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Abstract

In this paper, we focus on the robustness and fragility problem for piecewise affine (PWA) control laws for discrete-time linear system
dynamics in the presence of parametric uncertainty of the state space model. A generic geometrical approach will be used to obtain
robustness/fragility margins with respect to the positive invariance properties. For PWA control laws defined over a bounded region in the
state space, it is shown that these margins can be described in terms of polyhedral sets in parameter space. The methodology is further
extended to the fragility problem with respect to the partition defining the controller. Finally, several computational aspects are presented
regarding the transformation from the theoretical formulations to explicit representations (vertex/halfspace representation of polytopes) of
these sets.

Key words: PWA control laws, explicit robustness/fragility margins.

1 Introduction

When analyzing a control law, both practitioner and theo-
retician take into account the capacity to cope with distur-
bances and model uncertainties. This characteristic is clas-
sically denoted in control theory as robustness. The pres-
ence of additive disturbances in the control system struc-
ture is due to measurement noises and external perturbation
sources. Otherwise, the uncertainty stems from model re-
duction, linearization of nonlinear elements, imperfect math-
ematical model or partial information on the parameters.
These elements are unavoidable in the control design by the
essence of their causes and the practical need of complexity
reduction in model-based design, and as a consequence the
robustness consideration of the closed-loop is necessary.

This study concentrates on the robustness problem in the
presence of model uncertainty for PWA control laws. It is
known that in closed loop this class of controllers leads to
a hybrid system formulation Heemels et al. (2001). Another
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motivation for the study of the PWA controllers and their
robustness is the recent interest in the optimization-based
design via parametric convex programming Bemporad et al.
(2002); Tøndel et al. (2003); Seron et al. (2003); Olaru and
Dumur (2004); Nguyen et al. (2013) or the approximate ex-
plicit solutions in Model Predictive Control (MPC) Johansen
and Grancharova (2003). Various types of uncertainties ex-
ist, in this paper, our interest is in parametric uncertainties,
understood as variations of coefficients of a model with a
pre-imposed structure. Unstructured uncertainty will gener-
ally lead to an augmented state space and the extension of
a predefined controller leads to nonuniqueness and related
well-posedness problems which are beyond the scope of this
study.

At the same time, from the practical point of view, the im-
plementation of control laws in general leads to numerical
round-offs. This may affect closed-loop stability. The maxi-
mal admissible set of numerical errors, for which the imple-
mented control law still guarantees the stability, is denoted
as the fragility margin. This problem has already been inves-
tigated in literature Dorato (1998); Keel and Bhattacharyya
(1997), but these studies neither provide a constructive pro-
cedure to compute such a margin, nor cover our interests
in the class of PWA control laws. As far as it concerns
the fragility margin of PWA control laws, we will refer to
the possible inaccuracy in the coefficients of the PWA con-
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trollers without assuming any uncertainty on the state space
partition. Perturbations in the region description will lead
to overlapping regions in the partition with implications on
non-uniqueness of the trajectories. All these aspects are ad-
dressed for the first time in the literature to our best knowl-
edge.

Based on the preliminary results in Olaru et al. (2013);
Nguyen et al. (2014), this paper provides a theoretical frame-
work and mathematical computation for the explicit robust-
ness/fragility margins of a discrete-time linear system, con-
trolled by a given PWA control law. The methodology is cen-
tered around the robust positive invariance properties which
have been studied since the late ’80s Bitsoris (1988); Vas-
silaki et al. (1988); Blanchini (1999); Blanchini and Miani
(2008). Note that the robust positive invariance is associated
with robust stability since the trajectories are kept inside a
subset of the state space, namely a positively invariant set.
Guaranteeing robust asymptotic stability is beyond the scope
of this paper. Based on the same constructive principle, the
problem of finding the biggest set of errors in the descrip-
tion of the regions of the given state space polyhedral par-
tition is also tackled in this study. The main contribution of
this paper is to provide a conceptual advance on the deter-
mination of the robustness and fragility margins for a PWA
controller and a linear system. Aside from this theoretical
aspect, for explicit computations of these margins, compu-
tational aspects will also be discussed. These computational
aspects rely on vertex/facet enumerations and become ex-
pensive once the number of critical regions and dimension
increase. However, part of the analysis is independent for
each region. Also, all these computations are carried out of-
fline, at the design stage. Therefore, is is reasonable to as-
sume that ample computational power, time and memory
are available, making computations of substantial complex-
ity acceptable. This situation is in stark contrast to the online
controller computations which typically will be performed
under strict real time requirements on low cost computa-
tional hardware.

Unlike the robust explicit controllers designs which a pri-
ori take robustness into account (Kerrigan and Maciejowski
(2004); Kouramas et al. (2013); Nguyen et al. (2015)), the
method presented here allows one to evaluate a posteriori the
robustness/fragility margins for a given PWA control law. A
link can be made between analysis and control design if the
fragility/robustness margin is used for retuning PWA con-
trollers to cope with uncertainties while guaranteeing robust
positive invariance. However, the robust asymptotic stability
should be further elaborated in this case.

Notation and basic definitions

Throughout the paper, R,R+,N and N+ denote the field of
real numbers, the set of nonnegative real numbers, the set
of non-negative integers, the set of positive integer num-
bers, respectively. For two column vectors: x, y ∈ Rn, x =

[x1 x2 . . . xn]
T
, y = [y1 y2 . . . yn]

T
, the partial order

relation x ≤ y is equivalent to xi ≤ yi, ∀i = 1, . . . , n.
A vector with its elements equal to one (zero) is denoted
by 1 (0) or by 1n (0n) in case the dimension n must be
explicitly stated. Similarly, I denotes an identity matrix of
appropriate dimension, with a subscript when the dimen-
sion of this matrix needs to be specified i.e. In means
I ∈ Rn×n. For a matrix A ∈ Rm×n, then vec(A) represents
the vector composed of the columns of matrix A as fol-

lows: vec(A) :=
[
A(·, 1)T . . . A(·, n)T

]T
, where A(·, i)

denotes the ith column of matrix A. Given two matrices
A ∈ Rm×n, B ∈ Rp×q , their Kronecker tensor product, de-
noted by A⊗B ∈ Rmp×nq, is defined as:

A⊗B :=


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 .
For an arbitrary set S ⊆ Rn, int(S) denotes the interior
of S. By dim(S), we denote the dimension of its affine
hull. V(S) describes the set of vertices whenever S is a
polytope (bounded polyhedral set). If S ⊂ Rn is composed
of a finite number of vectors S = {s1, s2, . . . , sm} , then
[S] denotes a matrix for which the columns are the ele-
ments of S in an arbitrary order: [S] =

[
s1 s2 . . . sm

]
.

Moreover, by conv(S), we denote the convex hull of S.
Given a map f : Rm → Rn and a set S ⊂ Rm, f(S) =
{y ∈ Rn | ∃x ∈ S such that y = f(x)} denotes the image
of the set S via the mapping f . For a linear map f(x) = Ax
with A ∈ Rn×m, the image of a set S ⊂ Rm is briefly
rewritten as f(S) = AS. The Minkowski sum of two sets
P1 and P2, denoted as P1 ⊕ P2, is defined as follows:

P1⊕P2 := {y | ∃x1 ∈ P1, x2 ∈ P2 such that y = x1 + x2} .

The unit simplex in RL is defined as

SL =
{
x ∈ RL+ | 1TLx = 1

}
. (1)

Finally, for an N ∈ N+, IN denotes the set of integers:
IN := {i ∈ N+ | i ≤ N} .

2 Preliminaries

In this section, some basic notions related to the piecewise
affine control functions and the discrete dynamics will be
introduced to facilitate the problem formulation and the pre-
sentation of the main results of the paper.

Definition 2.1 A set of N ∈ N+ full-dimensional polyhe-
dra Xi ⊂ Rn, i.e. PN (X ) = {X1,X2, . . . ,XN} is called a
polyhedral partition of a polyhedron X ⊆ Rn if:

(1)
⋃
i∈IN Xi = X .

(2) int(Xi)
⋂

int(Xj) = ∅ with i 6= j, (i, j) ∈ I2N ,
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Also, (Xi,Xj) are called neighbours if (i, j) ∈ I2N , i 6= j
and dim(Xi ∩ Xj) = n − 1. If X is a polytope, we call
PN (X ) a polytopic partition.

Definition 2.2 A function fpwa : X → Rm defined over
a polyhedral partition PN (X ) of the polyhedron X by the
relation fpwa(x) = Aix + ai for x ∈ Xi, i ∈ IN , with
Ai ∈ Rm×n, ai ∈ Rm, is said to be a piecewise affine
function over PN (X ).

In this paper, we consider discrete linear time–invariant (LTI)
systems described by state equations:

xk+1 = Axk +Buk, (2)

where x ∈ Rn represents the state vector, u ∈ Rm denotes
the control input, A ∈ Rn×n and B ∈ Rn×m.

If the control action is synthesized in terms of a PWA state
feedback defined over a polyhedral partition PN (X ) of a
polyhedron X ⊆ Rn then it will be described by

u(xk) = fpwa(xk) = Gixk+gi for xk ∈ Xi, i ∈ IN , (3)

with Gi ∈ Rm×n and gi ∈ Rm. With this control law, the
resulting closed-loop system (2)-(3) is a piecewise affine
system described by the state equation:

xk+1 = (A+BGi)xk +Bgi for xk ∈ Xi. (4)

Definition 2.3 A set X ⊂ Rn is positively invariant with
respect to the system xk+1 = f(xk) if x ∈ X implies
f(x) ∈ X .

In the context of robustness analysis for the closed loop
PWA dynamics, the introduction of discrete time-varying
uncertainty on [A B] in the dynamical model (2) is of use.
We assume that matrix [A B] belongs to a polytopic set Ω:

Ω = conv {[A1 B1] , . . . , [AL BL]} . (5)

Thus, if [A B] ∈ Ω, then there exists nonnegative scalars
α1, . . . , αL,

∑L
i=1 αi = 1 satisfying the relation [A B] =∑L

i=1 αi [Ai Bi] . It is known that a polytope can be de-
scribed by the convex hull of its vertices, given as vectors in
an Euclidean space. Therefore, for the convex hull of ma-
trices, one can exploit the isomorphism between Rm×n and
Rmn. With a slight abuse of notation, we call Ω a paramet-
ric uncertainty polytope, for ease of presentation. Also, a
subset of Ω is called polytope if its associated set of coeffi-
cients α = [α1 . . . αL]

T is a polytope.

The development of the results in this paper is based on a
set of hypotheses below.
Assumption: Given a nominal LTI system (2) and a PWA
controller u(x) (3), defined over a polyhedral partition
PN (X ) of the set X ⊂ Rn, it is assumed that

(1) The set X is a polytope.

(2) The set X is positively invariant with respect to the
PWA dynamics (4).

(3) The control function fpwa : X → Rm is continuous.
(4) 0 ∈ int(X )

In the most general case, the partition is not convex as for
example in case the state/input constraints are not convex.
In this context, Assumption 1 implies that we restrict our
attention to bounded convex domains and particularly to
polytopes. Assumption 2 implies that with the given PWA
control law u(x), the trajectories of the nominal linear sys-
tem (2) are confined in X . According to Assumption 1, the
components Xi, ∀i ∈ IN of PN (X ), can be defined via
both the vertex/halfspace representations. The problem of
obtaining the vertices of a given polytope from its halfspace
representation, is called vertex enumeration. Many studies
have been dedicated to this problem. A solution in this sense
is reported in Avis and Fukuda (1992) with a computation
time in O(ndv), where n denotes the number of halfspaces,
d denotes the dimension of this polytope, v is its number
of vertices. The halfspace representation of the polytopes of
interest can be defined as follows for every i ∈ IN :

X = {x : Fx ≤ h} , with F ∈ Rr×n, h ∈ Rr

Xi = {x : Fix ≤ hi} , with Fi ∈ Rri×n, hi ∈ Rri .
(6)

The vertex representation of polytopes X and Xi with cor-
responding sets of vertices V(X ) = {v1, v2, . . . , vq}, and
V(Xi) = {wi1, wi2, . . . , wiqi} are defined as:

X = conv {v1, v2, . . . , vq} ,
Xi = conv {wi1, wi2, . . . , wiqi} .

(7)

For ease of presentation, define the following sets of vertices:

Wi = V(Xi), W =
⋃
i∈IN

V(Xi). (8)

With respect to an arbitrary order, the following matrices
can be defined such that their columns are the elements of
their associated sets:

V = [V(X )] ∈ Rn×q, U = [fpwa(W)] ∈ Rm×p,
Vi = [Wi] ∈ Rn×qi , Ui = [fpwa(Wi)] ∈ Rm×qi ,
W = [W] ∈ Rn×p.

(9)

3 Explicit robustness margin for PWA control laws

3.1 Problem formulation and structure of the solution

Given a continuous PWA controller (3) and [A(k)B(k)] ∈ Ω
where Ω is defined by (5), the robustness problem aims to
find the set of coefficients, denoted by Ωαrob ⊆ SL, associ-
ated with Ωrob ⊆ Ω such that the polytope X is positively
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invariant with respect to the closed loop system:

xk+1 = (A(k) +B(k)Gi)xk +Bgi for x ∈ Xi, (10)

∀ [A(k) B(k)] ∈ Ωrob. The set Ωrob can be alternatively
called the robustness margin.

The set Ωrob can be characterized based on the local structure
of the dynamics. The next result shows a strong property
that can be obtained despite the global nonlinearity (PWA
formulation) of the dynamics.

Theorem 3.1 The set Ωrob is convex.

PROOF. Let [A(k1) B(k1)] and [A(k2) B(k2)] ∈ Ωrob.
The invariance property of the set X with respect to (10)
implies the following set inclusions:

(A(k1) +B(k1)Gi)Xi ⊕B(k1)gi ⊆ X ,∀i ∈ IN ,
(A(k2) +B(k2)Gi)Xi ⊕B(k2)gi ⊆ X ,∀i ∈ IN .

Since, by Assumption 1, the set X is convex, one has:

(1− µ) ((A(k2) +B(k2)Gi)Xi ⊕B(k2)gi)⊕
µ ((A(k1) +B(k1)Gi)Xi ⊕B(k1)gi) ⊆ X ,

(11)

∀i ∈ IN and 0 ≤ µ ≤ 1. Inclusion (11) proves
µ [A(k1) B(k1)] + (1 − µ) [A(k2) B(k2)] ∈ Ωrob and
consequently the convexity of the set Ωrob. 2

As a consequence of the convexity of both Ωrob and Ω, the
robustness margin can be expressed by an equivalent set:

Ωαrob =
{
α ∈ RL+ | ∀i ∈ IN , 1TLα = 1,

L∑
j=1

αj(Aj +BjGi)Xi ⊕ αjBjgi ⊆ X
}
.

The isomorphic relationship between Ωrob and Ωαrob follows
directly from the one-to-one correspondence between the
elements of these sets. Consequently, the constructive pro-
cedures for the characterization of robustness margins will
be expressed in terms of Ωαrob ⊂ RL. If L < n(m+n), this
expression is more effective than the one via the elements
of [A B]. However, the paper still handles the latter case.

3.2 Construction based on the vertex representation

With respect to definitions (7)−(9), the first result can be
stated as follows:

Theorem 3.2 Consider the system (10) subject to a para-
metric uncertainty (5). For a given PWA control law (3) sat-
isfying Assumptions 1-3, the robustness margin is obtained
as the projection

Ωαrob = Proj RLR (12)

where R represents the polyhedral set:

R =
{

(α,Γ) ∈ SL × Rq×p+ |1TΓ = 1T ,

L∑
j=1

αj(AjW +BjU) = V Γ
}
,

(13)

with W,U defined in (9), SL defined in (1), p =
Card(W), q = Card(V(X )) and Γ represents any matrix
with the nonnegative elements, satisfying (13).

PROOF. If Ωrob describes the robustness margin, then for
all [A B] ∈ Ωrob and ∀x ∈ Xi, ∀i ∈ IN :

(A+BGi)x+Bgi ∈ X . (14)

Clearly, (14) can be written by:

L∑
j=1

αj(Aj +BjGi)x+ αjBjgi ∈ X , ∀x ∈ Xi (15)

with αj as the elements of a vector α ∈ SL. On the other
hand, by expressing the state x ∈ Xi as a convex combi-
nation of the vertices x =

∑qi
l=1 βlwil for βl ∈ R+ and∑qi

l=1 βl = 1, it follows that (15) is equivalent to:

L∑
j=1

αj(Aj +BjGi)wil + αjBjgi ∈ X , ∀i ∈ IN , ∀l ∈ Iqi .

Further, this inclusion can be explicitly described by the
existence of yil ∈ X such that:

L∑
j=1

αj(Aj +BjGi)wil + αjBjgi = yil. (16)

yil can be expressed as: yil = [V(X )]γil for γil ∈ Sq. By
replacing this inclusion in (16) with notation (9), we obtain:

L∑
j=1

αj(Aj +BjGi)wil + αjBjgi = V γil. (17)

Equation (17) holds ∀i ∈ IN and ∀l ∈ Iqi which means
that it will hold for all the columns of the matrix W as de-
fined in (9). Exploiting the PWA mapping of the columns of
W as in (9), equation (17) leads to the matrix formulation
of the inclusion:

∑L
j=1 αjAjW + αjBjU = V Γ, wherein

each column of Γ is restricted to the simplex Sq , which can
be expressed as: 1TΓ = 1T , Γ ∈ Rq×p+ . These elements
prove that R in (12) represents a parameterized set of ro-
bustness margin over all the model uncertainties guarantee-
ing the positive invariance of the closed loop. In order to
complete the proof, the set R is projected on the space of
the parameters α in (12). 2
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3.3 Construction based on the halfspace representation

This subsection presents another result related to the robust-
ness margin through the halfspace description of a polytope.
The notations of interest are already defined by (6). The main
result towards the explicit robustness margin description, is
summarized by the next theorem.

Theorem 3.3 Consider the system (10) affected by a para-
metric uncertainty polytope (5). For a given PWA control
law (3) satisfying Assumptions 1-3, the robustness margin is
obtained as the projection

Ωαrob = Proj RLP (18)

where P represents the polytope:

P =

{
(α,Γ1...ΓN ) ∈ SL × Rr×r1+ × . . .× Rr×rN+ |

L∑
j=1

αjF (Aj +BjGi) = ΓiFi,

Γihi ≤ h− F
L∑
j=1

αjBjgi, ∀i ∈ IN
}
,

(19)

where Γi, i ∈ IN represent suitable matrices with the non-
negative elements, satisfying the above constraints.

PROOF. It is clear that for every [A B] ∈ Ωrob and
∀i ∈ IN : (A + BGi)Xi ⊕ Bgi ⊆ X . Note also that
∀i ∈ IN ,Xi ⊆ X , the above inclusion is equivalent to:
Xi ⊆ {x ∈ X | F [(A+BGi)x+Bgi] ≤ h} . In this form,
the inclusion has the advantage of an explicit halfspace
representation for both terms:

{x | Fix ≤ hi} ⊆ {x ∈ X | F [(A+BGi)x+Bgi] ≤ h} .

Using the Extended Farkas Lemma Hennet (1995); Schrijver
(1998), there exists a matrix Γi with nonnegative elements
such that:

F (A+BGi) = ΓiFi, Γihi ≤ h− FBgi, ∀i ∈ IN . (20)

The proof is complete by observing that all the realizations
of [A B] ∈ Ωrob are spanned by convex combinations of the
extreme realizations in the polytopic uncertainty set (5):{∑L

j=1 αjF (Aj +BjGi) = ΓiFi

Γihi ≤ h− F
∑L
i=1 αjBjgi

∀i ∈ IN . (21)

One can observe that (21) defines a polyhedron in the ex-
tended space of the elements of α and of the matrices Γi,
therefore, the set Ωαrob is obtained by the projection onto the
space of α as specified by (18). 2

3.4 Further properties of the robustness margin

The convexity of the set Ωrob is confirmed by the construc-
tion (12) which expresses an isomorphic relation with the
set Ωαrob. The following corollary characterizes in a formal
manner the structural properties of the robustness margin.

Corollary 3.4 The robustness margin Ωrob is a polytope.

PROOF. The sets SL and R used in the construction (12)
are polytopes because of their boundedness, as a conse-
quence Ωαrob inherits this structural property. By virtue of
the isomorphism, the set Ωrob is also a polytope. 2

Theorem 3.2 was stated under Assumptions 1-3 but its for-
mulation can be relaxed if additional properties are consid-
ered.

Corollary 3.5 Under the hypotheses of Theorem 3.2, if
in addition Assumption 4 holds, then Ωαrob is obtained as
Ωαrob = Proj RLR∗ with

R∗ =
{

(α,Γ) ∈SL × Rq×p+ | 1TΓ ≤ 1T ,
L∑
j=1

αj(AjW +BjU) = V Γ
}
.

(22)

PROOF. Since 0 ∈ int(X ), for x ∈ Xi, (A + BGi)x +
Bgi ∈ βX for some 0 ≤ β ≤ 1. Following the same line
in the proof of Theorem 3.2, there exists a matrix Γ̃ com-
posed of nonnegative elements such that

∑L
j=1 αj(AjW +

BjU) = V βΓ̃ and 1T Γ̃ = 1T . Accordingly, denoting Γ =

βΓ̃, leads to 1TΓ ≤ 1T . The proof is complete. 2

Note that this corollary may be of help for further develop-
ment of robustness margin while guaranteeing the asymp-
totic stability of the origin. More precisely, the contractive-
ness condition of X may be required when appropriate con-
straints are imposed, whereby 1TΓ ≤ 1T is replaced with
1TΓ ≤ β1T , with a scalar 0 ≤ β < 1.

The continuity can be dropped, as shown in the next result.
Accordingly, if Assumption 3 is dropped, we are interested in
the class of discontinuous PWA functions defined as follows:

fpwa(x) =

{
Gix+ gi for x ∈ int(Xi),
Gix+ gi or Gjx+ gj for x ∈ Xi ∩ Xj .

(23)

Corollary 3.6 Under the hypotheses of Corollary 3.5, if As-
sumption 3 is dropped and the fpwa(x) is given by (23),
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then Ωαrob is obtained as Ωαrob = Proj RLRc with

Rc =
{

(α,Γ1, . . . ,ΓN ) ∈ SL × Rq×q1+ × · · · × Rq×qN+ |∑L
j=1 αj(AjVi +Bj(GiVi + 1Tqi ⊗ gi)) = V Γi,

1TΓi ≤ 1T , ∀i ∈ IN
}
.

PROOF. The argument follows the same line as the one
of Theorem 3.2 with the particularity that the image of the
vertices via the forward mapping becomes multi-valued due
to the presence of common vertices in the set of genera-
tors for neighbor regions, but associated with different con-
trol values. This has to be considered consequently in the
robustness margin description which contains explicitly the
inclusion of the image of each region in the set X . 2

4 Explicit fragility margin for PWA control laws

This section aims to provide a measure of the set of admis-
sible variations in the PWA control law coefficients, also
denoted as the fragility margin such that the positive invari-
ance of X is guaranteed.

4.1 Problem formulation

Given the nominal system (2) and a continuous PWA con-
trol law (3) such that the set X is positively invariant Ben-
laoukli et al. (2009); Bitsoris (1988); Blanchini (1999); Hen-
net (1995); Tahir and Jaimoukha (2012); Athanasopoulos
et al. (2014), a fragility margin problem aims to characterize
the set of admissible parametric variations on the local con-
trol gains such that the positive invariance property is pre-
served. Indeed, due to the characteristic of PWA controllers,
the fragility margins of the given PWA controller for each
region are independent. Thus, we can consider separately
this problem for each region.

Starting from the description of the nominal closed-loop
PWA system: xk+1 = (A + BGi)xk + Bgi, for xk ∈ Xi
guaranteeing the positive invariance of X , one considers a
set of parametric errors of the PWA control law gains for
each region Xi ⊆ X , denoted as ∆G

i ⊂ Rmn+m such that:

xk+1 = (A+B(Gi+δGi,k))xk+B(gi+δgi,k) ∈ X (24)

with i such that xk ∈ Xi and
[
vecT (δGi,k) δTgi,k

]T
∈ ∆G

i .

The approach will be similar to the one adopted for the ro-
bustness margin. Thus in the preamble, the following theo-
rem can be stated.

Theorem 4.1 The sets ∆G
i ,∀i ∈ IN are convex.

PROOF. See the proof of Theorem 3.1. 2

4.2 Construction based on the vertex representation

The fragility problem can be treated in the same positive
invariance framework. The matrix notations in (7)−(9) will
be used next.

Theorem 4.2 Consider a discrete LTI system (2) and a PWA
state feedback (3) over a polytopic partition PN (X ) of the
set X such that Assumptions 1-3 are fulfilled. The fragility
margin of the controller defined over Xi is obtained as

∆G
i = Proj (δGi

,δgi )
Fi, (25)

where Fi represents the polyhedron:

Fi =

{
(δGi

, δgi ,Γi) ∈ Rm×n × Rm × Rq×qi+ | 1TΓi = 1T ,

[
A B

] [Vi
Ui

]
+BδGiVi +Bδgi1

T = V Γi

}
.

(26)

PROOF. By the positive invariance of X ,

Ax+B((Gi + δGi
)x+ (gi + δgi)) ∈ X , ∀x ∈ Xi.

By a simple transformation, one can obtain

[
A B

] [ x

fpwa(x)

]
+BδGi

x+Bδgi ∈ X .

From the boundedness and convexity of Xi, it follows that
∀wil ∈ Wi :

[
A B

] [ wil

fpwa(wil)

]
+BδGi

wil +Bδgi = yil. (27)

yil ∈ X has another description via the generators of X

yil = V γil for γil ∈ Rq+, satisfying 1T γil = 1. (28)

(27), (28) lead directly to the following

[
A B

] [ wil

fpwa(wil)

]
+BδGi

wil +Bδgi = V γil. (29)

Equation (29) holds ∀wil ∈ Wi, thus by completing the
matrix Vi = [Wi] which has its columns as the vertices of
Xi, and Ui being their image via the map fpwa, one can

easily see that
[
A B

] [Vi
Ui

]
+ BδGi

Vi + Bδgi1
T = V Γi,

where 1TΓi = 1T and Γi ∈ Rq×qi+ , qi = Card(Wi). 2
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Remark 4.3 The fragility study cannot be extended con-
comitantly to uncertainties in the state space partition and
the associated feedback gains without loosing the linear for-
mulations in (26) and (31). Indeed, to study the impact of
the uncertainties in the partition, the matrices Fi and hi in
(6) need to be perturbed and consequently, equations (26),
(31) become bilinear in the unknowns. The fragility mar-
gin with respect to the state space partition will be studied
independently in Section 5.

It can be observed that the sets ∆G
i ,∀i ∈ IN in (25), are

polyhedra. This property is related to the linearity of the
constraints in the set description and can be officially stated
as follows:

Corollary 4.4 The set ∆G
i in (25) is a polyhedron ∀i ∈ IN .

PROOF. See the proof of Corollary 3.4. 2

Corollary 4.5 Under the hypotheses of Theorem 4.2, if As-
sumption 4 holds, then the fragility margin of the controller
associated with the region Xi, i ∈ IN , can be obtained as
∆G∗
i = Proj(δGi

,δgi )
F∗i whose definition is below

F∗i =
{

(δGi , δgi ,Γi) ∈ Rm×n × Rm × Rq×qi+ | 1TΓi ≤ 1T ,[
A B

] [Vi
Ui

]
+BδGi

Vi +Bδgi1
T = V Γi

}
.

PROOF. See the proof of Corollary 3.5. 2

Remark 4.6 Corollary 4.5 describes a relaxation in the for-
mulation of the set Γi. Analyzing exclusively the constraints,
it naturally leads to a larger set ∆G∗

i as the result of Corol-
lary 4.5 relative to ∆G

i in Theorem 4.2. Note however that
under Assumptions 1–4 these sets are equivalent. Also, the
fragility margin obtained by the above results can be used
in the context of explicit MPC design under finite precision
arithmetic discussed in Suardi et al. (2014).

4.3 Construction based on the halfspace representation

Using the halfspace representation of the polytopes in the
partition, the following result can be stated:

Theorem 4.7 Consider a discrete LTI system (2) and a PWA
control law (3) satisfying Assumptions 1-3. For each region
Xi of the partition PN (X ) in the controller definition, the
fragility margin is defined by the set:

∆G
i = Proj (δGi

,δgi )
Qi (30)

where Qi represents the polyhedron:

Qi =
{

(δGi
,δgi ,Γi) ∈ Rm×n × Rm × Rr×ri+ |
F (A+B(Gi + δGi

)) = ΓiFi,

Γihi ≤ h− FB(gi + δgi)
}
.

(31)

PROOF. For i ∈ IN and ∀x ∈ Xi

(A+B(Gi + δGi
))x+B(gi + δgi) ∈ X .

From the halfspace representation of the polytope X , it fol-
lows that ∀x ∈ Xi

F ((A+B(Gi + δGi))x+B(gi + δgi)) ≤ h.

In other words, Xi = {x ∈ Rn | Fix ≤ hi} ⊆ Hi =
{
x ∈

Rn | F (A + B(Gi + δGi))x ≤ h − FB(gi + δgi)
}
. The

Extended Farkas Lemma leads directly to the result

F (A+B(Gi + δGi
)) = ΓiFi, Γihi ≤ h− FB(gi + δgi).

This inclusion completes our proof. 2

5 Explicit fragility of state space partition

In this section, a so-called explicit fragility of the state space
partition problem stemming from the implementation of a
piecewice affine controller, is tackled. It aims to compute
the set of tolerable errors for the description of the regions
in the polytopic partition PN (X ) of the set X provided the
positive invariance property of X is preserved. Note that if
the halfspace representation is considered, the linearity of
imposed constraints will be lost. Instead, we compute this
margin via the vertex representation, whereby the errors on
the halfspace description are implicitly deduced.

Consider an LTI dynamic (2) and a continuous PWA con-
trol law (3), this state feedback controller is defined over a
polytopic partition PN (X ) of the state space X . Consider
the vertex representation of Xi as in (7), the description of
Xi in the presence of coefficient errors can be presented as
follows X̃i := conv {wi1 + δi1, . . . , wiqi + δiqi} . A solu-
tion to the explicit fragility margin of the components in the
polytopic partition PN (X ) will be provided next in terms
of the admissible errors δil, l ∈ Iqi for each region Xi. The
polytope X is under the following assumption:
Assumption
(5) The boundary of the polytope X =

⋃
i∈IN Xi is not sub-

ject to uncertainty which is equivalent to X =
⋃
i∈IN X̃i.

This assumption ensures that the positive invariance can be
stated and analyzed in terms of an explicit inclusion:

(A+BGi)x+Bgi ∈ X , ∀x ∈ X̃i ⊆ X , (32)
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with the right hand side represented by a set X free of uncer-
tainties. The set of admissible errors δi =

[
δTi1 . . . δ

T
iqi

]T ∈
Rnqi of the vertices of Xi can be computed through the fol-
lowing result with respect to the notations in (8), (9):

Theorem 5.1 Consider a polytopic partition PN (X ) of X
over which a PWA controller (3) is defined. The controller,
designed with respect to a nominal LTI dynamic (2), satisfies
Assumptions 1-3 and 5. The fragility margin of the vertex
representation of the polytopic partitionPN (X ) is described
for each region Xi as follows:

∆v
i =

{
δi ∈ Rnqi | (I⊗ F ) δi ≤ 1⊗ h− (I⊗ F )vec(Vi),

(I⊗ F (A+BGi)) δi ≤ 1⊗ h− (I⊗ F [A B])vec(V̂i)

}
,

where 1 ∈ Rqi and I ∈ Rqi×qi , V̂i =
[
V Ti UTi

]T
.

PROOF. From Assumption 5 we have that ∀x ∈ X , there
exists γi ∈ Sqi such that ∀x ∈ X̃i ⊆ X and subsequently:
x =

∑qi
l=1 γil(wil + δil). Then we can easily see due to the

halfspace representation of X that: F (wil + δil) ≤ h, ∀l ∈
Iqi . It follows that:

(I⊗ F )δi ≤ 1⊗ h− (I⊗ F )vec(Vi). (33)

In addition, (32) holds true only if it holds also ∀wil ∈
V(Xi). More clearly,

(A+BGi)(wil + δil) +Bgi ∈ X , ∀l ∈ Iqi . (34)

From the halfspace representation of X , (34) amounts to:

F (A+BGi)δil ≤ h− F [A B]

[
wil

fpwa(wil)

]
,∀l ∈ Iqi .

The above inclusion leads directly to the following:

(I⊗F (A+BGi))δi ≤ 1⊗h−(I⊗F [A B])vec

([
Vi

Ui

])
.

Finally, ∆v
i is found by the concomitant satisfaction of (33)

and the above inclusion. 2

From the above result, the following set:

X̂i = conv

 ⋃
l∈Iqi

wil ⊕ Projδil∆
v
i

 , (35)

represents the maximal erroneous halfspace representation
of Xi. More clearly, if X̃i stands for the implemented half-
space representation of Xi, then any implemented X̃i ⊆ X̂i
can guarantee the positive invariance of X with respect to
the given PWA control law.

6 Computational aspects

The above formulations for computation of the robustness
and fragility margins are not in the canonical representations
(vertex/halfspace representations). Therefore, to explicitly
compute these margins, transformations from these matrix
equalities/inequalites into canonical representations will be
discussed in this section.

6.1 Explicit robustness margin of PWA controller

6.1.1 The vertex representation

Let us consider (13) element by element for l ∈ Ip :

Ωαl =
{
α ∈ SL | 1TΓ(·, l) = 1,Γ(·, l) ∈ Rq+,

L∑
j=1

αj(AjW (·, l) +Bjfpwa(W (·, l))) = V Γ(·, l)
}
.

(36)

Then the robustness margin can also be defined: Ωαrob =⋂
l∈Ip Ωαl . Recall that V is the matrix having the

columns composed of the vertices of X . If ŵl =[
WT (·, l) fTpwa(W (·, l))

]T
, then (36) can be rewritten

in the form of a matrix equation where the variable is
βl = [α1 . . . αL ΓT (·, l)]T ≥ 0


[
A1 B1

]
ŵl . . .

[
AL BL

]
ŵl −V

0TL 1Tq

1TL 0Tq

βl =


0n

1

1

 . (37)

This system of equations in the form Aβl = B, has a family
of solutions: βl = Ast + Bs, where As is an orthonormal
basis for the null space of A (satisfying AAs = 0), Bs de-
notes a feasible solution of equation (37) and t stands for
a vector of appropriate dimension. Due to the nonnegativ-
ity of all elements in βl, we obtain the admissible set of t,
denoted by Φt i.e. Φt = {t | − Ast ≤ Bs}. It is observed
that Φβl

:= {βl| (37) holds} = AsΦt ⊕ Bs represents a
polytope. Therefore, due to the above relation, Φt also rep-
resents a polytope. So one needs to calculate all vertices of
Φβl

by applying the transformation to the vertices of Φt.
Finally, the set Ωαl of coefficients α for which (36) holds is
obtained via the orthogonal projection of Φβl

on the space
of α: Ωαl = Proj RL Φβl

.
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6.1.2 The halfspace representation

From equation (18), it follows that Ωαrob =
⋂
i∈IN Proj RLPi,

where Pi ⊂ RL+ × Rr×ri+ are derived from the definition of
P in (19) for each i ∈ IN :

Pi =

{
(α,Γi)

∣∣ L∑
j=1

αjF (Aj +BjGi) = ΓiFi,

Γihi ≤ h− F
L∑
j=1

αjBjgi

}
.

(38)

To facilitate the computation, one needs to transform the
above conditions into a polyhedral form with the meaningful
variables for each region. Indeed, the equation in (38) needs
to be decoupled row by row ∀k ∈ Ir :

Γi(k, ·)Fi = [α1...αL−1]Zk + F (k, ·)(AL +BLGi)

Zk =


F (k, ·)(A1 −AL +B1Gi −BLGi)

. . .

F (k, ·)(AL−1 −AL +BL−1Gi −BLGi)

 .
Denote the following vector: z =

[
vecT (ΓTi )α1 . . . αL−1

]T
,

then the following can be obtained:

D1z = E1, D1 =


Fi . . . 0ri×n
...

. . .
...

0ri×n . . . Fi

−Z1 . . . −Zr



T

,

E1 = (Ir ⊗ (AL +BLGi)
T )vec(FT ).

(39)

In the same way, an equivalent representation of the inequal-
ity in (38) can be presented below:

D2z ≤ E2,

E2 = h− FBLgi,
D2 =


hi . . . 0ri
...

. . .
...

0ri . . . hi

Y1 . . . Yr



T

, (40)

with Yk = [F (k, ·)(B1 −BL)gi . . . F (k, ·)(BL−1 −BL)gi]
T

∀k ∈ Ir. The solution of (39) is a set of z which depends on
t s.t. z = D1t+E1, whereD1 is an orthonormal basis for the
null space of D1 and E1 is a feasible solution of (39). Due
to the nonnegativity of z, the values of t satisfy −D1t ≤ E1.
Also, due to (40), the set of t denoted by Φt, can be de-
scribed by: Φt = {t | −D1t ≤ E1, D2D1t ≤ E2 −D2E1} .
Recall that the set of z denoted by Φz, can be described via
Φt as: Φz = D1Φt ⊕ E1. Then Proj RLPi can be computed
from Proj RL−1Φz.

6.2 Explicit fragility margin of PWA controller

For simplicity, without loss of generality, variations in Gi
are exclusively considered.

6.2.1 The vertex representation

Consider the fragility margin for the controller of the region
Xi. Define also the following set for l ∈ Iqi

∆G
il =

{
δGi
∈ Rm×n | 1TΓi(·, l) = 1,Γi(·, l) ∈ Rq+[

A B
] [Vi(·, l)
Ui(·, l)

]
+BδGi

Vi(·, l) = V Γi(·, l)
}
.

(41)

The fragility margin can also be defined as follows: ∆G
i =⋂

l∈Iqi
∆G
il . If we denote ŵil =

[
V Ti (·, l)UTi (·, l)

]T
, then

(41) can be rewritten as a system of linear equations where
the variable is βil =

[
vecT (δGi

) ΓTi (1 : q − 1, l)
]T ∈

Rnm+q−1 (Γi(q, l) = 1− 1Tq−1Γi(1 : q − 1, l)):


V Ti (·, l)(In ⊗B(1, ·))

...

V Ti (·, l)(In ⊗B(n, ·))

−Ṽ

βil = vq −
[
A B

]
ŵil,

(42)

with Ṽ = [v1 − vq . . . vq−1 − vq] (recall that V =
[V(X )] = [v1 . . . vq] .) Equation (42) in the form Aβil = B,
has a family of solutions: βil = Ast + Bs, where As is
an orthonormal basis for the null space of A and Bs de-
notes a feasible solution of (42). Due to the nonnegativity
βil(nm + 1 : nm + q − 1) = Γi(1 : q − 1, l) ≥ 0, the
values of t satisfy: −A(2)

s t ≤ B(2)s where the matrices
A(1)
s ,B(1)s ,A(2)

s ,B(2)s are defined below:

[
A(1)
s B(1)s

]
=
[
As Bs

]
(1 : nm, ·),[

A(2)
s B(2)s

]
=
[
As Bs

]
(nm+ 1 : nm+ q − 1, ·).

Also, Γi(1 : q − 1, l) satisfies the constraint: 1TΓi(1 : q −
1, l) ≤ 1. Thus, the set of t denoted by Φt can be represented
as: Φt =

{
t | −A(2)

s t ≤ B(2)s ,1TA(2)
s t ≤ 1− 1TB(2)s

}
,

with the remark that Φβil
= {βil | (42) holds} = AsΦt⊕Bs

represents a polyhedral set. Therefore, due to the bound-
edness of Γi(1 : q − 1, l), Φt is a polytope, meaning so is
∆G
il = A(1)

s Φt ⊕B(1)s . Repeat the same computation for all
l ∈ Iqi , then the fragility margin ∆G

i for Gi is obtained.
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6.2.2 The halfspace representation

From equation (31), it follows that for each i ∈ IN the
fragility margin can be described in terms of a set:

Qi =
{

(δGi
,Γi) ∈ Rm×n × Rr×ri+ |

Γihi ≤ h− FBgi, F (A+B(Gi + δGi
)) = ΓiFi

}
.

(43)

In order to facilitate the computation, one has to transform
the above conditions into a polytope formulation with a re-
duced set of meaningful variables for each region. Define

z as: z1 = vec(ΓTi ), z2 = vec(δGi
), z =

[
zT1 zT2

]T
. The

equality in (43) allows the iterative elimination (step by step
for each row) of dependent variables:

Γi(k, ·)Fi = F (k, ·)BδGi
+ F (k, ·)(A+BGi).

and leads to the following set of relationships:

D1z = E1, D1 =


Fi . . . 0ri×n
...

. . .
...

0ri×n . . . Fi

Z1 . . . Zr



T

,

E1 = (Ir ⊗ (A+BGi)
T )vec

(
FT
)
,

Zk = In ⊗ (−BTFT (k, ·)), ∀k ∈ Ir.

(44)

Similarly, the inequality in (43) is equivalent to:

D2z1 ≤ E2,

E2 = h− FBgi,
D2 =


hi . . . 0ri
...

. . .
...

0ri . . . hi


T

. (45)

The family of solutions in (44) has the following form: z =
Asz̃ + Bs, where As is an orthonormal basis for the null
space of D1, Bs is a feasible solution of D1z = E1. Define
the following matrices:

A(1)
s = As(1 : rri, ·), A(2)

s = As(rri + 1 : rri + nm, ·)
B(1)s = Bs(1 : rri), B(2)s = Bs(rri + 1 : rri + nm).

Due to the nonnegativity of z1 = vec(ΓTi ) and (45),
the set of z̃ denoted by Φz̃ , can be described as:
Φz̃ =

{
z̃ | −A(1)

s z̃ ≤ B(1)s , D2A(1)
s z̃ ≤ E2 −D2B(1)s

}
.

Consequently, ∆G
i can be obtained as: ∆G

i = A(2)
s Φz̃⊕B(2)s .

7 Numerical example

Several examples allow the previous theoretical results to be
illustrated. Note that all simulations in this article have been
carried out in MPT 3.0 (see Herceg et al. (2013)).

7.1 Explicit robustness margin of PWA controllers

An illustration is carried out on a linear system with uncer-
tainty set described by:

[A1 B1] =

[
1 0 0

0.1 1 1.5

]
, [A2 B2] =

[
1 0 1.5

0.5 1.5 1

]
,

[A3 B3] =

[
1.5 0 1

3.8 1 1

]
,

in the presence of constraints on the control variable and
the output variable: −5 ≤ uk ≤ 5,−5 ≤ yk ≤ 5, with the
nominal model chosen to synthesize a PWA control law:

A = 0.3A1 + 0.2A2 + 0.5A3,

B = 0.3B1 + 0.2B2 + 0.5B3, C = [1 0] .

A continuous PWA control law is designed with prediction
horizon 2, weighting matrices Q = I2, R = 1 and the ter-
minal constraint chosen as the maximal output admissible
set Gilbert and Tan (1991). The state space partition is pre-
sented in Figure 1. Figure 2 shows the image of Ωαrob via
the orthogonal projection on the plane [α1 α2]. Note that
the shaded violet region presents the whole region of α1, α2.
The blue point denotes the considered nominal system, this
point coincides with a vertex of this robustness margin set. It
is observed that this robustness margin differs from the clas-
sical notion, because the given control law cannot guarantee
the positive invariance of the feasible region X if the nom-
inal system is perturbed away from the robustness margin.

7.2 Explicit fragility margin of PWA controllers

Region 6 has the halfspace representation and its correspond-
ing controller as follows:

F6 =

[
−1 1 −0.2073 0.2073

0 0 −0.9783 0.9783

]T
,

h6 =
[
−0.8 5 23.6177 −17.9116

]T
,

u(x) =
[
−1.5625 0

]
x+ 6.25.

The fragility margin for the control law of region X6 is
illustrated in Figure 3. Note that this margin via two different
approaches is theoretically identical. It can be seen that the
slope gain G6 without parametric error of the control law
associated with this region is pointed out at point (0, 0) in
blue which is a vertex of the fragility margin set. It is easy
to see that this control law is fragile since if the control law
gain G6 is perturbed away from the fragility set, then closed
loop stability may be lost.
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Fig. 1. State space partition.

Fig. 2. Robustness margin in the plane of α1, α2.

7.3 Explicit fragility of state space partition

Again, the state space partition and the PWA control law
designed above, are considered. The outer blank polytope
in Figure 4, represents X . For illustration, we focus on the
unconstrained region X5, which is the orange polytope. The
pink polytope represents X̂5, defined in (35). It implies that
for any implemented representation X̃5 of X5, satisfying
X̃5 ⊆ X̂5, the positive invariance of X is ensured with re-
spect to the above PWA control law.

8 Conclusions

A measure of the robustness and fragility of the positive in-
variance for a piecewise affine system has been introduced
in this paper. Two points of view have been presented with
respect to the closed-loop dynamics of a linear system with a
PWA control law: the robustness with respect to parametric
model uncertainties and the fragility of this PWA controller.
For both cases it has been shown that these margins are rep-
resented by convex sets of admissible parameter variations.
Following this idea, the extension to the explicit fragility
margin of the state space partition has been also tackled.
This problem also leads to polyhedral set descriptions. The
approach allows one to have a generic vision about the mar-
gins related to PWA control laws and also provides new in-
sight in the implementation limitations for this class of con-
trollers.

Fig. 3. Fragility margin of the controller in region X6.

Fig. 4. The shaded pink region is X̂5, defined in (35).
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