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Abstract

This paper is concerned with a leader-follower stochastic differential game with asymmetric information, where the information
available to the follower is based on some sub-σ-algebra of that available to the leader. Such kind of game problem has wide
applications in finance, economics and management engineering such as newsvendor problems, cooperative advertising and
pricing problems. Stochastic maximum principles and verification theorems with partial information are obtained, to represent
the Stackelberg equilibrium. As applications, a linear-quadratic leader-follower stochastic differential game with asymmetric
information is studied. It is shown that the open-loop Stackelberg equilibrium admits a state feedback representation if some
system of Riccati equations is solvable.

Key words: leader-follower stochastic differential game; asymmetric information; filtering; conditional mean-field forward-
backward stochastic differential equation; partial information linear-quadratic control; open-loop Stackelberg equilibrium.

1 Introduction

Throughout this paper, we denote by R
n the Euclidean

space of n-dimensional vectors, by R
n×d the space of

n × d matrices, by Sn the space of n × n symmetric
matrices. 〈·, ·〉 and |·| denote the scalar product and norm
in the Euclidean space, respectively. ⊤ appearing in the
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superscripts denotes the transpose of a matrix. fx, fxx
denote the partial derivative and twice partial derivative
with respect to x for a differentiable function f .

1.1 Motivation

First, we present two examples which motivate us to
study leader-follower stochastic differential games with
asymmetric information in this paper.

Example 1.1: (Continuous Time Newsvendor Problem)
Let D(·) be the demand rate for some product in a mar-
ket, which satisfies the stochastic differential equation
(SDE)

{
dD(t) = a(µ−D(t))dt + σdW (t) + σ̃W̃ (t),

D(0) = d0 ∈ R,

where a, µ, σ, σ̃ are constants. We consider the market
consisting of a manufacturer selling the product to end
users through a retailer. At time t, the retailer chooses
an order rate q(t) for the product and decides its retail
price R(t), and is offered a wholesale price w(t) by the
manufacturer. We assume that items can be salvaged at
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unit price S ≥ 0, and that items cannot be stored, i.e.,
they must be sold instantly or salvaged.

The retailer will obtain an expected profit

J1
(
q(·), R(·), w(·)

)
= E

∫ T

0

[
(R(t)− S)min[D(t), q(t)]

− (w(t) − S)q(t)
]
dt.

When the manufacturer has a fixed production cost per
unit M ≥ 0, he will get an expected profit

J2
(
q(·), R(·), w(·)

)
= E

∫ T

0

(w(t) −M)q(t)dt.

Let Ft denote the σ-algebra generated by Brownian mo-

tions W (s), W̃ (s), 0 ≤ s ≤ t. Intuitively Ft contains all
the information up to time t. We assume that the infor-
mation G1,t,G2,t available to the retailer and the manu-
facturer at time t, respectively, are both sub-σ-algebras
of Ft. Moreover, the information available to them at
time t is asymmetric and G1,t ⊆ G2,t. This can be ex-
plained from the practical application’s aspect. Specifi-
cally, the manufacturer chooses a wholesale price w(t) at
time t, which is a G2,t-adapted stochastic process. And
the retailer chooses an order rate q(t) and a retail price
R(t) at time t, which are G1,t-adapted stochastic pro-
cesses. For any w(·), to select a G1,t-adapted process pair
(q∗(·), R∗(·)) for the retailer such that

J1(q
∗(·), R∗(·), w(·))

≡ J1
(
q∗(·;w(·)), R∗(·;w(·)), w(·)

)

= max
q(·),R(·)

J1(q(·), R(·), w(·)),

and then to select a G2,t-adapted process w∗(·) for the
manufacturer such that

J2(q
∗(·), R∗(·), w∗(·))

≡ J2
(
q∗(·;w∗(·)), R∗(·;w∗(·)), w∗(·)

)

= max
w(·)

J2
(
q∗(·;w(·)), R∗(·;w(·)), w(·)

)
,

formulates a leader-follower stochastic differential game
with asymmetric information. In this setting, the re-
tailer is the follower and the manufacturer is the leader.
Any process triple (q∗(·), R∗(·), w∗(·)) satisfying the
above two equalities is called an open-loop Stackelberg
equilibrium. In Øksendal et al. [15], a time-dependent
newsvendor problem with time-delayed information
is solved, based on stochastic differential game (with
jump-diffusion) approach. But it can not cover our
model.

Example 1.2: (Cooperative Advertising and Pricing
Problem) In supply chain management of the market,

there are usually two members, the manufacturer and
the retailer. Cooperative advertising is an important
instrument for aligning manufacturer and retailer de-
cisions. Specifically, we introduce the following SDE,
which is the generalization of Sethi’s stochastic sales-
advertising model introduced by He et al. [8]:





dx(t) =
[
ρu(t)

√
1− x(t) − δx(t)

]
dt

+ σ(x(t))dW (t) + σ̃(x(t))dW̃ (t),

x(0) = x0 ∈ [0, 1],

where x(t) represents the awareness share, i.e., the num-
ber of aware (or informed) customers expressed as a frac-
tion of the total market at time t, ρ is a response con-
stant, and δ determines the rate at which potential con-
sumers are lost. σ(x), σ̃(x) are functions satisfying usual
conditions.

At time t ≥ 0, the manufacturer decides on the wholesale
price w(t) and the cooperative participation rate θ(t),
and the retailer decides the channel’s total advertising
effort level u(t) and the retail price p(t). The sequence
of the events is as follows. At time t, first, the manufac-
turer announces his wholesale price w(t) and participa-
tion rate θ(t). Second, the retailer sets his retail price p(t)
and advertising effort rate u(t) as his optimal response
to the manufacturer’s announced decisions. The retailer
accomplishes this by solving an optimization problem to
maximize his expected profit

J1(w(·), θ(·), u(·), p(·))

= E

∫ T

0

e−rt
[
(p(t)− w(t))D(p(t))x(t)

− (1− θ(t))u2(t)
]
dt,

where r > 0 is the discount rate and 0 ≤ D(p) ≤ 1 is the
demand function satisfying usual conditions. The manu-
facturer anticipates the retailer’s reaction functions and
incorporates them into his optimal control problem, and
solves for his wholesale price policy w(t) and the partic-
ipation rate policy θ(t) at time t. Therefore, the manu-
facturer’s optimization problem is to maximize his ex-
pected profit

J2(w(·), θ(·), u(·), p(·))

= E

∫ T

0

e−rt
[
(w(t) − c)D(p(t))x(t) − θ(t)u2(t)

]
dt,

where c ≥ 0 is the constant unit production cost.

Define Ft := σ{W (s), 0 ≤ s ≤ t}
∨
σ{W̃ (s), 0 ≤ s ≤ t}.

In the game setting, we assume that the information
G1,t,G2,t available to the retailer and the manufacturer
at time t, respectively, are both sub-σ-algebras of the
complete information filtration Ft. Moreover, the in-
formation available at time t to them is asymmetric
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and G1,t ⊆ G2,t. In detail, the wholesale price w(·) and
the participation rate θ(·) of the manufacturer are G2,t-
adapted processes. For the retailer, his advertising ef-
fort level u(·) and retail price p(·) are to be G1,t-adapted
processes. For any (w(·), θ(·)), first, to select a suitable
process pair (u∗(·), p∗(·)) for the retailer such that

J1(w(·), θ(·), u
∗(·), p∗(·))

≡ J1
(
w(·), θ(·), u∗(·; (w(·), θ(·)), p∗(·; (w(·), θ(·))

)

= max
u(·),p(·)≥0

J1(w(·), θ(·), u(·), p(·)),

and then to select a suitable process pair (w∗(·), θ∗(·))
for the manufacturer such that

J2(w
∗(·), θ∗(·), u∗(·), p∗(·))

≡ J2

(
w

∗(·), θ∗(·), u∗(·; (w∗(·), θ∗(·)), p∗(·; (w∗(·), θ∗(·))
)

= max
w(·),0≤θ(·)≤1

J2

(
w(·), θ(·), u∗(·; (w(·), θ(·)),

p
∗(·; (w(·), θ(·))

)
,

formulates a leader-follower stochastic differential game
with asymmetric information. See also [8] for more de-
tails about cooperative advertising and pricing mod-
els in dynamic stochastic supply chains, where feedback
Stackelberg equilibrium is obtained applying dynamic
programming approach for stochastic differential game.
However, the asymmetric information was not consid-
ered there.

1.2 Problem Formulation

Inspired by the examples above, we study leader-follower
stochastic differential games with asymmetric informa-
tion in this paper.

Let 0 < T < ∞ be a finite time duration and (Ω,F ,P) be

a complete probability space. (W (·), W̃ (·)) is a standard
R

d1+d2-valued Brownian motion. Let {Ft}0≤t≤T be the

natural augmented filtration generated by (W (·), W̃ (·))
and FT = F .

Suppose that the state of the system is described by the
SDE





dxu1,u2(t) = b
(
t, xu1,u2(t), u1(t), u2(t)

)
dt

+ σ
(
t, xu1,u2(t), u1(t), u2(t)

)
dW (t)

+ σ̃
(
t, xu1,u2(t), u1(t), u2(t)

)
dW̃ (t),

xu1,u2(0) = x0,

(1)
where u1(·) and u2(·) are control processes taken by the
two players in the game, labeled 1 (the follower) and 2
(the leader), with values in nonempty convex sets U1 ⊆
R

m1 , U2 ⊆ R
m2 , respectively. xu1,u2(·), the solution to

SDE (1) with values in R
n, is the corresponding state

process with initial state x0 ∈ R
n. Here b(t, x, u1, u2) :

Ω × [0, T ] × R
n × U1 × U2 → R

n, σ(t, x, u1, u2) : Ω ×
[0, T ] × R

n × U1 × U2 → R
n×d1 , σ̃(t, x, u1, u2) : Ω ×

[0, T ] × R
n × U1 × U2 → R

n×d2 are given Ft-adapted
processes, for each (x, u1, u2).

Let us now explain the asymmetric information feature
between the follower (player 1) and the leader (player 2)
in this paper. Player 1 is the follower, which means that
the information available to him at time t is based on
some sub-σ-algebra G1,t ⊆ G2,t, where G2,t is the infor-
mation available to the leader at time t. We assume in
this and next sections that both G1,t and G2,t are sub-σ-
algebras of the complete information filtration Ft. That
is, we have G1,t ⊆ G2,t ⊆ Ft. We define the admissible
control sets of the follower and the leader, respectively,
as follows.

U1 :=
{
u1

∣∣u1 : Ω× [0, T ] → U1 is G1,t-adapted

and sup
0≤t≤T

E|u1(t)|
i < ∞, i = 1, 2, · · ·

}
,

(2)

U2 :=
{
u2

∣∣u2 : Ω× [0, T ] → U2 is G2,t-adapted

and sup
0≤t≤T

E|u2(t)|
i < ∞, i = 1, 2, · · ·

}
.

(3)

In the game problem, knowing that the leader has cho-
sen u2(·) ∈ U2, the follower would like to choose a G1,t-
adapted control u∗

1(·) = u∗
1(·;u2(·)) to minimize his cost

functional

J1(u1(·), u2(·))

= E

[ ∫ T

0

g1
(
t, xu1,u2(t), u1(t), u2(t)

)
dt

+G1(x
u1,u2(T ))

]
.

(4)

Here g1(t, x, u1, u2) : Ω × [0, T ] × R
n × U1 × U2 → R

is an Ft-adapted process, and G1(x) : Ω × R
n → R is

an FT -measurable random variable, for each (x, u1, u2).
Now the follower encounters a stochastic optimal control
problem with partial information.

Problem of the follower. For any chosen u2(·) ∈ U2

by the leader, choose a G1,t-adapted control u∗
1(·) =

u∗
1(·;u2(·)) ∈ U1, such that

J1(u
∗
1(·), u2(·)) ≡ J1

(
u∗
1(·;u2(·)), u2(·)

)

= inf
u1∈U1

J1(u1(·), u2(·)),
(5)

subject to (1) and (4). Such a u∗
1(·) = u∗

1(·;u2(·)) is
called a (partial information) optimal control, and the

corresponding solution xu∗

1
,u2(·) to (1) is called a (partial

information) optimal state process for the follower.
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In the following procedure of the game problem, once
knowing that the follower would take such an optimal
control u∗

1(·) = u∗
1(·;u2(·)), the leader would like to

choose a G2,t-adapted control u∗
2(·) to minimize his cost

functional

J2(u
∗
1(·), u2(·))

= E

[ ∫ T

0

g2
(
t, xu∗

1
,u2(t), u∗

1(t;u2(t)), u2(t)
)
dt

+G2(x
u∗

1
,u2(T ))

]
.

(6)

Here g2(t, x, u1, u2) : Ω × [0, T ] × R
n × U1 × U2 →

R, G2(x) : Ω×R
n → R are given Ft-adapted processes,

for each (x, u1, u2). Now the leader encounters a stochas-
tic optimal control problem with partial information.

Problem of the leader. Find a G2,t-adapted control
u∗
2(·) ∈ U2, such that

J2(u
∗
1(·), u

∗
2(·)) = J2

(
u∗
1(·;u

∗
2(·)), u

∗
2(·)
)

= inf
u2∈U2

J2
(
u∗
1(·;u2(·)), u2(·)

)
,

(7)

subject to (1) and (6). Such a u∗
2(·) is called a (partial

information) optimal control, and the corresponding so-

lution x∗(·) ≡ xu∗

1
,u∗

2 (·) to (1) is called a (partial infor-
mation) optimal state process for the leader. We will re-
state the problem for the leader in more detail in the
next section, since its precise description has to involve
the solution to the Problem of the follower.

We refer to the problem mentioned above as a leader-
follower stochastic differential game with asymmet-
ric information. If there exists a control process pair
(u∗

1(·), u
∗
2(·)) =

(
u∗
1(·;u

∗
2(·)), u

∗
2(·)
)
satisfying (5) and

(7), we refer to it as an open-loop Stackelberg equilibrium.

In this paper, we impose the following assumptions.

(A1.1) For each ω ∈ Ω, the functions b, σ, σ̃, g1 are twice
continuously differentiable with respect to (x, u1, u2). For
each ω ∈ Ω, functions g2 and G1, G2 are continuously
differentiable with respect to (x, u1, u2) and x, respec-
tively. Moreover, for each ω ∈ Ω and any (t, x, u1, u2) ∈
[0, T ]× R

n × R
m1 × R

m2 , there exists C > 0 such that

(
1 + |x|+ |u1|+ |u2|

)−1∣∣φ(t, x, u1, u2)
∣∣

+
∣∣φx(t, x, u1, u2)

∣∣ +
∣∣φu1

(t, x, u1, u2)
∣∣

+
∣∣φu2

(t, x, u1, u2)
∣∣+
∣∣φxx(t, x, u1, u2)

∣∣
+
∣∣φu1u1

(t, x, u1, u2)
∣∣+
∣∣φu2u2

(t, x, u1, u2)
∣∣ ≤ C,

for φ = b, σ, σ̃, and

(
1 + |x|2

)−1∣∣G1(x)
∣∣ +
(
1 + |x|

)−1∣∣G1x(x)
∣∣

+
(
1 + |x|2

)−1∣∣G2(x)
∣∣ +
(
1 + |x|

)−1∣∣G2x(x)
∣∣ ≤ C,

(
1 + |x|2 + |u1|

2 + |u2|
2
)−1∣∣g1(t, x, u1, u2)

∣∣

+
(
1 + |x|+ |u1|+ |u2|

)−1
(∣∣g1x(t, x, u1, u2)

∣∣

+
∣∣g1u1

(t, x, u1, u2)
∣∣+
∣∣g1u2

(t, x, u1, u2)
∣∣
)

+
∣∣g1xx(t, x, u1, u2)

∣∣ +
∣∣g1u1u1

(t, x, u1, u2)
∣∣

+
∣∣g1u2u2

(t, x, u1, u2)
∣∣ ≤ C,

(
1 + |x|2 + |u1|

2 + |u2|
2
)−1∣∣g2(t, x, u1, u2)

∣∣

+
(
1 + |x|+ |u1|+ |u2|

)−1
(∣∣g2x(t, x, u1, u2)

∣∣

+
∣∣g2u1

(t, x, u1, u2)
∣∣+
∣∣g2u2

(t, x, u1, u2)
∣∣
)
≤ C.

1.3 Literature Review and Contributions of This Paper

Initiated by Issacs [12], differential games are useful in
modeling dynamic systems where more than one deci-
sion maker are involved. Differential games have been
investigated by many authors and have been found to be
a useful tool in many applications, particularly in biol-
ogy, economics and finance. Stochastic differential games
are differential games for stochastic systems involving
noise terms. See the monographs by Basar and Olsder
[4] for more information about differential games. For
some most recent developments for stochastic differen-
tial games and their applications, please refer to Yong
[25], Hamadène [7], Wu [23], An and Øksendal [1], Buck-
dahn and Li [6], Wang and Yu [20,21], Yu [29], Hui and
Xiao [10,11], Shi [17] and the references therein.

Leader-follower stochastic differential game is the dy-
namic and stochastic formulation of the well-known
Stackelberg game, which was introduced by Stackelberg
[18] in 1934, when he defined a concept of a hierarchical
solution for markets where some firms have power of
domination over others. This solution concept is now
known as the Stackelberg equilibrium which, in the con-
text of two-person nonzero-sum games, involves players
with asymmetric roles, one leader and one follower.
Early study for stochastic Stackelberg differential games
can be seen in Basar [3]. In detail, a leader-follower
stochastic differential game (or stochastic Stackelberg
differential game) proceeds with the follower aims at
minimizing his cost functional in accordance with the
leader’s strategy on the whole duration of the game.
Anticipating the follower’s optimal response depending
on his entire strategy, the leader chooses an optimal one
in advance to minimize his own cost functional, based
on the stochastic Hamiltonian system satisfied by the
follower’s optimal response. The pair of the leader’s
optimal strategy and the follower’s optimal response is
known as the Stackelberg equilibrium.

To our best knowledge, there are few papers on leader-
follower stochastic differential games. A pioneer work
was done by Yong [26], where a linear-quadratic (LQ)
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leader-follower stochastic differential game was intro-
duced and studied. The coefficients of the system and
the cost functionals are random, the controls enter the
diffusion term of the state equation, and the weight ma-
trices for the controls in the cost functionals are not
necessarily positive definite. To give a state feedback
representation of the open-loop Stackelberg equilibrium
(in a non-anticipating way), the related Riccati equa-
tions are derived and sufficient conditions for the ex-
istence of their solution with deterministic coefficients
are discussed. Bensoussan et al. [5] obtained the global
maximum principles for both open-loop and closed-loop
stochastic Stackelberg differential games, whereas the
diffusion term does not contain the controls. The solv-
ability of related Riccati equations is discussed, in order
to obtain the state feedback Stackelberg equilibrium.

In this paper, we initiate to study a leader-follower
stochastic differential game with asymmetric informa-
tion, which distinguishes itself from the literatures men-
tioned above in the following aspects. (i) In our frame-
work, both information filtration available to the leader
and the follower could be sub-σ-algebras of the complete
information filtration naturally generated by the ran-
dom noise source. Moreover, the information available
to the follower is based on some sub-σ-algebra of that
available to the leader. This gives a new explanation for
the asymmetric information feature between the follower
and the leader, and endows our problem formulation
more practical meanings in reality. (ii) An important
class of LQ leader-follower stochastic differential games
with asymmetric information is first proposed and then
solved. It consists of a stochastic optimal control prob-
lem of SDE with partial observation for the follower,
and followed by a stochastic optimal control problem
of conditional mean-field forward-backward stochastic
differential equation (FBSDE) with complete informa-
tion for the leader. This problem is new in differential
game theory and have considerable impacts in both
theoretical analysis and practical meaning with future
application prospect, although it has intrinsic mathe-
matical difficulties. Note that in [26], both problems for
the follower and leader are to be solved stochastic op-
timal control problems with complete information. (iii)
The open-loop Stackelberg equilibrium of this LQ game
problem with asymmetric information, is characterized
in terms of the forward-backward stochastic differential
filtering equation (FBSDFE), which arises naturally in
our setup. To our best knowledge, these FBSDFEs are
new in both stochastic control and filtering theory. In
particular, they are different from those in Zhang [30],
Huang et al. [9] and Wang and Yu [21]. (iv) State feed-
back representations for the optimal controls of the fol-
lower and the leader, are explicitly given with the help
of some new Riccati equations. Both problems for the
follower and the leader have mathematical difficulties,
and we overcome them via some measure transforma-
tion and filtering technique in Xiong [24], Wang et al.
[19], linear FBSDE decoupling technique in [26] and

mean-field FBSDE decoupling technique in Yong [27],
respectively.

The rest of this paper is organized as follows. In Sec-
tion 2, we formulate the problems of the follower and
the leader, and then solve them in this order. In Sub-
section 2.1, we first solve the stochastic optimal control
problem with partial information of the follower, apply-
ing the theory of controlled SDEs with partial informa-
tion. The partial information maximum principle and
verification theorem are shown. In Subsection 2.2, we
then formulate the stochastic optimal control problem
of conditional mean-field FBSDE with partial informa-
tion of the leader, regarding the stochastic Hamiltonian
system corresponding to the follower’s optimal response
as his state equation. Via controlled conditional mean-
field FBSDEs, the maximum principle and verification
theorem with partial information are both given. In Sec-
tion 3, we apply our theoretical results to an LQ leader-
follower stochastic differential game with asymmetric
information. Specifically, Subsection 3.1 is devoted to
the solution of an LQ stochastic optimal control prob-
lem with partial observation of the follower. The key
technique is to get some observable optimal controls by
explicitly computing the optimal filtering estimates of
the corresponding adjoint processes, when applying the
maximum principle approach and measure transforma-
tion. The state feedback form of the observable optimal
control for the follower is then represented by some sym-
metric Riccati equation under appropriate assumptions.
Here, the state of the follower is represented by some FB-
SDFE. Subsection 3.2 is devoted to the solution of an LQ
stochastic optimal control problem of conditional mean-
field FBSDE with complete information of the leader.
The state feedback representation of optimal control is
derived. Since the filtering estimates of the original state
and the control of the leader are involved in its state
equation, we encounter difficulty. We overcome this dif-
ficulty by applying the maximum principle and verifi-
cation theorem for conditional mean-field FBSDEs, via
the solution to some adjoint conditional mean-field FB-
SDE. The state feedback representation for the optimal
control of the leader (together with the optimal control
of the follower) is obtained via some new system of Ric-
cati equations in the double dimensional spaces, when
the dimensional augmentation by Yong [26] is applied.
Thus, the state feedback representation of the open-loop
Stackelberg equilibrium can be given. Finally, Section 4
gives some concluding remarks.

2 Maximum Principle and Verification Theo-
rem for Stackelberg Equilibrium

2.1 The Follower’s Problem

In this subsection, we first solve the partial information
stochastic optimal control problem of the follower, that
is Problem of the follower.
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For any chosen u2(·) ∈ U2, suppose that there exists
an optimal control u∗

1(·) for the follower, and the corre-

sponding optimal state xu∗

1
,u2(·) is the solution to (1).

Let an Ft-adapted process triple (q(·), k(·), k̃(·)) ∈ R
n×

R
n×d1 ×R

n×d2 uniquely solves the adjoint BSDE of the
follower





−dq(t) =
{
bx
(
t, xu∗

1
,u2(t), u∗

1(t), u2(t)
)
q(t)

+

d1∑

j=1

σj
x

(
t, xu∗

1
,u2(t), u∗

1(t), u2(t)
)
kj(t)

+

d2∑

j=1

σ̃j
x

(
t, xu∗

1
,u2(t), u∗

1(t), u2(t)
)
k̃j(t)

− g1x
(
t, xu∗

1
,u2(t), u∗

1(t), u2(t)
)}

dt

− k(t)dW (t) − k̃(t)dW̃ (t),

q(T ) =−G1x(x
u∗

1
,u2(T )),

(8)

where we denote σx ≡
(
σ1
x, σ

2
x, · · · , σ

d1

x

)⊤
, σ̃x ≡(

σ̃1
x, σ̃

2
x, · · · , σ̃

d2

x

)⊤
, and similar notations will be used.

Define the Hamiltonian function of the follower H1 :
Ω× [0, T ]×R

n×U1×U2×R
n×R

n×d1 ×R
n×d2 → R as

H1

(
t, x, u1, u2; q, k, k̃

)
=
〈
q, b(t, x, u1, u2)

〉

+ tr
{
k⊤σ(t, x, u1, u2)

}
+ tr

{
k̃⊤σ̃(t, x, u1, u2)

}

− g1(t, x, u1, u2).

(9)

Similar to [21], we have the following results.

Proposition 2.1 (Partial Information Maximum
Principle) Suppose that (A1.1) holds. For any given
u2(·) ∈ U2, let u

∗
1(·) be the optimal control for Prob-

lem of the follower, and xu∗

1
,u2(·) be the corresponding

optimal state. Let (q(·), k(·), k̃(·)) be the adjoint process
triple. Then we have

E

[〈
H1u1

(
t, xu∗

1
,u2(t), u∗

1(t), u2(t); q(t), k(t), k̃(t)
)
,

u1 − u∗
1(t)
〉∣∣∣G1,t

]
≥ 0, a.e.t ∈ [0, T ], a.s.,

(10)
holds, for any u1 ∈ U1.

Proposition 2.2 (Partial Information Verifica-
tion Theorem) Suppose that (A1.1) holds. For

any given u2(·), let u∗
1(·) ∈ U1 and xu∗

1
,u2(·) be the

corresponding state. Let (q(·), k(t), k̃(·)) be the adjoint
process triple. Moreover, for each (t, ω) ∈ [0, T ] × Ω,

H1

(
t, ·, ·, u2(t); q(t), k(t), k̃(t)

)
is concave, G1(·) is con-

vex, and

E

[
H1

(
t, x

u∗

1
,u2(t), u∗

1(t), u2(t); q(t), k(t), k̃(t)
)∣∣∣G1,t

]

= max
u1∈U1

E

[
H1

(
t, x

u∗

1
,u2(t), u1, u2(t); q(t), k(t), k̃(t)

)∣∣∣G1,t

]
,

(11)
holds for a.e.t ∈ [0, T ], a.s. Then u∗

1(·) is an optimal
control for Problem of the follower.

2.2 The Leader’s Problem

In this subsection, we first state the partial information
stochastic optimal control problem of the leader in de-
tail, that is Problem of the leader. Then we give the
maximum principle and verification theorem for it.

For any u2(·) ∈ U2, by the maximum condition (10), we
assume that a functional u∗

1(t) = u∗
1

(
t; x̂u∗

1
,û2(t), û2(t),

q̂(t), k̂(t),
ˆ̃
k(t)

)
is uniquely defined, where





x̂u∗

1
,û2(t) := E

[
xu∗

1
,u2(t)

∣∣G1,t

]
,

û2(t) := E
[
u2(t)

∣∣G1,t

]
, q̂(t) := E

[
q(t)

∣∣G1,t

]
,

k̂(t) := E
[
k(t)

∣∣G1,t

]
,

ˆ̃
k(t) := E

[
k̃(t)

∣∣G1,t

]
.

(12)

For the simplicity of notations, we denote xu2 (·) ≡
xu∗

1
,u2(·) and define φL on Ω× [0, T ]× R

n × U2 as

φL
(
t, xu2(t), u2(t)

)
:= φ

(
t, xu∗

1
,u2(t),

u∗
1

(
t; x̂u∗

1
,û2(t), û2(t), q̂(t), k̂(t),

ˆ̃
k(t)

)
, u2(t)

)
,

for φ = b, σ, σ̃, g1, respectively. Then after substituting
the above control process u∗

1(·) into the follower’s ad-
joint equation (8), the leader encounters the controlled
FBSDE system





dxu2(t) = bL
(
t, xu2(t), u2(t)

)
dt

+ σL
(
t, xu2(t), u2(t)

)
dW (t)

+ σ̃L
(
t, xu2(t), u2(t)

)
dW̃ (t),

−dq(t) =
{
bLx
(
t, xu2(t), u2(t)

)
q(t)

+

d1∑

j=1

σLj
x

(
t, xu2(t), u2(t)

)
kj(t)

+

d2∑

j=1

σ̃Lj
x

(
t, xu2(t), u2(t)

)
k̃j(t)

− gL1x
(
t, xu2(t), u2(t)

)}
dt

− k(t)dW (t)− k̃(t)dW̃ (t),

xu2 (0) = x0, q(T ) = −G1x(x
u2(T )).

(13)

Note that (13) is a controlled conditional mean-field FB-
SDE, which now is regarded as the “state” equation of
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the leader. That is to say, the state for the leader is the

quadruple (xu2 (·), q(·), k(·), k̃(·)).

Remark 2.2 The equality u∗
1(t) = u∗

1

(
t; x̂u∗

1
,û2(t), û2(t),

q̂(t), k̂(t),
ˆ̃
k(t)

)
does not hold in general. However, for

LQ case, it is satisfied and we will make this point clear
in the next section.

Define

JL
2 (u2(·)) := J2(u

∗
1(·), u2(·))

= E

[ ∫ T

0

g2
(
t, xu∗

1
,u2(t), u∗

1(t), u2(t)
)
dt

+G2(x
u∗

1
,u2(T ))

]

≡ E

[ ∫ T

0

g2
(
t, xu∗

1
,u2(t), u∗

1

(
t; x̂u∗

1
,û2(t), û2(t),

q̂(t), k̂(t),
ˆ̃
k(t)

)
, u2(t)

)
dt+G2(x

u∗

1
,u2(T ))

]

:= E

[ ∫ T

0

gL2
(
t, xu2(t), u2(t)

)
dt+G2(x

u2(T ))

]
,

(14)

where gL2 : Ω × [0, T ] × R
n × U2 → R. Note the cost

functional of the leader is also conditional mean-field’s
type.We propose the stochastic optimal control problem
with partial information of the leader as follows.

Problem of the leader. Find a G2,t-adapted control
u∗
2(·) ∈ U2, such that

JL
2 (u

∗
2(·)) = inf

u2∈U2

JL
2 (u2(·)), (15)

subject to (13) and (14). Such a u∗
2(·) is called a (par-

tial information) optimal control, and the corresponding
solution x∗(·) ≡ xu∗

2 (·) to (13) is called a (partial infor-
mation) optimal state process for the leader.

Suppose that there exists an optimal control u∗
2(·) for the

leader, and the corresponding state (x∗(·), q∗(·), k∗(·),

k̃∗(·)) is the solution to (13). Define the Hamiltonian
function of the leader H2 : Ω× [0, T ]×R

n ×U2 ×R
n ×

R
n×d1 ×R

n×d2 ×R
n×R

n×R
n×d1 ×R

n×d2 ×R
n → R as

H2

(
t, xu2 , u2, q, k, k̃; y, z, z̃, p

)

=
〈
y, bL(t, xu2 , u2)

〉
+ tr

{
z⊤σL(t, xu2 , u2)

}

+ tr
{
z̃⊤σ̃L(t, xu2 , u2)

}
+ gL2 (t, x

u2 , u2)

−
〈
p, bLx (t, x

u2 , u2)q +

d1∑

j=1

σLj
x (t, xu2 , u2)k

j

+

d2∑

j=1

σ̃Lj
x (t, xu2 , u2)k̃

j − gL1x(t, x
u2 , u2)

〉
.

(16)

Let (y(·), z(·), z̃(·), p(·)) ∈ R
n × R

n×d1 × R
n×d2 × R

n

be the unique Ft-adapted solution to the adjoint condi-
tional mean-field FBSDE of the leader





dp(t) =
{
bL∗
x (t)p(t) + E

[
bL∗
x̂ (t)p(t)

∣∣G1,t

]}
dt

+

d1∑

j=1

{
σL∗j
x (t)p(t)

+ E
[
σ
L∗j
x̂ (t)p(t)

∣∣G1,t

]}
dW j(t)

+

d2∑

j=1

{
σ̃L∗j
x (t)p(t)

+ E
[
σ̃
L∗j
x̂ (t)p(t)

∣∣G1,t

]}
dW̃ j(t),

−dy(t) =

{
bL∗
x (t)y(t) + E

[
bL∗
x̂ (t)y(t)

∣∣G1,t

]

+

d1∑

j=1

[
σL∗j
x (t)zj(t) + E

[
σ
L∗j
x̂ (t)zj(t)

∣∣G1,t

]]

+

d2∑

j=1

[
σ̃L∗j
x (t)z̃j(t) + E

[
σ̃
L∗j
x̂ (t)z̃j(t)

∣∣G1,t

]]

−
n∑

i=1

{∂bL∗
x

∂xi

(t)q∗(t)pi(t)

+ E

[∂bL∗
x

∂x̂i

(t)q∗(t)pi(t)
∣∣∣G1,t

]}

−
n∑

i=1

{ ∂

∂xi

( d1∑

j=1

σL∗j
x (t)kj(t)

)
pi(t)

+ E

[ ∂

∂x̂i

( d1∑

j=1

σL∗j
x (t)kj(t)

)
pi(t)

∣∣∣G1,t

]}

−
n∑

i=1

{ ∂

∂xi

( d1∑

j=1

σ̃L∗j
x (t)k̃j(t)

)
pi(t)

+ E

[ ∂

∂x̂i

( d1∑

j=1

σ̃L∗j
x (t)k̃j(t)

)
pi(t)

∣∣∣G1,t

]}

+ gL∗
1xx(t)p(t) + E

[
gL∗
1xx̂(t)p(t)

∣∣G1,t

]

+ gL∗
2x (t) + E

[
gL∗
2x̂ (t)

∣∣G1,t

]}
dt

− z(t)dW (t)− z̃(t)dW̃ (t),

p(0) = 0,

y(T ) = G1xx(x
∗(T ))p(T ) +G2x(x

∗(T )),
(17)

where we have used φL∗(t) ≡ φL
(
t, x∗(t), x̂∗(t), u∗

2(t),

û∗
2(t)
)
for φ = b, σ, σ̃, g1, g2 and all their derivatives.

Now, we have the following two results.
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Proposition 2.3 (Maximum principle of condi-
tional mean-field FBSDE with partial informa-
tion) Suppose that (A1.1) holds. Let u∗

2(·) ∈ U2

be an optimal control for Problem of the leader

and (x∗(·), q∗(·), k∗(·), k̃∗(·)) be the optimal state. Let
(y(·), z(·), z̃(·), p(·)) be the adjoint quadruple, then

E

[〈
H2u2

(
t, x∗(t), u∗

2(t), q
∗(t), k∗(t), k̃∗(t);

y(t), z(t), z̃(t), p(t)
)
, u2 − u∗

2(t)
〉

+
〈
E
[
H2û2

(
t, x∗(t), u∗

2(t), q
∗(t), k∗(t), k̃∗(t); y(t),

z(t), z̃(t), p(t)
)∣∣G1,t

]
, û2 − û∗

2(t)
〉∣∣∣∣G2,t

]

≥ 0, a.e.t ∈ [0, T ], a.s.,
(18)

holds for any u2 ∈ U2.

Proof. The maximum condition (18) can be derived
by convex variation and adjoint technique, as Anderson
and Djehiche [2]. We omit the details for saving space.
See also Li [13], Yong [27] and the references therein for
mean-field stochastic optimal control problems. ✷

Proposition 2.4 (Verification theorem of condi-
tional mean-field FBSDE with partial informa-
tion) Suppose that (A1.1) holds. Let u∗

2(·) ∈ U2 and

(x∗(·), q∗(·), k∗(·), k̃∗(·)) be the corresponding state, with
G1xx(x) ≡ G1 ∈ Sn. Let (y(·), z(·), z̃(·), p(·)) be the ad-
joint quadruple. For each (t, ω) ∈ [0, T ]×Ω, suppose that
H2

(
t, ·, ·, ·, ·, ·; y(t), z(t), z̃(t), p(t)

)
and G2(·) are convex,

and

E

[
H2

(
t, x∗(t), u∗

2(t), q
∗(t), k∗(t), k̃∗(t);

y(t), z(t), z̃(t), p(t)
)

+ E
[
H2

(
t, x∗(t), u∗

2(t), q
∗(t), k∗(t), k̃∗(t); y(t),

z(t), z̃(t), p(t)
)∣∣G1,t

]∣∣∣∣G2,t

]

= max
u2∈U2

E

[
H2

(
t, x∗(t), u2, q

∗(t), k∗(t), k̃∗(t);

y(t), z(t), z̃(t), p(t)
)

+ E
[
H2

(
t, x∗(t), u2, q

∗(t), k∗(t), k̃∗(t); y(t),

z(t), z̃(t), p(t)
)∣∣G1,t

]∣∣∣∣G2,t

]
,

(19)
holds for a.e.t ∈ [0, T ], a.s. Then u∗

2(·) is an optimal
control for Problem of the leader.

Proof. This follows similar to Shi [16]. We omit the
details for simplicity. ✷

Remark 2.3 In some applications, for example, the
principle-agent problems, the opposite inclusion G1,t ⊇

G2,t or more complicated relations between them may
hold. The study of the leader-follower game in such cases
is similar to the one which we studied in this paper. We
omit them to limit the length of the paper.

3 LQ Leader-Follower Stochastic Differential
Game with Asymmetric Information

In order to illustrate the theoretical results in Section
2, we study an LQ leader-follower stochastic differential
game with asymmetric information. For notational sim-
plicity, we consider d1 = d2 = 1. This game is a par-
tially observed model which is a special case of the one
in Section 2, but the resulting deduction is technically
demanding. We split this section into two subsections,
to deal with the problems of the follower and the leader,
respectively.

3.1 The Follower’s LQ Problem

Suppose that the state (xu1,u2(·), x̃(·)) ∈ R
n×R

n of the
system is described by the linear SDE





d

(
xu1,u2(t)

x̃(t)

)
=

[(
A(t) 0

0 C1(t)

)(
xu1,u2(t)

x̃(t)

)

+

(
B1(t) B2(t)

0 0

)(
u1(t)

u2(t)

)]
dt

+

[(
C(t) 0

0 0

)(
xu1,u2(t)

x̃(t)

)

+

(
D1(t) D2(t)

0 0

)(
u1(t)

u2(t)

)

+

(
0

C2(t)

)]
dW (t) +

(
C̃(t)

C3(t)

)
dW̃ (t),

(
xu1,u2(0)

x̃(0)

)
=

(
x0

x̃0

)
,

(20)
where u1(·) takes values in R

m1 , u2(·) takes val-
ues in R

m2 . Noting that the second part of the
state x̃(·) is not controlled. Here A(·), C(·), C1(·) ∈

Sn, C̃(·), C2(·), C3(·) ∈ R
n, B1(·), D1(·) ∈ R

n×m1 ,
and B2(·), D2(·) ∈ R

n×m2 are deterministic, bounded
matrix-valued or vector-valued functions, and x0, x̃0 ∈
R

n.

Suppose that the state (xu1,u2(·), x̃(·)) cannot be directly
observed by the follower. Instead, he can observe a re-
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lated process Y (·) ∈ R which is governed by the SDE





dY (t) =
(
0 h⊤(t)

)( xu1,u2(t)

x̃(t)

)
dt+ dW̃ (t),

Y (0) = 0,
(21)

where h : [0, T ] → R
n is a given continuous, bounded

vector-valued function.

Inserting (21) into (20), we have





dxu1,u2(t) =
[
A(t)xu1,u2(t)− h⊤(t)C̃(t)x̃(t)

+B1(t)u1(t) +B2(t)u2(t)
]
dt

+
[
C(t)xu1,u2(t) +D1(t)u1(t)

+D2(t)u2(t)
]
dW (t) + C̃(t)dY (t),

dx̃(t) =
[
C1(t)− h⊤(t)C3(t)

]
x̃(t)dt

+ C2(t)dW (t) + C3(t)dY (t),

xu1,u2(0) = x0, x̃(0) = x̃0.

(22)

Let us now introduce an R-valued process

Z(t) = exp

{
−

∫ t

0

h⊤(s)x̃(s)dW̃ (s)

−
1

2

∫ t

0

|h⊤(s)x̃(s)|2ds

}
,

(23)

which is the solution to the SDE

{
dZ(t) = −Z(t)h⊤(t)x̃(t)dW̃ (t),

Z(0) = 1.
(24)

It is obvious that Z(·) is a ((Ft)0≤t≤T ,P)-martingale,
since the Novikov condition holds:

E

[
exp

(1
2

∫ T

0

∣∣h⊤(t)x̃(t)
∣∣2dt

)]
< ∞

(see Example 3, Section 6.2, Liptser and Shiryayev [14]).

We thus can define a new probability measure P̃ such

that for any t, dP̃ = Z(t)dP, on Ft. By Girsanov’s the-
orem and (21), (W (·), Y (·)) is a 2-dimensional stan-

dard Brownian motion defined on (Ω,F , (Ft)0≤t≤T , P̃).

In this section, we denote Ft ≡ FW,W̃
t ≡ FW

t ⊗FW̃
t and

FW,Y
t ≡ FW

t ⊗ FY
t , where FW

t ,FW̃
t ,FY

t are the natu-

ral filtration generated by Brownian motionsW (·), W̃ (·)
and Y (·), respectively. Moreover, it can be easily checked

that Ft = FW,Y
t .

For chosen u2(·) by the leader, the follower would like
to choose an FY

t -adapted control u∗
1(·) = u∗

1(·;u2(·)) to

minimize his cost functional

J1(u1(·), u2(·))

=
1

2
E

[ ∫ T

0

(〈
Q1(t)x

u1,u2(t), xu1,u2(t)
〉

+
〈
N1(t)u1(t), u1(t)

〉)
dt

+
〈
G1x

u1,u2(T ), xu1,u2(T )
〉]
.

(25)

Here Q1(·) ∈ Sn, N1(·) ∈ Sm1 are deterministic and
bounded matrix-valued functions, and G1 ∈ Sn. We in-
troduce the following assumption.

(A3.1) Q1(t) ≥ 0, ∀t ∈ [0, T ] and G1 ≥ 0.

The admissible control set U1 for the follower is defined
as (2) in Section 1, for G1,t = FY

t in this section. And we
will denote the above as LQ Problem of the follower.

We apply the maximum principle approach in Subsec-
tion 2.1 to solve this partially observed stochastic opti-
mal control problem of the follower. In the following, we
will split the process of finding observable optimal con-
trol u∗

1(·) for the follower into three steps.

Step 1. (Optimal control)

First, we put the above problem into the filtered prob-

ability space (Ω,F , {FW,Y
t }0≤t≤T , P̃), in order to apply

Propositions 2.1 and 2.2. By (21) and (24), we obtain

{
dZ(t) = Z(t)|h⊤(t)x̃(t)|2dt− Z(t)h⊤(t)x̃(t)dY (t),

Z(0) = 1.
(26)

Moreover, we have

{
dZ−1(t) = Z−1(t)h⊤(t)x̃(t)dY (t),

Z−1(0) = 1,
(27)

that is,

Z−1(t) = exp

{∫ t

0

h⊤(s)x̃(s)dY (s)

−
1

2

∫ t

0

|h⊤(s)x̃(s)|2ds

}
.

(28)

By Bayes’ formula (Theorem 3.22, Xiong [24]), we have

J1(u1(·), u2(·))

=
1

2
Ẽ

[∫ T

0

(〈
Z−1(t)Q1(t)x

u1,u2(t), xu1,u2(t)
〉

+
〈
Z−1(t)N1(t)u1(t), u1(t)

〉)
dt

+
〈
Z−1(T )G1x

u1,u2(T ), xu1,u2(T )
〉]
,

(29)

9



where Ẽ is the mathematical expectation with respect

to P̃. The Hamiltonian function (9) of the follower, now
takes the form

H1

(
t, x, x̃, u1, u2; q, k, k̃;Z

−1
)

=
〈
q, A(t)x − h⊤(t)C̃(t)x̃+B1(t)u1 +B2(t)u2

〉

+
〈
k, C(t)x +D1(t)u1 +D2(t)u2

〉
+
〈
k̃, C̃(t)

〉

−
1

2

〈
Z−1Q1(t)x, x

〉
−

1

2

〈
Z−1N1(t)u1, u1

〉
,

(30)
and the adjoint equation (8) writes





−dq(t) =
[
A⊤(t)q(t) + C⊤(t)k(t)

− Z−1(t)Q1(t)x
u∗

1
,u2(t)

]
dt

− k(t)dW (t)− k̃(t)dY (t),

q(T ) = − Z−1(T )G1x
u∗

1
,u2(T ),

(31)

with q(·), k(·), k̃(·) valued in R
n ×R

n×R
n being FW,Y

t -
adapted processes.

For given u2(·), suppose that there exists anFY
t -adapted

optimal control u∗
1(·) ∈ U1 for the follower, and the cor-

responding optimal state xu∗

1
,u2(·) is the solution to (22),

that is,





dxu∗

1
,u2(t) =

[
A(t)xu∗

1
,u2(t)− h⊤(t)C̃(t)x̃(t)

+B1(t)u
∗
1(t) +B2(t)u2(t)

]
dt

+
[
C(t)xu∗

1
,u2(t) +D1(t)u

∗
1(t)

+D2(t)u2(t)
]
dW (t) + C̃(t)dY (t),

xu∗

1
,u2(0) = x0,

(32)
where x̃(·) ∈ R

n can be solved from the second equation
of (22), since it is a process which is not controlled.

Then (30) together with Proposition 2.1 yields that,

0 = Ẑ−1(t; P̃ )N1(t)u
∗
1(t)−B⊤

1 (t)q̂(t; P̃ )

−D⊤
1 (t)k̂(t; P̃ ), for a.e.t ∈ [0, T ],

(33)

with

{
Ẑ−1(t; P̃ ) := Ẽ[Z−1(t)|FY

t ],

q̂(t; P̃ ) := Ẽ[q(t)|FY
t ], k̂(t; P̃ ) := Ẽ[k(t)|FY

t ].

Step 2. (Optimal filtering)

Next, noting that the terminal condition of (31), it is
natural to set

q(t) = −Z−1(t)
[
P1(t)x

u∗

1
,u2(t) +ϕ(t)

]
, t ∈ [0, T ], (34)

for some deterministic and differentiable Sn-matrix val-
ued function P1(·), and R

n-valued FW,Y
t -adapted pro-

cess ϕ(·) admits

{
dϕ(t) = α(t)dt+ β(t)dY (t),

ϕ(T ) = 0.
(35)

In the above, α(·) ∈ R
n is FW,Y

t -adapted and β(·) ∈ R
n

is FY
t -adapted process, which will be determined later.

Now, applying Itô’s formula to (34), we have

dq(t) =− Z−1(t)
[
P1(t)dx

u∗

1
,u2(t) + Ṗ1(t)x

u∗

1
,u2(t)dt

+ dϕ(t)
]
− dZ−1(t)

[
P1(t)x

u∗

1
,u2(t) + ϕ(t)

]

− dZ−1(t)
[
P1(t)dx

u∗

1
,u2(t) + dϕ(t)

]

=− Z−1(t)
[
Ṗ1(t)x

u∗

1
,u2(t) + P1(t)A(t)x

u∗

1
,u2(t)

+ P1(t)B(t)u∗
1(t) + P1(t)B2(t)u2(t)

+ h⊤(t)x̃(t)β(t) + α(t)
]
dt

− Z−1(t)P1(t)
[
C(t)xu∗

1
,u2(t)

+D1(t)u
∗
1(t) +D2(t)u2(t)

]
dW (t)

− Z−1(t)
[
P1(t)C̃(t) + P1(t)h

⊤(t)x̃(t)xu∗

1
,u2(t)

+ h⊤(t)x̃(t)ϕ(t) + β(t)
]
dY (t).

(36)
Comparing the {·}dW (t), {·}dY (t) and {·}dt terms of
(36) with those of the adjoint equation (31), we arrive at

k(t) = −Z−1(t)P1(t)
[
C(t)xu∗

1
,u2(t) +D1(t)u

∗
1(t)

+D2(t)u2(t)
]
,

(37)

k̃(t) =− Z−1(t)
[
P1(t)C̃(t) + P1(t)h

⊤(t)x̃(t)xu∗

1
,u2(t)

+ h⊤(t)x̃(t)ϕ(t) + β(t)
]
,

(38)
and

α(t) =
[
− Ṗ1(t)− P1(t)A(t) −A⊤(t)P1(t)

− C⊤(t)P1(t)C(t)−Q1(t)
]
xu∗

1
,u2(t)

−A⊤(t)ϕ(t)− h⊤(t)x̃(t)β(t)

−
[
P1(t)B1(t) + C⊤(t)P1(t)D1(t)

]
u∗
1(t)

−
[
P1(t)B2(t) + C⊤(t)P1(t)D2(t)

]
u2(t),

(39)

respectively. By Bayes’ formula, noting (34), we have

q̂(t; P̃ ) := Ẽ[q(t)|FY
t ] =

E[Z(t)q(t)|FY
t ]

E[Z(t)|FY
t ]

=
−P1(t)x̂

u∗

1
,û2(t)− ϕ̂(t)

E[Z(t)|FY
t ]

,

(40)

where x̂u∗

1
,û2(t) := E[xu∗

1
,u2(t)|FY

t ], ϕ̂(t) := E[ϕ(t)|FY
t ].
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Similarly, by (37) we get

k̂(t; P̃ ) := Ẽ[k(t)|FY
t ] =

E[Z(t)k(t)|FY
t ]

E[Z(t)|FY
t ]

=
−P1(t)C(t)x̂u∗

1
,û2(t)− P1(t)D1(t)u

∗
1(t)− P1(t)D2(t)û2(t)

E[Z(t)|FY
t ]

,

(41)
where û2(t) := E[u2(t)|F

Y
t ].

Applying Lemma 5.4 in Xiong [24] to the state equation
(32) of the follower, we derive the filtering equation





dx̂u∗

1
,û2(t) =

[
A(t)x̂u∗

1
,û2(t)− h⊤(t)C̃(t)ˆ̃x(t)

+B1(t)u
∗
1(t) +B2(t)û2(t)

]
dt

+ C̃(t)dY (t),

x̂u∗

1
,û2(0) = x0,

(42)

where ˆ̃x(t) := E[x̃(t)|FY
t ] satisfying

{
dˆ̃x(t) =

[
C1(t)− h⊤(t)C3(t)

]
ˆ̃x(t)dt + C3(t)dY (t),

ˆ̃x(0) = x̃0,

(43)
which can be easily solved. Thus (42) admits a unique

FY
t -adapted solution x̂u∗

1
,û2(·), for any û2(·).

Step 3. (Optimal state feedback control)

By (33), (40) and (41), in order to obtain state feedback
form of the follower’s optimal control, the remaining task
is to give the representation of Ẑ(t) := E[Z(t)|FY

t ], since
by Bayes’ formula, we have

Ẑ−1(t; P̃ ) := Ẽ[Z−1(t)|FY
t ]

=
1

E[Z(t)|FY
t ]

:=
1

Ẑ(t)
≡ Ẑ−1(t).

Applying Theorem 8.1 of [14] to (24) and (21), we have

{
dẐ(t) = −h⊤(t)Ẑ(t)ˆ̃x(t)d

ˆ̃
W (t),

Ẑ(0) = 1,
(44)

where d
ˆ̃
W (t) := dY (t)− h⊤(t)ˆ̃x(t)dt.

By (33), and supposing that

(A3.2) Ñ1(t) > 0, for all t ∈ [0, T ],

we immediately arrive at

u∗
1(t) ≡ u∗

1

(
t; x̂u∗

1
,û2(t), û2(t), ϕ̂(t), β(t)

)

= −Ñ−1
1 (t)

[
S̃⊤
1 (t)x̂u∗

1
,û2(t) + S̃(t)û2(t) +B⊤

1 (t)ϕ̂(t)
]
,

(45)

for a.e. t ∈ [0, T ], where we denote





Ñ1(t) := N1(t) +D⊤
1 (t)P1(t)D1(t),

S̃1(t) := P1(t)B1(t) + C⊤(t)P1(t)D1(t),

S̃(t) := D⊤
1 (t)P1(t)D2(t).

Substituting (45) into (39), we can obtain that if the
ordinary differential equation





Ṗ1(t) = −P1(t)A(t) −A⊤(t)P1(t)− C⊤(t)P1(t)C(t)

+ S̃1(t)Ñ
−1
1 (t)S̃⊤

1 (t)−Q1(t),

P1(T ) = G1

(46)
admits a unique differentiable solution P1(·), then

α(t) = −S̃1(t)Ñ
−1
1 (t)S̃⊤

1 (t)xu∗

1
,u2(t)

+ S̃1(t)Ñ
−1
1 (t)S̃⊤

1 (t)x̂u∗

1
,u2(t)−A⊤ϕ(t)

+
[
−A⊤(t) + S̃1(t)Ñ

−1
1 (t)B⊤

1 (t)
]
ϕ̂(t)

− h⊤(t)x̃(t)β(t) − S̃2(t)
]
u2(t)

+
[
S̃1(t)Ñ

−1
1 (t)S̃(t)− S̃2(t)

]
û2(t),

(47)

where

S̃2(t) := P1(t)B2(t) + C⊤(t)P1(t)D2(t).

And the BSDE (35) takes the form





−dϕ(t) =
[
A⊤(t)ϕ(t) +

(
B̃2(t)−B2(t)

)⊤
ϕ̂(t)

+ h⊤(t)x̃(t)β(t) +
˜̃
S1(t)x

u∗

1
,u2(t)

−
˜̃
S1(t)x̂

u∗

1
,û2(t) + S̃2(t)u2(t)

+
(
S̃3(t)− S̃2(t)

)
û2(t)

]
dt− β(t)dY (t),

ϕ(T ) = 0,
(48)

where we set




B̃2(t) := B2(t)−B1(t)Ñ
−1
1 (t)S̃(t),

˜̃
S1(t) := S̃1(t)Ñ

−1
1 (t)S̃⊤

1 (t),

S̃3(t) := −S̃1(t)Ñ
−1
1 (t)S̃(t) + S̃2(t).

We rewrite (46) as the following





Ṗ1(t) = −P1(t)A(t)−A⊤(t)P1(t)

− C⊤(t)P1(t)C(t) −Q1(t)

+
[
P1(t)B1(t) + C⊤(t)P1(t)D1(t)

]
[
N1(t) +D⊤

1 (t)P1(t)D1(t)
]−1

[
P1(t)B1(t) + C⊤(t)P1(t)D1(t)

]⊤
,

P1(T ) = G1,

N1(t) +D⊤
1 (t)P1(t)D1(t) > 0, ∀t ∈ [0, T ],

(49)
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which is similar to the classical Riccati equation (6.6),
Chapter 6 in Yong and Zhou [28], or (5.2) in [26]. Thus
its solvability can be guaranteed.

For given û2(·), plugging the optimal control u∗
1(·) of

(45) into (42), we have





dx̂u∗

1
,û2(t) =

[
Ã(t)x̂u∗

1
,û2(t) + S̃4(t)ϕ̂(t)

+ B̃2(t)û2(t)− h⊤(t)C̃(t)ˆ̃x(t)
]
dt

+ C̃(t)dY (t),

x̂u∗

1
,û2(0) = x0,

(50)

which admits a unique FY
t -adapted solution x̂u∗

1
,û2(·),

where we denote

S̃4(t) := −B1(t)Ñ
−1
1 (t)B⊤

1 (t).

Applying Lemma 5.4 in Xiong [24] to (48), we have





−dϕ̂(t) =
[
Ã⊤(t)ϕ̂(t) + h⊤(t)ˆ̃x(t)β(t)

+ S̃3(t)û2(t)
]
dt− β(t)dY (t),

ϕ̂(T ) = 0,

(51)

where
Ã(t) := A(t) −B1(t)Ñ

−1
1 (t)S̃⊤

1 (t).

Putting (50) and (51) together, we get





dx̂u∗

1
,û2(t) =

[
Ã(t)x̂u∗

1
,û2(t) + S̃4(t)ϕ̂(t)

+ B̃2(t)û2(t)− h⊤(t)C̃(t)ˆ̃x(t)
]
dt

+ C̃(t)dY (t),

−dϕ̂(t) =
[
Ã⊤(t)ϕ̂(t) + h⊤(t)ˆ̃x(t)β(t)

+ S̃3(t)û2(t)
]
dt− β(t)dY (t),

x̂u∗

1
,û2(0) = x0, ϕ̂(T ) = 0.

(52)

Note that (52) is an FBSDFE, whose solvability can be
easily obtained, for given u2(·).

Moreover, we can easily check that the convex-
ity/concavity conditions are satisfied. Then by Proposi-
tion 2.2, u∗

1(·) by (45) is really optimal.

We summarize the above in the following theorem.

Theorem 3.1 Suppose that assumptions (A3.1),
(A3.2) hold and the Riccati equation (49) admits a
unique differentiable solution P1(·). For chosen u2(·) of
the leader, LQ Problem of the follower admits an
optimal control u∗

1(·) ≡ u∗
1

(
·; x̂u∗

1
,û2(·), û2(·), ϕ̂(·), β(·)

)

of the state feedback form (45), where process triple

(x̂u∗

1
,û2(·), ϕ̂(·), β(·)) is the unique FY

t -adapted solution
to the FBSDFE (52).

Remark 3.1 Due to the explicit appearance of control

u2(·) in (31), (32), we introduce the FW,Y
t -adapted pro-

cess ϕ(·) in (34) which satisfies the BSDE (35). This is
different from [28] but similar to [26]. More importantly,
we will see in next subsection that (48) can be regarded
as the new backward “state” equation of the leader.

Remark 3.2 Noting that (52) is an FBSDE system,

the value (x̂u∗

1
,û2(t), ϕ̂(t), β(t)) of (x̂u∗

1
,û2(·), ϕ̂(·), β(·))

at time t depends on {û2(s); s ∈ [0, T ]}. Thus, by (45),
u∗
1(·) depends on {û2(s); s ∈ [0, T ]}. This means that

u∗
1(·) is generally anticipating. Thus, it is important to

find a “real” state feedback representation for u∗
1(·) in

terms of the original state xu∗

1
,u2(·). This work will be

done in the end of this section via the dimensional aug-
mentation introduced by Yong [26], together with the
optimal control u∗

2(·) for the leader.

3.2 The Leader’s LQ Problem

Now, we are ready to study the stochastic optimal con-
trol problem of the leader. Knowing that the follower
would take his optimal control u∗

1(·) ≡ u∗
1

(
·; x̂u∗

1
,û2(·),

û2(·), ϕ̂(·), β(·)
)
by (45), his state equation (32) writes





dxu2 (t) =
[
A(t)xu2 (t) +

(
Ã(t)−A(t)

)
x̂û2 (t)

+ S̃4(t)ϕ̂(t) +B2(t)u2(t)

+
(
B̃2(t)−B2(t)

)
û2(t)

]
dt

+
[
C(t)xu2 (t) + S̃5(t)x̂

û2 (t)

+ B̃⊤
1 (t)ϕ̂(t) +D2(t)u2(t)

+ S̃6(t)û2(t)
]
dW (t) + C̃(t)dW̃ (t),

xu2(0) = x0,

(53)

where we denote xu2(·) ≡ xu∗

1
,u2(·), x̂û2 (·) ≡ x̂u∗

1
,û2(·)

for simplicity and





B̃1(t) := −B1(t)Ñ
−1
1 (t)D⊤

1 (t),

S̃5(t) := −D1(t)Ñ
−1
1 (t)S̃⊤

1 (t),

S̃6(t) := −D1(t)Ñ
−1
1 (t)S̃(t).
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The leader would like to choose an Ft-adapted optimal
control u∗

2(·) such that his cost functional

JL
2 (u2(·)) := J2(u

∗
1(·), u2(·))

=
1

2
E

[ ∫ T

0

(〈
Q2(t)x

u2 (t), xu2(t)
〉

+
〈
N2(t)u2(t), u2(t)

〉)
dt

+
〈
G2x

u2(T ), xu2(T )
〉]

(54)

is minimized, where Q2(·) ∈ Sn, N2(·) ∈ Sm2 are de-
terministic, bounded matrix-valued functions, andG2 ∈
Sn. We introduce the following assumption.

(A3.3) Q2(t) ≥ 0, for all t ∈ [0, T ] and G2 ≥ 0.

The admissible control set U2 of the leader is defined as

(3) in Section 1.2, for G2,t = FW,W̃
t in this section.

As mentioned in Remark 3.1, the leader has to include
the process pair (ϕ(·), β(·)) as part of his new state pro-
cesses, since ϕ̂(·) is involved in the coefficients of (53).
Thus for any u2(·), the state equation of the leader is





dxu2(t) =
[
A(t)xu2 (t) +

(
Ã(t)−A(t)

)
x̂û2(t)

+ S̃4(t)ϕ̂(t) +B2(t)u2(t)

+
(
B̃2(t)−B2(t)

)
û2(t)

]
dt

+
[
C(t)xu2 (t) + S̃5(t)x̂

û2 (t)

+ B̃⊤
1 (t)ϕ̂(t) +D2(t)u2(t)

+ S̃6(t)û2(t)
]
dW (t) + C̃(t)dW̃ (t),

−dϕ(t) =
[
A⊤(t)ϕ(t) +

(
B̃2(t)−B2(t)

)⊤
ϕ̂(t)

+
˜̃
S1(t)x

u2 (t)−
˜̃
S1(t)x̂

û2 (t)

+ S̃2(t)u2(t) +
(
S̃3(t)− S̃2(t)

)
û2(t)

]
dt

− β(t)dW̃ (t),

xu2 (0) = x0, ϕ(T ) = 0,
(55)

which is a conditional mean-field FBSDE. Its solvability
for Ft-adapted solution (xu2 (·), ϕ(·), β(·)) can be easily
guaranteed (since the solvability of FBSDFE (52) for
(x̂u2(·), ϕ̂(·), β(·)) has been obtained). And we will de-
note the above as LQ Problem of the leader.

We apply the maximum principle approach in Section
2.2 to solve LQProblem of the leader, which now is a
complete information one since G2,t ≡ Ft. We split this
process into three steps.

Step 1. (Optimal control)

Since the process triple (q(·), k(·), k̃(·)) has been replaced
by the new pair (ϕ(·), β(·)), we define the Hamiltonian
function H2 as

H2

(
t, xu2 , u2, ϕ, β; y, z, z̃, p

)

=
〈
y,A(t)xu2 +

(
Ã(t)−A(t)

)
x̂û2 + S̃4(t)ϕ̂

+B2(t)u2 +
(
B̃2(t)−B2(t)

)
û2

〉

+
〈
z, C(t)xu2 + S̃5(t)x̂

û2 + B̃⊤
1 (t)ϕ̂

+D2(t)u2 + S̃6(t)û2

〉
+
〈
z̃, C̃(t)

〉

+
〈
p,A⊤(t)ϕ+

(
B̃2(t)−B2(t)

)⊤
ϕ̂+

˜̃
S1(t)x

u2

−
˜̃
S1(t)x̂

u2 + S̃2(t)u2 +
(
S̃3(t)− S̃2(t)

)
û2

〉

+
1

2

[〈
Q2(t)x

u2 , xu2

〉
+
〈
N2(t)u2, u2

〉]
.

(56)
And the adjoint equation (17) writes





dp(t) =
[
A(t)p(t) +

(
B̃2(t)−B2(t)

)
p̂(t)

+ S̃⊤
4 (t)ŷ(t) + B̃1(t)ẑ(t)

]
dt,

−dy(t) =
[
A⊤(t)y(t) +

(
Ã(t)−A(t)

)⊤
ŷ(t)

+ C⊤(t)z(t) + S̃⊤
5 (t)ẑ(t)

+
˜̃
S1(t)p(t) −

˜̃
S1(t)p̂(t) +Q2(t)x

∗(t)
]
dt

− z(t)dW (t)− z̃(t)dW̃ (t),

p(0) = 0, y(T ) = G2x
∗(T ),

(57)
with

{
p̂(t) := E

[
p(t)

∣∣FY
t

]
, ŷ(t) := E

[
y(t)

∣∣FY
t

]
,

ẑ(t) := E
[
z(t)

∣∣FY
t

]
,

and (p(·), y(·), z(·)) ∈ R
n × R

n × R
n being Ft-adapted

processes. Note that (57) is an FBSDE.

Suppose that there exists an Ft-adapted optimal control
u∗
2(·) ∈ U2 for the leader, and the corresponding optimal

state (x∗(·), ϕ∗(·), β∗(·)) ≡ (xu∗

2 (·), ϕ∗(·), β∗(·)) is the
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solution to (55), that is,





dx∗(t) =
[
A(t)x∗(t) +

(
Ã(t)−A(t)

)
x̂∗(t)

+ S̃4(t)ϕ̂
∗(t) +B2(t)u

∗
2(t)

+
(
B̃2(t)−B2(t)

)
û∗
2(t)

]
dt

+
[
C(t)x∗(t) + S̃5(t)x̂

∗(t)

+ B̃⊤
1 (t)ϕ̂∗(t) +D2(t)u

∗
2(t)

+ S̃6(t)û
∗
2(t)

]
dW (t) + C̃(t)dW̃ (t),

−dϕ∗(t) =
[
A⊤(t)ϕ∗(t) +

(
B̃2(t)−B2(t)

)⊤
ϕ̂∗(t)

+
˜̃
S1(t)x

∗(t)−
˜̃
S1(t)x̂

∗(t)

+ S̃2(t)u
∗
2(t) +

(
S̃3(t)− S̃2(t)

)
û∗
2(t)

]
dt

− β∗(t)dW̃ (t),

x∗(0) = x0, ϕ
∗(T ) = 0.

(58)
Then (56) together with Proposition 2.3 yields that

0 = N2(t)u
∗
2(t) + S̃⊤

2 (t)p(t) +
(
S̃3(t)− S̃2(t)

)⊤
(t)p̂(t)

+B⊤
2 (t)y(t) +

(
B̃2(t)−B2(t)

)⊤
ŷ(t)

+D⊤
2 (t)z(t) + S̃⊤

6 (t)ẑ(t), a.e. t ∈ [0, T ].
(59)

Moreover, we can easily check that the convexity condi-
tion is satisfied. Then by Proposition 2.4, u∗

2(·) defined
by (59) is really optimal.

Step 2. (State feedback representation)

The representation of u∗
2(·) through (59) is not satisfac-

tory. We expect to obtain its state feedback representa-
tion via some Riccati equations. For this target, let us
regard the (x∗(·), p(·))⊤ as the optimal state and put

X =

(
x∗

p

)
, Φ =

(
y

ϕ∗

)
, Z =

(
z

0

)
, Z̃ =

(
z̃

β∗

)
,

(60)

and (suppressing some t below)





A1 :=

(
A 0

0 A

)
, A2 :=

(
Ã−A 0

0 B̃2 −B2

)
,

B1 :=

(
0 S̃4

S̃⊤
4 0

)
, B̃1 :=

(
0 0

B̃1 0

)
,

B2 :=

(
B2

0

)
, B̃2 :=

(
B̃2 −B2

0

)
,

B3 :=

(
0

S̃2

)
, B̃3 :=

(
0

S̃3 − S̃2

)
,

C1 :=

(
C 0

0 0

)
, C2 :=

(
S̃5 0

0 0

)
, C̃ :=

(
C̃

0

)
,

D2 :=

(
D2

0

)
, D̃2 :=

(
S̃6

0

)
,

Q2 :=


Q2

˜̃
S1

˜̃
S1 0


 , Q̃2 :=


 0 −

˜̃
S1

−
˜̃
S1 0


 ,

X0 :=

(
x0

0

)
, G2 :=

(
G2 0

0 0

)
.

Then (58) with (57) is equivalent to the following con-
ditional mean-field FBSDE





dX(t) =
[
A1X(t) +A2X̂(t) + B1Φ̂(t)

+ B̃1Ẑ(t) + B2u
∗
2(t) + B̃2û

∗
2(t)

]
dt

+
[
C1X(t) + C2X̂(t) + B̃⊤

1 Φ̂(t)

+D2u
∗
2(t) + D̃2û

∗
2(t)

]
dW (t) + C̃dW̃ (t),

−dΦ(t) =
[
Q2X(t) + Q̃2X̂(t) +A⊤

1 Φ(t)

+A⊤
2 Φ̂(t) + C⊤

1 Z(t) + C⊤
2 Ẑ(t)

+ B3u
∗
2(t) + B̃3û

∗
2(t)

]
dt

− Z(t)dW (t)− Z̃(t)dW̃ (t),

X(0) = X0, Φ(T ) = G2X(T ),
(61)

where

{
X̂(t) := E

[
X(t)

∣∣FY
t

]
, Φ̂(t) := E

[
Φ(t)

∣∣FY
t

]
,

Ẑ(t) := E
[
Z(t)

∣∣FY
t

]
.

(62)

Supposing that

(A3.4) N−1
2 (t) exists, for all t ∈ [0, T ],

14



then from (59), for a.e. t ∈ [0, T ], we have

u∗
2(t) = −N−1

2

[
B⊤
3 X(t) + B̃⊤

3 X̂(t) + B⊤
2 Φ(t)

+ B̃⊤
2 Φ̂(t) +D⊤

2 Z(t) + D̃⊤
2 Ẑ(t)

]
,

(63)

and

û∗
2(t) = −N−1

2

[(
B3 + B̃3

)⊤
X̂(t) +

(
B2 + B̃2

)⊤
Φ̂(t)

+
(
D2 + D̃2

)⊤
Ẑ(t)

]
.

(64)
Putting (63), (64) into (61), and letting





A1 := A1 − B2N
−1
2 B⊤

3 ,

A2 := A2 − B2N
−1
2 B̃⊤

3 − B̃2N
−1
2

(
B3 + B̃3

)⊤
,

B1 := −B2N
−1
2 B⊤

2 , B2 := −B2N
−1
2 D⊤

2 ,

B̃1 := B1 − B2N
−1
2 B̃⊤

2 − B̃2N
−1
2

(
B2 + B̃2

)⊤
,

B̃2 := B̃1 − B2N
−1
2 D̃⊤

2 − B̃2N
−1
2

(
D2 + D̃2

)⊤
,

C1 := C1 −D2N
−1
2 B⊤

3 , D2 := −D2N
−1
2 D⊤

2 ,

C2 := C2 −D2N
−1
2 B̃⊤

3 − D̃2N
−1
2

(
B3 + B̃3

)⊤
,

D̃2 := −D2N
−1
2 D̃⊤

2 − D̃2N
−1
2

(
D2 + D̃2

)⊤
,

Q2 := Q2 − B3N
−1
2 B⊤

3 ,

Q̃2 := Q̃2 − B3N
−1
2 B̃⊤

3 − B̃3N
−1
2

(
B3 + B̃3

)⊤
,

we get





dX(t) =
[
A1X(t) +A2X̂(t) + B1Φ(t)

+ B̃1Φ̂(t) + B2Z(t) + B̃2Ẑ(t)
]
dt

+
[
C1X(t) + C2X̂(t) + B

⊤

2 Φ(t)

+ B̃
⊤

1 Φ̂(t) +D2Z(t) + D̃2Ẑ(t)
]
dW (t)

+ C̃dW̃ (t),

−dΦ(t) =
[
Q2X(t) + Q̃2X̂(t) +A

⊤

1 Φ(t)

+A
⊤

2 Φ̂(t) + C⊤
1 Z(t) + C

⊤

2 Ẑ(t)
]
dt

− Z(t)dW (t)− Z̃(t)dW̃ (t),

X(0) = X0, Φ(T ) = G2X(T ).
(65)

Up to now, we have every reason to suppose that

Φ(t) = P1(t)X(t) + P2(t)X̂(t) + P3(t), (66)

due to the terminal condition in (65), where P1(·),P2(·)
are both differentiable, deterministic S2n-valued func-

tions with P1(T ) = G2,P2(T ) = 0, and FW,Y
t -adapted

process P3(·) satisfies BSDE

{
−dP3(t) = λ(t)dt −Q3(t)dY (t),

P3(T ) = 0.
(67)

In the above, λ(·) ∈ R
2n is FW,Y

t -adapted and Q3(·) ∈
R

2n is FY
t -adapted, which will be determined later.

Our remaining task is to decouple the conditional mean-
field FBSDE (65), by (66) and (67). This will lead
to a derivation of our system of Riccati equations for
Pi(·), i = 1, 2.

First, by (65) and (21), we have





dX(t) =
[
A1X(t) +A2X̂(t) + B1Φ(t)

+ B̃1Φ̂(t) + B2Z(t) + B̃2Ẑ(t)

−
(
C̃ 0

)( h⊤(t)x̃(t)

0

)]
dt

+
[
C1X(t) + C2X̂(t) + B

⊤

2 Φ(t)

+ B̃
⊤

1 Φ̂(t) +D2Z(t) + D̃2Ẑ(t)
]
dW (t)

+ C̃dY (t),

X(0) = X0.

(68)
Noting that

X̂(t; P̃ ) := Ẽ[X̂(t)|FY
t ] =

E[Z(t)X̂(t)|FY
t ]

E[Z(t)|FY
t ]

= X̂(t) := E[X(t)|FY
t ], etc.,

then applying Lemma 5.4 of [24] to (68), we get





dX̂(t) =
[(
A1 +A2

)
X̂(t) +

(
B1 + B̃1

)
Φ̂(t)

+
(
B2 + B̃2

)
Ẑ(t)

−
(
C̃ 0

)( h⊤(t)ˆ̃x(t)

0

)]
dt+ C̃dY (t),

X̂(0) = X0.

(69)
Also, by the backward equation of (65), we have





−dΦ(t) =
[
Q2X(t) + Q̃2X̂(t) +A

⊤

1 Φ(t)

+A
⊤

2 Φ̂(t) + C⊤
1 Z(t) + C

⊤

2 Ẑ(t)

+

(
h⊤(t)x̃(t) 0

0 0

)
Z̃(t)

]
dt

− Z(t)dW (t)− Z̃(t)dY (t),

Φ(T ) = G2X(T ).

(70)

Applying Itô’s formula to (66), by (68), (69) and (70),

15



we obtain

dΦ(t) = Ṗ1(t)X(t)dt+ P1(t)dX(t)

+ Ṗ2(t)X̂(t)dt+ P2(t)dX̂(t) + dP3(t)

=
{[

Ṗ1 + P1A1 + P1B1P1

]
X(t)

+
[
Ṗ2 + P2

(
A1 +A2

)
+ P2

(
B1 + B̃1

)
P1

+ P1

(
B1 + B̃1

)
P2 + P2

(
B1 + B̃1

)
P2

+ P1A2 + P1B̃1P1

]
X̂(t) + P1B2Z(t)

+
[
P1B̃2 + P2

(
B2 + B̃2

)]
Ẑ(t)

+ P1B1P3(t)− P1

(
C̃ 0

)( h⊤(t)x̃(t)

0

)

+ P1B̃1P̂3(t)− P2

(
C̃ 0

)( h⊤(t)ˆ̃x(t)

0

)

+ P2

(
B1 + B̃1

)
P̂3(t)− λ(t)

}
dt

+
{[

P1C1 + P1B
⊤

2 P1

]
X(t) +

[
P1C2

+ P1B
⊤

2 P2 + P1B̃
⊤

1

(
P1 + P2

)]
X̂(t)

+ P1B
⊤

2 P3(t) + P1B̃
⊤

1 P̂3(t) + P1D2Z(t)

+ P1D̃2Ẑ(t)
}
dW (t)

+
{(

P1 + P2

)
C̃ +Q3(t)

}
dY (t)

=−
{[

Q2 +A
⊤

1 P1

]
X(t) +

[
Q̃2 +A

⊤

2 P1

+A
⊤

1 P2 +A
⊤

2 P2

]
X̂(t) + C⊤

1 Z(t)

+ C
⊤

2 Ẑ(t) +

(
h⊤(t)x̃(t) 0

0 0

)
Z̃(t)

+A
⊤

1 P3(t) +A
⊤

2 P̂3(t)
}
dt

+ Z(t)dW (t) + Z̃(t)dY (t).

(71)

Comparing the coefficients of {·}dW (t) and {·}dY (t) on
both sides of the last “ = ” of (71), we have

Z(t) =
[
P1C1 + P1B

⊤

2 P1

]
X(t) +

[
P1C2

+ P1B
⊤

2 P2 + P1B̃
⊤

1

(
P1 + P2

)]
X̂(t)

+ P1D2Z(t) + P1D̃2Ẑ(t)

+ P1B
⊤

2 P3(t) + P1B̃
⊤

1 P̂3(t),

(72)

and

Z̃(t) =
(
P1 + P2

)
C̃ +Q3(t). (73)

Taking the conditional expectationE[·|FY
t ] on both sides

of (72), and supposing that

(A3.5) Ñ−1
2 :=

[
I2n − P1

(
D2 + D̃2(t)

)]−1

:=
[
I2n + P1

(
D2 + D̃2

)
N−1

2

(
D2 + D̃2

)⊤]−1

exists,

we have

Ẑ(t) = Ñ−1
2

{[
P1

(
C1 + C2

)
+ P1

(
B2 + B̃1

)⊤

×
(
P1 + P2

)]
X̂(t) + P1

(
B2 + B̃1

)⊤
P̂3(t)

}
.

(74)
Inserting (74) into (72), and supposing that

(A3.6) N
−1

2 :=
[
I2n − P1D2

]−1

:=
[
I2n + P1D2N

−1
2 D̃⊤

2

]−1
exists,

we have

Z(t) = N
−1

2

{[
P1C1 + P1B

⊤

2 P1

]
X(t)

+
[
P1C2 + P1B

⊤

2 P2 + P1B̃
⊤

1

(
P1 + P2

)

+ P1D̃2Ñ
−1
2

[
P1

(
C1 + C2

)

+ P1

(
B2 + B̃1

)⊤(
P1 + P2

)]]
X̂(t)

+ P1B
⊤

2 P3(t) +
[
P1B̃

⊤

1 + P1D̃2

× Ñ−1
2 P1

(
B2 + B̃1

)⊤]
P̂3(t)

}
.

(75)

Comparing the coefficients of {·}dt in (71) and substi-
tuting (73), (74), (75) into it, we obtain the following
coupled system of Riccati equations





0 = Ṗ1 + P1A1 +A
⊤

1 P1 + P1B1P1 +Q2

+
(
C⊤
1 + P1B2

)
N

−1

2 P1

(
C⊤
1 + P1B2

)⊤
,

0 = Ṗ2 + P2

(
A1 +A2

)
+
(
A1 +A2

)⊤
P2

+ P2

(
B1 + B̃1

)
P1 + P1

(
B1 + B̃1

)
P2

+ P2

(
B1 + B̃1

)
P2 + P1A2 +A

⊤

2 P1

+ P1B̃1P1 + Q̃2 +
(
C⊤
1 + P1B2

)

×N
−1

2 P1

[
C2 + B̃

⊤

1 P1 +
(
B2 + B̃1

)⊤
P2

]

+
[(
C⊤
1 + P1B2

)
N

−1

2 P1D̃2 + C
⊤

2 + P1B̃2

+ P2

(
B2 + B̃2

)]
Ñ−1

2

[
P1

(
C1 + C2

)

+ P1

(
B2 + B̃1

)⊤(
P1 + P2

)]
,

P1(T ) = G2, P2(T ) = 0,

(76)
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and

λ(t) =
[
A

⊤

1 + P1B1 +
(
C⊤
1 + P1B2

)
N

−1

2 B
⊤

2

]
P3(t)

+
[
A

⊤

2 + P1B̃1 + P2

(
B1 + B̃1

)

+
(
C⊤
1 + P1B2

)
N

−1

2

[
P1B̃

⊤

1 + P1D̃2

× Ñ−1
2 P1

(
B2 + B̃1

)⊤]
P̂3(t)

+

(
h⊤(t)x̃(t) 0

0 0

)
Q3(t)

+

(
h⊤(t)

(
x̃(t)− ˆ̃x(t)

)
0

0 0

)
P2C̃.

(77)
Applying Lemma 5.4 in Xiong [24] to (67), we have





−dP̂3(t) =
{[

A
⊤

1 +A
⊤

2 +
(
P1 + P2

)(
B1 + B̃1

)

+
(
C⊤
1 + P1B2

)
N

−1

2

[
B
⊤

2 + P1B̃
⊤

1

+ P1D̃2Ñ
−1
2 P1

(
B2 + B̃1

)⊤]]
P̂3(t)

+

(
h⊤(t)ˆ̃x(t) 0

0 0

)
Q3(t)

}
dt

−Q3(t)dY (t),

P̂3(T ) = 0.
(78)

Noting that the above filtered BSDE (78) satisfies the
stochastic Lipschitz condition in Wang et al. [22], then

it admits a unique FY
t -adapted solution (P̂3(·),Q3(·)).

Thus the BSDE (67) admits a unique FW,Y
t -adapted

solution (P3(·),Q3(·)).

Note that the system of Riccati equations (76) is entirely
new. For its solvability, we first rewrite the first equation
for P1(·) as follows





0 = Ṗ1 + P1

[
A1 − B2N

−1
2 B⊤

3

]

+
[
A1 − B2N

−1
2 B⊤

3

]⊤
P1 − P1B2N

−1
2 B⊤

2 P1

+
(
C⊤
1 − P1B2N

−1
2 D⊤

2

)[
I2n + P1D2N

−1
2 D̃⊤

2

]−1

× P1

(
C⊤
1 − P1B2N

−1
2 D⊤

2

)⊤
+Q2,

P1(T ) = G2.

(79)
Note that

[
I2n+P1D2N

−1
2 D̃⊤

2

]−1
P1 = P1

[
I2n+ D̃2N

−1
2 D⊤

2 P1

]−1

is symmetric (which can be proved by multiplying both

sides by
[
I2n + P1D2N

−1
2 D̃⊤

2

]
from left and by

[
I2n +

D̃2N
−1
2 D⊤

2 P1

]
from right). Then by standard Riccati

equation theory, (79) admits a unique S2n-valued solu-
tion. However, the solvability of the second equation for
P2(·) is widely open. In this paper, we only impose the
solvability of it as an assumption.

Putting (66), (74), (75) into (63), we obtain that

u∗
2(t) = −N−1

2

{[
B⊤
3 + B⊤

2 P1 +D⊤
2 N

−1

2 P1

×
(
C1 + B

⊤

2 P1

)]
X(t) + Σ1

(
P1,P2

)
X̂(t)

+ Σ2

(
P1

)
P̂3(t) +

[
B⊤
2 +D⊤

2 N
−1

2 P1B
⊤

2

]
P3(t)

}
,

(80)

for a.e. t ∈ [0, T ], where





Σ1

(
P1,P2

)
:= B̃⊤

3 + B⊤
2 P2B̃

⊤
2

(
P1 + P2

)

+D⊤
2 Ñ

−1
2

(
P1C2 + P1B

⊤

2 P2 + P1B̃
⊤

1

(
P1 + P2

)

+ P1D̃2Ñ
−1
2

[
P1

(
C1 + C2

)

+ P1

(
B2 + B̃1

)⊤(
P1 + P2

)])

+ D̃⊤
2 Ñ

−1
2

[
P1

(
C1 + C2

)

+ P1

(
B2 + B̃1

)⊤(
P1 + P2

)]
,

Σ2

(
P1

)
:= B̃⊤

2 +D⊤
2 N

−1

2

[
P1B̃

⊤

1 + P1D̃2

× Ñ−1
2 P1

(
B2 + B̃1

)⊤]

+ D̃⊤
2 Ñ

−1
2 P1

(
B2 + B̃1

)⊤
.

Step 3. (Optimal state equation)

By (66), (73), (74), (75), we have decoupled the opti-
mality system (65). And the optimal “state” X(·) =(
x∗(·), p(·)

)⊤
of the leader should be the FW,Y

t -adapted
solution to the conditional mean-field SDE





dX(t) =
{
Σ3(P1)X(t) + Σ4(P1,P2)X̂(t)

+ Σ5(P1)P3(t) + Σ6(P1)P̂3(t)
}
dt

+
{
Σ7(P1)X(t) + Σ8(P1,P2)X̂(t)

+ Σ9(P1)P3(t) + Σ10(P1)P̂3(t)
}
dW (t)

+ C̃dW̃ (t),

X(0) = X0,

(81)

where X̂(·) satisfies the filtered SDE





dX̂(t) =
{
Σ11(P1,P2)X̂(t) + Σ12(P1)P̂3(t)

}
dt

+ C̃dW̃ (t),

X̂(0) = X0,

(82)
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with





Σ3(P1) := A1 + B1P1 + B2N
−1

2

[
P1C1 + P1B

⊤

2 P1

]
,

Σ4(P1,P2) := A2 + B1P2 + B̃1

(
P1 + P2

)

+ B2N
−1

2

[
P1C2 + P1B

⊤

2 P2 + P1B̃
⊤

1

(
P1 + P2

)

+ P1D̃2Ñ
−1
2

[
P1

(
C1 + C2

)
+ P1

(
B2 + B̃1

)⊤

×
(
P1 + P2

)]]
+ B̃2Ñ

−1
2

[
P1

(
C1 + C2

)

+ P1

(
B2 + B̃1

)⊤(
P1 + P2

)]
,

Σ5(P1) := B1 + B2N
−1

2 P1B
⊤

2 ,

Σ6(P1) := B̃1 + B2N
−1

2

[
P1B̃

⊤

1 + P1D̃2

× Ñ−1
2 P1

(
B2 + B̃1

)⊤]
+ B̃2Ñ

−1
2 P1

(
B2 + B̃1

)⊤
,

Σ7(P1) := C1 + B
⊤

2 P1 +D2N
−1

2

[
P1C1 + P1B

⊤

2 P1

]
,

Σ8(P1,P2) := C2 + B
⊤

2 P2 + B̃
⊤

1

(
P1 + P2

)

+D2N
−1

2

[
P1C2 + P1B

⊤

2 P2 + P1B̃
⊤

1

(
P1 + P2

)

+ P1D̃2Ñ
−1
2

[
P1

(
C1 + C2

)

+ P1

(
B2 + B̃1

)⊤(
P1 + P2

)]]

+ D̃2Ñ
−1
2

[
P1

(
C1 + C2

)

+ P1

(
B2 + B̃1

)⊤(
P1 + P2

)]
,

Σ9(P1) := B
⊤

2 +D2N
−1

2 P1B
⊤

2 ,

Σ10(P1) := B̃
⊤

1 +D2N
−1

2

[
P1B̃

⊤

1 + P1D̃2

× Ñ−1
2 P1

(
B2 + B̃1

)⊤]
+ D̃2Ñ

−1
2 P1

(
B2 + B̃1

)⊤
,

Σ11(P1,P2) := A1 +A2 +
(
B1 + B̃1

)(
P1 + P2

)

+ B2N
−1

2

[
P1C1 + P1B

⊤

2 P1

]

+ B2N
−1

2

[
P1C2 + P1B

⊤

2 P2 + P1B̃
⊤

1

(
P1 + P2

)

+ P1D̃2Ñ
−1
2

[
P1

(
C1 + C2

)

+ P1

(
B2 + B̃1

)⊤(
P1 + P2

)]]

+ B̃2Ñ
−1
2

[
P1

(
C1 + C2

)

+ P1

(
B2 + B̃1

)⊤(
P1 + P2

)]
,

Σ12(P1) := B1 + B̃1 + B2N
−1

2 P1B
⊤

2

+ B2N
−1

2

[
P1B̃

⊤

1 + P1D̃2

× Ñ−1
2 P1

(
B2 + B̃1

)⊤]
+ B̃2Ñ

−1
2 P1

(
B2 + B̃1

)⊤
.

We summarize the above in the following theorem.

Theorem 3.2 Suppose that assumptions (A3.1)∼
(A3.6) hold and the system of Riccati equations (76)
admits a differentiable solution pair (P1(·),P2(·)). Let

X̂(·) be the FY
t -adapted solution to (82), and X(·) be

the Ft-adapted solution to (81). Define (Y (·), Z(·), Z̃(·))
by (66), (75), (73), respectively. Then (65) holds, where

(P3(·),Q3(·)) is the unique FW,Y
t -adapted solution to

(67). Moreover, the state feedback control u∗
2(·) defined by

(80) is an optimal control for Problem of the leader.

Noting that the optimal control u∗
2(·) for the leader given

by (80) is nonanticipating. Likewise, for the follower, the
optimal control u∗

1(t) ≡ u∗
1

(
t; x̂∗(t), û∗

2(t), ϕ̂
∗(t), β∗(t)

)
can also be represented in a nonanticipating way. In fact,
by (45), noting (64), (66), (74) and (73), we have

u∗
1(t) = −Ñ−1

1

[
S̃⊤
1 x̂∗(t) + S̃û∗

2(t)

+B⊤
1 ϕ̂∗(t) + D̃⊤

1 β
∗(t)

]

=− Ñ−1
1

[ (
S̃⊤
1 0

)
X̂(t) + S̃û∗

2(t)

+
(
0 B⊤

1

)
Φ̂(t) +

(
0 D̃⊤

1

)
ˆ̃
Z(t)

]

=− Ñ−1
1

[ (
S̃⊤
1 0

)
− S̃N−1

2

[
B⊤
3 + B⊤

2 P1

+D⊤
2 N

−1

2 P1

(
C1 + B

⊤

2 P1

)
+Σ1

(
P1,P2

)]

+
(
0 B⊤

1

) (
P1 + P2

)]
X̂(t)

− Ñ−1
1

[ (
0 B⊤

1

)
− S̃N−1

2

[
Σ2

(
P1

)

+ B⊤
2 +D⊤

2 N
−1

2 P1B
⊤

2

]]
P̂3(t)

− Ñ−1
1

(
0 D̃⊤

1

) [(
P1 + P2

)
C̃ +Q3(t)

]
,

(83)

for a.e. t ∈ [0, T ], which is an observable state feedback
representation for the optimal control of the follower,
where X̂(·) satisfies (82) and (P̂3(·),Q3(·)) satisfies (78).

Up to now, we have solved our LQ leader-follower
stochastic differential game with asymmetric informa-
tion, and it admits an open-loop Stackelberg equilibrium
(u∗

1(·), u
∗
2(·)). Its state feedback representation is (83)

and (80), respectively. And the corresponding optimal
state equation of the leader is (81), the corresponding
optimal state (observable) equation of the follower is
(82).

Remark 3.4 When we consider the complete informa-

tion case, i.e., W̃ (·) disappears and G1,t = Ft, Theorems
3.1 and 3.2 coincide with Theorems 2.3 and 3.3 in [26].

4 Concluding Remarks

In this paper we have discussed a leader-follower stochas-
tic differential game with asymmetric information, or
named a stochastic Stackelberg differential game with
asymmetric information. This kind of game problem pos-
sesses several attractive features worthy of being high-
lighted. First, the game problem has the Stackelberg or
leader-follower feature, which means the two players act
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as different roles during the game. Thus the usual ap-
proach to deal with game problems, such as Yong [25],
Hamadène [7], Wu [23], An and Øksendal [1], Wang and
Yu [21], Yu [29], Hui and Xiao [10,11], Shi [17] where
the two players act as equivalent roles, does not apply.
Second, the game problem has the asymmetric infor-
mation between the two players, which was not consid-
ered in Yong [26], Øksendal et al. [15] and Bensoussan
et al. [5]. In detail, the information available to the fol-
lower is based on some sub-σ-algebra of that available to
the leader. Stochastic filtering technique is introduced
to compute the optimal filtering estimates for the corre-
sponding adjoint processes, which perform as the solu-
tion to some FBSDFE. Third, the open-loop Stackelberg
equilibrium is represented in its state feedback form for
the partial observation case of LQ problem, under some
appropriate assumptions on the coefficient matrices in
the state equation and the cost functionals. Some new
conditional mean-field FBSDEs and system of Riccati
equations are first introduced in this paper, to deal with
the leader’s LQ problem.

Note that in principle, Theorems 3.1 and 3.2 provide a
useful tool to seek open-loop Stackelberg equilibrium. As
a first step in this direction, we apply our results to LQ
models to obtain explicit solutions. We hope to return
to the more general case when the states are not linear
or the costs are not quadratic in our future research to
completely solve the problems in the motivating exam-
ples introduced in the introduction. We expect that ex-
plicit solutions will not be available for these examples
and numerical approximations will be studied. It is wor-
thy to study the closed-loop Stackelberg equilibrium for
our problem, as well as the solvability of the system of
Riccati equations (76). In addition, many more partially
observable cases which are more important and reason-
able for applications and technological demanding in its
filtering procedure, are highly desirable for further re-
search. These challenging topics will be considered in
our future work.
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