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a b s t r a c t

The ideal switched model of the recently introduced semi-quasi-Z-source inverter is a practical exam-
ple of a switched system where each subsystem is neither asymptotically stable nor detectable from the
output, yet asymptotic stability can be ensured by imposing limitations on the load and on how switch-
ing is performed. In this paper, we present novel stability conditions for the switched model (i.e. not the
averaged model) of the semi-quasi-Z-source inverter connected to different types of loads and operating
in both complementary and uncontrolled conduction. These stability conditions give theoretical justifi-
cation to the standard open-loop inverter operation strategy and are important for the operation of the
converter under closed-loop control.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The semi-quasi-Z-source inverter introduced in Cao, Jiang, Yu,
and Peng (2011) is a single-phase single-stage low-cost (only two
active components) transformerless inverter whose input and out-
put terminals share the same ground. This inverter is especially
suited for renewable-energy distributed-generation photovoltaic
applications. Its name derives from the Z-source inverter (Peng,
2003; Tang, Xie, & Zhang, 2011) because it also contains an LC net-
work, the distinguishing feature of the Z-source inverter. However,
the shoot-through state responsible for the boost capability of the
Z-source inverter does not apply to the semi-quasi-Z-source in-
verter and hence the principle of operation of the latter inverter
is substantially different. The semi-quasi-Z-source inverter is de-
picted in Fig. 1. This inverter contains two active components (such
as IGBTs orMOSFETs), named S1 and S2 in Fig. 1. These components
conduct in a complementary manner during normal operation, i.e.
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either S1 is on and S2 is off, or S1 is off and S2 is on. We refer to
this ‘‘normal’’ operation mode as complementary conduction mode
(CCM). By uncontrolled conductionmode (UCM) we refer to the sit-
uationwhen both S1 and S2 are on because the antiparallel diode of
the non-triggered transistor becomes forward biased. Standard op-
eration of the inverter involves generating the gate signal for each
transistor via pulse-width modulation (PWM) so that exactly only
one of the transistors is triggered at every time instant. The frac-
tion of the PWM carrier period that S1 is on is referred to as the
duty cycle of S1. In CCM, if the duty cycle of S1 is d, then that of S2
will be 1 − d.

To obtain a sinusoidal voltage waveform at the output of the
inverter, Cao et al. (2011) assert that if the frequency of the desired
output sine wave is low enough, then the steady-state averaged-
model input–output gain equation would be approximately valid
at every time instant (after a possible initial transient). Hence the
required time-varying duty cycle can be deduced from this gain
equation. This inverter operation strategy was successfully tested
on a 40W prototype connected to a linear purely resistive load.
Operating the inverter in this manner necessarily produces large-
signal behavior, meaning that the linearized averaged model (Ćuk,
1977; Erickson, Ćuk, & Middlebrook, 1982; Middlebrook & Ćuk,
1976) is not an accurate model of the evolution of the circuit
variables.

The fact that the operation strategy proposed by Cao et al.
(2011) showed acceptable resultswhen tested on the experimental
prototype motivates the study of several important issues that
have not been previously analyzed. These issues involve the
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Fig. 1. Semi-quasi-Z-source inverter.

determination of whether different initial conditions converge to
the same steady-state trajectory or whether the state trajectory
remains bounded from every practical initial condition. Moreover,
it would be very useful to understand whether the transient
occurrence of UCM can alter the steady-state or the asymptotic
behavior. The importance of these issues is not only theoretical
but also practical, since specific types of loads, duty cycle
evolutions, and switching frequencies may lead to instability and
the occurrence of UCM, as we will demonstrate by means of two
simulation examples in Section 2.

Previous work in relation to the aforementioned issues in the
semi-quasi-Z-source inverter has been presented in De Nicoló,
Haimovich, and Middleton (2013) and Haimovich, Middleton, and
De Nicoló (2013). In Haimovich et al. (2013), we presented large-
signal stability conditions for both the averaged and the switched
model of the inverter connected to a purely resistive linear load and
operating in CCM. For both models, we showed that (a) the state
trajectories remain bounded irrespective of the (time-varying)
duty cycle evolution and (b) the state trajectories corresponding
to the same duty cycle evolution but starting from different initial
conditions converge to the same steady-state trajectory. These
results hold provided reasonable operating conditions are satisfied.
For the averaged model, these conditions amount to keeping the
duty cycle away from the extreme values 0 or 1. For the switched
model, in addition, the PWM carrier period must be less than a
specific value. InDeNicoló et al. (2013),we extended these stability
results to the switchedmodel of the inverter connected to a purely
resistive but nonlinear load.

This work extends the switched-model stability results of
De Nicoló et al. (2013) and Haimovich et al. (2013) in several
directions. First, we provide simulation examples to illustrate the
behavior of the semi-quasi-Z-source inverter and single out the
precise mechanism responsible for the generation of instability.
Second, we give stability conditions for specific types of nonlinear
dynamic and time-varying loads. Third, we enlarge the class of
considered switching signals so that our results hold for every
switching signal that ensures a minimum dwell-time on each
mode and an upper bound on the time spent in two consecutive
modes. This class contains but is not limited to the signals
corresponding to PWM operation. Fourth, stability results that
include possible transient occurrence of UCM are established. Our
results contain the switched-model results of De Nicoló et al.
(2013) and Haimovich et al. (2013) as special cases.

Standard results on open-loop trajectory stability based on
switched models and for a broad class of converters are presented
in Sanders and Verghese (1992). These results show that the dif-
ference between trajectories that correspond to the same switch-
ing evolution but different initial conditions is always bounded. To
conclude that this difference will asymptotically converge to zero,
Sanders and Verghese (1992) require the existence of parasitic loss
associated to each storage element of the circuit. By contrast, the
asymptotic and exponential stability results thatweprovide regard
all active and passive components in the inverter circuit as ideal
components. These assumptions correspond to a converter with
100% energy efficiency. Our results thus show that open-loop sta-
bility of the semi-quasi-Z-source inverter does not require parasitic
losses. As noted in Sanders andVerghese (1992), energy dissipation
within the converter circuit is helpful towards achieving stability.

Most existing results on switching converter stability either
are based on an averaged model of the circuit or address only
closed-loop operation. The use of averaged models for stability
analysis is known to give rise to switching frequency-dependent
mismatch between predicted and observed behavior, especially in
closed-loop operation (Lehman & Bass, 1996). Open-loop stability
of the semi-quasi-Z-source inverter based on the switched model
(i.e. not the averaged model) becomes important because, as
opposed to other topologies, this specific inverter circuit may
exhibit some singular unstable trajectories that should be avoided
(see Section 2.5). A similar problem exists in the Ćuk converter,
(see, e.g., Fuad, de Koning, & van der Woude, 2004).

A key difficulty in the analysis of the semi-quasi-Z-source in-
verter is that neither of the switchingmodes (neither of the subsys-
tems, employing switched systems terminology Liberzon, 2003)
is asymptotically stable nor detectable from the output voltage,
and hence stability is dependent on the limitations imposed on
switching. In addition, since neither mode is asymptotically stable,
then a minimum dwell-time condition is not sufficient in order to
ensure asymptotic stability. Therefore, some available switched-
system extensions of LaSalle’s invariance principle (Bacciotti &
Mazzi, 2005; Cheng, Wang, & Hu, 2008; Hespanha, 2004) are not
applicable or do not yield useful information when applied to the
switched model of the semi-quasi-Z-source inverter.

In Section 2 we present the switched model of the semi-quasi-
Z-source inverter and the specific types of loads and switching
signals that wemay consider.We also briefly explain the operation
strategy proposed in Cao et al. (2011) and provide motivating
simulation examples where instability is evidenced. Section 3
contains stability results for the inverter operating in CCM and
Section 4 those that consider the occurrence of UCM. Conclusions
are given in Section 5. Most proofs are given in the Appendix.
Notation. The reals, nonnegative reals, and integers are denotedR,
R+, and Z, respectively. For a matrix M , ρ(M) denotes its spectral
radius, M ′ its transpose, and M > 0 means that M is positive
definite. The ith column of the identitymatrix is ei and ∥·∥ denotes
the (induced) 2-norm.

2. Semi-quasi-Z-source inverter

The semi-quasi-Z-source inverter is depicted in Fig. 1. In CCM,
either S1 is on and S2 is off (Mode I) or S1 is off and S2 is on (Mode II).
In UCM a thirdmode (Mode III) occurs when the switches S1 and S2
are both conducting. The inverter reachesMode III when operating
in Mode I and the antiparallel diode of S2 becomes forward biased,
or when operating in Mode II and that of S1 becomes forward
biased.

The switched model of the inverter operating in CCM is pre-
sented in Section 2.1. In Sections 2.2 and 2.3, we describe the types
of switching signals and loads, respectively, considered. In Sec-
tion 2.4, we briefly explain the inverter operation strategy pro-
posed by Cao et al. (2011). In Section 2.5, we illustrate the possible
unstable behavior of the inverter bymeans of simulation examples.

2.1. Switched model in CCM

Consider the semi-quasi-Z-source inverter of Fig. 1. Defining the
state vector zc as,

zc := [iL1 iL2vC1vC2 ]
′, (1)

with the positive convention for each variable as shown in Fig. 1,
the state equation for the switched model of the inverter in CCM
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can be written as

Pc żc(t) = [Aq
i zc(t) + bqi ]r(t) + [Aq

iizc(t) + bqii][1 − r(t)] − e4io (2)

Aq
i =

0 0 0 0
0 0 1 1
0 −1 0 0
0 −1 0 0

 , Aq
ii =

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , (3)

bqi =

Vin 0 0 0

′
, bqii =


0 −Vin 0 0

′
, (4)

Pc := diag(L1, L2, C1, C2), vo = zc4 = e′

4zc, (5)

r(t) =


1 if in Mode I,
0 if in Mode II, (6)

where e4 = [0 0 0 1]′ and io denotes the current drawn by the
load (i.e. the inverter’s output current), whose positive convention
is shown in Fig. 1. The signal r : R+ → {0, 1} is the switching signal,
whose value r(t) identifies which of the modes is active at instant
t .

2.2. Switching signals

We will consider switching signals in the following class.

Definition 1. A signal r : R+ → {a, b}, with a ≠ b, is said to be of
class PWM(T , ϵ) with 0 < 2ϵ ≤ T , if it is right-continuous and for
every integer k there exist time instants τk and rk, so that r0 = 0
and

r(t) =


a if rk ≤ t < τk,
b if τk ≤ t < rk+1,

(7)

τk − rk ≥ ϵ, rk+1 − rk ≤ T , (8)
rk+1 − τk ≥ ϵ.

A signal of class PWM(T , ϵ) is said to be of class PWM(T , ϵ) if the
time instants rk satisfy rk+1 − rk = T .

A signal r of class PWM(T , ϵ) constantly alternates between its
two possible values (modes) a and b. According to (7), the time
instants rk and τk are the discontinuity instants of r , and from (8)
then each mode has minimum and maximum dwell-times ϵ and
T − ϵ, respectively. The output of a PWMwith carrier period equal
to T andwhere the duty cycle of eithermode is never less than ϵ/T
is a signal of class PWM(T , ϵ) ⊂ PWM(T , ϵ).

2.3. Loads

We consider loads described in one of the forms:

PHF

ẋl = [J − R(t, xl)] PHxl + Bvo
io = [B + K ]′ PHxl + h(t, vo)

(9a)

PH

ẋl = [J − R(t, xl)] PHxl + Bvo
io = B′PHxl

(9b)

TVS

io = h(t, vo) (9c)

where R(t, xl) and h(t, vo) are continuous and

J = −J ′, PH = P ′

H > 0, (10)

R(t, xl) = R′(t, xl) > 0, ∀t, ∀xl.

A load of the form (9a) is a time-varying nonlinear load that can be
interpreted as a port-Hamiltonian systemwith feedthrough (PHF),
where J is the interconnection matrix, R(t, xl) is the dissipation
matrix, h(t, vo) is the feedthrough term, andwhere theHamiltonian
is quadratic and given by H(xl) =

1
2x

′

lPHxl. A load of the form (9b)
lacks the feedthrough term and one of the form (9c) is a time-
varying static (TVS) nonlinearity. Note that both (9b) and (9c) are
special cases of (9a). Wewill impose the following assumptions on
the load.
• For a PHF load (9a):

hmv2
o ≤ voh(t, vo) ≤ hMv2

o , ∀t, ∀vo, (11)

λmI ≤ R(t, xl) −
KK ′

4hm
≤ λM I, ∀t, ∀xl, (12)

with R(t, xl) and h(t, vo) continuous and with positive con-
stants hM ≥ hm > 0 and λM ≥ λm > 0.

• For a PH load (9b):

λmI ≤ R(t, xl) ≤ λM I, ∀t, ∀xl, (13)

with R(t, xl) continuous and λM ≥ λm > 0.
• For a TVS load (9c), only (11) will be required, with h(t, vo)

continuous and hM ≥ hm > 0.

The use of a port-Hamiltonian description in switched converters
was analyzed in Escobar, van der Schaft, and Ortega (1999). The
form (9) allows themodeling of loads that can be thought of as RLC
circuits with possibly nonlinear time-varying resistors. Loads that
are not covered by our current analysis include those having non-
linear energy-storage components, such as a nonlinear inductor.
Note that a linear resistive load of equation io = Gvo, with
conductance G > 0, is a special case of (9c), and satisfies (11) with
hm = hM = G. Another important type of load that can be put into
one of the forms (9) is the following.

Proposition 1. Consider a linear load of admittance

Y (s) =
Io(s)
Vo(s)

,

where Io(s) and Vo(s) represent the Laplace transforms of the load
current and voltage, respectively. If Y (s) is strictly positive real (SPR),
then the load’s state and output equations can be put into one of the
forms (9), satisfying the corresponding assumptions in (11), (12), (13).
◦

The proof of Proposition 1 is based on the Kalman–Yakubovich–
Popov Lemma (cf. Khalil, 2002, Lemma 6.3) and is omitted due to
space limitations.

2.4. Standard open-loop operation

The DC gain equation for the semi-quasi-Z-source inverter is
derived in Cao et al. (2011) as

⟨vo⟩

Vin
=

⟨vC2⟩

Vin
=

1 − 2D
1 − D

, (14)

where ⟨y⟩ denotes the average value of y over a switching period
and D is the constant duty cycle of Mode I. Cao et al. (2011) state
that if a time-varying duty cycle is applied with a sufficiently slow
variation, then (14) would be approximately valid at every time
instant. Consequently, if ⟨vo(t)⟩ = Vo sin(2π fot) is desired, then
from (14), the required time-varying duty-cycle d(t) results

d(t) =
1 − M sin(2π fot)
2 − M sin(2π fot)

(15)

with M =
Vo
Vin

. Cao et al. tested this inverter operation strategy
on a 40 W prototype showing good results when the inverter is
connected to a linear resistive load.

2.5. Unstable/UCM trajectory examples

We next present two simulation examples. The first simulation
corresponds to the inverter connected to a linear resistive load.
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Fig. 2. Capacitor C1 voltage and capacitor C2 voltage. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
The values of inductance, capacitance, input voltage, and load
resistance are taken to coincide with those of the 40W prototype
of Cao et al. (2011). That is, L1 = L2 = 400 µH, C1 = C2 = 4 µF,
Vin = 40 V, R = 19 Ω . Initial conditions for the simulation are
1 mA for the inductor L1 current and zero for the rest of the state
variables. The switching signal r(t) is given by

r(t) =


1 if d(t) > p(t),
0 if d(t) ≤ p(t), (16)

p(t) =
t
T

− k(t), k(t) = floor


t
T


, (17)

where floor(a) denotes the greatest integer not greater than a, T =

2.5π
√
L1C1 = 314 µs, and d(t) = 0.2 (constant). The generation

of r(t) in this manner is nothing but a pulse-width modulation of
the signal d(t). The signal d(t) can be interpreted as the required
duty cycle of Mode I, which is compared with the sawtooth signal
p(t) to generate the switching function r(t). Since the duty cycle of
Mode I is constant, then according to the steady-state equation (14)
the average value of the output voltage would be 30V. Note that
r(t) as above is of class PWM(T , ϵ) with ϵ = 0.2T . Fig. 2 shows
the capacitors C1 and C2 voltage, in red when UCM occurrence is
considered and in black if UCM did not occur. For the inverter to
remain in CCM, the instantaneous voltage across C1 has to remain
greater than −Vin, i.e. vC1(t) > −Vin. This is required to ensure
that neither the antiparallel diode of S2 (if in Mode I) nor that of S1
(if in Mode II) becomes forward biased. This example shows that
although the inverter is connected to a linear resistive load (the
same load used by Cao et al. (2011) in the 40W prototype) and the
duty cycle ofMode I is constant and equal to 0.2, the state trajectory
would diverge if UCM did not occur. The corresponding averaged
model is stable in this case (see Haimovich et al., 2013) and hence
this simulation example shows the need of considering a switched
model in order to properly analyze stability.

The second simulation corresponds to a purely resistive
nonlinear load with current–voltage relationship

io = 0.5sat(2vo/R), R = 19Ω, where (18)

sat(·) is the standard saturation function. This load behaves as a
linear resistive load of resistance R = 19Ω if the absolute value
of its voltage is less than 9.5 V; otherwise, it draws a constant
current of 0.5 A or −0.5 A. Note that the relationship (18) satisfies
voh(t, vo) ≥ 0 ∀vo ∈ R and ∀t with h(t, vo) := 0.5 sat(2vo/R).
Parameter values are taken to coincide with those of the 40 W
prototype in Cao et al. (2011). That is, L1 = L2 = 400 µH, C1 =

C2 = 4 µF, Vin = 40 V. The load behaves identically to that in
the aforementioned prototype if the absolute value of the output
voltage is less than 9.5V.

The aim of this second simulation example is to illustrate the
fact that even if the load is strictly passive and the duty cycle never
deviatesmuch from 0.5, some duty cycle evolutionsmay still cause
instability. Bearing this aim inmind,we consider a switching signal
defined by (16)–(17), andwith d(t) as below,which is purposefully
selected in order to generate instability:

d(t) = 0.5 + 0.028 sign

iL1


k(t)T


+ iL2


k(t)T


.

The sawtooth signal period T (PWM carrier period) is now selected
equal to that used for the aforementioned prototype, namely
T = 20 µs, corresponding to a switching frequency of 50 kHz.
The simulation was run with zero initial conditions in all state
variables. Again, note that the switching signal r(t) for this second
simulation example is of class PWM(T , ϵ) with period T = 20 µs
and minimum dwell-time ϵ = (0.5 − 0.028)T = 0.472 T . Fig. 3
shows the simulation results until t = 0.09 s. Fig. 3 exhibits the
occurrence of UCM (Mode III), when vC1(t) reaches −Vin. In this
example, the time-varying duty cycle applied assumes only the
two values 0.5 − 0.028 = 0.472 and 0.5 + 0.028 = 0.528. Also,
note that the inverter is connected to a passive non-linear resistive
load (voio is always nonnegative). Despite these facts, and that the
switching frequency is high (50 kHz), the state trajectory would
diverge if UCM did not occur.

The mechanism for instability is different in each simulation
example. In the first example, some of the energy delivered by the
voltage source is stored in L1 and C1 and never reaches the rest of
the circuit. This is evidenced in Fig. 2 by the fact that the capacitor
C1 voltage diverges if UCM did not occur, but not the capacitor
C2 voltage. This type of instability occurs because the switching
frequency is not sufficiently high. The second example shows that
even if the switching frequency is sufficiently high and the energy
contained in L1 and C1 can be transferred to the rest of the circuit,
the rate at which the load dissipates energy eventually becomes
lower than the rate at which the input voltage source delivers
energy to the circuit, causing all variables to become divergent if
UCM did not occur.

3. Complementary Conduction Mode (CCM)

In this section, we provide stability results for the switched
model of the semi-quasi-Z-source inverter operating in CCM. For
simplicity of the resulting equations, we will express the state
equations in the variables

xc(t) := zc(t) − z̄c, µ(t) := r(t) − 0.5, (19)
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Fig. 3. Capacitor C1 and C2 (output) voltages.
with z̄c = [0 0 Vin 0]′. In terms of xc and µ, the switched model
(2)–(6) becomes

ẋc(t) = Ac(µ(t))xc(t) + Bc io + Binµ(t),where (20)

Ac(µ(t)) = P−1
c


Aq
0 + Eq

0µ(t)

, (21)

Bin = P−1
c [2Vin 2Vin 0 0]′, Bc = −P−1

c e4 (22)

Aq
0 =

 0 0 −0.5 0
0 0 0.5 1
0.5 −0.5 0 0
0 −1 0 0

 , Eq
0 =

 0 0 1 0
0 0 1 0

−1 −1 0 0
0 0 0 0

 ,

(23)

with Pc as in (5) and vo = e′

4xc . According to (19) and since r(t) ∈

{0, 1}, then µ(t) ∈ {−0.5, 0.5}. Note that Ac(−0.5) = P−1
c Aq

ii and
Ac(0.5) = P−1

c Aq
i .

The state equations for the connection of a load to the
semi-quasi-Z-source inverter are obtained by combining the load
equations (9) with the inverter equations (20). This combination
can be written as

ẋ(t) = A(µ(t))x(t) + F(t, x(t)) + Bsµ(t), (24)

where x is the complete circuit state, A(µ)x represents a switched-
linear part and F(t, x) concentrates nonlinearities, where:

• If the load is of the form PHF, as in (9a), then

A(µ) =


Ac(µ) + Bchme′

4 Bc[B + K ]
′PH

Be′

4 Al


, (25)

x :=


xc
xl


, Bs :=


Bin
0


, (26)

Al :=


J −

KK ′

4hm
− λmI


PH , (27)

F(t, x) :=


Bcρ(t, e′

4xc)
−δ(t, xl)PHxl


, (28)

δ(t, xl) := R(t, xl) −
KK ′

4hm
− λmI, (29)

ρ(t, v) := h(t, v) − hmv. (30)

• If the load is PH, as in (9b), then (25)–(26) hold with K := 0 and
hm := 0, and (27)–(29) hold with K := 0 and ρ := 0.

• If the load is TVS, as in (9c), then ρ is as in (30),

x := xc, Bs := Bin, F(t, x) := Bcρ(t, e′

4xc),

A(µ) := Ac(µ) + Bchme′

4. (31)
If the input voltage is time-varying, of the form vin(t) = Vinϑ(t),
then the model (24) is written as

ẋ(t) = A(µ(t))x(t) + F(t, x(t)) + Bsu(t), (32)

where u(t) = ϑ(t)µ(t). This follows from (22) and (26). The con-
stant Vin now identifies the ‘‘nominal’’ input voltage. Since it is
both reasonable and practical to assume that the input voltage
is bounded, and since µ(t) ∈ {−0.5, 0.5}, it follows that u(t)
bounded is a reasonable and practical assumption. Also, since for
constant and nominal input voltagewehave u(t) = µ(t), then u(t)
cannot be assumed continuous. Solutions to (32) are understood in
the sense of Carathéodory, i.e. absolutely continuous functions x(t)
whose time derivative satisfies (32) almost everywhere. For future
reference, define

AI := A(0.5), AII := A(−0.5), (33)

P :=



Pc/2 0
0 PH/2


for PHF or PH load,

Pc/2 for TVS load,
(34)

with Pc and PH as in (5) and (9)–(10).
The following lemma is the starting point for our stability

results and constitutes an extension to linear dynamic loads of
Lemma 1 of Haimovich et al. (2013). The latter result dealt only
with loads of the form io = vo/R, with constant R. The proof of
Lemma 1 can be consulted in the Appendix.

Lemma 1. Consider Ai, Aii and P as in (33)–(34). Let ti, tii be positive
and for every ϵ ≥ 0 define

Mϵ := eAiϵeAiitiieAiti . (35)

(a) If tii ≠ kπ
√
L1C1 for every positive integer k, then ρ(M0) < 1

and

M ′

ϵPMϵ − P < 0, for all ϵ > 0. (36)

(b) If tii = kπ
√
L1C1 for some positive integer k, then ρ(Mϵ) = 1 for

all ϵ ≥ 0.◦

Lemma 1 identifies a key property of the ideal semi-quasi-Z-source
inverter circuit. The linear (time-varying) system ẋ = A(µ)x repre-
sents the inverter under Vin = 0 when connected to a linear load.
Recalling (33), we see that Ai and Aii are the two possible values
of A(µ(t)). Given an initial state xo, the quantity Mϵxo, with Mϵ as
in (35), represents the state that is reached from xo after operat-
ing in Mode I (i.e. µ(t) = 0.5) for ti seconds, followed by Mode II
(µ(t) = −0.5) for tii seconds, and again Mode I for ϵ seconds. The



52 L. De Nicoló et al. / Automatica 63 (2016) 47–59
expression x′
o(M

′
ϵPMϵ − P)xo constitutes the increment in energy

from the initial state xo to the final state Mϵxo. The main point in
Lemma 1 is that if the time spent in Mode II, namely tii, is an in-
teger multiple of π

√
L1C1, then initial states will exist from which

the system’s energywill not decrease, even ifwe alternate between
Modes I and II. This situationmay become a stability problemwhen
Vin ≠ 0. This problem is the one illustrated in the first simulation
example in Section 2.5. The result of Lemma 1, is directly related to
the characterization of observability for switched linear systems
given in Tanwani, Shim, and Liberzon (2013), where individual
subsystemsmaybe not detectable but detectability of the switched
system can still be ensured depending on the mode sequence and
switching times. Our main stability result for CCM follows.

Theorem 1. Consider the system (32), representing the ideal switched
model of the semi-quasi-Z-source inverter connected to a load of one
of the considered forms, as explained in Section 2.3, and allowing in-
put voltage variations through the bounded and piecewise continuous
perturbation input u. Let ϵ and T satisfy 0 < 2ϵ ≤ T ≤ π

√
L1C1.

Then, there exist positive constants K̄ , λ and G such that the trajecto-
ries of (32) (i.e. the Carathéodory solutions) are defined for all t ≥ 0
and satisfy

∥x(t)∥ ≤ K̄∥x0∥e−λt
+ G sup

0≤τ≤t
∥u(τ )∥, (37)

for all µ ∈ PWM(T , ϵ), for all initial state x0 and all t ≥ 0. If, in
addition, the continuous functions R(t, xl) and/or h(t, xl), depending
on the load type, are such that F(t, x) in (28)–(30) is locally Lipschitz
in x for all t ≥ 0, then the solutions x(t) are unique. ◦

Theorem 1 states that system (32) is input-to-state stable with re-
spect to the input u(t), uniformly over switching signals of class
PWM(T , ϵ). Eq. (32) represents the inverter connected to a pos-
sibly nonlinear and time-varying dynamic load and under, input
voltage variations. The constraint 0 < 2ϵ ≤ T ≤ π

√
L1C1 im-

plies a maximum dwell-time T − ϵ ≤ π
√
L1C1 − ϵ. The proof of

Theorem 1 is given in the Appendix.
For the specific case of the semi-quasi-Z-source inverter com-

manded by the output of a PWM with carrier period equal to T ,
i.e. with switching signal of class PWM(T , ϵ), it happens that if the
switching frequency is not higher than 1/(π

√
L1C1), then the time

spent in Mode II may equal or approximate π
√
L1C1 (or an integer

multiple of it). In this case, the circuit variables will not only have
large ripple but ripple may also increase without bound, or at least
until UCM occurs, as illustrated in the first simulation example in
Section 2.5.

The assumptions on the load, as given in Section 2.3, ensure
that the load is strictly passive. If the requirement that the load
be strictly passive is relaxed to only passive, then the inverter may
fail to achieve stability. This can be readily verified by considering
a load consisting only of a linear inductor of inductance L > 0. The
admittance function in this case is Y (s) = 1/Ls, which is positive
real but not strictly positive real (and hence not strictly passive).
Note that in this case, and sincewe consider all circuit components
to be ideal, no energy-dissipating components are present, and
hence stability cannot be expected in open loop.

The following theorem can be employed to give theoretical
justification to the open-loop inverter operation strategy of Cao
et al. (2011) that was explained in Section 2.4.

Theorem 2. Consider the system (32), representing the ideal switched
model of the semi-quasi-Z-source inverter connected to a load of one
of the considered forms, as explained in Section 2.3, and under input
voltage variations. Consider the following assumptions on the load:
• If the load is PHF, suppose that,

0 < hm ≤
h(t, v1) − h(t, v2)

v1 − v2
≤ hM , (38)δ̃(t, xl, εl)

2
≤ a ∥PHεl∥

2 , (39)

δ̃(t, xl, εl)′PHεl ≥ 0, (40)

for some a > 0, for all v1 ≠ v2, and all t , xl and εl, where

δ̃(t, xl, εl) := [R(t, xl + εl) − R(t, xl)] PHxl

+


R(t, xl + εl) −

KK ′

4hm
− λmI


PHεl. (41)

• If the load is PH, as in (9b), suppose that (39)–(41) hold with
K := 0.

• If the load is TVS, as in (9c), suppose that (38) holds.

Let ϵ and T satisfy 0 < 2ϵ ≤ T ≤ π
√
L1C1 and let xµ,u(t, xo) denote

a solution to (32) at time t, corresponding to the initial condition xo,
switching signal µ, and bounded piecewise continuous perturbation
u. Then,

(a) if µ ∈ PWM(T , ϵ), and u(t) is bounded and piecewise
continuous, then a (Carathéodory) solution xµ,u(t, xo) exists for
all t ≥ 0 and is unique.

(b) there exist positive constants K̄ and λ such that

∥xµ,u(t, x10) − xµ,u(t, x20)∥ ≤ K̄ e−λt
∥x10 − x20∥ (42)

for all t ≥ 0, all x10, x20 and all µ ∈ PWM(T , ϵ).◦

The proof of Theorem 2 is given in the Appendix.
Theorem 2 states that the difference between any two

state trajectories starting from different initial conditions but
corresponding to the same switching signal and input voltage
evolutions will exponentially converge to zero, and that the
exponential convergence rate can beuniformover all the switching
signals considered. As regards the open-loop inverter operation
strategy of Cao et al. (2011) explained in Section 2.4, it follows that
if the assumptions on the load are satisfied, then the steady-state
trajectory corresponding to the duty cycle evolution (15) will be
reached irrespective of the initial condition. If the load is linear
but possibly time-varying (i.e. R(t, xl) = R̄(t) and/or h(t, v) =

ᾱ(t)v), then the assumptions of Theorem 2 are satisfied whenever
the assumptions on the load given in Section 2.3 are. The inverter
connected to a linear time-invariant resistive load corresponds to
the prototype tested by Cao et al. (2011).

4. Uncontrolled Conduction Mode (UCM)

The aim of this section is to show that under constraints on
the load similar to those required in Section 3, the transience or
persistence of UCM, for switching signals in the class considered,
is independent of initial conditions.We remark that the occurrence
of UCM is not a consequence of intentionally triggering both
transistors at the same time, and depends on the value of the
state variables. In this regard, UCM in the semi-quasi-Z-source
inverter bears some similarity to Mode 5 of the Z-source inverter
as reported in Section 2 of Shen and Peng (2008).

When analyzing UCM, we have to distinguish between (a) the
command signal s(t) that indicates whether Mode I or Mode II is
requested (depending on the gate signal for each transistor, s(t) ∈

{i, ii}), and (b) the true switching mode of the circuit σ(t), which
depends on s(t) and on the state variables (σ(t) ∈ {i, ii, iii}, with
σ(t) = iiimeaning UCM). According to Fig. 1 and considering ideal
antiparallel diodes, if the capacitor C1 voltage, vC1 , is greater than
−Vin, then the inverter operates in CCM and σ(t) = s(t). However,
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Fig. 4. Switching mode flow diagram for the semi-quasi-Z-source inverter: zc1 =

iL1 , zc2 = iL2 , zc3 = vC1 , zc4 = vC2 .

ifvC1 = −Vin, then the invertermay reachMode III. Fig. 4 shows the
true switching mode of the inverter depending on the command
signal and state vector zc as defined in (1). Considering the positive
convention for each variable as shown in Fig. 1 and with zc as in
(1), then

Pc żc(t) =Aq
σ(t)zc(t) + bqσ(t) − e4io(t), (43)

with σ(t) ∈ {i, ii, iii}, Aq
i , A

q
ii, b

q
i , b

q
ii, Pc as in (3)–(5),

and Aq
iii =

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , bqiii =

 Vin
−Vin
0
0

 . (44)

For the sake of clarity, in this section we assume that the
input voltage Vin is constant, although more general results could
be obtained by allowing the input voltage to be time-varying
and imposing smoothness assumptions on its time dependence.
Direct analysis of either the inverter circuit of Fig. 1 or Eqs. (43)
with (3)–(5) and (44) shows that the only state variable whose
derivative may be discontinuous at a time instant of continuity
of the command signal s(t) is zc3 = vC1 , and that the region
of the state space given by zc3 ≥ −Vin is positively invariant.
Capacitor C1 voltages lower than −Vin would produce impulsive
current through C1 and the instantaneous change to zc3 = −Vin,
irrespective of which of the two switches S1 or S2 is being triggered
at that instant. Consequently, the results of this sectionwill be valid
for initial conditions satisfying zc3(0) ≥ −Vin. Our main results for
UCM are given below as Theorem 3.

Theorem 3. Consider the ideal switched model of the semi-quasi-
Z-source inverter that includes UCM, as given by (43), connected to
a load of one of the forms (9). Suppose that the load satisfies the
assumptions required in Theorem 2. Let ϵ and T satisfy 0 < 2ϵ ≤

T ≤ π
√
L1C1, let s(t) ∈ PWM(T , ϵ) and consider an initial condition

satisfying zc3(0) = vC1(0) ≥ −Vin. Then

(a) The solution exists for all t ≥ 0, is unique and satisfies zc3(t) ≥

−Vin for all t ≥ 0.
(b) If for the given initial condition and command signal, the voltage

across capacitor C1 satisfies

zc3(t) = vC1(t) ≥ −Vin + d3, (45)

for all t ≥ 0 and for some d3 > 0, then, for the same command
signal s(t) and each initial condition (satisfying zc3(0) ≥ −Vin)
there exists a time instant t∗ such that zc3(t) = vC1(t) > −Vin
for all t > t∗.◦

For a given command signal s(t), Theorem 3 (b) establishes that
if at least one initial condition exists for which the voltage across
capacitor C1 remains higher than −Vin at all times (and hence the
inverter operates in CCM at all times), then every initial condition
will have an associated time instant from which the inverter will
never leave CCM. This result establishes that the situation where
UCM never ceases to occur is independent of the initial condition,
and hence only depends on the command signal applied.

5. Conclusions

This work has provided large-signal stability conditions for the
ideal switched model of the semi-quasi-Z-source inverter con-
nected to nonlinear time-varying dynamic loads and operating
in CCM and UCM. For the inverter operating in CCM, our stabil-
ity results ensure boundedness of all circuit variables for every
switching signal in a specific class. We have also provided condi-
tions under which the difference between two state trajectories
that start from different initial conditions and correspond to the
same switching signal will decrease exponentially to zero. These
results are valid for every possible value of inductances and ca-
pacitances of the inverter circuit and can be used to justify the
standard open-loop semi-quasi-Z-source inverter operation strat-
egy. We have also established that the transience or persistence
of UCM is independent of initial conditions and only depends on
the switching command signal. Specifically, if for a given command
signal there exists at least one initial condition for which the in-
verter operates in CCM for all t ≥ 0, then every initial condition
will have an associated time instant from which the inverter will
never leave CCM (when operating under the same command sig-
nal). These stability results are based on the use of the natural en-
ergy function of the circuit as a Lyapunov function. One of the com-
plications in analyzing stability for this inverter is due to the fact
that neither of the switching modes of the circuit is asymptoti-
cally stable, nor detectable from the output voltage, and hence no
Lyapunov function exists whose derivative along the system tra-
jectories has a dominating negative definite term. Stability for the
semi-quasi-Z-source inverter is not only dependent on the load but
also on the limitations imposed on switching.

Appendix. Proofs

Proof of Lemma 1

The proof is given for a load of the form (9a) or (9b). The
proof for loads of the form (9c) is simpler and can be obtained
by following the same ideas in this proof. Consider the system
ẋ(t) = A(µ(t))x(t). Let µ satisfy

µ(t) =

0.5 if 0 ≤ t < ti,
−0.5 if ti ≤ t < ti + tii,
0.5 if ti + tii ≤ t < ti + tii + ϵ,

so that given an initial state x(0) = xo, we have x(ti + tii +

ϵ) = Mϵxo. Consider the Lyapunov function V (x) = x′Px, so that
V̇ (x, µ) = x′

[A(µ)′P + PA(µ)]x. From (21), (23), (25) and (34), we
have A′

c(µ)Pc +PcAc(µ) = 0 and V̇ (x, µ) does not depend onµ, so
that

V̇ (x, µ) =: −x′Nx, (A.1)

with N to be determined. From (27) and (10), also
1
2
(A′

lPH + PHAl) = −PH


KK ′

4hm
+ λmI


PH .

It thus follows that

N = Ñ ′Ñ +


0 0
0 λmP2

H


, and (A.2)

Ñ =




hme′

4
K ′PH
2
√
hm


if load is PHF,

0 if load is PH,

(A.3)
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and N ≥ 0. From (A.1), then V̇ ≤ 0. Consequently, for every ϵ ≥ 0
then

M ′

ϵPMϵ − P ≤ 0, (M2
ϵ )

′PM2
ϵ − P ≤ 0, (A.4)

x′(M ′

ϵPMϵ − P)x < 0 =⇒

x′((M2
ϵ )

′PM2
ϵ − P)x < 0. (A.5)

(a) Let xo satisfy

x′

o(M
′

ϵPMϵ − P)xo = 0. (A.6)

Let Si and Sii denote the largest subspaces invariant under Ai or Aii,
respectively, and contained in kerN . In order for (A.6) to hold, then
the state evolution x(t) that satisfies x(0) = xo must remainwithin
Si for 0 ≤ t < ti and ti + tii ≤ t < ti + tii + ϵ and within Sii for
ti ≤ t < ti + tii. According to (A.2)–(A.3), x ∈ kerN implies that

x′
=


x′

c 0


and hm

x′

ce4e
′

4xc


= 0, (A.7)

with xc ∈ R4. If the load is PHF, then hm ≠ 0 and the right-hand
equation in (A.7) implies that e′

4xc = 0. The kernel of N can thus
be written as kerN = span{e1, e2, e3}, where ei denotes the ith
column of the n × n identity matrix, with n the system order. The
largest subspaces invariant under Ai or Aii that are contained in
kerN can be found by the following recursive formula (see, e.g.
Wonham, 1985)

ν
j
1 = kerN,

ν
j
i+1 = ν

j
i ∩ ker(NAi−1

j ) with j ∈ {i, ii}, (A.8)

yielding ν
j
n = Sj. We have

Ajx =


Acj + Bchme′

4 Bc[B + K ]
′PH

Be′

4 Al

 
xc
0


=


Acjxc
0


,

where we have used (A.7) and defined Aci := Ac(0.5) and Acii :=

Ac(−0.5). The required invariant subspaces can be straightfor-
wardly computed, yielding

Si = span{e1}, Sii = span{e1, e3}. (A.9)

In the case of a PH load, hm = 0 and the right-hand equation in (A.7)
is trivially satisfied. In this case,we canwrite kerN = Im[I4 0]′, and
if x ∈ kerN , then

Ajx =


Acj BcB′PH
Be′

4 Al

 
xc
0


=


Acjxc
Ble′

4xc


.

Again, the required invariant subspaces can be straightforwardly
computed, yielding the same result (A.9). The vector xo satisfies
(A.6) if and only if

eAitxo ∈ Si, for all t ∈ [0, ti), (A.10)

eAiiteAitixo ∈ Sii, for all t ∈ [0, tii) and (A.11)

eAiteAiitiieAitixo ∈ Si, for all t ∈ [0, ϵ). (A.12)

From (21), (25), (A.10) and (33), it follows that xo = eAitxo = αe1
for some α ∈ R and for all t ∈ [0, ti]. From (21), (25), (A.11) and
(33), then eAiitiieAitixo = α[cos(ωtii)e1 +

√
L1/C1 sin(ωtii)e3], with

ω = 1/
√
L1C1. Since tii < π

√
L1C1, then sin(ωtii) ≠ 0. Hence, if

ϵ > 0, from (A.12) we must have x1 := M0xo = eAiitiieAitixo ∈ Si,
which implies that xo = 0. Therefore, if ϵ > 0, (A.6) implies that
xo = 0 and (36) is established. For ϵ = 0, suppose that xo ≠ 0
satisfies (A.6). By the previous argument, x1 = M0xo ∉ Si and

x′

1(M
′

0PM0 − P)x1 = x′

o((M
2
0 )

′PM2
0 − M0PM0)xo

= x′

o((M
2
0 )

′PM2
0 − P)xo < 0,
where the latter inequality follows because, repeating the previous
argument, x′

1(M
′

0PM0 − P)x1 = 0 would imply that x1 ∈ Si, a con-
tradiction. Recalling (A.4)–(A.5), we conclude that ρ(M2

0 ) < 1 and
hence ρ(M0) < 1.

(b) By (A.4), then ρ(Mϵ) ≤ 1 for all ϵ ≥ 0. Take xo = e1. Then,
eAitixo = xo and eAiitiixo = cos(ωtii)e1 +

√
L1/C1 sin(ωtii)e3 =

(−1)ke1 = (−1)kxo. Therefore, Mϵxo = (−1)kxo, showing that
λ = (−1)k is an eigenvalue ofMϵ with |λ| = 1. �

Proof of Theorem 1

Local existence of solutions from every (finite) initial condition
is ensured by the fact that, according to the assumptions, the right-
hand side of (32) is piecewise continuous in t for all x, continuous
in x for all t , and bounded in t for every fixed x (see, e.g., Theorem 1,
§1 of Filippov (1988)).

Next, we show that if a solution has a finite time of existence,
then it must be bounded for as long as it exists. From (11) and (30),
we have ∀v,

0 ≤ vρ(t, v) ≤ (hM − hm)v2, hence (A.13)

ρ2(t, v) ≤ (hM − hm)2v2. (A.14)

Let V (x) = x′Px, with P as in (34). Then

κ1∥x∥2
≤ V (x) ≤ κ2∥x∥2, ∀x (A.15)

with κ1 > 0 because P is positive definite. The derivative of V (x)
along the trajectories of (32) satisfies

V̇ = x′

A(µ)′P + PA(µ)


x + 2x′PF + 2uB′

sPx

= −x′Nx + 2x′PF + 2uB′

sPx

≤ −x′Nx + x′

cPcBinu, (A.16)

with N ≥ 0 as in (A.2)–(A.3), where we have used (26) and (34),
and the inequality above follows because 2x′PF ≤ 0. This latter
point, follows from (34), (22), (28), (29), (A.13) and (12). Define

∥u[a,b]∥ := sup
τ∈[a,b]

∥u(τ )∥. (A.17)

From (A.16), taking (A.2)–(A.3) into account, it follows that for
t ≥ 0 we have

V̇ (x) ≤
∥PB∥ ∥u[0,t]∥

√
κ1


V (x), (A.18)

where we have used (A.15). Applying the comparison lemma for
t ≥ 0 (see, e.g. Khalil, 2002) to (A.18), yields
V (x(t)) ≤


V (x(0)) +

∥PBin∥
√

κ1

 t

0
∥u[0,τ ]∥dτ . (A.19)

From this inequality, it follows that V (x(t)) cannot become
unbounded in finite time, and hence neither can x(t). We have
thus shown that if a solution has a finite time of existence, then
it is bounded for as long as it exists. Next, suppose that a solution
x(t) exists for t ∈ [0, tmax). Since x(t) is absolutely continuous and
bounded for all t ∈ [0, tmax), then the left limit x−

:= limt→t−max
x(t)

exists and is a finite value. Next, considering the initial condition
x(tmax) = x−, we can extend the solution beyond tmax by applying
our local existence result above. Then, every Carathéodory solution
is ensured to exist for all t ≥ 0.

We proceed to establish (37). Write (32) as follows:

ẋ(t) = A(µ(t))x(t) + w(t) (A.20)
w(t) := F(t, x(t)) + Bsu(t). (A.21)

Since µ(t) ∈ PWM(T , ϵ), we have

µ(t) =


0.5 if rk ≤ t < rk + ti,k,
−0.5 if rk + ti,k ≤ t < rk+1

(A.22)
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for constants ti,k such that ϵ ≤ ti,k ≤ rk+1 − rk − ϵ. Let tii,k =

rk+1 − rk − ti,k so that also ϵ ≤ tii,k ≤ rk+1 − rk − ϵ. Consider
time instants of the form tk = rk + ϵ/2. Let Φ̃(t, s) be the state
transition matrix of the linear system (A.20), so that Φ̃(s, s) = I
for all s. Define Φ(t, tk) := Φ̃(t + tk, tk). From (A.20) and (A.22),
we have

Φ(t, tk) =


eAit if 0 ≤ t < t̃i,k,
eAii(t−t̃i,k)eAi t̃i,k if t̃i,k ≤ t < Tk −

ϵ

2
,

eAi(t−Tk+ϵ/2)eAiitii,keAi t̃i,k if Tk −
ϵ

2
≤ t ≤ Tk,

with t̃i,k = ti,k − ϵ/2 and Tk = rk+1 − rk. Define

Φk := Φ(Tk, tk) = Φ̃(tk+1, tk), (A.23)

Ξ(t̃i, tii) := eAiϵ/2eAiitiieAi t̃i . (A.24)

Note that Φk = Ξ(t̃i,k, tii,k). From (A.20)

x(tk+1) =Φkx(tk) +

 tk+1

tk
Φ(tk+1 − τ , tk)w(τ)dτ .

Multiplying the above equation on the left by P
1
2 and evaluating

the squared norm yields

V (x(tk+1)) ≤ (1 + β)x′(tk)Φ ′

kPΦkx(tk)

+


1 +

1
β

 P 1
2

 tk+1

tk
Φ(tk+1 − τ , tk)w(τ)dτ

2

, (A.25)

with β ∈ (0, ∞) to be determined. Define

R(t̃i, tii) := Ξ(t̃i, tii)′PΞ(t̃i, tii) − P, (A.26)

κ3 := inf
tii ∈ [ϵ, T − ϵ]

t̃i ∈

ϵ

2
, T − tii − ϵ/2

 λmin[−R(t̃i, tii)], (A.27)

where λmin denotes the least eigenvalue. From Lemma 1(a), it
follows that R(t̃i, tii) < 0 for all t̃i > 0 and 0 < tii < π

√
L1C1.

Since Ξ(·, ·) is continuous on its arguments, the infimum in (A.27)
is taken over a compact set, and 0 < 2ϵ ≤ T ≤ π

√
L1C1, then

κ3 > 0. Since Φk = Ξ(t̃i,k, tii,k), it follows that

x′

Φ ′

kPΦk − P

x ≤ −κ3∥x∥2, ∀k. (A.28)

Combining (A.15) and (A.28), it follows that

Φ ′

kPΦk ≤ ϱ2P (A.29)

with 0 < ϱ =


1 −

κ3
κ2

< 1. Define Vk := V (x(tk)), select

β =
1−ϱ

ϱ
> 0 and employ (A.25) and (A.29)

Vk+1 ≤ ϱVk +
1

1 − ϱ

P 1
2

 tk+1

tk
Φ(tk+1 − τ , tk)w(τ)dτ

2

.

Define Φ := sup
t ∈ [0, t̃i + tii +

ϵ

2
]

tii ∈ [ϵ, T − ϵ]

t̃i ∈ [
ϵ

2
, T − tii − ϵ/2]

∥Φ(t, tk)∥. Combining with

(A.21), we can write

Vk+1 ≤ ϱVk + Ψk,1 + Ψk,2, (A.30)

Ψk,2 ≤
2∥P∥Φ̄2

1 − ϱ
∥Bs∥

2
∥u[tk,tk+1]∥

2T 2, (A.31)

Ψk,1 ≤
2∥P∥Φ̄2

(1 − ϱ)

 tk+1

tk

∥F(τ , x(τ ))∥ dτ
2 . (A.32)
Using the Schwarz inequality in (A.32) yields

Ψk,1 ≤
2∥P∥Φ̄2

(1 − ϱ)
T

 tk+1

tk

∥F(τ , x(τ ))∥2 dτ . (A.33)

We next proceed for a PHF load, and later particularize to the other
load types. From (28), (5) and (22), then

∥F(t, x)∥2
=

1
C2
2
ρ2(t, e′

4xc) + ∥δ(t, xl)PHxl∥2 , (A.34)

and from (12) and (29) it follows that

x′

lPHδ2(xl)PHxl ≤ (λM − λm)2∥PHxl∥2. (A.35)

Considering (A.34), (A.14) and (A.35), we have

∥F(t, x)∥2
≤ γ

e′

4xc
2

+ ∥PHxl∥2


, (A.36)

where γ = max

(hM − hm)2/C2

2 ; (λM − λm)2

. Using (A.36) in

(A.33), then

Ψk,1 ≤
2∥P∥Φ̄2Tγ

(1 − ϱ)

 tk+1

tk

e′

4xc
2

+ ∥PHxl∥2

dτ . (A.37)

From (A.2)–(A.3), it follows that

x′Nx =


e′

4xc
PHxl

′

 hm K ′/2

K/2
KK ′

4hm
+ λmI

 
e′

4xc
PHxl


≥ αm

e′

4xc
2

+ ∥PHxl∥2


. (A.38)

Combining (A.16) and (A.38), it follows thate′

4xc
2

+ ∥PHxl∥2
≤(−V̇ + x′

cPcBinu)/αm. (A.39)

Combining (A.37) and (A.39), and integrating the term involving V̇ ,
we can write

Ψk,1 ≤ c1(Vk − Vk+1) + c2∥u[tk,tk+1]∥

 tk+1

tk
∥x(τ )∥dτ , (A.40)

for some positive constants c1 and c2. We next will bound the
integral on the right-hand side of (A.40). According to (A.19) we
can write
V (x(t)) ≤


Vk +

∥PBin∥
√

κ1

 t

tk
∥u[tk,τ ]∥dτ , (A.41)

for tk ≤ t ≤ tk+1. Note from (A.15) that ∥x∥ ≤
√
V (x)/κ1, combine

the latter with (A.40), and employ the above bound on
√
V (x(t)) to

arrive at

Ψk,1 ≤ c1(Vk − Vk+1) + c3∥u[tk,tk+1]∥


Vk + c5∥u[tk,tk+1]∥

2, (A.42)

where c3 =
c2√
κ1
T , c4 =

c2
κ1

∥PBin∥ and c5 = c4 T2
2 . Combining

(A.30), (A.31) and (A.42), we can write

Vk+1 ≤
ϱ + c1
1 + c1

Vk + c6∥u[tk,tk+1]∥


Vk + c7∥u[tk,tk+1]∥

2,

with c6 =
c3

1+c1
, c7 =

∥P∥Φ̄2
∥Bs∥2T22

(1−ϱ)(1+c1)
+

c5
(1+c1)

, andwhere 0 <
ϱ+c1
1+c1

<

1. From this point on, the proof proceeds along standard lines in
Lyapunov- and ISS-related derivations (Khalil, 2002), and employs
(A.15) and (A.18) in order to reach (37).

If the load is PH, i.e. of the form (9b), then the bound on ∥F(t, x)∥
in (A.34) holds with ρ ≡ 0, (A.36) is replaced by ∥F(t, x)∥2

≤

(λM − λm)2∥PHxl∥2, (A.38) is replaced by −x′Nx ≤ −λm∥PHxl∥2,
and (A.39) by ∥PHxl∥2

≤ (−V̇ + x′
cPcBinu)/λm. The rest of the

proof for a PH load follows similarly to the PHF load case. If the
load is TVS, i.e. of the form (9c), then (A.34) holds with δ ≡ 0,
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(A.36) is replaced by ∥F(t, x)∥2
≤

(hM−hm)2

C2
2

∥e′

4xc∥
2, and (A.39) by

∥e′

4xc∥
2

≤ (−V̇ + x′
cPcBinu)/hm. The rest of the proof for a TVS load

follows similarly to the PHF load case.
Finally, suppose that the continuous functions R(t, xl) and/or

h(t, xl), depending on the load type, are such that F(t, x) in
(28)–(30) is locally Lipschitz in x for all t ≥ 0. In this case, the
right-hand side of (A.20) is locally Lipschitz in x for all t ≥ 0. The
right-hand side of (A.20) is piecewise continuous in t and every
solution of (A.20) satisfies (37). Then, uniqueness of the solutions
follows from, e.g., Theorem 3.3 of Khalil (2002). �

Proof of Theorem 2

(a) First, we highlight that taking into account the assumptions
on the signal u(t) and the fact that µ(t) ∈ PWM(T , ϵ), the right-
hand side of (32) is piecewise continuous in t . Second, we prove
that under the assumptions on the load the right-hand side of (32)
is globally Lipschitz in x, uniformly in t ≥ 0. To see this, define

f (t, x) :=A(µ(t))x + F(t, x) + Bsu(t), (A.43)
ξ(t) :=x(t) − y(t), (A.44)

with x partitioned according to the converter and load dimensions,
x′

= [x′
c x′

l] and hence ξ ′
= [ξ ′

c ξ ′

l ] = [(xc − yc)′ (xl − yl)′]. Then

∥f (t, x) − f (t, y)∥ ≤ Ā∥x − y∥ + ∥F(t, x) − F(t, y)∥, (A.45)

with Ā = max{∥A(0.5)∥, ∥A(−0.5)∥}. We have,

∥F(t, x) − F(t, y)∥ =

Bc

ρ(t, e′

4xc) − ρ(t, e′

4yc)


δ(t, yl)PHyl − δ(t, xl)PHxl

 .

Operating on (38) and (30) it follows that

|ρ(t, e′

4xc) − ρ(t, e′

4yc)| ≤ (hM − hm)|e′

4(xc − yc)|,

then ∥Bc

ρ(t, e′

4xc) − ρ(t, e′

4yc)

∥ ≤ αh∥x − y∥, (A.46)

where αh = (hM − hm)∥Bc∥. In addition, we have

δ(t, yl)PHyl − δ(t, xl)PHxl = −δ̃(t, yl, ξl)
= [R(t, yl) − R(t, ξl + yl)] PHyl

−


R(t, ξl + yl) −

KK ′

4hm
− λmI


PHξl.

Considering (41) and (39) then

∥δ̃(t, yl, ξl)∥ ≤
√
a∥PHξl∥ ≤ ā∥x − y∥, (A.47)

with ā = ∥PH∥
√
a. From (A.45) and the bounds derived above, it

follows that f (t, x) is globally Lipschitz in x, uniformly in t ≥ 0.
Global Lipschitzity of f (t, x) for the case of loads of the form PH and
TVS follows analogously. According to, e.g., Theorem 3.2 of Khalil
(2002), the state equation ẋ(t) = f (t, x), with x(0) = x0, has a
unique solution ∀t ≥ 0.

(b) As in the proof of Theorem 1 we proceed for a PHF load and
then particularize to the other load types. Let ε(t) = xµ,u(t, x10)−

xµ,u(t, x20). From (32) we have

ε̇ = A(µ)ε − Σ(t, x, ε), where (A.48)

Σ ′(t, x, ε) =


e4
C2

′

ρ̃(t, x2c4 , εc4) δ̃′(t, x2l, εl)


, (A.49)

with x2c4(t) = e′

4x2c , x
µ,u(t, x20) = [x′

2c x′

2l]
′, ε′

= [ε′
c ε′

l ] and
εc4(t) = e′

4εc(t), and where

ρ̃(t, x2c4 , εc4) := ρ(t, x2c4 + εc4) − ρ(t, x2c4) (A.50)

δ̃(t, x2l, εl) = δ(t, x2l + εl)PH(x2l + εl)

− δ(t, x2l)PHx2l. (A.51)
From (30) and (38), it follows that for all t , x2c4 ,

0 ≤εc4 ρ̃(t, x2c4 , εc4) ≤ (hM − hm)ε2
c4 hence (A.52)

0 ≤ρ̃2(t, x2c4 , εc4) ≤ ε2
c4(hM − hm)2. (A.53)

Consider time instants tk = rk + ϵ/2 with rk according to
Definition 1, and write

ε(tk+1) = Φkε(tk) −

 tk+1

tk
Φ(tk+1 − τ , tk)Σ(τ , x, ε)dτ ,

with Φk and Φ(·, ·) as in the proof of Theorem 1. Consider the
Lyapunov function V (ε) = ε′Pε with P from (34), and define
Vk := V (ε(tk)). Following similar lines as in the proof of Theorem1,
we can write

Vk+1 ≤ ϱVk +
2T∥P∥Φ̄

(1 − ϱ)

 tk+1

tk

∥Σ(τ , x, ε)∥2 dτ , (A.54)

with 0 < ϱ < 1. Note that

∥Σ(t, x, ε)∥2
=

ρ̃(t, x2c4 , εc4)
2

C2
2

+

δ̃(t, x2l, εl)
2

, (A.55)

and from (39) we have
δ̃(t, x2l, εl)

2
≤ a ∥PHεl∥

2. Using the latter
inequality and (A.53), we can write

∥Σ(t, x, ε)∥2
≤ γ


ε2
c4 + ∥PHεl∥

2 , (A.56)

where γ = max

(hM − hm)2/C2

2 ; a

. Considering (A.56) in (A.54),

it follows that

Vk+1 ≤ ϱVk +
2T∥P∥Φ̄2

1 − ϱ
γ

 tk+1

tk


ε2
c4 + ∥PHεl∥

2 dτ . (A.57)

The time derivative of V (ε) = ε′Pε along the trajectories of (A.48)
satisfies

V̇ (ε) = − ε′Nε − εc4 ρ̃(t, x2c4 , εc4) − δ̃′(t, x2l, εl)PHεl, (A.58)

where thematrixN is as in (A.2)–(A.3). From (A.38), (A.52) and (40)
it follows thatεc4

2
+ ∥PHεl∥

2
≤ −V̇ (ε)/αm. (A.59)

Considering (A.59) in (A.57) we have

Vk+1 ≤ ϱVk + c1

 tk+1

tk
−V̇ (ε(τ ))dτ ,

where c1 =
2T∥P∥Φ̄2

1−ϱ

γ

αm
. Solving the integral above, we arrive at

Vk+1 ≤
ϱ+c1
1+c1

Vk, where 0 <
ϱ+c1
1+c1

< 1. It follows that Vk ≤
ϱ+c1
1+c1

k
V0. Noting that V̇ (ε) ≤ 0, and recalling that t0 = ϵ/2,

we obtain the following bound

V (ε(t)) ≤ er(
ϵ
2 +T )e−rtV (ε(0)), ∀t ≥ 0,

r := − log


ϱ + c1
1 + c1


1
T

> 0,

whence the required bound for ∥ε(t)∥ follows by (A.15).
If the load is PH, then the bound on ∥Σ(t, x, ε)∥ in (A.55) holds

with ρ̃ ≡ 0, (A.56) is replaced by ∥Σ(t, x, ε)∥2
≤ a∥PHεl∥

2, (A.58)
is replaced by V̇ (ε) = −λm ∥PHεl∥

2
− δ̃′(t, x1l, εl)PHεl and (A.59)

by ∥PHεl∥
2

≤ −V̇ (ε)/λm. The rest of the proof for a PH load follows
similarly to the PHF load case. If the load is TVS, then (A.55) holds
with δ̃ ≡ 0, (A.56) is replaced by ∥Σ(t, x, ε)∥2

≤
(hM−hm)2

C2
2

∥e′

4εc∥
2,

(A.58) is replaced by V̇ (ε) = −hm
εc4

2
− εc4 ρ̃(t, x2c4 , εc4) and

(A.59) by ε2
c4 ≤ −V̇ (ε)/hm. The rest of the proof for a TVS load

follows similarly to the PHF load case. �
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Proof of Theorem 3

(a) Consider the following auxiliary equations:

Pc żc(t) = Aq
{s(t),zc3 (t)}zc(t) + bqs(t) − e4io(t),

Aq
{s(t),zc3 (t)} =


Aq
s(t) if zc3(t) > −Vin,1 0 0 0
0 1 0 0
0 0 b(t) 0
0 0 0 1

 Aq
s(t) if zc3(t) < −Vin,

alsowith vo = e′

4zc , andwhere the time-dependent coefficient b(t)
is such that

C1żc3 =


|zc2 | if s(t) = i,
|zc1 | if s(t) = ii. (A.60)

Consider the system represented by the interconnection of the
auxiliary system above with the corresponding load equations,
depending on the load type. Let z := [z ′

c x′

l]
′ denote the state of

this auxiliary system (with z = zc if the load is TVS). We have

ż = f (t, z), (A.61)

where f is piecewise continuous in t (dependence on s(t)), and
continuous in z for every t whenever zc3 ≠ −Vin. Solutions to
(A.61) in the sense of Filippov are solutions to the differential
inclusion ż ∈ F (t, z),

F (t, z) =


{f (t, z)} if zc3 ≠ −Vin,

conv{f −(t, z), f +(t, z)} if zc3 = −Vin,

where f −(t, z) and f +(t, z) are the limits of f (t, z) when z is ap-
proached from the region zc3 < −Vin and zc3 > −Vin, respectively.
The set-valued function F is upper semi-continuous in (t, x) dur-
ing each interval of continuity of the right-continuous command
signal s(t), with nonempty, convex and compact values, and hence
at least one (forward) solution exists for every initial condition, at
least during a sufficiently small time interval (see, e.g., Theorem 1,
§7 of Filippov, 1988).

It is easy to see that the only component of ż(t) which may
be discontinuous at a time instant of continuity of the command
signal s(t) is żc3(t), and that this discontinuity occurs when zc3(t)
reaches the value −Vin. Note that if the state trajectory hits the
discontinuity surface given by zc3 = −Vin either when (i) zc2(t) >
0 and s(t) = i or (ii) when zc1(t) < 0 and s(t) = ii, then the
trajectory cannot leave the surface until (i) or (ii) ceases to hold,
since on both sides trajectories point towards the surface [recall
(A.60)]. Therefore, the only possible solution if condition (i) or (ii)
is true is one such that żc3 = 0. The trajectory can leave the
surface only when zc2(t) ≤ 0 if s(t) = i or when zc1(t) ≥ 0
if s(t) = ii. This analysis of the behavior of trajectories of the
differential inclusion above when zc3(t) = −Vin shows that z
satisfies (A.61) in the sense of Filippov if and only if z satisfies (43)
jointly with the load equations, according to the flow diagram of
Fig. 4. Then, in the region given by zc3 ≥ −Vin a solution in the
sense of Filippov for system (A.61) is equivalent to a solution in the
sense of Carathéodory for system (43).

We next show that the region zc3 ≥ −Vin is positively invariant.
Consider an initial condition z(0) satisfying zc3(0) = −Vin. For a
contradiction, suppose that for some t1 sufficiently small so that
the solution still exists, it happens that zc3(t1) < −Vin. Then, there
must exist 0 < t3 < t2 < t1 so that zc3(t) < −Vin and żc3(t) < 0
for almost all t3 < t < t2. Since zc3 is absolutely continuous,
the latter fact contradicts (A.60). We have thus shown that if z(0)
satisfies zc3(0) ≥ −Vin, then zc3(t) ≥ −Vin for all t ≥ 0 for which
the solution exists.

We next establish uniqueness of solutions (right-uniqueness in
Filippov, 1988). Recall that under the assumptions of Theorem 2,
we have that f (t, z) in (A.61) is Lipschitz in z, uniformly in t in
the region zc3 > −Vin. The same can be shown for the auxiliary
system in the region zc3 < −Vin. According to the auxiliary system
equations, we have

h̄(t, z) := f +(t, z) − f −(t, z) = cs(t)(z)e3,

cs(t)(z) =


0 if s(t) = i and zc2 ≤ 0,
0 if s(t) = ii and zc1 ≥ 0,
−2zc2 if s(t) = i and zc2 > 0,
2zc1 if s(t) = ii and zc1 < 0.

Note that the discontinuity vector h̄(t, z) is directed along the nor-
mal to the discontinuity surface zc3 = −Vin, and that e′

3h̄(t, z) =

cs(t)(z) ≤ 0 for all (t, z). According to Lemma 3, §10 of Filippov
(1988), then every solution is right-unique in a neighborhood of
every point of the discontinuity surface.

Therefore we have established existence and uniqueness of
the solution in the sense of Filippov of system (A.61) at least for
a sufficiently small time. Next, we show that every solution is
bounded for as long as it exists. Consider as Lyapunov function the
natural energy function of the inverter, givenbyV (z) = z ′Pzwith P
as in (34). Since the load connected to the inverter is strictly passive
and only the input voltage source can deliver energy to the circuit,
then the derivative of the Lyapunov function along the trajectories
of system (43) satisfies

V̇ (z) ≤ Vin

|zc1 | + |zc2 |


≤ Vin∥z∥

√
n ≤ Vin

√
n

√
k1


V (z),

where n is the dimension of z and we have used (A.15). Applying
the comparison lemma (see, e.g. Khalil, 2002) yields
V (z) ≤


V (z(0)) + Vin

√
n/(2


k1)t (A.62)

for t ≥ 0. From (A.62), it follows that the energy function, and
hence the trajectory z, cannot become unbounded in finite time.
Therefore, if the solution has a finite time of existence, then it is
bounded. The latter fact, jointly with the absolute continuity of z
while it exists and the local existence previously established, can
be used to show that the solution must exist for all t ≥ 0.

(b) Consider z1(t) := zs(t, yo) and z2(t) := zs(t, xo), where
zs denotes the solution to (43) with the inverter connected to a
load of one of the forms in Section 2.3, corresponding to initial
conditions yo and xo, respectively, and command signal s(t). Let
xo denote the given initial condition, for which (45) holds. The
vectors z1 and z2 are partitioned as z ′

1 = [z ′

1cz
′

1l] and z ′

2 = [z ′

2cz
′

2l],
where z1c, z2c ∈ R4 correspond to the state vector (1), and z1l, z2l
correspond to the load state vector xl in (9). Let ε(t) := z1(t)−z2(t).
Considering the switched system (43), the loads given by (9), and
the variable ε, we can write

ε̇(t) = A(s)ε(t) + Bdũ(t) − Σ(t, z, ε), (A.63)

ũ(t) :=

Pi(t)z1c2(t) − Pii(t)z1c1(t)


, (A.64)

Pi(t) =


1 if s(t) = i and σ(t) = iii,
0 otherwise, (A.65)

with i ∈ {i, ii} and where σ(t) is the true switching mode of the
solution z1(t). By assumption, the solution z2(t) never enters UCM
(i.e. Mode iii), and if the same happens for z1(t), then ũ(t) ≡ 0
and (A.63) becomes equivalent to (A.48). The rest of the quantities
involved in (A.63) depend on the load type, as follows
• If the load is PHF, then A(s) is as in (25), Σ is as in (A.49),

ε :=


εc
εl


, Bd =


B̄d
0


with B̄d = [0 0

1
C1

0]′.

(A.66)

• If the load is PH, then A(s) is as in (25) with hm = 0 and K = 0,
and (A.49) and (A.66) hold with ρ̃ := 0.
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• If the load is TVS, then A(s) is as in (31),

ε := εc, Bd = B̄d, Σ(t, z, ε) = Bc ρ̃(t, z2c4 , εc4).

The variables ρ̃ and δ̃ are as in (A.50)–(A.51). Note that the
command signal s(t) corresponds to the switching signal µ(t) in
(25) and (31) as follows

s(t) = i ⇔ µ(t) = 1/2, s(t) = ii ⇔ µ(t) = −1/2.

As in the proof of Theorem 2, consider time instants tk = rk + ϵ/2,
with rk the time instants such that s(rk) = i and s(r−

k ) = ii and
write

ε(tk+1) = Φkε(tk) +

 tk+1

tk
Φ(tk+1 − τ , tk)Bdũ(τ )dτ

−

 tk+1

tk
Φ(tk+1 − τ , tk)Σ(τ , z, ε)dτ ,

with Φk and Φ(·, ·) as defined in the proof of Theorem 1. Consider
the Lyapunov function V (ε) = ε′Pε, with P as in (34), and define
Vk := V (ε(tk)). Following similar lines as in the proof of Theorem1,
we can write

Vk+1 ≤ ϱVk +
2∥P∥Φ̄2

(1 − ϱ)
T

 tk+1

tk

∥Σ(τ , z, ε)∥2 dτ

+
2∥P∥Φ̄2

∥Bd∥
2

(1 − ϱ)

 tk+1

tk

ũ(τ )
 dτ2

(A.67)

with 0 < ϱ < 1. We next proceed for a PHF load and later
particularize to the other load types. Combining (A.56) and (A.67),
then

Vk+1 ≤ ϱVk +
2T∥P∥Φ̄2

1 − ϱ
γ

 tk+1

tk

εc4

2
+ ∥PHεl∥

2

dτ

+
2∥P∥Φ̄2

∥Bc∥
2

1 − ϱ

 tk+1

tk

ũ(τ )
 dτ2

. (A.68)

The derivative along the system trajectories of the Lyapunov
function is

V̇ (ε) = − ε′Nε − ρ̃(t, z2c4 , εc4)εc4 − δ̃′(t, z2l, εl)PHεl

+ εc3 ũ(t), (A.69)

where thematrixN is as in (A.2)–(A.3). From (A.38), (40) and (A.52)
it follows that

V̇ (ε) ≤ − αm

e′

4εc
2

+ ∥PHεl∥
2


+ εc3 ũ(t). (A.70)

Recall that ũ(t) = 0 when the trajectory z1(t) satisfies z1c3(t) >
−Vin, and also when z1c3(t) = −Vin and either (i) z1c2(t) ≤ 0 and
s(t) = i or (ii) z1c1(t) ≥ 0 and s(t) = ii. If z1c3 = −Vin, then from
(45) follows that εc3 = z1c3 − z2c3 < −d3 < 0. If z1c3 = −Vin and
neither condition (i) nor (ii) holds, then ũ(t) > 0. Consequently,
we have εc3 ũ(t) ≤ 0 and from (A.70)

V̇ (ε) ≤ −αm

εc4

2
+ ∥PHεl∥

2


. (A.71)

Using (A.71) in (A.68), then

Vk+1 ≤ ϱVk + c1

 tk+1

tk
−V̇ (τ )dτ + c2

 tk+1

tk

ũ(τ )
 dτ2

,

where c1 =
2T∥P∥Φ̄2

(1−ϱ)

γ

αm
and c2 =

2∥P∥Φ̄2
∥Bd∥2

(1−ϱ)
. Then,

Vk+1 ≤


ϱ + c1
1 + c1


Vk +

c2
1 + c1

 tk+1

tk

ũ(τ )
 dτ2

, (A.72)

where 0 <
ϱ+c1
1+c1

< 1. From (A.71) we have that V̇ (ε) ≤ 0. Since
V (ε) is monotonically nonincreasing and bounded from below by
zero, then V (ε(t)) → c ≥ 0 as t → ∞. Now, consider Eq. (A.69)
and the fact that the four terms on the right-hand side are equal
to or less than zero. From integration on both sides of Eq. (A.69)
between 0 and tk with tk → ∞ follows that

∞

0
Piz1c2dt < ∞with Piz1c2 ≥ 0 and (A.73)

−


∞

0
Piiz1c1dt < ∞with Piiz1c1 ≤ 0, then (A.74)

lim
k→∞

 tk+1

tk
Piz1c2dt = 0, lim

k→∞

 tk+1

tk
Piiz1c1dt = 0,

where tk+1 − tk = Tk ≤ T . So, according to this we have tk+1

tk

ũ(τ )
 dτ2

→ 0 as k → ∞. (A.75)

Considering (A.75) and (A.72) and the fact that V (ε) is monotoni-
cally nonincreasing, we can state that there exists a tk from which
the energy function evaluated in tk, V (ε(tk)), will be as small as
desired. Note that for Mode III to be possible, the quantity Vk must
satisfy Vk ≥

1
2C1d23 because Vk ≥

1
2C1ε

2
c3(tk) and εc3 < −d3 < 0 if

Mode III is reached. Therefore, an instant t∗ exists from which the
inverter will operate only in Mode I or II.

If the load is PH, then the bound on ∥Σ(t, z2, ε)∥ in (A.55) holds
with ρ̃ ≡ 0, (A.56) is replaced by ∥Σ(t, z2, ε)∥2

≤ a∥PHεl∥
2,

(A.69) is replaced by V̇ (ε) = −λm ∥PHεl∥
2

− δ̃(t, εl, zl)PHεl +

εc3 ũt , (A.70) is replaced by V̇ (ε) ≤ −λm ∥PHεl∥
2

+ εc3 ũ(t),
and (A.71) by ∥PHεl∥

2
≤ −V̇ (ε)/λm. The rest of the proof for

a PH load follows similarly to the PHF load case. If the load
is TVS, then (A.55) holds with δ̃ ≡ 0, (A.56) is replaced by
∥Σ(t, z2, ε)∥2

≤
(hM−hm)2

C2
2

∥e′

4εc∥
2, (A.69) is replaced by V̇ (ε) =

−hm
e′

4εc
2

− ρ̃(t, εc4 , zc4)εc4 + εc3 ũ(t), (A.70) is replaced by

V̇ (ε) ≤ −hm
e′

4εc
2

+ εc3 ũ(t), and (A.71) by ε2
c4 ≤ −V̇ (ε)/hm.

The rest of the proof for a TVS load follows similarly to the PHF
load case. �
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