhibits at least one
fixed point since it is a continuous mapping defined on a compact set. The possibility that v̄∗i = 0
is excluded by Proposition 4.2. Finally, under hypothesis (H1), if we take βi/si → 0 for all i, then
φi(si, vi)→ −1 for all i, which further implies property (10).

If, instead, hypothesis (H2) is satisfied, then, by Proposition 4.3, there exists a finite k∗, such
that, v̄i(tk) ≤ ζ for all k > k∗. By convergence of Euler’s method, φi(sτ0i (τ), κv̄τ0i (τ)) < 0 for all
τ ≥ τk∗

.
= εk∗ and all i. Thus, the fixed-point property (13) also applies. Furthermore, if n → ∞,

then by Proposition (4.3), ζ → 0, and φi(sτ0i (τ), κv̄τ0i (τ))→ −1 uniformly on τ ≥ τk∗ and i, which
implies (10). �

5.1.3 Global Asymptotic Stability (GAS)

The following proposition provides a strong convergence property of the ODE (8).

Proposition 5.3 (GAS) If either (i) βi/si → 0 or (ii) n → ∞, then the unique stationary point
of the ODE (8), satisfying property (10), is globally asymptotically stable in the sense of Lyapunov.

Proof. See Appendix D. �

5.2 Asynchronous convergence (Theorem 4.2)

The proof of Theorem 4.2 is a direct implication of establishing equivalence between the synchronous
and asynchronous update recursions satisfying property (12). In particular, we define equivalence
between two (deterministic) update recursions as follows.

Definition 5.1 (Equivalent updates) Two update recursions of the form (11) and observation
signals {Yi(tik)} and {Y ′i (tik)}, i ∈ I, are equivalent if the corresponding linear-time interpolations
of the updated variables, si,ε(·) and s′i,ε(·), respectively, satisfy

lim
ε→0

sup
t≥0

∣∣si,ε(t)− s′i,ε(t)∣∣ = 0.

12



In other words, two deterministic update recursions of the form (11) are considered equivalent when
the corresponding linear-time interpolations approach each other uniformly in time as ε approaches
zero.

We introduce the following fictitious recursion for each i,

s′i(tm+1) = ΠSi
[
s′i(tm) + εY ′i (tψi(m))

]
, (14)

for all m ≥ 0. This update is synchronized with the time index of the RM and Y ′i (·) .
= fi(·). Note

that the fictitious observation signals are defined at times {tψi(m)}, i.e., at the most recent update
of the RM prior to the last update of application i. Since the RM starts updating first, we also set
Y ′i (tψi(m)) ≡ 0 for all m such that ψi(m) = 0, since no performance measurements are available at
time t = 0.

The following proposition shows that, if we pick appropriately the observation signals of the
(actual) asynchronous update (11), then the asynchronous update becomes equivalent with the
synchronous update of (7).

Proposition 5.4 (Equivalence) For each application i ∈ I, assume that its actual update recur-
sion is given by (11), where Yi(tik) satisfies property (12). Then, the following statements hold:

1. The fictitious synchronous update (14) is equivalent with the asynchronous update (11).

2. The fictitious synchronous update (14) is equivalent with the synchronous update (7).

Proof. See Appendix E. �

6 Experimental Evaluation

6.1 Simulation framework

To test the assignment of virtual platforms vi and service levels si, the resource management frame-
work was implemented in TrueTime [5]. TrueTime is a MATLAB/Simulink-based tool, embedded
within Simulink, that allows the simulation of tasks executing within real-time kernels. TrueTime
implements virtual processors through the Constant Bandwidth Server (CBS) [1]. Also, it is possi-
ble to adjust the CPU time allocated to the running applications (the bandwidth vi), as needed by
our RM. Moreover, TrueTime offers the ability to simulate memory management and protection,
therefore being a perfect match to simulate our resource management framework.

A TrueTime kernel simulates a single CPU that hosts the execution of the RM and the CBS
servers (virtual processors) on top of which the applications are running. The RM observes the
matching function, fi, of each application i and computes the new reservation vi according to (6).
Observe in this case means that the RM is able to read the start and finishing time of each job and
it computes the matching function according to (2). Then, it updates the virtual platforms and
communicates to the applications the observations Yi(tik) ≡ fi(tik) according to (12).

It is here assumed that applications are composed of some time sensitive portions of code, called
jobs. For example, in a media encoder/decoder a job may be the encoding/decoding of an MPEG
frame. Applications are requested to inform the RM about the desired duration of each job. Below
we report a template of the job code. To ease the presentation, we omit some implementation
details, which can be found in [16].

13
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Figure 3: TrueTime simulation of five applications with different weights that update their service
levels.

1 /∗ j is the job index∗/
2 id = signal_job_start(j);
3 adjust = get_performance(j);
4 /∗ body of the job. If service aware, it should
5 modify its resource requirement by adjust ∗/
6 do_work(/∗ parameters ∗/);
7 signal_job_end(j);

As the application runs, it is asked to signal the start and the end of a job. This signaling actions
are performed by invoking respectively signal_job_start and signal_job_end, providing as pa-
rameter the index j of the job. Within the job, the first action is the invocation of the function
get_performance. This function, which is computed by the monitoring infrastructure, returns a
measurement of the service level adjustment required to achieve a perfect matching between the
service level and the virtual platform. Jobs are assumed to be periodic.

To simulate service-aware applications, we developed a synthetic test application, which performs
some computation depending on the service level si. All jobs of the application have deadline Di and
are executed in a forever loop. The execution requirement of each job is a linear function aisi + bi
of the service level. Hence, applications with a large ai are more service-sensitive than applications
with ai close to zero. All applications parameters (Di, ε, ai, bi), which determine the application
behavior and its capacity to adapt, are set at start time. This enables, for example, the coexistence
of fully service-aware applications together with service-unaware ones (with ai = 0).
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6.2 Synchronous updates

In the first scenario, we consider five applications running in a single core and updating syn-
chronously with the RM according to (7). We pick λ1 = 0.9, λ2 = 0.7, λ3 = 0.5, λ4 = 0.3
and λ5 = 0.1. Each application i has ai= 20, bi= 200 and job deadline Di = 1 msec. The initial
service levels for the five applications is set to 10 and the applications update their service levels
every time they perform a new job. Finally, we restrict the maximum assignable bandwidth by the
RM to 90% to simulate the fact that the operating system should have some space to execute on
the same hardware.

Figure 3 reports the quantities measured during the experiment. All applications are gradually
reducing their service levels as expected due to the negative matching function fi. According to
Theorem 4.1, app1 should receive a larger virtual platform compared to the rest of the applications
due to its larger weight. The final allocation of virtual platforms may not correspond exactly to
the values assigned by condition (10), since the conditions partially hold at the beginning of the
simulation when fi are significantly less than 0. Note though that the relative importance of the
applications is preserved due to the synchronous updates.

6.3 Asynchronous updates

In this scenario, we investigate the effect of the asynchronicity in the final allocation of virtual
platforms. We consider three different applications starting at the same time, with weights λ1 = 0.1,
λ2 = 0.5 and λ3 = 0.8. Each application uses resources according to ai= 40, bi= 100. Also they
all have a job deadline Di = 10 msec. Application app1 updates its service level after completing
10 jobs, while app2 and app3 update their service levels after completing 1 job, i.e., asynchronous
updates are introduced. The initial service levels of the three applications are set equal to 10 and
the upper and lower bounds on the service levels are set equal to 0 and 20, respectively.

Figure 4a reports the quantities measured during the experiment, when applications apply the
scheme prescribed in the hypotheses of Theorem 4.2 for asynchronous updates. Each application
employs a constant step-size sequence of ε = 0.03. It can be noticed that the RM is able to maintain
a virtual platform allocation that is consistent with the weights of the applications, while driving
all matching functions to zero.

To strengthen the motivation for asynchronicity management, Figure 4b shows the same simula-
tion when applications do not employ the adjusted observation signal introduced in Equation (12),
and instead they employ the originally introduced observation signal of the synchronous scheme (7).
Due to the slow update rate of app1, it maintains a high service level for longer period, which sub-
sequently leads to maintaining a smaller matching function f1 for longer period. Thus, even though
the weight of app1 is smaller compared to the rest of applications, the RM favors this application
significantly by gradually providing more resources. This simulation demonstrates that the original
scheme of Section 3 may not be fair to applications under asynchronous updates, and it was the
main motivation for the development of the updated dynamics of Theorem 4.2.
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(a) RM deals with asynchronicity.
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Figure 4: TrueTime simulation of three applications that asynchronously update their service levels.
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7 Conclusions

We proposed a distributed management framework for allocating CPU resources to time-sensitive
applications. Given that future computing systems will have to accommodate large number of appli-
cations of different demand levels, resource allocation should not be independent of the applications’
performance (a notion captured through the matching function in this paper). Furthermore, given
that resources are always finite, applications with higher flexibility in adjusting their demands (or
service level) should decrease their service levels in overload cases. This paper proposed a distributed
scheme that incorporates both these two elements, i.e., both measurements of the applications’ per-
formance, and applications’ service-level adjustment.

In this paper, service-level adjustment is performed by prescribing certain dynamics to the
applications. Such prescribed response dynamics was the first step towards the development of
a fully distributed allocation scheme. In a fully distributed setup, where applications are not
prescribed the response dynamics, the question is whether a RM can still be designed that guarantees
fair allocation of resources independently of the type of applications and their adjustment dynamics.

A Proof of Proposition 4.1

Let us first consider the unconstrained version of the adjustment dynamics (6), i.e., take κ = 1.
(We will revisit this assumption later.) In this case, the sum of the normalized virtual platforms
can be expressed as:

n∑
i=1

v̄i(tk+1)− 1 =

( n∑
i=1

v̄i(tk)− 1
)(

1 + ε
n∑
j=1

λj [fj(tk)]−
)
.

Given that −1 ≤ [fi(tk)]− ≤ 0, for sufficiently small ε = ε(n) > 0, the second term of the right-
hand side is positive for all k = 1, 2, .... If

∑n
i=1 v̄i(tk) ≤ 1, then

∑n
i=1 v̄i(tk+1) ≤ 1. Thus, for a

bounded number of applications, we may pick sufficiently small ε = ε(n) such that v̄i(tk) ∈ [0, 1]
and

∑n
i=1 v̄i(tk) ≤ 1 for all k = 1, 2, ....

We consider now the constrained version of the recursion (6). For some time tk, let us assume
that

∑n
i=1 v̄i(tk) ≤ 1, i.e., the allocation is feasible. When we update this allocation using (6), the

projection operator is activated only if v̄i(tk) + εFi(tk) > 1/κ for some i. Given that
∑n

i=1 v̄i(tk) +
εFi(tk) ≤ 1 (as we showed for the unconstrained dynamics), this quantity may only reduce after
applying the projection operator. Thus, feasibility is also preserved under the constrained recursion.

B Proof of Proposition 4.2

First, note that
∑n

j=1 λj [fj(tk)]− ≥ −n, for all k = 0, 1, .... According to (6), the incremental
difference of v̄i for the unconstrained dynamics, satisfies:

∆v̄i(k)
.
= v̄i(tk+1)− v̄i(tk) ≥ ε (−λi[fi(tk)]− − nv̄i(tk)) . (15)

Define the set Γi(ε)
.
= {v̄i ∈ Vi : v̄i ∈ (ε, (L + 1)ε]}, and pick ε sufficiently small such that ε <

1/(L+1)κ. Since supk∈N |Fi(tk)| ≤ L, in order for v̄i(tk) to approach zero, there should be a time
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k∗ at which v̄i(tk∗) ∈ Γi(ε). Assuming that v̄i(tk) ∈ Γi(ε), if we pick ε sufficiently small, we have
[fi(tk)]− ≤ βiκ(L+ 1)ε/si − 1. Thus, the right-hand side of (15) further satisfies:

ε (−λi[fi(tk)]− − nv̄i(tk)) ≥ ελ− (βiκ/si + n)(L+ 1)ε2.

For a given number of applications n, there exists ε∗ = ε∗(n) < 1/(L+1)κ with ε∗(n)→ 0 as n→∞,
such that, if ε < ε∗, then the above quantity is strictly positive, i.e., ∆v̄i(k) > 0. Since under the
unconstrained dynamics the lower bound of the projection operator is not reached, the same will
also hold for the constrained dynamics. From (15), we conclude that if v̄i(t0) > ε for all i, then
infk∈N v̄i(tk) ≥ ε ∀i.

C Proof of Proposition 4.3

At time instance k, let I ′ ⊆ I be the set of applications with resources greater than ζ, i.e., I ′ .=
{i ∈ I : v̄i(tk) > ζ}. Pick 0 < ζ ≤ 1/κ such that γ∗ .= maxI\I′{βiκζ/si−1} < 0, i.e., all applications
in I\I ′ have a negative matching function. Pick also ε < ζ/L.

(1) For any i ∈ I ′, the incremental difference of v̄i at k is defined as ∆v̄i(k)
.
= v̄i(tk+1)− v̄i(tk) =

εFi(tk), assuming that the projection operator in (6) is not activated. Note that for all j ∈ I\I ′,
v̄j(tk) ≤ ζ and ∑

j∈I\i
λj [fj(tk)]− ≤

( ∑
j∈I\I′

λj

)
γ∗ ≤

∣∣I\I ′∣∣ γ∗λ.
Hence, according to the definition of Fi(tk), we have:

∆v̄i(k) ≤ −ε(1− v̄i(tk))λi[fi(tk)]− + ε
∣∣I\I ′∣∣ γ∗v̄i(tk)λ

≤ ε(1− ζ) + ε(n− b(1− ζ)/ζc)ζγ∗λ,

where the last inequality results from the fact that −λi[fi(tk)]− ≤ 1, v̄i(tk) > ζ, 1− v̄i(tk) < 1− ζ
and |I\I ′| ≥ n− b(1− ζ)/ζc. For any

n ≥ n∗1(ζ)
.
=

⌈⌊
(1− ζ)

ζ

⌋
+
−2 + ζ

ζγ∗λ

⌉
,

we have −ζ < −εL ≤ ∆v̄i(k) ≤ −ε < 0. In this case, the initial assumption that the projection
operator in (6) is not activated is also valid. Furthermore, according to [18, Theorem 5.1], the
process v̄i(tk) will enter [0, ζ] within finite k.

(2) For any application i ∈ I\I ′, the unconstrained incremental difference ∆v̄i(k)
.
= εFi(tk) at

time k satisfies:
∆v̄i(k) ≤ ε(1− v̄i(tk)) + εv̄i(tk)γ

∗λ(n− b(1− ζ)/ζc − 1),

since −λi[fi(tk)]− ≤ 1, ∑
j 6=i

λj [fj(tk)]− ≤
∑

j∈I\I′\i
λ[fj(tk)]− ≤ γ∗λ

∣∣I\I ′\i∣∣ ,
and |I\I ′\i| ≥ (n − b(1− ζ)/ζc − 1). In order for the process v̄i(tk) to exit the set [0, ζ], there
should be a time instance k∗ at which v̄i(tk∗) ∈ (ζ − εL, ζ]. For any v̄i(tk) ∈ (ζ − εL, ζ], we have:

∆v̄i(k) ≤ ε(1− ζ + εL) + ε(ζ − εL)γ∗λ(n− b(1− ζ)/ζc − 1).
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If the number of applications satisfy:

n ≥ n∗2(ζ)
.
=

⌈
1 +

⌊
1− ζ
ζ

⌋
+
−2 + ζ − εL
(ζ − εL)γ∗λ

⌉
,

then, ∆v̄i(k) ≤ −ε < 0, which implies that the unconstrained process {v̄i(tk)} will not exit [0, ζ] for
all future times. The same will hold for the constrained process.

Finally, by defining n∗(ζ)
.
= max{n∗1, n∗2}, both statements (1) and (2) will hold for any n ≥ n∗.

Note that n∗ →∞ and ζn∗ → c as ζ → 0, for some c > 0.

D Proof of Proposition 5.3

Let (s∗, v̄∗) be a stationary point of the ODE (8), where by property (9) satisfies s∗i = si. Define the
function W (s, v̄)

.
= 1/2(v̄ − v̄∗)T(v̄ − v̄∗) ≥ 0. The derivative of W with respect to time τ satisfies:

Ẇ (s, v̄) =
n∑
i=1

(v̄i − v̄∗i )TΦi(s, κv̄). (16)

Note that at the stationary point and for every i, either one of the following holds: (a) v̄∗i = 1/κ
and Φi(s

∗, κv̄∗) > 0, or (b) Φi(s
∗, κv̄∗) = 0. Note that case (a) implies (v̄i − v̄∗i )TΦi(s, κv̄) < 0

for all v̄i < 1/κ and all si > si. Thus, in case condition (a) is satisfied for some applications, the
corresponding additive terms in (16) will be strictly negative. Without loss of generality, it suffices
to investigate the derivative (16) when all applications satisfy condition (b). Furthermore, it suffices
to consider the case where si ≡ s∗i = si, since under hypothesis (i) φi(si, vi) < 0 for all si ∈ Si,
vi ∈ Vi and i, and under hypothesis (ii) there exists a time τ∗ after which φi(si(τ), κv̄i(τ)) < 0, for all
τ ≥ τ∗ (according to Proposition 4.3 and convergence of Euler’s method shown in Proposition 5.1).
Thus, for all τ ≥ τ∗, we have:

Ẇ (s∗, v̄)

=
n∑
i=1

(v̄i − v̄∗i ) (Φi(s
∗, κv̄)− Φi(s

∗, κv̄∗))

= −
( n∑
j=1

λj

) n∑
i=1

|v̄i − v̄∗i |2 −
n∑
i=1

λiβiκ

s∗i
|v̄i − v̄∗i |2

−
n∑
i=1

(v̄i − v̄∗i )
n∑
j=1

λjβjκ

s∗j

(
v̄∗i v̄
∗
j − v̄iv̄j

)
.

We denote by I1, I2 and I3 the three terms of the r.h.s. of the above expression, i.e., Ẇ (s∗, v̄) ≡
I1 + I2 + I3. Note that: I1 = −(

∑n
j=1 λj) ‖v̄ − v̄∗‖22, |I2| ≤ maxi∈I{βiκ/s∗i }‖v̄ − v̄∗‖22 and

|I3| ≤
n∑
i=1

|v̄i − v̄∗i |
n∑
j=1

λjβjκ

s∗j

∣∣v̄iv̄j − v̄∗i v̄∗j ∣∣
≤

n∑
i=1

|v̄i − v̄∗i |
n∑
j=1

λjβjκ

s∗j

( ∣∣v̄j − v̄∗j ∣∣ v̄i + |v̄i − v̄∗i | v̄∗j
)

≤ sup
i,τ≥τ∗

{v̄i}max
j∈I

{λjβjκ
s∗j

}
‖v̄ − v̄∗‖21+
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max
j∈I

{λjβjκ
s∗j

} n∑
j=1

v̄∗j ‖v̄ − v̄∗‖22.

Given that ‖v̄ − v̄∗‖1 ≤
√
n‖v̄ − v̄∗‖2,

∑n
j=1 v̄

∗
j ≤ 1 and λi ≤ 1 for all i, we have

|I3| ≤ max
j∈I

{βjκ
s∗j

}(
n sup
i,τ≥τ∗

{v̄i}+ 1

)
‖v̄ − v̄∗‖22.

Under hypothesis (i), i.e., as βi/si → 0 for all i, and for some fixed size of applications n, the first
term, I1, dominates in size the term I2 + I3 uniformly in time. Since I1 < 0 for any v̄ 6= v̄∗, we have
that Ẇ (s∗, v̄) < 0 for any v̄ 6= v̄∗. Under hypothesis (ii), i.e., as n → ∞, Proposition 4.3 implies
that n supi,τ≥τ∗{v̄i(τ)} ≤ ζn(ζ) approaches a positive constant. Thus, the first term I1 dominates
in size the term I2 + I3 when n→∞. In this case, Ẇ (s∗, v̄) < 0 for any v̄ 6= v̄∗ such that v̄i ≤ ζ for
all i. Thus, under either (i) or (ii), and by [14, Theorem 3.2], we conclude that the unique stationary
point (s∗, v̄∗), satisfying (10), is globally asymptotically stable.

E Proof of Proposition 5.4

(1) Let us first consider the unconstrained versions of the actual (11) and fictitious update (14). In
this case, the corresponding linear-time interpolations satisfy for any run time t > 0:

si,ε(t)− s′i,ε(t)
= si(t

i
k̄(t,i))− s′i(tm̄(t))

=

k̄(t,i)−1∑
k=0

εYi(tm̄(tik))−
m̄(t)−1∑
m=0

εY ′i (tψi(m))

=

k̄(t,i)−1∑
k=0

εYi(tm̄(tik))−
m̄(t)−1∑

m=m̄(ti
k̄(t,i)−1

)+1

εY ′i (tψi(m))

−
k̄(t,i)−2∑
k=0

εNi(k)Y ′i (tψi(m̄(tik+1))),

where the third summation of the r.h.s. summarizes all the observation terms of the RM up to
time index m̄(ti

k̄(t,i)−1
), and the second summation summarizes all the remaining terms, i.e., from

m̄(ti
k̄(t,i)−1

) + 1 until m̄(t) − 1. For example, in Figure 2, the third summation corresponds to all
time indices up to m̄(ti

k̄−1
), while the second summation corresponds to the remaining terms up to

time m̄(t) − 1. Since 1 ≤ Ni(k) ≤ N̄ , the latter terms may be zero to maximum N̄ in numbers.
Also, ψi(m̄(tik+1)) = m̄(tik). Thus, we have:

si,ε(t)− s′i,ε(t) =
k̄(t,i)−2∑
k=0

ε
(
Yi(tm̄(tik))−Ni(k)Y ′i (tm̄(tik))

)
+

εYi(tm̄(ti
k̄(t,i)−1

))−
m̄(t)−1∑

m=m̄(ti
k̄(t,i)−1

)+1

εY ′i (tψi(m)).
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From the last expression, we observe that if Yi(tik) = Ni(k)Y ′i (tik), then, the first term in the
r.h.s. becomes identically zero. Given that supi,t≥0 |Y ′i (t)| ≤ `, for some ` > 0, we also have
supi,t≥0 |Yi(t)| ≤ `N̄ . Hence,

|si,ε(t)− s′i,ε(t)| ≤ ε`N̄ + ε
(
m̄(t)− m̄(tik̄(t,i)−1)− 1

)
`

≤ ε`(3N̄ − 1),

which approaches zero as ε→ 0 uniformly in time. Thus, we showed that si,ε(·) and s′i,ε(·) are equiv-
alent according to Definition 5.1. Since the corresponding projected versions are simply truncations
to the set Si ≡ [si,∞), the same conclusion applies for the projected versions.

(2) Let {s′′i (tik)}k denote the service level recursion under the synchronous update (7) in order
to distinguish it from the actual asynchronous one (11). Let us also denote s′′i,ε(·) the corresponding
linear-time interpolation. Similarly to the proof of part (1), it suffices to consider the unconstrained
recursions. For every i and t ≥ 0, and since 1 ≤ Ni(k) ≤ N̄ , we have:

|s′i,ε(t)− s′′i,ε(t)| = |s′i(tψi(m̄(t)))− s′′i (tm̄(t))|

≤
m̄(t)−1∑

k=ψi(m̄(t))

ε|Y ′i (tk)|

≤ ε(m̄(t)− ψi(m̄(t))` ≤ εN̄`,

which implies equivalence of s′i,ε(·) and s′′i,ε(·).
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