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Abstract

The paper provides results regarding the computational complexity of hybrid system iden-
tification. More precisely, we focus on the estimation of piecewise affine (PWA) maps from
input-output data and analyze the complexity of computing a global minimizer of the error.
Previous work showed that a global solution could be obtained for continuous PWA maps with
a worst-case complexity exponential in the number of data. In this paper, we show how global
optimality can be reached for a slightly more general class of possibly discontinuous PWA
maps with a complexity only polynomial in the number of data, however with an exponential
complexity with respect to the data dimension. This result is obtained via an analysis of the
intrinsic classification subproblem of associating the data points to the different modes. In
addition, we prove that the problem is NP-hard, and thus that the exponential complexity in
the dimension is a natural expectation for any exact algorithm.

1 Introduction

Hybrid system identification aims at estimating a model of a system switching between different
operating modes from input-output data. More precisely, most of the literature considers autore-
gressive with external input (ARX) models to cast the problem as a regression one [1]. Then,
two cases can be distinguished: switching regression, where the system arbitrarily switches from
one mode to another, and piecewise affine (PWA) regression, where the switches depend on the
regressors. A number of methods with satisfactory performance in practice are now available for
these problems [2]. However, compared with linear system identification, a major weakness of these
methods is their lack of guarantees.

For the particular case of noiseless data, the algebraic method [3] provides a solution to switching
regression with a small number of modes. However, the quality of the estimates quickly degrades
with the increase of the noise level. A few sparsity-based methods [4, 5] also offer guarantees in the
noiseless case, but these are subject to a condition on both the data and the sought solution. In the
presence of noise, most methods consider the minimization of the error of the model over the data
[1]. While this does not necessarily yields the best predictive model (due to issues like identifiability,
persistence of excitation and access to a limited amount of data), obtaining statistical guarantees
with such an approach has a long history in statistics and system identification [6]. However, such
results are not available for hybrid systems. This is probably due to the fact that minimizing the
error of a hybrid model is a difficult nonconvex optimization problem involving the simultaneous
classification of the data points into modes and the regression of a submodel for each mode. Thus,
theoretical guarantees could only be obtained under the rather strong assumption that this problem
has been solved to global optimality and most of the literature [7, 8, 9, 10, 11, 12] focuses on this
issue with heuristics of various degrees of accuracy and computational efficiency. Many recent
works [4, 13, 14, 15, 16, 5] try to avoid local minima by considering convex formulations, but
these only yield optimality with respect to a relaxation of the original problem. Global optimality
in the presence of noise was only reached in [17] for a particular class of continuous PWA maps
known as hinging-hyperplanes by reformulating the problem as a mixed-integer program solved by
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branch-and-bound techniques. However, such optimization problems are NP-hard [18] and branch-
and-bound algorithms have a worst-case complexity exponential in the number of integer variables,
here proportional to the number of data and the number of modes.

Inspired by related clustering problems, such as the minimization of the sum of squared distances
between points and their group centers, we could minimize the hybrid model error by enumerating
all possible classifications of the points. But the number of classifications is exponential in the
number of data. Conversely, the other approach enumerating a sample of values for the real
variables of the problem is exponential in the dimension and can only offer an approximate solution.

Overall, the literature does not provide a method that can guarantee both the optimality and
the computability of a global minimizer of the error, while the computational complexity of this
problem remains unknown and cannot be deduced from the NP-hardness of classical clustering
problems [19] (see [18, 20] for an introduction to computational complexity and its relevance to
control theory).

Contribution The paper provides two results regarding the computational complexity of PWA
regression, and more precisely for the problem of finding a global minimizer of the error of a PWA
model, formalized in Sect. 2. First, we show in Sect. 3 that the problem is NP-hard. Then, we show
in Sect. 4 that, for any fixed dimension of the data, an exact solution can be computed in time
polynomial in the number of data via an enumeration of all possible classifications. To obtain this
result and avoid the exponential growth of the number of classifications with the number of data,
we show that, in PWA regression, the classification of the data points is highly constrained and
the number of classifications to test can be limited. The price to pay for this gain is an exponential
complexity with respect to the data dimension and the number of modes. Future work is outlined
in Sect. 5.

Notations We use the indicator function 1E of an event E that is 1 if the event occurs and 0
otherwise. We define sign(u) = 1 if u ≥ 0 and −1 otherwise. Given a set of labels Q ⊂ Z and a set
of N points, a labeling of these points is any q ∈ QN . We use j = argmaxk∈Q u(k) as a shorthand
for j = min{l ∈ argmaxk∈Q u(k)}. Given two sets, X and Y, YX is the set of functions from X
to Y.

2 Problem formulation

As in most works, we concentrate on discrete-time PWARX system identification considered as a
PWA regression problem with regression vectors xi = [yi−1, . . . , yi−ny , ui, . . . , ui−nu ]T ∈ X built
from past inputs ui−k and outputs yi−k. Since we are interested in computational complexity
results, we restrain the data to rational, digitally representable, values and set X ⊆ Qd. The
outputs are assumed to be generated by a PWA system f as yi = f(xi) + vi, where vi is a noise
term. More precisely, PWA models can be expressed via a set of n affine submodels and a function
h : X → Q = {1, . . . , n} determining the active submodel: f(x) = wT

h(x)x, where x = [xT , 1]T .
We call the function h a classifier as it classifies the data points in the different modes. Typically,

PWA systems are defined with h implementing a polyhedral partition of X , with modes possibly
spanning unions of polyhedra. However, in most of the literature on PWA system identification
[1, 7, 8, 9, 16], h is estimated within the family of linear classifiers

H = {h ∈ QX : h(x) = argmax
k∈Q

hT
k x + bk, hk ∈ Qd, bk ∈ Q}, (1)

based on a set of n linear functions and for which a mode spanning a union of polyhedra must
be modeled as several modes with similar affine submodels. For PWA maps with n = 2 modes,
h is a binary classifier for which it is common to consider its output in Q = {−1,+1} instead of
{1, 2}. Such a binary classifier can be obtained by taking the sign of a real-valued function. If this
function is linear (or affine), then we obtain a linear classifier, which is equivalent to a separating
hyperplane dividing the input space X in two half-spaces. In this case, the function class H can
be defined as

H = {h ∈ QX : h(x) = sign(hTx + b), h ∈ Qd, b ∈ Q} (2)
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with a single set of parameters (h, b) corresponding to the normal to the hyperplane and the
offset from the origin. An equivalence with the multi-class formulation in (1) is obtained by using
h = h1 − h2 and b = b1 − b2.

In this paper, we consider the common estimation approach of minimizing the error on N data
pairs (xi, yi) ∈ X ×Q, measured pointwise by a loss function ` : Q→ Q+ as

`(yi − f(xi)) =
∑
j∈Q

1h(xi)=j `(yi −wT
j xi).

More precisely, we focus on well-posed instances of the problem where N is significantly larger
than the dimension d and the number of modes n is given. Indeed, with free n the problem is
ill-posed as the solution is only defined up to a trade-off between the number of modes and the
model accuracy. For the converse well-posed approach that minimizes n for a given error bound,
a complexity analysis can be found in [21]. Under these assumptions, the problem is as follows.

Problem 1 (Error-minimizing PWA regression). Given a data set {(xi, yi)}Ni=1 ∈ (X ×Q)N with
X ⊆ Qd and an integer n ∈ [2, N/(d+ 1)], find a global solution to

min
w∈Qn(d+1),h∈H

1

N

N∑
i=1

∑
j∈Q

1h(xi)=j `(yi −wT
j xi), (3)

where w = (wj)j∈Q is the concatenation of all parameter vectors and H ⊂ QX is the set of
n-category linear classifiers as in (1) or (2).

The following analyzes the time complexity of Problem 1 under the classical model of com-
putation known as a Turing machine [18]. The time complexity of a problem is the lowest time
complexity of an algorithm solving any instance of that problem, where the time complexity of
an algorithm is the maximal number of steps occuring in the computation of the corresponding
Turing machine program. The loss function ` is assumed to be computable in polynomial time
throughout the paper.

3 NP-hardness

This section contains the proof of the following NP-hardness result, where an NP-hard problem is
one that is at least as hard as any problem from the class NP of nondeterministic polynomial time
decision problems [18] (NP is the class of all decision problems for which a solution can be certified
in polynomial time).

Theorem 1. With a loss function ` such that `(e) = 0⇔ e = 0, Problem 1 is NP-hard.

The proof uses a reduction from the partition problem, known to be NP-complete [18], i.e., a
problem that is both NP-hard and in NP.

Problem 2 (Partition). Given a multiset (a set with possibly multiple instances of its elements)
of d positive integers, S = {s1, . . . , sd}, decide whether there is a multisubset S1 ⊂ S such that∑

si∈S1

si =
∑

si∈S\S1

si.

More precisely, we will reduce Problem 2 to the decision form of Problem 1.

Problem 3 (Decision form of PWA regression). Given a data set {(xi, yi)}Ni=1 ∈ (X × Q)N , an
integer n ∈ [2, N/(d+1)] and a threshold ε ≥ 0, decide whether there is a pair (w, h) ∈ Qn(d+1)×H
such that

1

N

N∑
i=1

∑
j∈Q

1h(xi)=j `(yi −wT
j xi) ≤ ε, (4)

where H is the set of linear classifiers as in (1) or (2) and the loss function ` is such that `(e) =
0⇔ e = 0.
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Proposition 1. Problem 3 is NP-complete.

Proof. Since given a candidate pair (w, h) the condition (4) can be verified in polynomial time,
Problem 3 is in NP. Then, the proof of its NP-completeness proceeds by showing that the Partition
Problem 2 has an affirmative answer if and only if Problem 3 with ε = 0 has an affirmative answer.

Given an instance of Problem 2, let N = 2d+ 3, n = 2, Q = {−1, 1} and build a data set with

(xi, yi) =



(siei, si), if 1 ≤ i ≤ d
(−si−dei−d, si−d), if d < i ≤ 2d

(s, 0), if i = 2d+ 1

(−s, 0), if i = 2d+ 2

(0, 0), if i = 2d+ 3,

where ek is the kth unit vector of the canonical basis for Qd and s =
∑d

k=1 skek. If Problem 2 has
an affirmative answer, then, using the notations of (2), we can set

w1 =
∑
k∈I1

ek −
∑

k∈I−1

ek, w−1 = −w1, h =
∑
k∈I1

ek −
∑

k∈I−1

ek, b = 0,

where ek = [eTk , 0]T , I1 is the set of indexes of the elements of S in S1 and I−1 = {1, . . . , d} \ I1.
This gives

wT
1 xi =



si = yi, if i ≤ d and i ∈ I1
−si, if i ≤ d and i ∈ I−1
si−d = yi, if i > d and i− d ∈ I−1
−si−d, if i > d and i− d ∈ I1∑

k∈I1 sk −
∑

k∈I−1
sk = 0 = yi, if i = 2d+ 1∑

k∈I−1
sk −

∑
k∈I1 sk = 0 = yi, if i = 2d+ 2

0 = yi, if i = 2d+ 3

and we can similarly show that

wT
−1xi = yi, if i ∈ I−1 ∨ i− d ∈ I1 ∨ i > 2d,

while hTxi is positive if i ∈ I1 ∨ i − d ∈ I−1 and negative if i ∈ I−1 ∨ i − d ∈ I1. Therefore, for
all points, wT

h(xi)
xi = yi, i = 1, . . . , 2d+ 3, and the cost function of Problem 1 is zero, yielding an

affirmative answer for Problem 3.
It remains to prove that if (4) holds with ε = 0, then Problem 2 has an affirmative answer. To

see this, note that due to ` being positive, a zero cost implies a zero loss for all data points. Thus,
by `(e) = 0⇔ e = 0, if (4) holds with ε = 0,

wT
h(xi)

xi = yi, i = 1, . . . , 2d+ 3. (5)

Also note that if h(xi) = h(xi+d) = 1 for some i ≤ d, we have siw1,i +w1,d+1 = −siw1,i +w1,d+1 =
si. This is only possible if si = 0, which is not the case (otherwise we can simply remove si without
influencing the partition problem), or if w1,d+1 = si. The latter is impossible if h(xi) = h(xi+d)
since h is a linear classifier that must return the same category for all points on the line segment
between xi and xi+d, which includes the origin x2d+3 = 0 and thus would imply by (5) that
wT

1 x2d+3 = w1,d+1 = y2d+3 = 0. As a consequence, h(xi) = h(xi+d) = 1 cannot hold, and since
we can similarly show that h(xi) = h(xi+d) = −1 cannot hold, we have h(xi) 6= h(xi+d) for all
i ≤ d. Hence, (5) leads to

wT
1 xi 6= yi ⇒ wT

1 xd+i = yd+i, i = 1, . . . , d (6)

wT
−1xi 6= yi ⇒ wT

−1xd+i = yd+i, i = 1, . . . , d. (7)
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Let Î1 = {i ∈ {1, . . . , d} : wT
1 xi = yi} and Î−1 = {1, . . . , d} \ Î1. Then, if h(x2d+3) = +1,

w1,d+1 = 0 and for all i ≤ d, wT
1 xi = wisi. Therefore, for all i ∈ Î1, wi = 1, while for all i ∈ Î−1,

(6) gives wT
1 xd+i = yd+i, i.e., −wisi = si and wi = −1. This leads to

wT
1 x2d+1 =

∑
i∈Î1

si −
∑
i∈Î−1

si = −wT
1 x2d+2.

Thus, if wT
1 x2d+1 = y2d+1 = 0 or wT

1 x2d+2 = y2d+2 = 0, a valid partition in the sense of
Problem 2 is obtained with S1 = {si}i∈Î1 . In addition, if wT

1 x2d+1 6= 0 and wT
1 x2d+2 6= 0,

then by (5), wT
−1x2d+1 = wT

−1x2d+2 = 0, which by construction implies that w−1,d+1 = 0. In

this case, we redefine Î−1 = {i ∈ {1, . . . , d} : wT
−1xi = yi} and Î1 = {1, . . . , d} \ Î−1 to obtain

w−1,i = 1 for all i ∈ Î−1 and w−1,i = −1 for all i ∈ Î1, resulting also in a valid partition by the
fact that wT

−1x2d+2 =
∑

i∈Î1 si −
∑

i∈Î−1
si = 0. Since a similar reasoning applies to the case

h(x2d+3) = −1 by symmetry (substituting w−1 for w1), a zero cost, i.e., (4) with ε = 0, always
implies an affirmative answer to Problem 2.

Proof of Theorem 1. Since the decision form of Problem 1 with `(e) = 0⇔ e = 0, i.e., Problem 3,
is NP-complete, Problem 1 with such a loss function is NP-hard (solving Problem 1 also yields the
answer to Problem 3 and thus it is at least as hard as Problem 3).

4 Polynomial complexity in the number of data

We now state the result regarding the polynomial complexity of Problem 1 with respect to N under
the following assumptions, the first of which holds almost surely for randomly drawn data points,
while the second one holds for instance for `(e) = e2 with a linear time complexity T (N) = Ø(N)
[22].

Assumption 1. The points {xi}Ni=1 are in general position, i.e., no hyperplane of Qd contains
more than d points.

Assumption 2. Given {(xi, yi)}Ni=1 ∈ (X × Q)N , the problem minv∈Qd+1

∑N
i=1 `(yi − vTxi) has

a polynomial time complexity T (N) for any fixed integer d ≥ 1.

Theorem 2. For any fixed number of modes n and dimension d, under Assumptions 1–2, the time
complexity of Problem 1 is no more than polynomial in the number of data N and in the order of
T (N)Ø

(
Ndn(n−1)/2).

The proof of Theorem 2 relies on the existence of exact algorithms with complexity polynomial
in N for the binary case (n = 2, Proposition 4) and the multi-class case (n ≥ 3, Corollary 1).
These algorithms are based on a reduction of Problem 1 to a combinatorial search in two steps.
The first step reduces the problem to a classification one. Indeed, Problem 1 can be reformulated
as the search for the classifier h, since by fixing h, the optimal parameter vectors {wj}j∈Q can be
obtained by solving n independent linear regression problems on the subsets of data resulting from
the classification by h, which, by Assumption 2, can be performed in the polynomial time T (N).
This yields the following reformulation of the problem.

Proposition 2. Problem 1 is equivalent to

min
w∈Qn(d+1),h∈H

1

N

N∑
i=1

∑
j∈Q

1h(xi)=j `
(
yi −wT

j xi

)
(8)

s.t. ∀j ∈ Q, wj ∈ argmin
v∈Qd+1

N∑
i=1

1h(xi)=j`(yi − vTxi).

The second step reduces the estimation of h to a combinatorial problem solved in Ø
(
Ndn(n−1)/2)

operations, as detailed in Sect. 4.1–4.2 for n = 2 and in Sect. 4.3 for n ≥ 3.
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4.1 Finding the optimal classification

We reduce the complexity of searching for the classifier by considering all possible linear classifi-
cations instead of all possible linear classifiers. In other words, we project the class H of classifiers
onto the set of points S = {xi}Ni=1 to reduce a continuous search to a combinatorial problem. This
is in line with the techniques used in statistical learning theory [23] for the different purpose of
computing error bounds for infinite function classes. Thus, we introduce definitions from this field.

Definition 1 (Projection onto a set). The projection of a set of classifiers H ⊂ QX onto S =
{xi}Ni=1, denoted HS, is the set of all labelings of S that can be produced by a classifier in H:

HS = {(h(x1), . . . , h(xN )) : h ∈ H} ⊆ QN .

Definition 2 (Growth function). The growth function ΠH(N) of H at N is the maximal number
of labelings of N points that can be produced by classifiers from H:

ΠH(N) = sup
S∈XN

|HS |.

We now focus on binary PWA maps and thus on binary classifiers with output in Q = {−1,+1}.
For such classifiers, we obviously have ΠH(N) ≤ 2N for all N . By further restricting H to affine
classifiers as in (2), results from statistical learning theory (see, e.g., [23]) provide the tighter bound

ΠH(N) ≤
(

eN
d+1

)d+1

, which is polynomial in N and thus promising from the viewpoint of global

optimization. However, its proof is not constructive and does not provide an explicit algorithm
for enumerating all the labelings. The following theorem, though leading to a looser bound on
the growth function, offers a constructive scheme to compute the projection HS , which is what we
need in order to test all the labelings in HS for global optimization.

Theorem 3. The growth function of the class of binary affine classifiers of Qd, H in (2), is
bounded for any N > d by

ΠH(N) ≤ 2d+1

(
N
d

)
= Ø(Nd)

and, for any set S of N points in general position, an algorithm builds the projection HS in Ø(Nd)
time.

The proof of Theorem 3 relies on the following proposition, which is illustrated by Fig. 1.

Proposition 3. For any binary affine classifier h in H (2) and any finite set of N > d points
S = {xi}Ni=1 in general position, there is a subset of points Sh ⊂ S of cardinality |Sh| = d and a
separating hyperplane of parameters (hSh

, bSh
) passing through the points in Sh, i.e.,

∀x ∈ Sh, hT
Sh

x + bSh
= 0, with ‖hSh

‖ = 1, (9)

which yields the same classification of S in the sense that

∀xi ∈ S \ Sh, h(xi) = sign(hT
Sh

xi + bSh
). (10)

Proof sketch. For all classifiers h with separating hyperplanes passing through d points of S,
the statement is obvious. For the others passing through p points with 0 ≤ p < d, they can be
transformed to pass through additional points without changing the classification of the remaining
points. If p = 0, it suffices to translate the hyperplane to the closest point. If 0 < p < d, the
hyperplane can be rotated with a plane of rotation that leaves unchanged the subspace spanned by
the p points and a minimal angle yielding a rotated hyperplane passing through p′ > p points, where
p′ ≤ d by the general position assumption. Iterating this scheme until p = d yields a hyperplane
passing through the points in Sh of parameters (hSh

, bSh
) satisfying (9) and (10).

We can now prove Theorem 3.

6
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Figure 1: The hyperplane H (plain line) produces the same classification (into + and ◦) as the
hyperplane HS (dashed line) obtained by a translation (dotted line) and a rotation of H such that
it passes through exactly 2 points of S (∗).

Proof of Theorem 3. For any labeling q in HS , there is a classifier h ∈ H that produces this
labeling. Applying Proposition 3 to h, we obtain another classifier hSh

of parameters (hSh
, bSh

)
that passes through the points in Sh and that agrees with h on S\Sh. Let q̂ ∈ {−1,+1}N be defined
by q̂i = hSh

(xi), i = 1, . . . , N . Then, we generate 2d labelings by setting its entries q̂i with i ∈ Sh to
all the 2d combinations of signs (recall that |Sh| = d). By construction, there is no labeling of S that
agrees with q on S\Sh other than these 2d labelings. Since this holds for any q ∈ HS , the cardinality
of HS cannot be larger than 2d times the number of hyperplanes passing through d points of S.
Since each subset Sh ⊂ S of cardinality d gives rise to two hyperplanes of opposite orientations,

the number of such hyperplanes is 2

(
N
d

)
and we have ΠH(N) ≤ 2d+1

(
N
d

)
< 2d+1Nd

d! = Ø(Nd).

In addition, there is an algorithm that enumerates all the subsets Sh in

(
N
d

)
iterations and builds

HS by computing a hyperplane passing through the points1 in Sh and the corresponding 2d+1

labelings at each iteration. Since these inner computations can be performed in constant time with

respect to N , the algorithm has a time complexity in the order of

(
N
d

)
= Ø(Nd).

4.2 Global optimization of binary PWA models

We can use the results above to reduce the complexity of Problem 1 in the binary case, considered in
the following in its equivalent form (8) from Proposition 2. First, note that the cost function in (8)
only depends on h, since all feasible values of w for a given h yield the same cost. Furthermore,
the cost does not depend on the exact value of h, but only on the resulting classification, i.e.,
on h(xi), i = 1, . . . , N . Thus, given a global solution h∗ to (8), any classifier h producing the
same classification yields the same cost function value and hence is also a global solution. Thus,
the problem reduces to the search for the correct classification q ∈ HS , whose complexity is in
Ø(ΠH(N)) and bounded by Theorem 3. In addition, for the purpose of binary PWA regression,
opposite labelings q and −q are equivalent and can be pruned from HS . This is due to the
symmetry of the cost function (8). Algorithm 1 provides a solution to Problem 1 for the binary
case while taking this symmetry into account.

1The normal h of a hyperplane {x : hTx+ b = 0} passing through d points {xi}di=1 in Qd can be computed as a

unit vector in the null space of [x2 − x1, . . . , xd − x1]T , while the offset is given by b = −hTxi for any of the xi’s.
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Algorithm 1 Exact solution to Problem 1 for n = 2

Input: A data set {(xi, yi)}Ni=1 ⊂ (Qd ×Q)N .
Initialize S ← {xi}Ni=1 and J∗ ← +∞.
for all Sh ⊂ S such that |Sh| = d do

Compute the parameters (hSh
, bSh

) of a hyperplane passing through the points in Sh.
Classify the data points: S1 = {xi ∈ S : hT

Sh
xi+bSh

> 0}, S2 = {xi ∈ S : hT
Sh

xi+bSh
< 0}.

for all classification of Sh into S1
h and S2

h do

Set wj ∈ argmin
v∈Qd+1

∑
xi∈Sj∪Sj

h

`(yi − vTxi), j = 1, 2,

J =
1

N

2∑
j=1

∑
xi∈Sj∪Sj

h

`(yi −wT
j xi),

and update the best solution (J∗ ← J,w∗ ← [wT
1 ,w

T
2 ]T ,h∗ ← hSh

, b∗ ← bSh
) if J < J∗.

end for
end for
return w∗,h∗, b∗.

Proposition 4. Under Assumptions 1–2, Algorithm 1 exactly solves Problem 1 for n = 2 and any
fixed d with a polynomial complexity in the order of T (N)Ø(Nd).

Proof. By following a similar path as for Theorem 3, Algorithm 1 can be proved to test all linear
classifications of the data points up to symmetric ones. Since Algorithm 1 computes a solution in
terms of w that is feasible for (8) for each of these classifications, the value of J coincides with the
cost function of (8) for a particular h. By the symmetry of this cost function with respect to h
and the fact that it only depends on h via its values at the data points, Algorithm 1 computes all
possible values of the cost function, including the exact global optimum of (8), and returns a global
minimizer. Thus, by Proposition 2, it also solves Problem 1. The total number of iterations of

Algorithm 1 is 2d
(
N
d

)
= Ø(Nd) and, under Assumption 2, these iterations only involve operations

computed in polynomial time in the order of T (N), hence the overall time complexity in the order
of T (N)Ø(Nd).

4.3 Multi-class extension

For n > 2, the boundary between 2 modes j and k > j implemented by a linear classifier from H in
(1) is a hyperplane of equation hjk(x) = hj(x)−hk(x) = 0, i.e., based on the difference of the two

functions hj(x) = hT
j x+ bj and hk(x) = hT

k x+ bk. Based on these hyperplanes, the classification
rule can be written as

h(x) = argmax
k∈Q

hk(x) = j, such that

{
hjk(x) ≥ 0, ∀k > j,

hkj(x) < 0, ∀k < j.

Based on these facts, we can build an algorithm to recover all possible classifications consistent
with a linear classification in the sense of (1).

Theorem 4. For the set of multi-class linear classifiers of Qd, H in (1), the growth function is
bounded for any N > d by

ΠH(N) ≤
[
2d+1

(
N
d

)]n(n−1)/2
= Ø(Ndn(n−1)/2)

and, for any set S of N points of Qd in general position, an algorithm builds HS in Ø(Ndn(n−1)/2)
time.

8



Proof. Any classification produced by a classifier from (1) can be computed from the signs of the
nH = n(n− 1)/2 functions hjk = hj −hk, 1 ≤ j < k ≤ n, corresponding to the pairwise separating
hyperplanes. For any S, for each of these hyperplanes, Proposition 3 provides an equivalent binary

classifier which must be one from the 2

(
N
d

)
hyperplanes passing through d points Sjk of S. The

number of sets of nH such hyperplanes is 2nH

(
N
d

)nH

. Since these classifiers cannot produce all the

2nHd classifications of the nHd points in the sets Sjk, we must also take these into account so that

the number of classifications of S is upper bounded by |HS | ≤ 2nHd2nH

(
N
d

)nH

= Ø(NdnH ). This

upper bound holds for any S, and thus also applies to the growth function. Finally, an algorithm
that makes explicit all the classifications mentioned above to build HS can be constructed in a
recursive manner, with one classification per iteration and thus with a similar number of iterations,
each one including computations performed in constant time.

Theorem 4 implies the following for PWA regression.

Corollary 1. Under Assumptions 1–2, a global solution to Problem 1 with n ≥ 3 can be computed
with a polynomial complexity in the order of T (N)Ø(Ndn(n−1)/2).

5 Conclusions

The paper discussed complexity issues for PWA regression and showed that i) the global minimiza-
tion of the error is NP-hard in general, and ii) for fixed number of modes and data dimension, an
exact solution can be obtained in time polynomial in the number of data. The proof of NP-hardness
also implies that the problem remains NP-hard even when the number of modes is fixed to 2, which
indicates that the complexity is mostly due to the data dimension. An open issue concerns the
conditions under which a PWA system generates trajectories satisfying the general position as-
sumption used by the polynomial-time algorithm. Future work will also focus on the extension of
the results to the case of arbitrarily switched systems and heuristics inspired by the polynomial-
time algorithm, whose practical application remains limited by an exponential complexity in the
dimension.
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